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Abstract

Adam is the de facto optimization algorithm for several deep learning applications,
but an understanding of its implicit bias and how it differs from other algorithms,
particularly standard first-order methods such as (stochastic) gradient descent
(GD), remains limited. In practice, neural networks (NNs) trained with SGD
are known to exhibit simplicity bias — a tendency to find simple solutions. In
contrast, we show that Adam is more resistant to such simplicity bias. First, we
investigate the differences in the implicit biases of Adam and GD when training
two-layer ReLU NNs on a binary classification task with Gaussian data. We
find that GD exhibits a simplicity bias, resulting in a linear decision boundary
with a suboptimal margin, whereas Adam leads to much richer and more diverse
features, producing a nonlinear boundary that is closer to the Bayes’ optimal
predictor. This richer decision boundary also allows Adam to achieve higher test
accuracy both in-distribution and under certain distribution shifts. We theoretically
prove these results by analyzing the population gradients. Next, to corroborate
our theoretical findings, we present extensive empirical results showing that this
property of Adam leads to superior generalization across various datasets with
spurious correlations where NN trained with SGD are known to show simplicity
bias and do not generalize well under certain distributional shifts.

1 Introduction

Adaptive optimization algorithms, particularly Adam [1], have become ubiquitous in training deep
neural networks (NNs) due to their faster convergence rates and better performance, particularly on
large language models (LLMs), as compared to (stochastic) gradient descent (SGD) [2]. Despite its
widespread use, the theoretical understanding of how Adam works and when/why it outperforms
(S)GD remains limited.

Modern NN are heavily overparameterized and thus the training landscape has numerous global
optima. As a result, different training algorithms may exhibit preferences or biases towards different
global optima a.k.a. implicit bias. There is extensive prior work on the implicit bias of GD [3, 4, 5, 6],
for both linear and nonlinear models (see Section 5 for a detailed discussion of related work).
However, there is limited work investigating the implicit bias of Adam. Recently, Zhang et al. [7]
showed that for linear logistic regression with separable data, Adam iterates directionally converge to
the minimum £,-norm solution, in contrast to GD which converges to minimum ¢5-norm [3]. This
difference between the implicit bias of Adam vs GD in simple linear settings motivates the central
question of this paper:

What is the implicit bias of Adam for nonlinear models such as NNs, and how does
it differ from the implicit bias of (S)GD?

Given the popularity of Adam, surprisingly little is known about the implicit bias of Adam for
training NNs. A notable exception is the recent work Tsilivis et al. [8], which characterized the
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Figure 1: Illustration of the synthetic dataset Figure 2: Training with Adam leads to better perfor-
considered in this work, and comparison of mance across different test set metrics on six bench-
the Bayes’ optimal predictor with the decision mark datasets with spurious correlations, as compared
boundaries of two-layer NNs trained with to SGD. See Section 4 for details.

Adam and GD.

late-stage implicit bias of a family of steepest descent algorithms, on homogeneous NN, in terms of
maximizing an algorithm-dependent geometric margin (¢ for signGD or Adam without momentum)
and convergence to KKT points. However, the stationary points of the respective margin-maximization
may not be unique. Additionally, this characterization does not relate the implicit bias of the algorithm
with properties of the learned solution, such as the type of features learned, or the complexity of
the decision boundary, which in turn impact its generalization. In particular, in many applications,
NNs trained with SGD are known to exhibit a simplicity bias, that is, they learn simple solutions
[9], which can lead to suboptimal generalization. For example, SGD-trained two-layer NNs rely
on low-dimensional projections of the data to make predictions [10]. This simplicity bias can be
particularly detrimental in the presence of spurious features where it is simpler for NNs trained with
SGD to utilize them to achieve zero training error.” This leads to the question: Does training with
Adam lead to solutions that are resistant to this simplicity bias?

In this paper, we answer these questions in two ways. Theoretically, we show that two-layer ReLU
NNs trained on a Gaussian mixture data setting (see Fig. 1) with SGD exhibit simplicity bias while
training with Adam leads to richer feature learning. Empirically, we demonstrate that training with
Adam can lead to better performance as compared to SGD on various benchmark datasets with
spurious features (see Fig. 2). Our main contributions are as follows.

* We identify a simple yet informative setting with mixture of Gaussians where GD and Adam
exhibit different implicit biases (see Fig. 1). The Bayes’ optimal predictor in this setting is
nonlinear (piecewise linear), and we show — both theoretically and empirically — that while
GD exhibits a simplicity bias resulting in a linear predictor, Adam encourages reliance on richer
features leading to a nonlinear decision boundary, which is closer to the Bayes’ optimal predictor.
We theoretically prove this difference in the implicit bias by analyzing the population gradients
and updates of GD and Adam without momentum (signGD). We also show that this leads to
better test accuracy in distribution as well as across some distribution shifts. Additionally, to
theoretically understand the behaviour of Adam with momentum, we analyze a simpler setting
where the variance of the Gaussians approaches 0, in the infinite width limit. We show that the
decision boundaries learned with signGD and Adam are more nonlinear (and closer to the Bayes’
optimal predictor) than the one learned with GD.

We conduct extensive experiments on various datasets and show that Adam leads to richer features
that are more robust compared to simpler features learned via SGD, allowing Adam to achieve
higher test accuracy both in distribution and under certain distribution shifts. First, we consider
an MNIST-based task with a colored patch as a spurious feature and show that compared to
SGD, training with Adam leads to a more nonlinear decision boundary, larger margins overall,
and has better generalization on a test set with flipped correlation. Next, we show that Adam
achieves better worst-group accuracy on four benchmark datasets (Waterbirds, CelebA, MultiNLI,
and CivilComments) for subgroup robustness, and better decoded worst-group accuracy on the
Dominoes or MNIST-CIFAR dataset [9], with images from CIFAR and MNIST classes as the
complex/core and simple/spurious features, respectively. Finally, we study the Boolean features

“We remark that simplicity bias may not always be detrimental; for instance, it can be beneficial for in-distribution
generalization (see Appendix C for further discussion). Our focus is characterizing and contrasting the implicit
bias of Adam vs (S)GD in terms of rich vs simple feature learning, not advocating for one to always be better.



dataset proposed in Qiu et al. [11], and show that training with Adam leads to better core feature
learning as compared to SGD.

2 Setup

We consider a two-layer homogeneous neural network with fixed final layer and ReLU activation,
defined as f(W;x) := a"o(Wx), where x € R? denotes the input, W € R™*¢ denotes the trainable
parameters, a € {+1}" are the final layer weights, and o (-) := max(0, -) is the ReLU activation. Let

= {(@, ;) }I-, denote the set of train samples, where the label y € {—1,1}. The model is trained

to minimize the empirical risk L(W) := % Yo b~y f(W;x;)), where £ denotes a decreasing loss
function. We consider two loss functions, namely logistic loss, where £(z) := log(1 + exp(z)), and
correlation or linear loss, where £(z) := z, for z € R. We focus on the following two update rules.

Gradient Descent. The updates for GD with step-size > 0 at iteration ¢ > 0 are written as
Wip1 = Wi — nGy, where Gy := Vw L(W;), each row of which is written as:

= Zél tylijf(Wt’mz ?1 Z ;0 (w tml)(yzm1)7

i=1

where £} , denotes £'(~y; f (W}, x;)) for convenience, and o' (z) = 1[z 2 0], for z € R.
Adam. The update rule for the Adam optimizer [1] is as follows:
Wi =W, - 7’]Mt © (‘A/t + 6]_]_.'—)0_1/27

N M, 1
where M, = Bl (ﬁl M, +(1- ,61)Gt) is the bias-corrected first-moment estimate,
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V;Hl _ 1
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estimate. € is the numerical precision parameter, which is set as 0 for the theoretical results. Also,
© and (+)° denote the Hadamard product and power, respectively, and M and Vj are initialized as
zeroes. Note that we can write

t
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At each optimization step, the descent direction is different from the gradient direction because
of the entry-wise division with the second (raw) moment. Further, the first update step exactly
matches the update of signGD, which uses the sign of the gradient sign(G;) instead of directly
using the gradient G'; for the update. This is because Mo = G and f/[) = Gy ® Gy, and hence

(Mo VO 1/2)w ég‘);l ]I = sign((Go)s,;). Similarly, when the parameters 3; and S35 are set as

0, the Adam updates are the same as signGD for every ¢ > 0.

andf/t:

(BQV,; +(1-52)Gr o Gt) is the bias-corrected second (raw) moment

Dataset. Our synthetic dataset is designed to investigate the impact of feature diversity on the
implicit biases of GD and Adam in NN training. It models two classes with differing feature
distributions to emulate real-world scenarios where feature complexity may vary between classes.
See Fig. 1 for an illustration of the dataset. Concretely, each sample (x,y) is generated as follows:

y ~ Unif({£1}), e~ Unif({+1}) 1)
1 NN(%-ry%,oi), zo ~ N (e (y”)ug, y) x; ~N(0,02),¥je{3,...,d}.

The first two dimensions contain information about the label while the rest are noisy. Our dataset
construction is inspired by the synthetic “slabs” dataset introduced by Shah et al. [9]. While their
approach utilizes slab features to represent non-linearly separable components, we consider Gaussian
features instead. This modification enhances the realism of the synthetic data and facilitates a more
nuanced analysis of the NN training dynamics.

We first write the Bayes’ optimal predictor for this dataset when using only the signal dimensions as
follows.

Proposition 1 (Bayes’ Optimal Predictor). The optimal predictor for the data in Eq. (1) with d=2 is:

(1 +u3)x1+%u2x2 el “'* + ’32002 -o: log(05(1+exp( 2“%“)))
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Figure 3: Evolution of the decision boundary (top row) and the neurons (bottom row) over time, for
GD (left) and Adam (right) with learning rates 0.1 and 10™* over 20000 epochs of training a width
100 NN with small initialization (the neurons are colored based on the quadrant they were initialized
in) using population gradients (the samples are plotted for illustration purposes) on the Gaussian data
setting (Eq. (1)) with p = 0.3,w = 2,0 =0.1. GD leads to a linear decision boundary, with neurons
mostly aligned with the directions [+1,0]", while Adam (with 8; = 82 = 0.9999) leads to a non-linear
decision boundary, with neurons aligned with three main directions [-1,0]7,[1,1]7,[1,-1]", which
is closer to the Bayes’ optimal predictor.

