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ABSTRACT

Despite the remarkable achievements of Graph Neural Networks (GNNs) on graph
representation learning, few works have tried to use them to predict properties
of subgraphs in the whole graph. The existing state-of-the-art method SubGNN
introduces an overly complicated subgraph-level GNN model which synthesizes
three artificial channels each of which has two carefully designed subgraph-level
message passing modules, yet only slightly outperforms a plain GNN which per-
forms node-level message passing and then pools node embeddings within the
subgraph. By analyzing SubGNN and plain GNNs, we find that the key for sub-
graph representation learning might be to distinguish nodes inside and outside
the subgraph. With this insight, we propose an expressive and scalable labeling
trick, namely max-zero-one, to enhance plain GNNs for subgraph tasks. The re-
sulting model is called GLASS (GNN with LAbeling trickS for Subgraph). We
theoretically characterize GLASS’s expressive power. Compared with SubGNN,
GLASS is more expressive, more scalable, and easier to implement. Experiments
on eight benchmark datasets show that GLASS outperforms the strongest baseline
by 14.8% on average. And ablation analysis shows that our max-zero-one label-
ing trick can boost the performance of a plain GNN by up to 105% in maximum,
which illustrates the effectiveness of labeling trick on subgraph tasks. Further-
more, training a GLASS model only takes 37% time needed for a SubGNN on
average.

1 INTRODUCTION

Graph is a natural tool for modeling objects with complex internal relationships, which is widely
used in fields such as natural language processing (Yao et al., 2019), biology (Fout et al., 2017), and
social network (Chen et al., 2018). Among the various graph representation learning methods, GNN
has achieved state-of-the-art performance on almost all sorts of tasks. Existing GNNs are mainly
designed for node (Dabhi & Parmar, 2020; Chen et al., 2020), edge (Singh et al., 2021; Galkin et al.,
2021) and whole graph (Ying et al., 2021b; Yang et al., 2020) property prediction tasks. An ordinary
GNN produces embeddings of a node by aggregating the features from the (multi-hop) neighbors of
the node, which is equivalent to encoding a breadth-first-search (BFS) tree rooted in the node (Xu
et al., 2019). Such embeddings can be used to predict node properties directly. As for edge and
graph tasks, pooling the embeddings of nodes related to the structure is a prevailing method.

Though node, edge, and graph tasks are the three most common graph representation learning tasks,
properties of subgraphs are also worth predicting. Take company structure network as an example.
The nodes are employees, and the edges between them represent cooperation relations. We want
to predict the performance of a department, in other words, a subgraph in the network. Obviously,
on the one hand, we need to consider the internal organization (such as the collaboration within
the department and the competence of individual employees). If the structure is disorganized or the
employees are incompetent, we can expect the department to perform poorly. On the other hand,
the external information of the department also deserves attention. A department is less likely to
be productive if the company as a whole is facing bankruptcy. In contrast, close cooperation with
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other remarkable departments can be a sign of good performance. As illustrated by this example, a
subgraph task is to predict the property of subgraphs in the whole graph. It needs to consider the
topology both inside and outside the subgraph. It may also need to combine multi-level information
of nodes, edges, higher-order substructures, and even the whole graph. Thus, a very general model
is needed, and a natural idea is to extend ordinary GNNs to subgraph tasks. Figure 1 left shows a
typical subgraph to predict. The target subgraph S is embedded in the whole graph and may have
multiple connected components, and our task is to produce a subgraph representation, which can be
used to predict properties of S.

However, in experiments, we find that SubGNN (Alsentzer et al., 2020), the current state-of-the-art
method for subgraph tasks, only slightly outperforms plain GNNs which directly pool node embed-
dings within the subgraph as the subgraph representation. SubGNN replaces the message passing
between nodes with a subgraph-level message passing framework and designs three channels. Each
channel is further divided into an internal and a border module to aggregate subgraph features sep-
arately. Despite its performance, SubGNN is both space and time-consuming due to its lengthy
precomputation. Furthermore, the units of message passing are subgraph patches sampled from the
whole graph randomly, and there is no guarantee of the optimality of the samples, leading to high
variance in performance and dubious robustness. Last but not least, the framework of SubGNN is
overly complicated—many of its designs seem ad hoc or suboptimal, resulting in poor compatibility
with recent advances in GNN research. Nevertheless, by comparing SubGNN with plain GNNs,
we find that differentiating internal and external topology is crucial for subgraph tasks. Inspired by
this insight, we introduce a max-zero-one labeling trick (Zhang et al., 2021), which explicitly marks
whether a node is within a subgraph or not, to augment GNNs and show that plain GNNs with this
labeling trick are superior to SubGNN.

Here we give a brief introduction to labeling trick. First proposed by Zhang et al. (2021), labeling
trick is a theoretical framework for using graph neural networks to produce multi-node representa-
tions, which show that producing expressive representations for high-order structures needs to cap-
ture the interaction among the different nodes within the structure. This theory shows that directly
aggregating node representations to represent high-order structures is not expressive enough, and
labeling trick can aid this problem. In implementation, a labeling trick assigns a label to each node
and combines the node features and the labels as the new input node features to GNNs. Labeling
trick has achieved great successes on graph representation learning in previous works. For example,
the state-of-the-art link prediction method SEAL (Zhang & Chen, 2018) gains better performance
with a carefully designed labeling trick. IDGNN (You et al., 2021) differentiates one center node
from others, and Distance Encoding (Li et al., 2020) uses the distance to the target nodes to label
other nodes, both of which gain improved performance on node, edge, and graph tasks. In this
work, we for the first time introduce labeling trick to subgraph problems, and design an expressive
and scalable labeling trick called max-zero-one. Max-zero-one is the first labeling trick that enables
jointly predicting a batch of structures within the same graph.

Present work We propose GLASS (GNN with LAbeling trickS for Subgraph), a novel and simple
graph neural network for subgraph tasks. To the best of our knowledge, GLASS is the first sub-
graph representation learning method using the ordinary message passing framework and a labeling
trick. GLASS is more scalable, more expressive, and easier to implement and extend than the ex-
isting state-of-the-art method. Theoretically, we prove that GLASS is more expressive than plain
GNNs, and can capture a range of important subgraph properties defined in SubGNN like density,
cut ratio, border, positions, etc. Experiments on eight datasets show that GLASS achieves new
state-of-the-art performance. On synthetic datasets, GLASS with a single message passing layer
beats SubGNN with three carefully designed channels by up to 48.6%, illustrating the expressive
power of node-level message passing augmented by labeling trick for subgraph tasks. On real-world
datasets, GLASS also outperforms the strongest baseline SubGNN by up to 14.3%. Moreover, train-
ing a GLASS model on average only takes 37% time needed to train a SubGNN. With the strong
performance of GLASS, our work proves the effectiveness of labeling trick on subgraph tasks.

2 RELATED WORK

Subgraph Representation Learning. Though some works have utilized subgraphs to perform
other graph representation tasks (Sun et al., 2021; Wang et al., 2021; Huang & Zitnik, 2020) or
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Figure 1: Subgraph tasks are to predict the properties of subgraphs in the whole graph. S (green)
is the subgraph we want to predict. SubGNN samples anchor patches (grey), aggregates features
of anchor patches to connected components of the subgraph through six independent channels (red,
blue, and yellow), and pools component embeddings as the subgraph representation. GLASS labels
nodes, passes messages between them, and pools node embeddings as the subgraph representation.

studied some specific tasks involving subgraphs (Bordes et al., 2014; Meng et al., 2018; Ying et al.,
2020), few works have studied the general subgraph representation learning problem. Alsentzer et al.
(2020) introduced the problem formally and proposed SubGNN (Alsentzer et al., 2020), the current
state-of-the-art method, which samples patches from the whole graph and aggregates their features
to produce subgraph representations. Before that, Sub2Vec (Adhikari et al., 2018), designed for
graph classification and community detection, samples random walks in subgraphs and feeds them
to the language model Paragraph2vec (Le & Mikolov, 2014) to generate embeddings for subgraphs.

Labeling trick. SEAL (Zhang & Chen, 2018) first introduces labeling trick to graph representation
learning and applies them to link prediction. IDGNN (You et al., 2021) uses different message pass-
ing parameters for a target node and the other nodes, which is essentially a labeling trick assigning
different labels to the target node and others. Distance Encoding (Li et al., 2020) uses distances
to target nodes as node labels. Zhang et al. (2021) give a theoretical analysis of labeling trick and
prove that they can produce the most expressive representations for substructures with a GNN ex-
pressive enough. These previous methods ignore subgraph tasks and have poor scalability due to
the relabeling for every target substructure to predict. Besides these deterministic labeling methods,
rGIN (Sato et al., 2021) assigns a random vector to each nodes as its label in each forward process.
Similarly, GNN-RNI (Abboud et al., 2021) randomly initializes node embeddings and can approx-
imate any functions mapping graphs to real numbers. Despite the theoretical power, random labels
suffer from slow convergence and subpar performance. We also discuss other structural encoding
methods in Appendix A.1. Our GLASS is an application of labeling trick to subgraph tasks. Its
success verifies the theory of using GNNs and labeling trick to produce multi-node representations.

3 PRELIMINARIES

Let G = (V,E,X) denote a graph with a finite node set V = {1, 2, ..., n}, an edge set E ⊆ V × V
and node feature matrix X , whose ith rowXi is the feature of node i. N(v) refers to the set of nodes
adjacent to node v. S = (VS ,ES , XS) is a subgraph of G if VS ⊆ V and ES ⊆ (VS ×VS)∩E and
XS is the stack of the rows of X corresponding to nodes in VS . In this paper, we focus on induced
subgraphs, whose edge set ES = (VS × VS) ∩ E. Let S ⊆ G donate that S is a subgraph in G.

Problem (Subgraph Representation and Property Prediction). Given the whole graph G , its
subgraphs S = {S1,S2, ...,Sn} and their target properties T = {tS1

, tS2
, ..., tSn

}, the goal is to
learn a representation vector hSi

that can be used to predict tSi
of Si.

A Plain GNN for Subgraph Tasks. Message passing neural network (MPNN) (Gilmer et al., 2017)
is a common framework of GNNs. A message passing layer aggregates embeddings from neighbors
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Table 1: Six properties in SubGNN. S in graph G is a target subgraph.
channel I B

P Distance between connected components of S Distance between S and the rest of G
N Identity of internal nodes Identity of border nodes
S Internal connectivity Border connectivity

Table 2: Implementation of each channel in SubGNN for a target subgraph component S(c).
Nk(S(c)) means the union of the k-hop neighborhood of nodes in S(c). rwI refers to random walk
in an anchor patch A and rwB means random walk in the border of A. SubGNN feeds the sampled
node feature sequences into a bidirectional LSTM. dtw(S(c),A) is the normalized dynamic time
warping measure (Mueen & Keogh, 2016) between the sorted node degree sequence of S(c) and A.
d(S(c),A) is the average shortest path between A and nodes in S(c).

channel property patch sampler patch representation similarity

P I node in S node embedding 1/(d(S(C), A) + 1)B node out of S

N I node in S(c)

node embedding 1
B node in Nk(S(c)) 1/(d(S(C), A) + 1)

S I connected components rwI + LSTM
1/(dtw(S(C), A) + 1)B rwB + LSTM

to update the representation of a node. The kth message passing layer can be formulated as follows.

a(k)
v = AGGREGATE(k)({h(k−1)

u |u ∈ N(v)}), (1)

h(k)
v = COMBINE(k)(h(k−1)

v ,a(k)
v ), (2)

where h
(k)
v is the embedding of node v at the kth layer and h

(0)
v = Xv .

The embeddings at the last layer can be used to predict node properties. As for edge or graph tasks,
pooling the multiset of embeddings of nodes belonging to the edge or within the graph is a widely
used method. Naturally, we can extend it to subgraphs, and the representation of a subgraph S can
be learned by pooling the embeddings of nodes within the subgraph as follows, which we call a
plain GNN.

hS = READOUT({hu|u ∈ VS}). (3)

4 A COMPARISON BETWEEN SUBGNN AND PLAIN GNNS

In this section, we first illustrate the failure of plain GNNs on some simple subgraph tasks. Then, to
find the reason for the deficiency, we dive into the state-of-the-art subgraph representation learning
method, SubGNN, and compare it with plain GNNs. We find that the key advantage of SubGNN
comes from dealing with internal and border topology separately, which motivates our GLASS.

Though numerous works have proven plain GNNs’ graph representation learning ability, we find that
they can fail in some simple subgraph representation situations. For example, the representations of
two different subgraphs S and S ′ in Figure 2 must be the same as all nodes in the graph have identical
neighborhood structures and thus equal embeddings from plain GNNs. The failure to differentiate
S and S ′ suggests the limitation of using plain GNNs for subgraph representation learning.

Unlike plain GNNs, the existing state-of-the-art method, SubGNN, designs a special message pass-
ing architecture. SubGNN introduces three channels, namely position, neighborhood, and structure
(P, N, S for short), and learns each channel’s internal and border (I, B for short) properties sepa-
rately. Table 1 defines the six properties. They claim that these six properties are key for learning
powerful subgraph representations. To capture channel i for a target subgraph S, SubGNN samples
anchor patches Ai = {A(1)

i , ...,A(nA)
i } and then learns representations of each connected compo-

nent in S by propagating messages from the anchor patches to components of S. See the top half of
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Figure 2: Plain GNNs are not enough to capture subgraph topology. For example, given a graph G
with empty node feature, GNN representations of subgraph S and S ′ must be the same because of the
homogeneous rooted subtree structures, though these two subgraphs are non-isomorphic. However,
differentiation of nodes in and outside helps GNNs generate different embeddings for S and S ′.
Initially, GNNs can only learn that each node in S and S ′ has four neighbors. However, with the
differentiation, GNNs can learn that all nodes in S have two neighbors inside and two outside, while
in S′, two nodes, 3 and 8, have one neighbor inside and three outside.