Since we consider homogeneous NNs (no bias parameter), we make the following assumption on the
data generating process to make the setting realizable, i.e., ensure that the Bayes’ optimal predictor
passes through the origin.

2
Assumption 1 (Realizability). Let ji:= pig, & = 2%, w = %}f* > 1. For realizability, j11 =
Y

%(/ﬁw— %) and 3 = %(/ﬁw+ %)

Here, « denotes the degree of anisotropy of the clusters, and :I:% corresponds to the slopes of the two
linear components of the optimal predictor.

3 Theoretical Results

In this section, we aim to theoretically analyze GD and Adam and the differences in the learned
solution arising from the update rules. For clarity of exposition we focus on a simple setting.
Specifically, in this section, we consider the infinite sample limit, fixed outer layer weights, d = 2,
and training with correlation or linear loss. As we will see later in Section 4, these algorithms learn
different solutions even when these assumptions are relaxed.

3.1 Gaussian Data

We first obtain a closed-form of the population gradient for the Gaussian cluster data as follows. The
proof is included in Appendix A.

Proposition 2 (Population Gradient). Consider the data in Eq. (1) with 0, =0y=0.=0. When using
correlation loss, the population gradient for neuron w is written as:

VwL(W) = —aE(4 ,)-p[1[w z > 0]yz]
=~ 22 (BOBLD) A, + PORLD) M- - 20(ABYD) Mo + (9(NELD) + S(ARLD) - 26(Magw) )b,

where \ = Letl o= [‘*’2_1 e O,...,O]T, o_ = [‘*’2_1 - O,...,O]T, g =

o 2w w2417 w?2+1? w2417 w2417

[-1,0,0,...,0]", and ¢ and ® denote the normal PDF and CDF, respectively.

Here, 1., pi— denote the (normalized) mean vectors of the clusters with label 1 and f1y denotes the
mean of the cluster with label —1.

Before theoretically analyzing the training dynamics of GD and Adam, we compare them empirically.
Fig. 3 shows the evolution of the decision boundary and the neurons for two-layer NNs trained with
GD and Adam using the population gradients in Proposition 2, as a function of the training epochs. We
observe that for GD (left), all neurons align in direction [+1,0], and the learned decision boundary
is linear, i.e., the model only relies on the first dimension to make predictions. On the other hand, for
Adam (right), neurons converge along three different directions, [-1,0]", % [1,1]T, % [1,-1]7, and
the learned decision boundary is piece-wise linear, i.e., the model uses both the signal dimensions.



We will now prove these results for the two optimizers in Theorem 1 and Theorem 2. First, we
leverage the gradient expression in Proposition 2 to show that gradient descent with infinitesimal step
size, i.e., gradient flow (GF) exhibits simplicity bias and learns a linear predictor.

Theorem 1. (Informal) Consider the data in Eq. (1), neurons initialized such that aj, = £1 with
probability 0.5, d = 2, 0, = 0y = 0, and w > c; and % > c9, Where c1,co are constants. Let

% and Wy, o = Hz’zi’“w,for k € [m]. Then, the solution learned by gradient flow

is: Wy,00 = a[1,0].

Wi, 00 = liMy 00

The proof is included in Appendix A. The main step in the proof is using the relation cos 8y, ; =
w; ,w*, where w* := [1,0]", and showing that
(sin kaf,)Q

. T

=Tk Wit — —T \,5*
= apw, W = a4 (1 — Wy 4w, )W > Ot
k%t ETace] ¢ L) Twi o

dcos Oy ¢

Ear

where C' > 0 is a constant, for every ¢ > 0. To show this, we use the fact that w;, ; = —Vwk.tf(Wt)

for gradient flow, and use the population gradient from Proposition 2. Further, using Proposition 2 and

showing that |wy, ¢|| < ¢(t + 1) for some constant ¢ > 0, we prove by contradiction that sin 6y, ; — 0
as t — oo, and hence cos 6, ; — 1.

Next, we analyze Adam with 8; = B3 = 0 (signGD), and show that it learns both features resulting in
a nonlinear predictor.

Theorem 2. (Informal) Consider the data in Eq. (1), neurons initialized such that aj, = +1 with
probability 0.5, small initialization scale, d = 2, 0, = 0 = 0, w > cand c; < % < ¢9, where ¢, c1, Co
are constants. Let Wy, o = lim;_, e % and Wy, o = HZI’:%:H for k € [m]. Let 0y denote the
direction of wy, o. Then, the solution learned by signGD is:

L[1,1]7  ap>0,sin0;0 >0,

\{i
177 .
B o0 = ﬁ[l, 11" ag >0,sinf <0,
[1,0]" ag > 0,sin 60 =0,

[-1,0]7  a<0.

The proof is included in Appendix A. At a high level, we leverage Proposition 2 to show that at each
t > 0, the gradient update in each of the two dimensions is nonzero and signGD updates are in the
1

direction [sign(ay),sign(aysinfy .)]". Notably, when ay, > 0, neurons are either in ﬁ[l, 1]7 or

in % [1,-1]" direction at each iteration. However, when ay, < 0, the neurons point to % [-1,+1]7

and —=[-1,¥1]" in alternating iterations, leading to convergence in the [-1,0]" direction.

1
V2
These results characterize the direction in which each neuron converges asymptotically. For GF, all
neurons are in the same direction, with exactly half the neurons in [1,0]" and [-1,0]" directions,
which leads to a linear predictor. In contrast, for signGD, there is a fraction of neurons aligned
in the directions %[1, 1]" and %[1, —1]" which leads to a piece-wise linear decision boundary.
These results explain the behaviour we observed in Fig. 3. We note that while our theoretical result
considers GF, the continuous time version of GD, it is still predictive of the behaviour we observe
for discrete-time GD with small step-size. We also observe a similar behaviour for Adam vs GD in

Fig. 1, where we consider finite samples (see Section 4 for details).

Analyzing this setting allows us to conceptually understand how Adam (without momentum) operates
and leads to rich feature learning, while GD exhibits simplicity bias. Importantly, we make no
assumptions regarding the initialization direction of the neural network parameters, ensuring that
any differences observed between Adam and GD arise solely from the inherent characteristics of the
optimization algorithms themselves. Since we analyze the population setting, these results are in the
under-parameterized regime and don’t require any lower bound on the network width m to ensure
overparameterization.

Next, we show that under some conditions on the distribution parameters, the piece-wise linear
predictor learned by Adam (without momentum) obtains a strictly lower test error than the linear
predictor learned by GD. For simplicity, we assume that m — oo for the following result, so that we
can write the predictor learned by Adam in a piece-wise linear form which is symmetric (with respect
to the first dimension), using p(sin 6y ¢ > 0) = p(sinfy ¢ < 0) = 0.5. However, even with finite m,
these probabilities concentrate well and we can expect the following to still hold.



Theorem 3. (Informal) Consider the data in Eq. (1) with d = 2 and w = ©(1), k = % ¢ [L,1],

UL > c\/kw, where c is a constant. Consider two predictors,
Yy

Linear: § = sign(xy),
sign(3xy +x2)  ifwe 20,

Piece-wise Linear: ' =
4 {sign(?)xl —x9) ifwe<O.

Then, it holds that E(§ +y) - E(§ #y) < 0.

The proof is included in Appendix A. Note that we consider isotropic distributions (x = 1) for
Theorems 1 and 2, whereas the above result on the test error applies to € [ﬁ, 1]. This shows that
training with Adam can provably lead to better test accuracy both in-distribution and across certain
distribution shifts.

In the next section, we consider a simplified setting to investigate the effect of setting 31, 32 » 1 for
Adam, which is closer to the setting used in practice, where 51 = 0.9, 52 = 0.999.
3.2 Toy Data Setting
We consider a simple yet informative setting where d = 2 and o, = o, = 0, which we refer to as the
toy data setting. Specifically, the samples are generated as follows:

y~Unif({+1}), e~Unif({+1}), z1=%(yw-1), x=€e%'pn 2)

This setting allows us to characterize the full trajectory of each neuron for the three algorithms,
namely GD, signGD, and Adam (3; = 2 ~ 1). We now state our main result.

Theorem 4. (Informal) Consider the toy data in Eq. (2), neurons initialized at a small scale, and

. w — Wk, oo
c1 <w < cg, where ¢y, ¢z are constants. Let W oo = 1iMy 00 —* and Wy, oo 1= m,for ke[m]
tan™! w1 ’
and p = fzw Then, for m — oo, the solutions learned by GD, signGD, and Adam are shown

in Table 1, where s is a constant € [0.72, 1], the probabilities are over the neurons, and the sign of
the first element of wy, « is the same as stign(ay).

GD Adam (B; = B2 = 0) or signGD Adam (81 = B2 ~ 1)

(1,0]" w.p. p
[1,0] wp. $+2 [1,0] w.p. p [-1,0]" . wp. 3 ’
. [-1,0]" wp. 1 [-1,0]" wp. 1 5 [1,1] wp. 1-2
Wkioo = 1 T 1_p 1 117 1_p
lear Tl fair By Seor B
) [aﬂ -1, —Qw] W.p. é -z 7 [1,-1]" wp. ;-5 Zer [5,1] i w.p. § - g
\/ﬁ[s,*l] w.p. 3 4

Table 1: Solutions learned by different algorithms on the toy dataset (see Theorem 4).

Note that p < 0.5, which implies (from Table 1) that the

fraction of neurons in the direction [1,0] is larger for 10
GD as compared to Adam. Consequently, the decision
boundary learned by Adam is more non-linear. The proof
mainly relies on analyzing the updates of each algorithm,
so we defer it to Appendix A. Fig. 4 shows the decision
boundaries learned by the three algorithms, as mentioned -05
in Table 1. The predictor learned by Adam is more non-
linear and closer to the Bayes’ optimal predictor.

-- Bayes' opt
—- GD

—— Adam (B1=B>~0)
e Adam (B1=B>=1)

05 1.0

We note that the difference between the predictors learned

by GD and Adam is more significant in the Gaussian Figure 4: Comparison of the Bayes’ opti-
setting, as compared to the toy dataset. The main reason mal predictor and the predictors learned
is that in the toy dataset, there is a larger region where by two-layer NNs trained with GD,
the gradients are in the [1,0]" direction, which makes the Adam (8; = 82 ~ 0) or signGD, and
decision boundary for signGD more linear, as well as a Adam with 8; = S5 ~ 1 on the toy
larger region where the neurons are only active for one of dataset (Gaussian dataset with o — 0).
p. or p_, which makes the decision boundary for GD more non-linear.
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4 Experimental Results

In this section, we present experimental results across synthetic and real-world datasets showing that
GD exhibits simplicity bias while Adam promotes rich feature learning.