Figure 1. The kth subgraph-level message passing layer for channel i can be formulated as follows.

ai,S(c) =
∑

Ai∈Ai

γi(S(c),Ai)gAi , (4)

h
(k)

i,S(c) = σ(Wi · [ai,S(c) ,h
(k−1)

i,S(c) ]), (5)

where S(c) is the cth component of the target subgraph S, γi(S(c),Ai) is a similarity function be-
tween S(c) and an anchor patch Ai, gAi

is a (pretrained) representation of patch Ai, h
(k)

i,S(c) is the

representation of the component S(c) in channel i at the kth layer, and σ is an activation function
and Wi is a weight matrix. The implementation of each channel in SubGNN can be found in Ta-
ble 2. The representation of the whole subgraph is the sum of the representations of all components.
We call the above formulation subgraph-level message passing to distinguish it from the node-level
message passing defined in Equations (1) and (2).

In general, SubGNN pretrains a plain GNN to produce node embeddings, pools them to produce
patch embeddings and then smoothes the embeddings of the target component with the embeddings
of patches close to or structurally similar to the target component. Through the carefully designed
subgraph-level message passing layer for each of the six properties separately, SubGNN can capture
the internal structure, border connectivity, and position relative to the rest of the graph. Looking
back on plain GNNs, we wonder why they are inferior to SubGNN. By encoding the topology of
BFS trees, plain GNNs can easily capture (multi-hop) neighborhood and the position of nodes in the
whole graph. However, from the example in Figure 2 we can see that plain GNNs cannot represent
internal structure and border connectivity well, as they cannot tell whether a neighbor of a node
is in the subgraph or in the rest of the graph. Therefore, the missing part of plain GNNs from
SubGNN is that SubGNN passes internal and border messages separately, while plain GNNs cannot
distinguish nodes in and outside the target subgraph when passing messages between nodes.

5 GLASS: GNNS WITH LABELING TRICKS FOR SUBGRAPH

Inspired by SubGNN, we aim to differentiate nodes in the target subgraphs from the rest of the
graph and see how such differentiation can improve plain GNNs. Still using S and S ′ in Figure 2 as
an example, the initially identical rooted trees become different when we differentiate internal and
external nodes for each subgraph (Figure 2 right), leading to different node embeddings between the
two subgraphs. Therefore, GNNs can differentiate these two subgraphs after the pooling. Inspired
by this insight, we propose GLASS, which uses labeling trick to enhance plain GNNs.
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5.1 THE ZERO-ONE LABELING TRICK FOR SUBGRAPHS

Introduced by Zhang et al. (2021), zero-one labeling trick is a general labeling trick for all node-sets.
We restate it for subgraphs.

Definition 1. Given a graph G and a subgraph S in G, the zero-one label of node v is

l(S)
v =

{
1 if v ∈ VS
0 if v /∈ VS

(6)

GLASS is a plain GNN augmented by the zero-one labeling trick. It assigns nodes in and outside the
subgraph different labels and enhances the hidden representation of a node in each message-passing
layer with its zero-one label. Finally, the representation of S is produced by pooling the embeddings
of nodes in S. The bottom half of Figure 1 illustrates the GLASS framework.

The following proposition shows that GLASS is more expressive than plain GNNs.

Proposition 1. Given a graph G and subgraphs S and S ′ in G, if plain GNNs can distinguish
them, GLASS can also produce different representations of S and S ′. However, there exist pairs of
subgraphs that plain GNNs cannot differentiate while GLASS can.

In addition, we prove that GLASS can precisely predict two critical metrics used in SubGNN to
evaluate a model’s expressive power for subgraph representation learning, namely cut ratio and
density, while plain GNNs cannot.

Theorem 1. Given any graph G, there exists a GLASS model that can precisely predict the density
and cut ratio of any subgraph in G.

Now we have seen that GLASS is a more powerful model than plain GNNs for subgraph representa-
tion learning. We next compare GLASS with the state-of-the-art model, SubGNN, and analyze their
expressive power differences. We show that GLASS can represent all the channels of SubGNN.

Proposition 2. GLASS can cover the six properties of SubGNN defined in Table 1.

The concrete analysis and proofs of Proposition 2 can be found in Appendix A.4. In summary,
GLASS can learn all properties designed by SubGNN while using node-level message passing only.

In Appendix A.5, we further characterize the expressive power of GLASS using the theoretical
framework introduced by Zhang et al. (2021). We prove that (1) With a GNN expressive enough,
GLASS can learn the most expressive structural representations for subgraphs, thus enabling learn-
ing any functions over subgraphs (in theory can solve any tasks over subgraphs). (2) However, the
expressive power of practical GNNs is usually bounded by the 1-dimensional Weisfeiler-Lehman
(1-WL) test (Weisfeiler & Leman, 1968). We prove that the zero-one labeling trick can also boost
those GNNs as powerful as 1-WL for subgraph tasks.

5.2 THE MAX-ZERO-ONE LABELING TRICK

Though the zero-one labeling trick can boost GNNs, it makes batch training hard, as the input node
feature vectors change with different target subgraphs. Time-consuming message passing needs to
be done separately for each target subgraph, resulting in higher time complexity than plain GNNs.

To alleviate this issue, we can combine the labels of different target subgraphs and produce their
representations in a single forward process. More specifically, we can jointly label a batch of sub-
graphs within the graph, perform message passing on the whole graph, and then pool individual node
embeddings to produce multiple subgraph representations at the same time. This enables learning
a batch of subgraph representations from the same labeled graph instead of learning one subgraph
representation from one labeled graph.

However, node labels might conflict with each other for different subgraphs, resulting in inconsisten-
cies with the canonical way. Nevertheless, we argue that such processing has a controllable effect on
the final results. On the one hand, as ordinary k-layer GNNs only encode neighbors within k hops,
the representation will not change if the node labels of neighbors within k hops stay the same. We
can expect the errors to be negligible if the change in node labels is distant from the target subgraph.
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This can be achieved if the subgraphs are sparsely located in the graph. On the other hand, such in-
consistencies provide a regularization effect, which prevents GNNs from overfitting the node labels
of individual subgraphs but promotes learning general node features useful for multiple subgraphs.

How can we combine the node labels for different target subgraphs? One solution is to concatenate
them, which seems to have no loss of information. However, this method leads to variable lengths of
node labels, and depending on which other subgraphs attend this batch, it leads to possibly different
node labels for the same target subgraph. The sum of all labels has similar problems. However,
using the max of all labels avoids such a problem, which can help the model converge faster and
facilitate processing samples in varied batch sizes. Taking the zero-one labeling trick as an example,
we will label a node by 1 if at least one subgraph in the batch contains this node. Otherwise, we will
label a node by 0. We call such a labeling trick the max-zero-one labeling trick. In our experiments,
we uniformly used the max-zero-one labeling trick for GLASS and verified its fast training speed as
well as excellent empirical performance.

Previous works have explored other ways to enable batch training. For example, SEAL (Zhang &
Chen, 2018) segregates small enclosing subgraphs from the whole graph to perform link prediction
tasks. However, subgraphs usually contain much more nodes than links, resulting in huge enclosing
subgraphs to be segregated. Moreover, in some datasets, subgraphs have multiple components. To
capture the interaction among components, the depth of the enclosing subgraphs has to be large,
leading to exponentially increasing subgraph sizes. IDGNN (You et al., 2021) uses fabricated addi-
tional features instead of labels, leading to loss of expressive power. Moreover, in Appendix A.6, we
show that no labeling trick can avoid the inconsistencies of node labels within a batch. Therefore,
it is impossible to solve this problem by designing a fancy labeling trick, and approximation is a
must.

6 EXPERIMENT

In this section, we compare GLASS with state-of-the-art subgraph representation learning methods,
especially SubGNN, on both synthetic and real-world datasets to demonstrate that GLASS is a model
with superior performance and scalability, despite being much simpler than SubGNN.

6.1 DATASETS AND MODELS

Datasets. We use four synthetic datasets: density, cut ratio, coreness, component,
and four real-world subgraph datasets, namely ppi-bp, em-user, hpo-metab, hpo-neuro.
The four synthetic datasets are introduced by Alsentzer et al. (2020) to test a model’s ability to
learn the six properties: density tests the ability to learn internal structure; cut ratio tests
border structure; coreness tests border structure and position; and component tests internal
and external position. The four real-world datasets are also provided by Alsentzer et al. (2020). The
base graph of the ppi-bp dataset is a human protein-protein interaction network. Each subgraph is
induced by proteins in a biological process, whose label is its cellular function. The hpo-metab
and hpo-neuro datasets are knowledge graphs containing phenotype and genotype information
about rare diseases. Each subgraph represents a rare monogenic disease. The em-user dataset
contains the workout history of users, where each subgraph makes up a user’s workout history, and
the label is the gender of the user. Detailed information on these datasets are in Appendix A.10.

Baseline Models. We consider four baseline methods. (1) SubGNN (Alsentzer et al., 2020) uses
subgraph-level message passing with six artificial channels. We use the numbers provided by the
original paper. (2) Sub2Vec (Adhikari et al., 2018) samples random walks in subgraphs which are
fed to Paragraph2Vec to train subgraph embeddings. We train Sub2Vec using the official implemen-
tation to produce subgraph representations and then feed them to an MLP. Like SubGNN, Sub2Vec
can also capture neighborhood and structure without passing messages between nodes. However,
it uses node ID and degree ratio in the target subgraph to represent nodes, rather than pretrain-
ing GNNs. Moreover, it only learns the internal topology by sampling random walks in the target
subgraph. We compare these two existing subgraph representation methods to show the superior
performance of GLASS. (3) GNN-seg is an ordinary MPNN performing graph classification task
on subgraphs segregated from the whole graph. We use it to illustrate that subgraph tasks need
external topology. (4) MLP and (5) GBDT pool node embeddings to produce subgraph embed-
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Table 3: Mean Micro-F1 with standard error of the mean on synthetic datasets. Results are provided
from runs with ten random seeds.

Method density cut ratio coreness component
GLASS 0.930± 0.009 0.935± 0.006 0.840± 0.009 1.000± 0.000

SubGNN 0.919± 0.006 0.629± 0.013 0.659± 0.031 0.958± 0.032
Sub2Vec 0.459± 0.012 0.354± 0.014 0.360± 0.019 0.657± 0.017
GNN-seg 0.952± 0.006 0.346± 0.011 0.593± 0.012 1.000± 0.000

Table 4: Mean Micro-F1 with standard error of the mean on real-world datasets. Results are provided
from runs with ten random seeds.

Method ppi-bp hpo-metab hpo-neuro em-user
GLASS 0.619± 0.007 0.614± 0.005 0.685± 0.005 0.888± 0.006

SubGNN 0.599± 0.008 0.537± 0.008 0.644± 0.006 0.816± 0.013
Sub2Vec 0.388± 0.001 0.472± 0.010 0.618± 0.003 0.779± 0.013
GNN-seg 0.361± 0.008 0.542± 0.009 0.647± 0.001 0.725± 0.003

MLP 0.445± 0.003 0.386± 0.011 0.404± 0.006 0.524± 0.019
GBDT 0.446± 0.000 0.404± 0.000 0.513± 0.000 0.694± 0.000

dings and classify them. They are graph-agnostic, thus their performance can show the importance
of graph topology for subgraph tasks. The details of the implementation of these baselines are in
Appendix A.10.

GLASS. For real-world datasets, we pretrain plain GNN on link prediction tasks to produce input
node embeddings for GLASS. On synthetic datasets, GLASS uses homogeneous node features. We
detail our GLASS architecture in Appendix A.7 and list other hyperparameters in Appendix A.10.

6.2 RESULTS

Synthetic Datasets. To evaluate the expressive power of GLASS, we test GLASS and other base-
lines on four synthetic datasets. Results are shown in Table 3. GLASS significantly outperforms
all baselines and outperforms the previous state-of-the-art model SubGNN by 20.4% on average
and 48.6% in maximum. The results show that GLASS can capture density and cut ratio infor-
mation very well as proved. Moreover, they illustrate the expressive power of ordinary node-level
MPNNs for subgraph representation learning—we do not need to use subgraph-level message pass-
ing with complicated artificial channels, but a plain GNN with a simple labeling trick is enough.
As for GNN-seg, its failure to predict cut ratio and coreness is expected as these properties requires
topology outside the subgraph. Similarly, Sub2Vec cannot capture position information and external
topology, thus its failure on cut ratio and component is reasonable.

Real-world datasets.

Table 4 shows the results. GLASS gains a 8.2% increase on average and 14.3% increase in maxi-
mum compared with SubGNN. On hpo-metab and hpo-neuro datasets, GNN-seg beats other
baselines very easily, which might be because the subgraphs in these two datasets are dense and
localized, making the topology outside the subgraph less important.

In contrast, on ppi-bp and em-user, the density of subgraphs is lower, and some subgraphs
are even composed of single nodes. Thus GNN-seg can learn little from the internal topology as
shown by the worse performance. Sub2Vec is less expressive than SubGNN as expected. However,
on ppi-bp and em-user datasets, it has an edge over GNN-seg. We suspect that the node ID
can leak some external topology information to Sub2Vec, as the same nodes can appear in different
subgraphs.

MLP and GBDT are both graph-agnostic models. They fail on all datasets, which illustrates that
capturing graph structure is important for subgraph tasks.

Ablation Analysis To demonstrate the power of the max-zero-one labeling trick, we do an ablation
study by removing the max-zero-one labels from GLASS, which is called GNN-plain. A comparison
between GLASS and GNN-plain is shown in Table 5 (synthetic datasets) and 6 (real-world datasets).
Our labeling trick improves the performance by 42.1% on synthetic datasets and 2.8% on real-world

8
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Table 5: Mean Micro-F1 with standard error of the mean on synthetic datasets. Results are provided
from runs with ten random seeds.