4.1 Gaussian Dataset

We consider the Gaussian data in Eq. (1) in this section, focusing on the finite sample setting, which is
closer to practice as we train with the binary cross-entropy loss and consider Adam with momentum
parameters 31 = B2 = 0.9999, although the results generalize to other values as well. We consider a
small initialization scale and fix the outer layer weights. Specifically, wy, ~ N (0, % ), and ay, = iﬁ

for k € [m], where « is a small constant.

Fig. 1 compares the decision boundaries learned by Adam and GD in the finite sample setting, with
the Bayes’ optimal predictor (for the population version of this setting). We set n = 5000, m = 1000,
n=03,w=20,=020,=0.15 a = 0.001, and use learning rates 0.1 and 10~ for GD and Adam,
respectively. These results are similar to the population setting and show that the difference in the
implicit bias of Adam and GD is quite robust to the choice of the training setting. For comparable
train loss, the test accuracy of Adam is 0.32% more than that of GD in this case. We also find that
reducing 4 increases the accuracy gap: repeating the same experiment with ;o = 0.25 leads to a gap of
0.595%. These results also generalize to settings where d > 2: with m = 500, d = 20 and p = 0.25,
the gap is 0.203%. See Appendix B for additional results.

4.2 MNIST Dataset with Spurious Feature

In this section, we conduct an experiment to provide additional support for our theoretical results. We
construct a binary classification task using 14 x 14 MNIST images, where we inject a 2 x 2 colored
patch at the top left corner of the image (to model the simple feature). One class comprises digit
‘0’ images with a red patch, while the other has digits ‘1’ and ‘2’ with a green patch. We train a
two-layer NN using SGD or Adam. For test samples, we flip the patch color to check the model’s
reliance on the simple feature. We also train a linear model on this task, and measure agreement
between its predictions on the test set with those of the NN trained with Adam/SGD. This serves as
the measure of the complexity of the learned decision boundary. The results are shown in Table 2.
We observe that the NN trained with Adam relies more on the digit features and generalizes better. It
also has a complex/nonlinear decision boundary, as the agreement with the linear predictor is lower
as compared to SGD. In addition, we plot the distribution of the train set margin for the two NN as
shown in Fig. 5. We observe that the margin for Adam is generally larger compared to SGD. These
results support our theoretical findings that SGD learns simpler features compared to Adam.

Test Agreement w/
Accuracy  Linear Model

SGD 66.6 95.5 =
Adam 86 84

Table 2: Comparison of test accuracy T s o

and agreement with a linear model for ’ ag

a two-layer NN trained on MNIST with Figure 5: Distribution of margins of training-set samples

spurious correlation. from the MNIST dataset with spurious correlation for a
two-layer NN trained using SGD (left) and Adam (right).

4.3 Dominoes Dataset

The Dominoes dataset [9, 12], specifically MNIST-CIFAR, is a binary
image classification task. It contains images where the top half shows
an MNIST digit [13] from classes {0, 1}, while the bottom half shows
CIFAR-10 [14] images from classes {automobile, truck}. The MNIST A%
portion corresponds to simple or spurious features, which are 95% i
correlated with the label, while the CIFAR portion is the complex or
core feature and is fully correlated. See Fig. 6 for example images
from the dataset and Appendix B for further details.

Figure 6: Example images
from class —1 and 1 from the
We define 4 groups based on the labels predicted by the core or the MNIST-CIFAR dataset.

spurious feature. The minority groups correspond to images where the core and spurious features



disagree, and the majority groups correspond to images where they agree. The groups in the test set
are balanced. The model can rely on the spurious feature to attain good train performance but can
only generalize well on the balanced test set if it learns to use the core feature.

In Table 3, we report the average original worst-group accuracy on the balanced test set, for a ResNet-
18 model (also see Appendix B, where we include results with ResNet-34 model and 99% spurious
correlation). In addition, we report the average core-only worst-group accuracy on a test set where
the spurious top half of the image is removed and replaced by a black image. This measures how
much of the core features have been learned by the model. Lastly, we also report the average decoded
worst-group accuracy, obtained by retraining the last layer of the model using logistic regression to fit
a group balanced validation dataset, and then evaluating on the original test set. This gives a better
evaluation for how much of the core features have been learned in the latent representation. We find
that training with Adam leads to a significant gain across all three metrics as compared to training
with SGD.

We also remark that these results (as well as those in Fig. 2) challenge the widely held consensus that
SGD generally performs/generalizes better than Adam on image data [15]. We use ResNet-based
models across the three image datasets and Adam leads to better worst-group accuracy across these
cases. These results show that while SGD could be better for in-distribution generalization, Adam
can be better for generalization under distribution shifts because it promotes richer feature learning.

Optimizer Original Acc. Core-Only Acc. Decoded Acc. Optimizer ~ Test Acc.  Decoded Core Corr.  Decoded Spurious Corr.
SGD 0.81.0.38 1.66.1.79 71.0440.63 SGD 89.58.1.92 0.5140.08 0.78.0.08
Adam 14.17.3.15 20.63.5.75 84.66.0 .15 Adam 97.87.0.69 0.87.0.03 0.36.0.06

Table 3: Training with Adam leads to bet- Table 4: Training with Adam leads to better test
ter worst-group accuracy on the original and accuracy, decoded core, and decoded spurious corre-
core-only test sets, and after decoding, on the lations on the Boolean features dataset, as compared
Dominoes (MNIST-CIFAR) dataset (95% spu- to SGD, for a three-layer NN.

rious correlation), as compared to SGD, for a

ResNet-18 model.

4.4 Subgroup Robustness Datasets

We consider four benchmark subgroup robustness datasets, namely Waterbirds [16], CelebA [17],
MultiNLI [18] and CivilComments [19, 20]. Each of these contains a core feature that is fully
correlated with the label, and a spurious feature that is simpler but has a lower correlation. Waterbirds
contains images of different birds on various backgrounds. The task is to classify whether the bird is
a landbird or a waterbird. The background of the image is either land or water, and is spuriously
correlated with the target label. CelebA consists of images of celebrity faces. The task is to classify
whether the hair color is blonde or not blonde, and the gender of the celebrity male or female is the
spurious feature. MultiNLI contains sentence pairs and the task is to predict how the second sentence
relates to the first, out of three classes: entailment, neutral, and contradiction. The spurious features
are negation words which are often but not always associated with contradiction. The CivilComments
dataset consists of online comments and the task is to predict whether the comment is foxic or
non-toxic. Toxicity is spuriously correlated with the mention of various demographic attributes in the
comments, based on gender, race, or religion.

Prior work has shown that simplicity bias can be detrimental to worst-group test performance in
the presence of spurious features [21]. The standard practice is to use SGD for image datasets and
Adam(W) for language datasets. However, since Adam promotes richer feature learning, it should
be more robust to spurious correlations across all datasets. Hence, we compare the performance of
SGD and Adam on these datasets, when fine-tuning a pretrained BERT bert-base-uncased
model [22] on the language datasets, and an ImageNet-pretrained ResNet-50 [23] model on the
image datasets. To ensure fair comparison, we sweep optimizer-sepcific hyperparameters, namely
learning rate, momentum, and weight decay (see Appendix B for details). Fig. 2 and Table 13 in
Appendix B show the worst-group and average (group-balanced) accuracies on these datasets when
training with SGD or Adam, based on the best worst-group validation accuracy. We see that training
with Adam leads to significantly better worst-group accuracy as well as (slightly) better average
accuracy compared to training with SGD.



4.5 Boolean Features Dataset

In this section, we consider the synthetic Boolean features dataset proposed by Qiu et al. [11] to
study feature learning under spurious correlation. The dataset is designed to model the presence
of two types of features: a set of complex core features with dimension d,. that are fully correlated
with the label, and a set of simple spurious features with dimension d that have correlation strength
A € [0, 1] with the label. The rest of the d,, = d — d.. — d; features are uncorrelated with the label. For
our experiments, the core and spurious features are modeled as staircase functions with degrees d,.
and d, < d.., respectively. Degree d threshold staircase functions for a Boolean input 2 € {1, +1}¢
are defined as:

1 ifrxi+x120+ - +2129...24 20,

-1 otherwise.

fstaircase (CL') = {

We train a three-layer NN using SGD and Adam. We consider d = 50,d, = 8,ds = 1,A = 0.9.
See Appendix B for a formal description of the dataset and further details of the experimental
setting. To measure feature learning, we used the decoded core and spurious correlations [11, 24],
which measure the extent to which the model has effectively learned the core and spurious features.
The decoded core correlation is measured by retraining the last layer of the model using logistic
regression to fit the core function and evaluating its correlations with f. on the uniform distribution,
Ex~unit({-1,13¢)[fc(x)sign(f(x))], where f is the model. The decoded spurious correlation is
measured similarly by retraining on the spurious function and measuring the correlation with f5 on
the test set.

We report the results in Table 4 evaluated at the lowest comparable training loss achieved by both
optimizers. See Appendix B for the training curves and additional results. Adam records significantly
higher average test accuracy and decoded core correlation, as well as lower decoded spurious
correlation. This suggests that Adam’s superior performance on the test set can be attributed to richer
feature learning as it encourages the utilization of the core features and forgetting or down-weighting
the spurious features. In contrast, SGD relies heavily on the simple spurious feature.

5 Related Work

In this section, we discuss related work on the implicit bias of GD, simplicity bias of NNs trained
with GD, implicit bias of Adam and adaptive algorithms, and comparison of Adam and (S)GD in
various settings.