Method density cut ratio coreness component
GLASS 0.930± 0.009 0.935± 0.006 0.840± 0.009 1.000± 0.000

GNN-plain 0.462± 0.011 0.887± 0.008 0.536± 0.008 0.998± 0.002

Table 6: Mean Micro-F1 with standard error of the mean on real-world datasets. Results are provided
from runs with ten random seeds.

Method ppi-bp hpo-metab hpo-neuro em-user
GLASS 0.619± 0.007 0.614± 0.005 0.685± 0.005 0.888± 0.006

GNN-plain 0.613± 0.009 0.597± 0.012 0.668± 0.007 0.847± 0.021

datasets on average. The relatively lower improvement on real-world datasets might be because
improving the expressive power is not the most critical factor for real-world datasets, but rather,
filtering noise and smoothing features is more effective. In other words, the synthetic datasets require
a much stronger structure learning ability than the real-world datasets to perform well. This can also
be seen from the comparison between SubGNN and GNN-seg in Table 4, where SubGNN only
marginally outperforms GNN-seg on real-world datasets.

In Appendix A.11, we analyze the effect of batch size for GLASS on some datasets. In general, the
performance of GLASS drops as the batch size increases. However, the max-zero-one labeling trick
can still boost plain GNNs at a large batch size. The performance gap between GLASS and GNN
also shows that the effect of overlapping node labels is insignificant under our experimental setting.
In Appendix A.9, we also design a score to quantify the overlapping effect.

Computation Time Comparison The precomputation of SubGNN is quite time-consuming. After
precomputation, the training of SubGNN is also slower than GLASS. On the 7 used datasets (except
ppi-bp), SubGNN on average takes 2.7× more time than GLASS to converge. Moreover, the ratio
jumps to 7.9 when we count in precomputation. The results can be found in Figure 3.

component density cut_ratio coreness em_user hpo_metab hpo_neuro ppi_bp
dataset

102

103

104

tim
e/

s

SubGNN-precompute
SubGNN-train
GLASS

Figure 3: The time needed for training a model (log scale). SubGNN takes more than 48h on
ppi-bp.

7 CONCLUSION

We have proposed GLASS, a simple yet powerful model for subgraph representation learning. We
illustrate the failure of plain GNNs on some simplest subgraph learning tasks, and demonstrate the
power of labeling trick to enhance plain GNNs both theoretically and empirically. GLASS outper-
forms the previous state-of-the-art method SubGNN by 20.4% on synthetic datasets and 8.2% on
real-world datasets, verifying the power of node-level message passing for subgraph representation
learning. We argue that plain GNNs + labeling trick are enough for learning higher-order substruc-
tures, and the complicated subgraph-level message passing is not necessary. Despite the success of
our max-zero-one labeling trick, it is still less powerful and heuristic compared with other existing
labeling tricks. We leave the exploration of other labeling tricks for subgraph tasks to future work.
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8 REPRODUCIBILITY STATEMENT

Our main theoretical contribution is in Appendix A.5, and complete proofs are also shown there.
Moreover, our proposed model GLASS consists of our max-zero-one labeling trick and a plain
GNN. We describe the labeling trick in Section 5.2 and the architecture of GLASS in Appendix A.7
in detail. All datasets used in our experiments are public. Our code is available at https://
github.com/Xi-yuanWang/GLASS.
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A APPENDIX

A.1 OTHER STRUCTURAL ENCODING METHODS

We discuss other existing structural encoding methods as follows.

Positional Encoding in Graph Transformers. WL-PE (Zhang et al., 2020) utilizes the Weisfeiler-
Lehman algorithm to produce node labels. As GNN can be as expressive as the WL test, this
technique in theory will not increase the expressive power of GNNs. From the design of labeling
tricks, Laplacian-PE (Dwivedi & Bresson, 2020) is not permutation invariant and cannot differen-
tiate nodes within and outside the target subgraph, as isomorphic nodes can have different labels,
while non-isomorphic nodes can have the same label (for example the eigenvector corresponding to
eigenvalue 0). Graphormer proposes centrality encoding, which encodes the indegree and outdegree
of nodes to help Transformer capture graph structure information. (Ying et al., 2021a). Though it
is specifically useful for graph transformers, GIN (Xu et al., 2019) can easily capture node degree
with one message passing layer.

Edge and Path Feature. They are not designed for subgraph tasks and cannot represent node
position relative to the target subgraph. Spagan (Yang et al., 2019), Graphormer (Ying et al., 2021a),
and PAGTN (Chen et al., 2019) both utilize shortest path encodings to reconstruct the adjacency
matrix. They can capture long-range node interaction, which is important for subgraph tasks, but
orthogonal to our zero-one labeling trick to distinguish nodes inside and outside the target subgraph.
And we can easily add our labeling trick to EGNN (Gong & Cheng, 2019), GINE+ (Brossard et al.,
2020).

A.2 PROOF OF THEOREM 1

Proof. Consider the following GNN, which ignores node features.

a(1)
v =

∑
u∈N(v)

(l(S)
u

[
1
0
0

]
+

[
0
1
0

]
) (7)

h(1)
v =

[
1 0 0
−1 1 0
0 0 0

]
a(1)
v +

[
0
0
1

]
(8)

hS =
∑
v∈VS

h(1)
v , (9)

where l(S)
v is the zero-one label of node v, hS is the representation of subgraph S.
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Density d and cut ratio c can be predicted with GLASS in a transductive setting.

d(hS) = (

[
1
0
0

]T

hS)/[(

[
0
0
1

]T

hS) · (

[
0
0
1

]T

hS − 1)] (10)

c(hS) = (

[
0
0.5
0

]T

hS)/[(

[
0
0
1

]T

hS) · (n−

[
0
0
1

]T

hS − 1)]. (11)

A.3 PROOF OF PROPOSITION 1

Proof. First, we need to prove that given any plain GNN model m1, there exists a GLASS model
m2 producing the same output for any target subgraph S.

Assuming that the AGGREGATE function of m1 is f (k)1 , the COMBINE function of m1 is g(k)1 at
the kth layer and the READOUT function of m1 is ϕ1. We can define a function θ mapping labeled
node features to the initial node features, θ(CONCATENATE(h(k−1)

u , l(S))) = h
(k−1)
u , which is a

well defined function. And we can design a GLASS as follows.

h′(k−1)
u = CONCATENATE(h(k−1)

u , l(S)), (12)

a(k)
v = f

(k)
1 ({θ(h′(k−1)

u )|u ∈ N(v)}), (13)

h(k)
v = g

(k)
1 (h(k−1)

v ,a(k)
v ), (14)

where h
(k)
v is the embedding of node v at the kth layer.

We use ϕ1 as the READOUT function, therefore m2 will produce the same embeddings as m1 for
the target subgraph.

Second, GLASS can differentiate at least one pair of subgraphs which plain GNNs cannot distin-
guish. Figure 2 gives us an example.

A.4 ANALYSIS OF HOW GLASS CAN COVER THE SIX PROPERTIES IN SUBGNN

The implementation of the channels in SubGNN are non-deterministic, so GLASS cannot precisely
reproduce the behavior of SubGNN. Our goal is to prove that GLASS can represent the six channels
by definition.

As the SubGNN uses embeddings produced by plain GNNs as node features, we first show that
GLASS can also produce such node embeddings.
Proposition 3. Given a graph G and node embeddings G produced by plain GNNs, GLASS can
also produce the same embeddings.

Proof. We have prove that GLASS is more expressive than plain GNNs in 1.

Therefore, for any GLASS model, we can use some bottom layers to produce node embedding, and
the rest of the model is still a GLASS. Therefore, we can assume the input node features of GLASS
are the same as those of SubGNN. Let gu denote the pretrained GNN embeddings of node u.

We also need to show the performance of plain GNNs. Xu et al. (2019) prove that some plain
GNNs map two nodes to the same embeddings only if they have identical BFS structures with
identical features on the corresponding nodes. Assuming the k-depth rooted subtree set is T =
{T1, T2, ..., T|V|}, where Tu means the tree rooted in node u. If READOUT is an injective multiset
function like DeepSet (Zaheer et al., 2017), plain GNN will be an injective function ψ : {TS |S ⊆
G} → Rd, where TS = {Tu|u ∈ VS}.
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The internal N property encodes the set of nodes in the target subgraph, and the border N property
encodes the set of neighbors within k hops of nodes in the target subgraph. Therefore, to show that
GLASS can cover the N channel in SubGNN, we only need to prove that GLASS can differentiate
any pair of neighbor feature sets. See Proposition 4.

Proposition 4. Given a target subgraph S in a graph G , GLASS can produce different embeddings
for any pair of different border neighbor feature sets {gu|d(u, v) ≤ k, v ∈ VS} or internal neighbor
feature sets {gv|v ∈ VS}.

Proof. For border neighbor feature sets, let function f(TS) = {gu|u ∈ VT , T ∈ TS}. ψ−1 ◦ f is
a function mapping embeddings to border neighbor set. Therefore, GLASS can produce different
embeddings for any pair of different border neighbor feature sets {gu|d(u, v) ≤ k, v ∈ VS}.

As for the internal neighbor feature set, we can use a GLASS layer whose COMBINE function
maps all nodes labeled zero to a constant embedding vector g0 different from any existing initial
node embeddings, and maintain the input embeddings of nodes labeled one and pass it to a GLASS
used in last paragraph. Let function θ(U) = U− {g0}. Therefore, ψ−1 ◦ f ◦ θ maps embeddings to
internal neighbor feature sets. Therefore, GLASS can produce different embeddings for any pair of
different internal neighbor feature sets {gv|v ∈ VS}.

For the P channel, the internal position is defined as the distance (shortest path length) between
nodes in the target subgraph, and the border position is the distance between nodes in the target
subgraph and nodes in the whole graph.

Proposition 5. Given a target subgraph S in graph G, if embeddings of nodes are different from each
other, GLASS can produce different embeddings for subgraphs with different position information.

Proof. k-layer MPNN can capture rooted subtree structure. As the node embeddings are different,
the set of embeddings of nodes can be mapped to the set of nodes bijectively. If gu appear in l-depth
rooted subtree but not in l−1-depth rooted subtree, we can infer that the distance between the target
node and node u is l. Moreover, using the DeepSet function as READOUT, we can capture the
distance between nodes in the target subgraph and any other nodes.

Note that though we assume that the node embeddings are different from each other in Proposi-
tion 5, we can let the input feature be learnable in implementation. Thus the coincidence of node
embeddings can be avoided.

Moreover, with such technique, we can build a bijective function from the embedding space to the
node set. The theoretical expressive power of GLASS will be stronger and no longer be limited to
node embedding generated by plain GNNs.

As for the S channel, it is defined as the internal feature connectivity (the multiset {(gu, gv)|(u, v) ∈
ES}), and the border feature connectivity (the multiset {(gu, gv)|u ∈ VS , v /∈ VS , (u, v) ∈ E}).

Proposition 6. GLASS can represent the internal and border structure. In other words, there exists
a GLASS model mapping the multiset {(gu, gv)|(u, v) ∈ ES} and {(gu, gv)|u ∈ S and v /∈ S} to
the embedding space injectively, where g is the pretrained GNN embeddings.

Proof. WLGNN can encode the multiset of feature pairs {{(gu, gv)|v ∈ N(u)}|u ∈ VS} with the
following encoder. ∑

u∈VS

f1(
∑

v∈N(u)

f2(gv)), (15)

where f1 and f2 are some functions whose existence Xu et al. (2019) have proved. In other words,
we can encode BFS trees whose depth=1.

If we concatenate the node labels and g (namely g′), and design

f ′2 =

{
f2(gv) if Lv = 1

0 otherwise
(16)
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f ′′2 =

{
f2(gv) if Lv = 0

0 otherwise
(17)

∑
u∈VS(c)

f ′1(
∑

v∈N(u) f2(gv)) can represent {(gu, gv)|(u, v) ∈ ES(c)}.

And
∑

u∈VS(c)
f ′′1 (

∑
v∈N(u) f2(gv)) can represent {(gu, gv)|u ∈ S(c) and v /∈ S(c)}.

A.5 THE EXPRESSIVE POWER OF GLASS UNDER STRUCTURAL REPRESENTATION THEORY

Zhang et al. (2021) introduce a theoretical framework to analyze the expressive power of GNNs. Us-
ing this framework, we theoretically characterize the expressive power of GLASS. We first introduce
some terms of labeling trick theory.

A permutation π is a bijective mapping from {1, 2, ..., n} to {1, 2, ..., n}, where n ∈ N+. All possi-
ble permutations constitute the permutation group Πn. For node set U ⊆ V, π(U) = {π(i)|i ∈ U},
where i is the node index in a graph G, and π(i) can be node index in G or any other graph. For edge
set F ⊆ E, π(F) = {(π(i), π(j))|(i, j) ∈ F}. For node attribute matrix X , π(X)π(i) = Xi. And
for subgraph S and graph G, π(S) = (π(VS), π(ES), π(XS)) and π(G) = (π(V), π(E), π(X)).

The definition of labeling trick is as follows.

Definition 2. Given a subgraph S in a graph G, we design a label matrix L(S) ∈ R|V|×d, whose uth

is the label of node u. L satisfies: for any two subgraphs S and S ′ in G

1. (target-nodes-distinguishing) L(S) = π(L(S′)) ⇒ VS = π(VS′)

2. (permutation equivariance) S = π(S ′),G = π(G) ⇒ L(S) = π(L(S′)).

Proved by Zhang et al. (2021), the zero-one labeling trick is a valid labeling trick.

Now we analyze the power of labeling trick. We first define subgraph isomorphism.

Definition 3. Given two n-node graphs G = (V,E,X), G′ = (V′,E′,X ′), and one subgraph
S of G and one subgraph S ′ of G′, S and S ′ are isomorphic (denoted by S ≃ S ′) iff ∃π ∈ Πn,
π(S) = π(S ′) and π(G) = π(G′).