Implicit Bias of GD. Since the pioneering studies that identified the implicit bias of linear classifiers
on separable datasets [25], extensive research has been conducted on the implicit bias of gradient-
based methods for linear models, NNs, and even self-attention models. Wang et al. [26] shows that
GD with momentum exhibits the same implicit bias for linear models trained on separable data as
vanilla GD. Nacson et al. [27], Ji and Telgarsky [28], Ji et al. [29] demonstrate fast convergence (in
direction) of GD-based approaches with adaptive step-sizes to the /o max-margin predictor. It has
also been shown that multilayer perceptrons (MLPs) trained with exponentially tailed loss functions
on classification tasks, GD or gradient flow converge in direction to the KKT points of the max-
margin problem in both finite [30, 31] and infinite-width [32] networks. Additionally, Phuong and
Lampert [33], Frei et al. [34], Kou et al. [35] analyze the implicit bias of ReLU and Leaky-ReLLU
networks trained with GD on orthogonal data, while Mulayoff et al. [36] investigate convergence to
stable minima. Other studies focus on the implicit bias to minimize rank in regression tasks using
squared loss [37, 38, 39]. The recent survey Vardi [40] includes a comprehensive review of related
work. More recently, Tarzanagh et al. [41, 42], Vasudeva et al. [43] studied single-head prompt and
self-attention models with fixed linear decoder and characterized the implicit bias of attention weights
trained with GD to converge to the solution of a hard-margin SVM problem.

Simplicity Bias of NNs Trained with GD. Kalimeris et al. [44] empirically demonstrate that NNs
trained with SGD first learn to make predictions that are highly correlated with those of the best
possible linear predictor for the task, and only later start to use more complex features to achieve
further performance improvement. Shah et al. [9] created synthetic datasets and show that in the
presence of ‘simple’ and ‘complex’ features (linearly separable vs non-linearly separable), (two-
layer) NNs trained with SGD rely heavily on ‘simple’ features even when they have equal or even
slightly worse predictive power than the ‘complex’ features. They also show that using SGD leads to
learning small-margin and feature-impoverished classifiers, instead of large-margin and feature-dense
classifiers, even on convergence, which contrasts with Kalimeris et al. [44].



Implicit Bias of Adam and Other Adaptive Algorithms. Wang et al. [45] show that homogeneous
NNs trained with RMSprop or signGD converge to a KKT point of the /5 max-margin problem,
similar to GD, while AdaGrad has a different implicit bias. Zhang et al. [7] show that linear models
trained on separable data with Adam converge to the /., max-margin solution. Recently Fan et al.
[46] characterized the implicit bias of steepest descent algorithms for multiclass linearly separable
data. Xie and Li [47] analyze loss minimization with AdamW and show that under some conditions,
it converges to a KKT point of the £.,-norm constrained loss minimization.

Adam vs (S)GD. Zhou et al. [48] show that SGD converges to flatter minima while Adam converges
to sharper minima. Andriushchenko et al. [49] show that flatter minima can correlate with better
in-distribution generalization but may not be predictive of or even be negatively correlated with
generalization under distribution shifts. Zou et al. [S0] study an image-inspired dataset and show that
CNNss trained with GD can generalize better than Adam. Ma et al. [51] show that adding noise to
lower or higher frequency components of the data can lead to lower or higher robustness of Adam
compared to GD. Kunstner et al. [52] show that the reason why Adam outperforms SGD on language
data is because the performance of SGD deteriorates under heavy-tailed class imbalance, i.e., when
minority classes constitute a significant part of the data, whereas Adam is less sensitive and performs
better. In contrast to their focus on multiple classes and training performance, our work focuses on
generalization in a binary classification setting. Several works [53, 54, 55] also study why Adam
outperforms SGD on attention models or Transformers.

6 Conclusion

In this work, we investigate the implicit bias of Adam and contrast it with (S)GD. NNs trained with
SGD exhibit simplicity bias, whereas we find that training with Adam leads to richer feature learning,
making the model more robust to spurious features and certain distribution shifts. We note that richer
feature learning may not always be desirable; for instance, simplicity bias can be beneficial for better
in-distribution generalization. However, it’s important to characterize and contrast the implicit bias of
Adam vs (S)GD in this context. To get a principled understanding, we identify a synthetic data setting
with Gaussian clusters and theoretically show that two-layer ReLU NNs trained with GD or Adam on
this task learn different solutions. GD exhibits simplicity bias and learns a linear predictor with a
suboptimal margin, while Adam leads to richer feature learning and learns a nonlinear predictor that
is closer to the Bayes’ optimal predictor. Through theoretical and empirical results, our work adds to
the conceptual understanding of how Adam works and poses important directions for future work,
such as studying the implicit bias of Adam for other architectures, and the effect of weight decay on
simple vs rich feature learning to study the implicit bias of AdamW.
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A Omitted Proofs

The proof for Proposition | is as follows.

Proof. The optimal predictor can be found by solving for the following:

. 2 e 2 o 2 z 2 z 2 22

%GXP (_( 120%1) - ¢ 220%2) ) + %exp (_( 12;%1) - ¢ 222%2) ) =exp (—( 122%3) - ﬁ)
Simplification yields
2uox _ (p1+ps)z z pi-p3 | w

05(1+6Xp( N2y2)) —exp(— M1 ;:263 1 #2 2 4 ég23 + 2022)

Taking log on both sides and rearranging, we get'
(B1+p3)Tr | poza _ Hi-ps 2“2I2
o2 + = oz T 202 log(05(1+exp( o2 )))

For isotropic Gaussians, it simplifies to

(p1 + p3)x1 + pows = L;“:‘ o log(05(1+exp( “2“32))).
Under realizability, we get

wry +T9 = ——log(05(1+exp( 2"“))).
O

A.1 Gaussian Data

We can prove Proposition 2 as follows.

Proof. The population gradient can be simplified as follows.

E[1[w 'z > 0]yx] =

E(z|lw'z>0,y=1,e=1)Pr[y=1]Prle= 1y =1]Prlw 'z >0y = 1,¢ = 1]
+E(zlw'z>0,y=1,e=-1)Prly=1]Pr[e=-1ly = 1] Prw 'z > 0ly = 1,e = -1]
+E(-zjlw x>0,y =-1)Pr[y = 1] Pr[w'z > 0y = —1]

1
= Z(Pr[wTa: >0ly=1,e=1]E(zjw'z>0,y=1,e=1)+Prlw'z >0y = 1,e = -1]
E(xlw'z>0,y=1,e=-1)-2Pr[w'z >0y = -1]E(zjw 'z > 0,y = -1)).
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The conditional expectation E(x’|wTx’ > 0) can be simplified as follows. Let p’ := E(2"). Since we
can write ' = w'x'w + W x'Ww, = x| + x|, we have
E(z'|w'z’ 2 0) = E(z||lw'z’ 2 0) + E(z||w'z’ 2 0)
=E(w'z'wlw'z’ >0) +E(z))
w

= e —sE(w'zlw'z 2 0) + E(z') - E(x))

=p —w p'w+ 0 H2E('w z'lw'z’ >0).

Using a result on the mean of truncated normal distribution from Burkardt [56], and that for a given
w, w'x’ is a Gaussian random variable, we have,

o(~te)

- (-22)

E(w'z'|[w 'z >0) = o + 0w

Where fiy := W'Y, 04y := o||w]|. Then, we have
E(z'lw'a >0)=p'+ O’ﬁ Iy
- 1- (P( /’Lw)

Using the above, we can write the population gradient —aE[1[w™x > 0]yx] as
=0.25a(ps (p+ + 0T (ppy, w5 )w) + p-(pr- + oL (p, w)w) = 2po (ko + 0T (po, w)w)),

where p, = PrlwTa > Oy = 1,e = 1] = @(M), p-=Prlw'x >0y =1,e = -1] = @(#),

. ule L a®y e

po = Prlw'z > Oy = -1] = ®(=2=), and I'(u, w) := = (using the facts
a(-EE) et

that for any z, ¢(-z) = ¢(z) and 1 — ®(-2z) = D(2)). Slmphfylng the expression then finishes the

proof. O

Next, we state the full version of Theorem 1 and prove it as follows.

Theorem 5. (Full version of Theorem 1.) Consider the data in Eq. (1), neurons initialized such that
ar = =1 with probability 05,d=20,=0y=0,w>2and )\ = % > 0.8. Let Wi, o0 = limy 00 %

and Wy, o = for k € [m]. Then, the solution learned by gradient flow in the infinite sample

Hw
setting with correlanon loss is:

Wy 00 = ag[1,0]".

Proof. For neuron j € [m], let 0;,+ denote the angle between w; ; and the z-axis at iteration ¢ > 0.

We drop the subscript j for convenience. Let w} -, := [1,0]". Then, cos 0, = w, w}. . We want to
p ptJ GD ) t WD+

see if 6; tends to O with time. Specifically, given 0 € [—m, 7], we want to show that adcg: 00 5 0. We

have:

dcosb; _
dt -

= 125 (U2 (@RI, + BOVELw,)) + 22D (ABJr) + o (d(MLy) + GABLD:) ~ 26 (A1) )
HU:Z,:H (/\((I’()\N+wt)ﬂ+wt + O\ w, ) p b, — 20 (N g ) frowy) + (¢(/\ﬂ1u_’t) +p(Aplwe) - 2¢5()\ﬁ8'¢z’t))) )
= ZH,Z;\” ( (sz) ”i},?iz ((I)()‘ﬂiwt) + (I)()‘ﬂzwt)) - % w”t{ll,:lﬁtzj (@()\ﬂl’lj]t) - CD()‘ﬂI'lIJt)) + 20— Hw H2 CI)()‘P‘Owt))

i 2 =T =T w  cos by =T = =T = =T
= a2”>‘51n29t((‘”2 ) (P(\ajw,) + P(Nalww,)) - Zocosb (@(Aulwt)—@(Auzwt))+2<b()\u8wt)).

4wy || w?+1 w?+1 sin 6,

T
=T % _ w, — a7 T Yo ¥
AWy WG = A, (I - wyw; )wep

The first and third terms are always positive, so the sign depends on the second term. We note that
the derivative is 0 when w, 5 = 0, i.e., 0, = 0. This indicates that once 6; becomes 0, it remains 0.
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Also, using the mean value theorem, we can write:

® ( /\((w2—1)wt,1+2wwt,2)) _® (A((Wz—l)wt,l—wat,z)) = &( )4/\wsin 6

[w:](w?+1) lwe [ (w?+1) (w2+1)

[A((wz—l)wt71—2wwt,2) )\((wz—l)wt’1+2wwt’2)

for some c € ] Clearly, ¢(c) < ¢(\). The second term is

Hth(wzH) ’ [w:](w?+1)
lower bounded by — (jﬁ%wa/\) cos 0;. We now consider two cases:

Case 1: 0; € [-m,—7/2] or 0; € [7/2,7]: In this case, cos 0; < 0, so the second term, and hence the
derivative, is positive.

Case 2: 0, € [-7/2,7/2]: In this case, cosf; > 0, so the second term is negative, and we have to
compare its magnitude to the other terms. Using ®(Appjw;) + P(Aplw;) > 1 and pjw, > -1, we
have:

adcoset > a?o)sin® at((w2’1) _ 8,“’2/\ COSetqf)(}\) + 2‘1’(_>\))'

dt = Afw] WIrl  (w2+1)?
Since cos 6y < 1 and ®(-\) > 0, the RHS is positive when <=1 > £¢(\).

Let E(\o,w) = <% -1 >\0¢(>\0“2;1)

2
%: ()\Ow2+1)+(>\0w +1) ¢(}\0w2;1)20’

when A\g > % The RHS here is a decreasing function of w for w > 2. The condition becomes

Ao = 0.8.

dE _ 1 1 3w+l (1 1 Wirly _ wi+l 3wi-1 w3+l
dw — Z+W+)‘O 2w (2 2w2)¢()\0 2w T 40?2 (1+)\0 w ¢()\0 2w ))20

Since F is an increasing function of both w and )\, and we can numerically verify that F(0.8,2) > 0,
the result is true for all w > 2 and Ay > 0.8.

. dcos0 0
This shows that for neuron wy, aj, <=-* > C (T 2 t‘) for some constant C' > 0.

Next, using Proposition 2, we can show that the gradients are bounded and consequently, the iterate
dcosfy ¢
=kt

norm is upper bounded as |wy ¢| < ¢(t + 1), for some constant ¢ > 0. This gives aj—; = >

c’ % for some constant C’ > 0.

Next, consider ay, = 1, and suppose cos 6y ; stayed below some L < 1 for all . Then, (sin ;) >

12 dcosOy ¢ C'(1-L?)
1-L%>0,s0 —;= 2 )

L?)1og(1 +t), which diverges as ¢ — oo, leading to a contradiction as |cos(-)| < 1. The case where
ay, = —1 follows similarly.

. Integrating both sides, we get cos @y, — cosfy o > C'(1 -

Hence, as t — oo, sinfy, ; — 0, and thus cos 8y, ; - sign(ay). O

Next, we state the full version of Theorem 2 and prove it as follows.

Theorem 6. (Full version of Theorem 2.) Consider the data in Eq. (1), neurons initialized such that
ay = =1 with probability 0.5, and supkHw;.C 0|| <nf2,d=20,=0,=0,w>2and 0.8 <L <15
L and Wy, 0o = Hw = , for k € [m]. Let 6y denote the direction of wy, .

Let Wi, 00 = 1M, 00 wT’“
Then, the solution learned by signGD in the mﬁmte sample setting with correlation loss is:

%[1, 117 ay >0,sin0;0 >0,

i 1T > 0,5in0 <0,
Tl > 0sindip =0,
[-1,0]" a < 0.

Proof. For signGD, we can analyze the gradient expression for any w:

V(W) = - 22 (DOABI®) A iy + OARI®) N ~ 20 (AZ§®) Mo + ((ARLD) + S(AR®) - 20(\ifw)) w)-
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Specifically, the gradient can be in the direction [+1,0]" only when [0, 1]V, L(W) = 0. We have:

[0,1]VW Z(W) = -2 (22} (B(\aL@) - B(ARIW)) +sin 0(s(Ma ) + p(ALw) - 26(Afag ) )

- -0 (2(222)° 6(c) + (ARLW) + G(MALD) - 26( D) ),

. . . . . 2_
where ¢ € [\ w, A\f1]w]. Consider the expression in the parenthesis. Assuming “’2—w1 > 1, we have:

2(224) 0(c) + o(alw) + p(lw) — 20(aw) 2 2 (((22)” +1) 6(22) - 6(0))
=2(((2)" +1) o(£) - 6(0)) >0,

whenever £ < 1.5 (we can check this numerically, and use the fact that ¢(z) is a decreasing function
of z > 0).
Thus, the gradient is only in the [+1, 0] direction when sin 6 = 0, i.e., when w is in that direction.

Next, we can check if there are neurons in the [0, +1]" direction. We have:

w?+1

[1,0]VeL(W) = —%(mw“ (@(\alw) + D(Aalw)) + 20D (A\jzdw) + cos O($(\jalw) + p(Aa w) 2q§()\ﬁ8u‘)))).

. . . . .. 2_ 2_
The expression in the parenthesis is positive as long as ’\52& + 0.5\ > 0.4, or 3f6w1 > % Let

E(X\o,w) = Ao — Bbg‘fl. We can show that it is an increasing function of both Ag and w. Since
E(0.8,2) > 0, the result holds for all w > 2 and A\g > 0.8.

Based on these calculations, the updates are along [+1,+1]" directions, depending on the sign of a
and sin §. Specifically, we have four cases as shown in Table 5 for 6, and 6, at any ¢.

sign(sinf,) sign(a) sign(-[0,1]VwL(W)) sign(sinf)

+ve +ve +ve +ve
+ve -ve -ve -ve
-ve +ve -ve -ve
-ve -ve +ve +ve

Table 5: Different cases for 6; and 6,1 in the analysis of signGD.

Using the small initialization condition, the first iterate is dominated by the update direction: wy, 1 =
wWi,0 — NS0, Where sg = sign(VL(wy,0)), so for each coordinate i, |wy 1| > 1 —n/2 = n/2, hence
wy,,1 1s sign-aligned with —sg. Consequently, the next update follows from Table 5, and the argument
proceeds by recursion.

This shows that whenever a > 0, the updates for neurons in the first/second or third/fourth quadrant
are along [1,1]" or [1,-1]7, respectively. However, when a < 0, the updates for neurons in the
first/second or third/fourth quadrants alternate between [-1,+1]" and [-1,F1]". As a result, at even
iterations, these neurons are close to the [-1,0]" direction (but may not be exactly aligned due to the
initialization). However, in the limit ¢ - oo, these neurons converge in this direction. O

We state the full version of Theorem 3 and prove it below.
Theorem 7. (Full version of Theorem 3.) Consider the data in Eq. (1) with d = 2 and w € [2,12],
1], £ 0.8v/kw. Consider two predictors,

w2

o
K=ot €[
Linear: § = sign(x1),
sign(3x1 +x2) X9 >0,

Piece-wise Linear: 7' =
4 {sign(?):vl —x2) x2<0.

Then, it holds that E(§' +y) - E(g #y) <O0.
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sign(axy +brs) 220,
sign(az) —bxy) x9<0.

4 Mu.z—l a mu—l _ LY oy 1
E(g#y)= i l(b (—M) +¢(—M)] + é@(_W)

When a =1,b =0, we get:
1 sl
E(thy):%(b( ;ga f)) 1(1)( “(2%:'/;)).

Considering the non-isotropic case, when a = 3,b = 1, we have:

3kw?—3+2w _ 3p rw?+1
E()' #y) <3 ‘I)( \/%Tm, 2w )"'(I)( Jroy 2w )

Proof. Linear: §j = sign(axy + bxy). Piece-wise Linear: ¢’ = {

~ ~ 2_ 2 2_
= E(y’¢y)—E(y¢y)<%(I)(—\/QT‘J‘JUH3m23+2w)+%¢(_\/3§;yng;1) <I>( foy 2w1)

1 3kw?-3+2w rw2-1 3 rw+1 .
:i(q)(vﬁgy B )”I)(f#oy =)o (G TJ)):'O'5E(A°”’""")’

where \g := i. We can analyze the first derivatives:

dE _ Xo 3("%-) +1) Ao 3kw?-3+2w (KUJ2+1) Ao kw?-1 3(1‘%0 —1) 3o nw +1
dw ~ 2w? ( V9r+1 ¢(\/9,§+ 2w )+ (b(ﬁ 2w ) ¢( VE

~ Ao(kw?+1) L1 Ao rw?-1 3R (3W —3+2w)%  (kw? —1) ) 3(m2-1) A2(9(kw?+1) 2= (kw?-1)?)

- 02w2\/E ¢(TD - 2w ) (1 T Or+l eXp( 8w2( 9k+1 - K ) T (rw2+1) exp (_ . 8w?k ))
A (nw2+1) Ao Kw?-1 A2 (53w =3+2w) %~ (9k+1) (kw?-1)?) 3(kw?-1) A2 (2k2w* +2+5kW%)

- 02w2\/E (\fo 2w ) ( V9 exp( 8kw?(9r+1) ) T (kw?+1) €xXp (_ . 2w?K )) ’

This is positive when the followmg two conditions hold:
(k(3kw? =3 +2w)? = (9K + 1) (kw? = 1)?) = k(92w + 9 + 4w? - 18kw? — 12w + 12kw?) — (9K + 1) (k2w + 1 - 2kw?)
= k212w — W) + K(6w? - 12w) =1 > 0,
—(Bw=6)+/(3w—6)2+(12w-w?) _ —(3w-6)+V8w2-24w+36 > 0 since w < 12, k < 1 1mp11es

when £ > (12w2-w3) - (12w2-w?3)
1203 — wh + 6w? - 12w - 1 > 0. Since \g > 0.8v/kw, and w € [2,12], we have:
3VE A2 (k2 (12w2 -w* )+ (6w -12w)-1) 3(kw?-1) A2 (2k%2w* +245KW?)
1- V9r+1 exp (_ ‘ 8kw?(9k+1) ) T (kw2+1) €Xp (_ . 2w?kK )

3 0.8279 143 0.8%54
Zl—JT—OGXp(— 30 )—3E56Xp(—T)>O.
Next, we compute the derivative wrt \g.

dE _ 1 (_3kw’-3+2w ¢( Ao 3rw?-3+2w " (Kw2—1)¢(& nw271) _ 3(»@w2+1)¢( 3Xo kw41
d\o 2w V9r+1 V9r+1 2w K VE 2w VE VE 2w

_ (kw?-1) Ao kw?-1 VE(3kw?-3+2w) A2 (k2 (120° —w*) +K (6w -12w)-1) 3(kw?+1) A2 (22w +2+5kw?)
= Sevm PRS0 )(1_ SOl (ra?-1) eXp(‘ : 8w (9r+1) )_ (rw?-1) eXp(_ R ))

Since kw? > 1,

_ VE(3kw?-3+2w)
1 \/W(,{wz 1) Xp( 8w?k(9k+1)

3 w’-1+2w/3 _0.8%79Y _ qw?+1 _0.8%54
2l- S exp(—~5") — 3% exp(-=57) 2 1

Next, we compute the derivative wrt &.