Isomorphic subgraphs should be mapped to the same embeddings, and the most expressive repre-
sentations should differentiate all non-isomorphic subgraphs. Therefore we introduce the concept of
structural subgraph embeddings to illustrate such perfect representations.

Definition 4. Γ(S) is a structural subgraph embedding for subgraph S if ∀S,S ′,Γ(S) = Γ(S ′) ⇔
S ≃ S ′

Numerous works have been exploring the expressive power of GNNs on node tasks. However, we
focus on how labeling trick can help GNNs on subgraph representation learning. Therefore, we
introduce an ideal GNN model for node tasks.

Definition 5. If a GNN can map a node u to the embedding vector hu so that given any two graphs
G and G′, i ∈ V, j ∈ V′, hi = hj ⇔ ∃π ∈ Πn, i = π(j) and G = π(G′), we call it a node-most-
expressive GNN.

Though GNN is powerful on various tasks, Zhang et al. (2021) show that node embeddings generated
by GNNs are not enough to produce structural subgraph embedding even if we use a node-most-
expressive GNN. However, labeling trick can solve this problem. Zhang et al. (2021) prove that
with labeling trick and injective READOUT function, node-most-expressive GNNs can produce
structural subgraph embeddings.

Theorem 2. There exists function Γ, where Γ(S) is structural subgraph embedding for subgraph
S, can be formulated as Γ(S) = READOUT ({Hv|v ∈ VS}), where H is the node embedding
matrix of a node-most-expressive GNN with node label as input.

Please refer to Appendix A of (Zhang et al., 2021) for the proof.
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However, up to now, no scalable node-most-expressive GNNs have been realized. However, with
less expressive GNNs, labeling trick can still make a difference. Figure 2 provides an example.

Here we prove that labeling trick can boost WLGNNs, a kind of GNNs whose expressive power is
the same as 1-WL.
Theorem 3. For any ϵ ∈ R+, given any graph G with n nodes, whose node degrees range from 1
to O(log(1−ϵ)/2 n), and having an empty feature, there exists w(2nn2ϵ−1) pairs of non-isomorphic
subgraphs such that any h-layer WLGNN produces the same representation, while with labeling
trick WLGNN can distinguish them.

Proof. We prove that there are w(n2ϵ) nodes that WLGNNs cannot differentiate in (1), and get the
bound in (2).

(1)The bound of the number of nodes in a n-hop BFS tree is

|V (G(h)
v )| ≤ K =

h∑
i=0

di = O(dh) = O(log
1−ϵ
2 n). (18)

We can add virtual nodes to make the trees become complete k-ary trees. And by enumerating the
position of the virtual node we can get a bound 2C

2
K = O(n1−ϵ) for the number of non-isomorphic

trees.

According to the pigeonhole principle, there exist n/O(n1−ϵ) = nϵ nodes which cannot be differ-
entiated with each other by WLGNNs. They form a set Viso.

(2) Let us partition Viso =
⋃q

i=1 Vi, nodes in each Vi share the same one-hop neighbor. Consider
a node u ∈ Vi, v ∈ Vj , i ̸= j. There exists a node w ∈ N(u), w /∈ N(v). Let Ṽv donate
V−{u, v, w}−N(w). |Vv| ≥ w(n− log

1−ϵ
2h n). Consider arbitrary subset Ṽv ⊆ V. Let S1 donate

the subgraph induced by Ṽv

⋃
{u,w}, S2 donate the subgraph induced by Ṽv

⋃
{v, w}. The density

of S1 is higher than S2. And GLASS can fit density perfectly, so GLASS can distinguish S1 and S2,
while WLGNNs cannot.

And the number of pairs (u, v, w) is
q∏

i,j=1,i̸=j

|Vi||Vj | =
1

2
(|Viso| −

q∑
i=1

|Vi|2). (19)

As nodes in |Vi| share the same neighbor, |Vi| ≤ O(log
1−ϵ
2h n). So the expression above

q∏
i,j=1,i̸=j

|Vi||Vj | = w(n2ϵ) (20)

And the bound for the number of these pairs of subgraphs is

w(n2ϵ)2w(n−log
1−ϵ
2h n) = w(2nn2ϵ−1). (21)

A.6 THEORETICAL ANALYSIS OF MAX-ZERO-ONE LABELING TRICK

Take a closer look at the definition of labeling trick. Node label should be (1) target-nodes-
distinguishing. Labels of nodes in S must be different from those out of S. (2) permutation equiv-
ariance. Isomorphic nodes (in S and out of S separately) must be mapped to the same label. We can
illustrate the function of the conditions with the following theorem.
Theorem 4. For any S,S ′ in given graphs G,G′ respectively, there exists a node-most-expressive
GNN with labeling trick satisfying: (1) hS = hS′ ⇒ S ≃ S ′ if l(S) = π(l(S

′)) ⇒ VS = π(VS′);
(2) hS = hS′ ⇐ S ≃ S ′ if S = π(S ′),G = π(G) ⇒ l(S) = π(l(S

′)), where h is GNN embedding
of subgraph.
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Figure 4: GLASS is composed of node label function, MPNN, pooling layers.

This theorem has been proven in Appendix A of (Zhang et al., 2021).
Proposition 7. For all labeling tricks, there exists a case that given two different subgraphs S, S ′

in graph G, node label l(S) ̸= l(S
′).

Proof. Consider three isomorphic nodes, namely u, v, w, in a graph. Let S1 donate subgraph in-
duced by {u, v}, S2 donate subgraph induced by {u,w}. Therefore, L(S1)

u = L
(S1)
v ̸= L

(S1)
w and

L
(S2)
u = L

(S2)
w ̸= L

(S2)
v . L(S1) ̸= L(S2).

Therefore, developing less theoretically powerful tricks is a must. Here, we introduce the max-zero-
one labeling trick. Looking back on the definition of labeling tricks, it is invariant but not expressive
enough.
Definition 6. Given subgraphs in a batch {S1, ...,Sn}. The max-zero-one label of a node v in G is

Lv =

{
1 if ∃j ∈ [1, 2, ..., n], v ∈ VSj

0 otherwise
(22)

With Theorem 4, we can prove the invariance of the max-zero-one node labels.
Corollary A.1. With a node-most-expressive GNN, injective READOUT and the max-zero-one node
labels, in a single batch, S ≃ S ′ ⇒ HS = HS′

Though the max-zero-one results in loss of expressive power compared with zero-one, experiments
show that the model can fit cut ratio and density very well. These two properties need a clear division
of nodes in and outside the target subgraph.

A.7 GLASS ARCHITECTURE

GLASS takes embeddings produced by pretrained GNN as input node feature. Then it uses node
label function to transform node embeddings before message passing at each label, where node label
functions are node label-specific MLPs. Then GLASS pools node embeddings to produce subgraph
embeddings and use a mlp to produce the output. We also use normalization layers (Cai et al., 2021)
to accelerate optimization.