A2 (k2 (1203 -w?) +K (6w -12w)-1) 3(kw?+1) A2 (262w +2+5Kw?)
- T D) P\
(kw?-1) 2w?kK

exp( 0.82 79) BOeXp( 0.8% o4)>0.

\ﬁg

dE _ Mo (_51nw2+6w2—2w+3 ( Ao 3nw273+2w) n (Kw +1) ¢( QAo nw2—1) _ 3(l€w —1)¢( 3o nw +1 )
dr 4w (9x+1)V9r+1 V9r+1 2w VE 2w VE

_ )\o(nw2+1)¢( Ao kw?-1 )( k/F(51rw? +6w? —2w+3) ox ( )\0(/{2(12w37w4)+n(6w2712w)—1))
RN VE 2w (96+1)V9k+1(Kkw2+1) b 8w?K(9k+1)
3(rw?-1) -A2(2k%wt+245Kw?)

T (kw2+1) exp( . 8w?k ))

The expression in the parenthesis is lower bounded as:

1 57w?-2w+3 _08 79 143 _0.8%54 1 57(144)-21 08 79 143
1 = a7 25w exp( ) =315 exp(==57) 2 1 - g — 455 — exp(= ) =355

O
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A.2 Toy Data

We can write the Bayes’ optimal predictor in the toy setting as follows.

We consider three datapoints (x,y): ([-ps3,0]7,-1), ([1,2]7,1) and ([g1,-p2]",1), where
W1, p2, 3 > 0. The optimal predictor can be found by solving the following:

min(v/(z1 - p1)? + (22 — p2)?,V/ (w1 — 1) + (w2 + p12)?) =/ (w1 + p1s)? + 3.

Solving this gives a piecewise linear function:

pi+pd-pd

(,U,l +ILL3).’E1 + oo = B IE2>0
2 2 2
(1 + p3) w1 — poag = M2 3y <0

In the realizable setting, this is:

wr1+x2=0, x9>0
wr1—x2=0, x9<0.

We now state the full version of Theorem 4, followed by the proof.

Theorem 8 (Full version of Theorem 4). Consider ||wy|| < %(((3&)2 +1)(w? - 1) —4w?) A
Wi, t

limtﬂoo
(4w? - (W2 -1)2) A 87“(2w +1-w?))and 1+ % <w? <3+2V/2. Let Wy, o0 = W,for
1Mt oo t

2
tan~! & L

neuron k € [m] and p := 72” Then, for m — oo, the solutions learned by GD, signGD, and
Adam are as shown in Table 6,

GD Adam (8, = 2 = 0) or signGD Adam (1 = B2 » 1)

[1,0]" W.p. D

[1,0]" W.p. %+§ [1,0]T Ww.p. p [-1,0]" W.p. %
_ [-1,0]" w.p. 1 [-1,0]7 w.p. 3 %[ 1] wp. g -k
Whieo = - [w? -1, Qw]T w.p. 5 -5 % (L.1]" wp. -5 % (1.-1]" w.p. 5 - %
- [w? -1, —2w]T wp. g -2 % [1,-1]" wp.1-2 \/ﬁ [5,]"  wp. Li-2
ﬁ[sv_l]-r W.p. é_%

Table 6: Solutions learned by GD, signGD and Adam (see Theorem 4).

where s is a constant between 0.72 and 1. In each case, the sign of the first element of wy,  is the
same as sign(ay).

Proof. Let z := (x,y),and Z1 == —&[w+1,0], 25 == &[w - 1 2], Z5 := L[w - L -2]. Define three
sets S1,55,53as S1:={2€5:x1<0},S:={z€S:29>0},S3:={2€5:25<0}.

First iteration. We first analyze the gradients at the first iteration. Consider different cases where
w;.om > 0 depending on different samples x. Table 7 lists the population gradients depending on

which samples contribute to the gradient. See Fig. 7 for an illustration. Note that f = tan™! % =

-1 2w

-1 w?-1
w2-1"° .

tan 5

andg—ﬂztan
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S,
Set Ss.t. w) jx>0 Pop. Gradient E..p[yx[x € ST  Prob. of such wy, 5US, N
ant =L ' P
Sa U S3 1,017 = .
™ 1 w?-1
5 —tan -
So }I[/—Lly p2]" %
T -1 w?-1
S1U Sy Ll +2p3, p2]" zta“}iwz“’
2
tan~! 21
S1 1ps,0]" Wz':
T fant &=L
S305 3 [ +2p8,—p2]" I Z"’
jus —1w -1
S 1 —uolT 27t Tao i . .
5 b, pe] 2 Figure 7: An illustration of the toy
. . . T
Table 7: Population gradients and corresponding proba- dataset and the set S such that w; x>
bilities depending on the region of initialization of the 0 depending on the region of initializa-
neurons. tion.

Using the population gradients in Table 7, the updates for the different algorithms, are written as:

-1 -1
2_ tan™ —&5—
[« 0] w.p. —2
o1 w31
w41 017 tan”" =5 =
[%-=,0] w.p. —
w?-1 | et L
. _ agni [ 2w 71] WPp. 7 - —
GD: Wik 1 =Wko+ 2
s s w =17
4 2 tan~!
w-l g w.p. L — 2w
2w P 2
2 tan~! 7(*)2_1
3w +1 T 1 tan oo
[Z5=,1] w.p. ; or
2 tan™! w?-1
3w +1 T 1 Sw
(5= -1 wp. 5 o
2
w1
tan™! ©
[1,0]"  wp.2 p—
2
. -1 W -1
signGD/Adam: wy, 1 = w0 + agn 1,17 w 1 tanT 5o
’ -P- 2 T,
1wl
tan~! w
—117 1_ 2w
[1,-1]" wp. 3 =

Second iteration. Next, we use these updates to analyze the second iteration. Tables 8 to 10 include
the updates at the second iteration for GD, signGD and Adam, respectively, where we use the
conditions on w and the (small) initialization scale. Specifically, the small initialization scale helps
ensure that the gradient and the corresponding updated neuron are in the same region (in terms of
which samples contribute to the gradient for the next iteration). Using the condition on w, the updates
in rows 5 and 7 of Table 8 remain in the direction of the points Zs and Z3, respectively, whereas those
in rows 9 and 11 get along the direction of [1,0]".

Based on the updates in Table 8, we can write the GD iterate at any time ¢ > 1 as:

2
_ -1
2 T tan™! L=
w -1 1 2w
[ > ,0] w.p. 7+ 5
2_ T
. [“w 170] W.p. %
Wpt =Wr1+ ——5 , T tan-1 w?-1
[w -1 1] w.p 1 _ an 2w
2w ? 8 4
T -1 w?-1
w?-1 -1 W 1 _ tan 2w
2w ‘P- 3 In



4(wy,1 —wio)/(np) Prob. Set S's.t. w; ;>0 4sign(ak)E.-p[1[w] x> 0]yx]/n
2_ tan~! @ =1 2_
207 5205, o7
2 tan~! =1 2
_[ww 170]T 2W22w Sl _[UJTH,0:|T
2 tan! =1 2
[ww+1’02|7' 27r22w1 SQ US3 [levO]T
2 tan~! = 2
_[ww+170]T an 2ﬂ2w S, _[wTH,O]T
2 4 Z _tan™! w-1 2 4
[wz; ’1] : ar - S2 [w2; AT
2 Z _tan™' w-1 2
_I:w%:l’l:l 2 P 2w S —[w;l,O]T
W2-1 g—tan_l w;—l W21 T
[ 2w 7_1] P Ss (55271
wi-1 g_tanﬂ w2;1 W+l T
_[ 2w ’_1] 4r S1 _[Tu ,0]
3w+l 17T %—tanfl le wi-1 17
[P 1] . 2 U Sy [“Z=:0]
30241 T _tan™! wi-1 2,1
Ly A S TSI
2 Z _tan™' w-1 2
[3c;w+17_1]T 2 - 2w 52 U53 [wT—l’O]T
2 Z _tan™! w-1 2
_[3(3;17_1]T 2 2w Sl _[ww+1,0:|T

Yd
Table 8: Population gradients at

the second iteration for GD.

Wk, 1 — Wk 0 Pr0b2- 4E..p[1[w; ;x> 0]yz]/p  wy2—wi,
oy e [0 o101
oy S [zt 0)" ~n[1,0]"
sy A [55410 nl1 1]
L, 1] g‘tar‘; w?;:l [wi:rl’o]T —p[1,0]"
TETE) L [t 11T

—n[1,-1]" g_tan; 24,:1 [%70? —[1,0]

Table 9: Population gradients at the second iteration for SignGD (Adam, 81 = 52 = 0).

Based on the updates in Table 9, we can write the signGD iterate at any time ¢ as:

Wy ¢ = Wi+ Nt

[1,0]"
-[1,0]7
[1,1]"
[1,-1]"
-[1,1/¢)7

-[1,-1/t])"

22

tan™! le
w.p. T
tan™*t w20:1
w.p. p ,
1 tan~? w2;1
w.p. 1 o )
1 tan~t w2;1
WP 1T T,
tan™! £ -1
w.p. 1 - 2w
4 27 5
tan~1 21
W. l — 2w
‘P 1 o



Wy1 — W0 4gy.0/(np) Prob 4E..p[1[w] ;= > 0]yx]/p Wy 2 — Wi 1
2 an”! wi-1 2
o [ [, 0]" n[1,0]"
2
Wi tan~t 21 w2 w2
-n[1,0]" -[<=L0]" 52 [«=1,0] —n[%mﬁf
w?-1
w?+1 tan~! =5 w?-1 1 2w?
n[1,0]" (==, 01" o (<=, 01" "N T
w2 talflwil w2
_n[170]T _[ w+170:|T T . [T+170]T _n[IJO]T
w2o T _tan' ¥ ; w2
LRI ] 47,2 [ ]T iy
1 w?-1 .
w?-1 o —tan w w?+1 (Wz_l)/2+(w2+1)
-l 1) _[ 2w ’1] e (<5701 ~E e e
2
w2 T _tan~t -1 w?-
n[la_l]T [ lev_l] 2 A L [ 2w17_1:|T 77[17_1]T
2
_ _117 fw?-1 E—tan‘l 2w w?+1 T _n (w?-1)/2+(w?+1) 177
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Table 10: Population gradients at the second iteration for Adam, 57 = §5 ~ 1.

Based on the updates in Table 10, we can write the Adam iterate at any time ¢ as follows:
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t — oo iterations. Based on the analysis above, we can compute lim;_, o, % for each algorithm.
For GD, we have:

wiol
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2 T
_ [L—170:| wp. 1
lim ket = 14 “ 2
Pl 4 2 T tan™1 L1
w11 wop. L — 2w
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1w -1
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2w P- 3 In
For Adam with 8 = 0 or signGD, we have:
2
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For Adam with /3 » 1, using the results in Appendix A.3, we have:
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where my, ..., ms are constants that satisfy 0.935 < m; <1, 0.923 < my < 1,0.84 < mg < 1,
0.72<my4 <1, 0.98 < ms < 1. Taking s = m4 and normalizing each direction then finishes the proof.
O
A.3 Auxiliary Results
Lemma 1. Given a constant v > 0 and function f.(x) = \/% where x > 1, it holds that

fi(x) 2 0 when x > 1+r. Further, when x € IN, the minima occurs at either x = 1+|r| orx = 2+|r],
and it holds that:

. |7 ]|+r 1+|r]+r < <1
mm(wum T’ \/(2+lrJ)(1+lrJ+r2)) < fr(z) <1.

The result can be obtained by examining the derivative of f,.(x) with respect to x, so we omit the
proof.
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. 2 2 2
Further, given 7} = <=1, 1y := “’;} =1/r1,753:=0.5r1, 74 = 3:’2:'11, r5:=0.5

2 |4
oﬂ;l’ o 3041 and > 1+2\5’
it holds that:

w2+1

04472 <71 <1, 1<ry<2236, 0.2236<7r3<05, 3<r,<54721, 1.2236<r5<L.5.

Alternately, for a specific value of w, we can compute these exactly. For instance, when w = 2,
r1 = 0.6, r9 » 1.6667, r3 = 0.3, 14 » 4.3333, r5 = 1.3.

Also, we can simplify the lower bound on f,.(x) as follows:

147

Nk O<r<l1
2 ]<r<?2
3(2+72)
_3+r
e(r) = min( Lrler Lt|rf+r ) _ | VaGey 2<r<2V3 .
VD (r]+r?) V@+r ) (A+[r]+r?) %7 2/3<r<4
__5+r
6(5+12) 4<r<b
6+7
W, 5<r<6

‘We can use this to obtain the exact lower bounds for the aforementioned intervals:

0.9354, 0.4472<r<1,
0.9238, 1<r<2.236,
minc(r) ~{0.8443, 0.2236 <r < 0.5,
" 0.7240, 3 <r<5.4721,
0.9802, 1.2236<7<1.5.

When w =2, ¢(r1) »0.9713, ¢(r2) ~ 0.9681, ¢(r3) ~ 0.8803, c¢(r4) ~ 0.7808, ¢(r5) ~ 0.9936.
Lemma 2. The sum f(x) =37, % satisfies 2/x — 2 < f(z) < 2¢/z - 1.

Proof. To establish the bounds for f(x), we can compare the sum to the corresponding integral. We

have: .
1 z+l ]
=) —2 —dn=2vVx+1-2,
f@=% 2 [ mdn=2/aed
1 z ]
= —sl+f —dn=1+2/x-2=2/z-1.
f(z) Zl 7 i vV VT

Combining both inequalities and using Using the fact that /z + 1 > \/ finishes the proof. O

B Additional Experiments and Details of Settings

All experiments in this section were performed on
an internal cluster with NVIDIA V100 and P100
GPUs with 32GB memory each.

GD

‘We list the licenses under which various datasets
used in this work were released as follows. All the
datasets are publicly available. MNIST is released
under the CC BY-SA 3.0 license. CIFAR-10 is
released under the MIT license. The code to gen-
erate the Waterbirds dataset is released under the
MIT license. The creators of the CelebA dataset
encourage its use for non-commercial research
purposes only, but do not mention a license name.
MultiNLI is released under the ODC-By license.
CivilComments is released under the CC BY-NC 4.0 license.

Adam

Figure 8: Comparison of the decision bound-
aries learned by GD and Adam with the Bayes’
optimal predictor (dashed green) across three set-
tings of our synthetic setup (details in the text).

25



B.1 Gaussian Dataset

Additional Results. In this section, we discuss additional results for the Gaussian dataset. Across
all settings, we consider full-batch GD with a learning rate of 0.1 and Adam with a learning rate
of 107* and 8 = B2 = 0.9999. We set m = 500, a = 0.01,w = 2 for the results in this section. In
the finite sample setting, we consider d = 100 and (0, 0,,0,) = (0.2,0.15,0.01). When n = 5000,
w1 = 0.2, Adam achieves 0.618% better test accuracy than GD. When n = 30000, x = 0.25, the gap is
0.521%. In the population setting, we consider d = 10, = 0.3, (04,0y,0,) = (0.1,0.1,0.01) and
Adam achieves 0.292% better test accuracy than GD. The decision boundaries learned by GD and
Adam in these three cases are shown in Fig. 8(a), (b), and (c), respectively. In Fig. 3, the test accuracy
of Adam is 0.55% more than that of GD.

Effect of Stochasticity. We repeated the experiment
in Fig. | with batch size 50 to see the effect of
stochasticity/mini-batch training. The results are shown
in Fig. 9. We observe that the decision boundary learned
by Adam is more nonlinear than SGD and closer to Bayes’
optimal predictor. However, the decision boundary learned
by mini-batch Adam is less nonlinear as compared to full-

batch Adam. Figure 9: Comparison of the deci-
sion boundaries learned by GD and
B.2 MNIST Dataset with Spurious Correlation. Adam with the Bayes” optimal predic-

tor (dashed green) with batch size 50.
Training Details. We train a two-layer NN with width
64 using Adam or SGD with learning rates 10 and 0.1, respectively, using batch size 64. The
network is initialized as follows. Hidden layer weights are initialized with small-scale random
initialization, specifically from Gaussian distribution with ¢ = 0.001/ \V/d, where d is the input
dimension. Final layer weights are initialized as +1/\/m with equal probability and kept fixed, where
m is the hidden dimension. We train using BCE loss till the loss reaches 5e — 3.

B.3 Dominoes Dataset

Dataset. The Dominoes dataset [9, 12] is composed of images where the top half of the image
shows an MNIST digit [13] from class {0, 1}, while the bottom half shows an image from other
image datasets such as MNIST, Fashion-MNIST or CIFAR-10. In our case, we use CIFAR-10 [14]
images from classes {automobile, truck}, which is the MNIST-CIFAR dataset. Fig. 1 in Qiu et al.
[11] demonstrates how the MNIST-CIFAR dataset is generated as well as more example images.

Training Details. We train both a randomly-initialized ResNet-18 and ResNet-34 model for up to
500 epochs or until convergence using a batch size of 32, weight decay 107°, initial learning rates
1073 for SGD and 10~ for Adam, and a cosine annealing learning rate scheduler. We average results
across 5 random seeds. The groups in the test set are balanced.

Additional Results. Following Kirichenko et al. [24], we generate datasets with spurious correlation
strengths of 99% and 95% between the spurious features and the target label, while the core features
are fully predictive of the label. We report the final average worst-group accuracies for each correlation
strength and optimizer in Table 11 and Table 12 for ResNet-18 and ResNet-34, respectively. In both
cases, training with Adam leads to significantly better metrics.

Method 99% correlation 95 correlation
Original Acc. Core-Only Acc. Decoded Acc.  Original Acc. Core-Only Acc. Decoded Acc.
SGD 0.0020.00 0.0020.00 60.4227.06 0.8120.38 1.66.1.79 T1.0420.63
Adam 0.2040.28 0.41.0.55 71.37.1.67 14.17.5.15 20.63.5.75 84.66.0.18

Table 11: Worst-group accuracies for original accuracy, core-only accuracy, and decoded accuracy
for a ResNet-18 model trained using SGD and Adam.

B.4 Subgroup Robustness Datasets

Training Details. Following Sagawa* et al. [16], for the image datasets, we use the Pytorch
torchvision implementation of ResNet50 [23] which is pre-trained on the ImageNet dataset, and

26



99% correlation 95% correlation

Method Original Acc. Core-Only Acc. Decoded Acc. Original Acc. Core-Only Acc. Decoded Acc.
SGD 0.16.0.09 0.004+0.00 47.6048.55 0.24.0.22 0.00+0.00 59.25.5.94
Adam 0.0840.11 3.3242.97 69.1143.26 9.60.4.19 18.31,45.32 82.68+1.00

Table 12: Worst-group accuracies for original accuracy, core-only accuracy, and decoded accuracy
for a ResNet-34 model trained using SGD and Adam.

for the language-based datasets, we use the Hugging Face pytorch—-transformers implemen-
tation of the pre-trained BERT bert-base—uncased model [22]. We report test results for the
epoch/hyperparameter setting with the highest worst-group accuracy on the validation set.

Main Results. We use batch size 512 for Waterbirds and MultiNLI and 1024 for CelebA and
CivilComments. The results are averaged over five independent runs for the image datasets and four
independent runs for the language datasets. We fine-tune until convergence, which takes 7 epochs
on the language datasets, 5 epochs on CelebA and 100 epochs on Waterbirds. Fig. 10 shows the
hyperparameters (learning rate, weight decay and momentum parameters) considered for the two
optimizers across these datasets and the worst-group test accuracies at the last fine-tuning epoch.
Fig. 2 and Table 13 show the final results. For Adam, we find that lower values of 1, 82 (compared
to the default (0.9,0.999)) are generally better: the best values for each of them are 10~% or 0.5,
across the four datasets.
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Figure 10: Hyperparameter sweep for SGD and Adam optimizers on four benchmark datasets for
subgroup robustness, showing worst-group test accuracy at the last fine-tuning epoch. We sweep the
momentum parameters (3 for SGD, /31, B2 for Adam), learning rate (7)), and weight decay ().

Results with Smaller Batch Sizes. Here, following Liu et al. [57], we use a batch size of 128 for
the image datasets and 32 for the language datasets. The results are averaged over four independent
runs, and presented in Table 14. We used the default momentum values for Adam in this setting, but
tuned the learning rate and weight decay.
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Waterbirds CelebA MultiNLI CivilComments
Average  Worst-group ~ Average  Worst-group ~ Average  Worst-group ~ Average  Worst-group
SGD 86.9.1.09 74.35:326  93.T4i027  67.56:181 81.12.020  65.92.0926  86.68.0.18  62.89.1.04
Adam 8791052 76.044004  90.89.170 77.22,800 81.99.030 71.18.0714 85.73.058 66.25.305

Optimizer

Table 13: Comparison of average and worst-group test accuracy on four benchmark datasets for
subgroup robustness, using larger batch sizes: Adam outperforms SGD. See Section 4 and Appendix B
for details.

For the image datasets, we use SGD with momentum 0.9 and set the learning rate as 1073 for
Waterbirds and 10~* for CelebA and the weight decay as 10~* for both datasets. For Adam, tried
learning rates {107°,10~*} and weight decays {107%,107%} for both datsets. We use learning rate
and weight decay of 10~° and 10~ for Waterbirds, and 10~* and 10~* for CelebA for the final results.

For the language datasets, we tried the following settings. For Adam, we tried learning rates
{107%,2-107°} for both datasets. For SGD, we set the learning rate as 10~ and tried momentum
values {0, 0.9}. For both optimizers, we tried weight decays {0, 1073}. For the final results, we set
weight decay as 0 across all cases and use a learning rate of 10~ for Adam for both datasets. The
SGD-momentum is set as 0.9 for MultiNLI and 0 for CivilComments.

Consistent with the results using larger batch size, we find that even with smaller batch sizes, Adam
attains better worst-group test accuracy and comparable average test accuracy compared to SGD, as
shown in Table 14. However, we observe that the gains are smaller for image datasets and larger for
language datasets in this setting.

‘Waterbirds CelebA MultiNLI CivilComments
Average  Worst-group ~ Average  Worst-group  Average ~ Worst-group  Average  Worst-group
SGD 85.745034  71.95.0.94  93.73.032 67.64:309 80.17.078 54381159  72.99:168  43.7214.02
Adam 86.3311.00  73.44i257 94104101 68.19i066  81.784006  67.2141.93  83.Tlio.0s  69.6440.18

Optimizer

Table 14: Comparison of average and worst-group test accuracy on four benchmark datasets for sub-
group robustness, using smaller batch sizes: Adam outperforms SGD. See Section 4 and Appendix B
for details.

B.5 Boolean Features Dataset

Dataset. Formally, let d., ds € N be the number of core and spurious features respectively, d,, € N
be the number of independent features that are independent of the label, and let d := d. + ds + d,, be
the total dimension of the vector. For some @ € {~1, +1}¢, denote x, € {~1,+1}4¢, z, € {1, +1}%,
and z,, € {~1,+1}% to be the coordinates of & that correspond to the core, spurious, and independent
features respectively. Let A € [0, 1] be the strength of the spurious correlation. Define two Boolean
functions:

for {(#1,-1}% » (41,1}, fo: {+1,-1}% - {+1,-1}

Next, we define the distributions Dg,me, Dyisr, and D). Define Dy e to be the uniform distribution
over the set of points in {~1,+1}% where the core and spurious features agree:

Dsame = Unif({:c e {-1,+1}7 : fo(xz.) = fg(a:g)})

Similarly define Dy as the uniform distribution over {1, +1}% where the core and spurious features
disagree:

Daifr := Unif({ﬂ’/' e {-1,+1}% : fo(z.) # fs(xs)})

Lastly, define D), as the distribution where with probability A, a sample is drawn from Dg,p,e, and
otherwise a sample is drawn from Dy;s.

Details of Hyperparameters. We use a width 20 NN with Leaky ReLU activation with 0.01
negative slope and train with cross-entropy loss. We use 10000 training samples and 5000 test
samples drawn from a data distribution where d = 50,d,, = 41, training for 80000 epochs. We
consider normal initialization with ;= 0 and o =/ ﬁ For each optimizer, we did a sweep

across various learning rates and picked the best performing learning rate. The results are reported
after averaging across 5 random seeds.
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Additional Results. In Table 15, we consider 4 initialization schemes for the model parameters:
(1) the default PyTorch linear initialization, which is a uniform initialization on (—\/E , \/E) where

k= m, and (2) normal initialization with ¢ = 0 and 0 = a4 / m, with o = 1072, 107! & 1.
These results are in line with those in Table 4 and show that Adam leads to richer feature learning. We
report in Table 16 the final test accuracies, decoded core, and decoded spurious correlations at the end
of training for each optimizer, highlighting that Adam maintains its superior performance throughout
training. We also report in Table 17 the average test accuracies, decoded core, and decoded spurious
correlations at lowest comparable training loss for SGD and Adam, where we use 9 core features
instead of 8, so that d. = 9, ds = 1, d,, = 40. We use the same correlation strength A = 0.9 and
uniform initialization.

Method Uniform init Normal init (o« = 0.01) Normal init (o = 0.1) Normal init (o = 1)
Test acc DCC DSC Test acc DCC DSC Test acc DCC DSC Test acc DCC DSC
SGD 95.61.2.12  0.75.000 0544015 95.00.074 0.75.003 0.95.004 96.08.144  0.79.007 0772020 89.58.102 0.51.008 0.78.0.08
Adam _ 97.29.0.62  0.84:0.03 042.007 98.13.030 0.89.001 040.000 97.77:078 0.87.003 0.42.008 97.87.060 0.87.003 0.36:0.06

Table 15: Test accuracy, decoded core, and decoded spurious correlations averaged across 5 random
seeds for SGD and Adam at lowest comparable training loss. Higher test accuracy and decoded core
correlation are better. Lower decoded spurious correlation is better.

Method Uniform init Normal init (o = 0.01) Normal init (o = 0.1) Normal init (o = 1)
Test acc DCC DSC Test acc DCC DSC Test acc DCC DSC Test acc DCC DSC
SGD 95.54.018  0.75.013 049,020 94.96.075 0.75.001 0.95.004 96.12.150 0.8li007  0.76.022 89.544100 0.51.006 0.81.0.10
Adam  99.01.071 0.94.004 0.31l.009 99.28.052 0.96.003 0.30.007 99.20.039 0.95.002 0.36.003 99.22.037 0.95.0.01  0.20.0.08

Table 16: Final test accuracy, decoded core, and decoded spurious correlations averaged across 5
random seeds for SGD and Adam at the end of training.

Training Dynamics. We report in Method Uniform init
Figures 11 and 12 the test accuracy, Test acc DCC DSC
decoded core, and decoded spuri- SGD  83.47.091  0.23:003  0.74s0.02

Adam  94.22;153 0.7040.06 0.51.0.05

ous correlations throughout training
with d. =8, ds =1, A= 0.9, for 5 Table 17: Test accuracy, decoded core, and decoded spurious
different seeds with normal initial- correlations on the Boolean features dataset for SGD and Adam

ization (« = 1) for SGD and Adam  at Jowest comparable training loss. d.=9, ds=1, d,, =40.
respectively. From these dynamics,

we observe that SGD learned the spurious feature early in training and gradually learns some of the
core feature but still retains the spurious feature information. In contrast, when training with Adam,
we see the spurious feature is learned early in training, but forgotten quickly as training progresses to
instead learn the core feature.

Test Accuracy Decoded Core Correlation Decoded Spurious Correlation
100 1

A
0 = = 8 08 f

0.4
40k 60k 80k 0 20k 40k 60k 80k 0 20k 40k 60k 80k

Figure 11: Training curves for SGD with normal weight initialization (« = 1) for 5 random seeds.

Test Accuracy Decoded Core Correlation Decoded Spurious Correlation

Step Step Step

20k A0k 60k 80k 0 20k 40k

Figure 12: Training curves for Adam with normal weight initialization (« = 1) for 5 random seeds.
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C Discussion

In this section, we discuss some limitations of our work.

First, we note that the theoretical results hold under some assumptions, such as the population setting
and with linear loss function, which are quite different from practice. However, given that this is the
first result of its kind it is natural to start with some simplifying assumptions. We would like to note
that there are no prior works analyzing the training dynamics and implicit bias of signGD or Adam
for NNs. The only exception we are aware of is Tsilivis et al. [8], which analyzes steepest descent
algorithms (including signGD) for homogeneous NN trained with an exponentially-tailed loss
function. This paper focuses on the late stage of training, and assumes separable data, which does not
apply in our setting. Additionally, in their setting (for instance, using uniform disc distributions instead
of Gaussian to ensure separability in the population setting), it can be shown that both the linear and
the nonlinear predictors are KKT points of the max-£» and max-{., margin problems. Consequently,
we cannot distinguish between the implicit biases of GD and signGD in their framework. Therefore,
it is natural to make some additional assumptions to make the analysis more tractable and take a step
towards understanding and contrasting the implicit biases of Adam/signGD and GD. Generalizing
these results to broader settings is an interesting direction for future work.

Second, in this work, we focus on settings where simplicity bias in NNs hurts generalization. However,
this is not always the case. There is a large body of work showing that simplicity bias in DL is
helpful and can explain good in-distribution generalization [58, 59, 60, 61]. Simultaneously, when
the goal is to ensure good performance under certain distribution shifts, such as OOD generalization
or robustness to spurious features, simplicity bias has been shown to be detrimental in such cases
[62, 9, 21]. In this work, we focus on the latter setting to showcase the benefit of richer feature
learning encouraged by Adam. However, in general, either one of richer or simpler feature learning
may be desirable depending on the problem.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section 1.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

» The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Assumptions are stated in the paper and full theorem statements and proofs
are included in Appendix A.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix B.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We use open source data and models, and standard optimization algorithms.
All details of experimental settings are included in Appendix B.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (
) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix B.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [NA |
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special considera-
tion due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning in general. It is not tied to a specific application. There are many potential societal
consequences of this work, but we don’t feel any of them must be specifically discussed
here.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Appendix B.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.
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« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy ( ) for
what should or should not be described.
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