A.8 SELF-SUPERVISED LEARNING

SubGNN uses GNN pretrained on link prediction task to produce input node embeddings for
GLASS. We also use it to compare GLASS and GNN-plain with SubGNN. Pretrained GNN em-
beddings can help GLASS capture distant neighbors. If the pretrained GNN has l layers and the
GNN used in GLASS has k layers, it can capture (l + k)-hop neighbors, while a k-layer MPNN
can only capture neighbors within k hops. Moreover, we design more SSL tasks to further boost
GLASS.

In practice, subgraph datasets are often not large, and target subgraphs are often sparse in the whole
graph. Thus, training GLASS only from the subgraph property prediction signals tends to overfit.
Therefore, we introduce three levels of self-supervised learning (SSL) tasks to assist the GLASS
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Table 7: Mean Micro-F1 with standard error of the mean of GLASS with SSL on test sets. esults
are provided from runs with ten random seeds.

dataset GLASS GLASS+SSL
em user 0.888± 0.006 0.902± 0.006
ppi bp 0.619± 0.007 0.621± 0.008

hpo metab 0.614± 0.005 0.565± 0.006
hpo neuro 0.685± 0.005 0.674± 0.002

Table 8: Noisy label ratio for each datasets under our experimental setting.
dataset nr1 nr2 dataset nr1 nr2
density 0.022 0.012 em user 0.018 0.011

cut ratio 0.018 0.012 ppi bp 0.078 0.044
coreness 0.023 0.024 hpo metab 0.063 0.040

component 0.004 0.028 hpo neuro 0.097 0.061

training. 1) Node level: We train a GNN to produce node embeddings to predict AkX , where A
is the adjacency matrix of the whole graph. Intuitively, it helps GNNs differentiate different BFS
trees (Yehudai et al., 2021), thus preserving better local subtree information. 2) Edge level: We
perform a link prediction task on the whole graph. Intuitively, it pushes nearby nodes to have similar
embeddings, thus encoding the node distance information into the node embeddings. 3) Subgraph
level: We let the final subgraph representations predict some subgraph structural properties, includ-
ing density, cut ratio, coreness, and the number of connected components. It helps the model better
capture some higher-order substructure information.

We take a pretraining strategy for node and edge-level SSL tasks, whose output node embeddings
are used as initial features of the GLASS. Then, we jointly train the subgraph-level SSL tasks and
the main subgraph property prediction task. Donate the loss for the main task, node-level SSL, edge-
level SSL, and subgraph-level SSL as Lmain, Lnode, Ledge, Lsubg . The pretraining loss is given by
Lpre = αLnode + βLedge, and the joint training loss is given by Ljoint = Lmain + γLsubg , where
α, β, γ are hyperparameters.

We only use SSL for real-world datasets. The results are listed in Table 7.

SSL tasks boost GLASS on em user and ppi bp datasets.

A.9 NOISY LABEL RATIO

In this paper, we only analyse the expressive power of zero-one labeling trick but use max-zero-one
labeling trick in experiments. If subgraphs are so sparsely located in the subgraph that their k-hop
neighbors do not overlap, both tricks are equivalent for a k-layer GLASS. However, many real-world
graphs have a small diameter, so such overlap maybe inevitable. To quantify the overlapping effect,
we define noisy label ratio nri: the ratio of i-hop neighbors with inconsistent zero-one and max-
zero-one labels computed over all subgraph nodes. In Table 8, we show the nnoisy label ratio of the
datasets under our experimental settings. The results show that the overlapping effect brought by
using max-zero-one labeling trick is insignificant.

A.10 IMPLEMENTATION DETAILS

Datasets. We use the code provided by SubGNN to produce synthetic datasets and use the real-
world datasets provided by SubGNN directly. The statistics of these datasets can be found in Table 9.
As for dataset division, the real-world datasets take an 80:10:10 split, and the synthetic datasets
follow a 50:25:25 split, following (Alsentzer et al., 2020).

Computing infrastructure. We leverage Pytorch Geometric and Pytorch for model development.
Models were trained on an Nvidia V100 GPU to measure the train time and were tested on an Nvidia
A40 GPU on a Linux server.

Implementation of Message Passing Networks. For all message-passing network models, we try
three kinds of aggregation methods: sum, mean, and GCN and four kinds of pooling methods: sum,
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Table 9: Detail of datasets
Datasets |V| |E| Number of Subgraphs
density 5,000 29,521 250
cut-ratio 5,000 83,969 250
coreness 5,000 118,785 221

component 19,555 43,701 250
ppi bp 17,080 316,951 1,591

hpo metab 14,587 3,238,174 2,400
hpo neuro 14,587 3,238,174 4,000
em user 57,333 4,573,417 324

mean, max, and size, where the size pooling is to sum the node representations and divide it by the
square root of the number of nodes.

Input node feature. We use an all-one vector for GNN-plain, GNN-seg, Graphormer-seg, and
GLASS on synthetic datasets. On real-world datasets, GLASS, GNN-plain, MLP, and GBDT use
trainable pretrained node embedding. GNN-seg uses node degree.

Pretraining GNN. Pretrained node embeddings were pretrained using a l-layer GNN with node id
as the input node feature. Fixed hyperparameters were batch size = 131072, learning rate = 1e− 3,
hidden dimension = 64. Dropout is selected from [0.0, 0.5] and l ranges from 1 to 5.

Baselines. We directly use the results reported for SubGNN. Sub2Vec is designed for connected
subgraphs, so we sample random walks at each component separately. We utilize the implementation
of Sub2Vec and use all its channels. For MLP and GBDT, We first pool the node embeddings to
produce subgraph embeddings, then use MLP and GBDT (implemented with xgboost) to classify
subgraph embeddings.

Model hyperparameter tuning. We use optuna to perform random search. Hyperparameters were
selected to optimize Micro-F1 scores on the validation sets. The best hyperparameters selected for
each model can be found in our code in the supplement materials. For GLASS, we select the learning
rate from {1e − 4, 2e − 4, 5e − 4, 1e − 3, 2e − 3, 5e − 3}; number of layers from {1, 2}; hidden
dimension, 64 for real-world datasets and {1, 5, 9, 13, 17}; dropout, 0.5 for real-world datasets and
{0.1, 0.2, 0.3} for synthetic datasets; aggregation, {mean, sum, gcn}; pool, {mean, sum,max, size};
batch size, {ns/80, ns/40, ns/20, ns/10}, where ns is the size of datasets.

Training process. We set an upper bound (10000) for the number of forward and backward pro-
cesses and use an early stop strategy which finishes training if the validation score does not increase
after 1000 forward and backward processes. We utilize Adam optimizer and ReduceLROnPlateau
learning rate scheduler to optimize models.

A.11 TRADE OFF AMONG BATCH SIZE, TRAINING TIME, AND PERFORMANCE

On coreness, cut ratio, and density datasets, we test the performance of GLASS at different training
batch sizes. The results are in Figure 5. We also measure the training time of GLASS. The results
are in Figure 6.

In general, the performance drops as the batch size gets larger. However, the max-zero-one labeling
trick is still effective at a large batch size as on all datasets, as the difference of F1 score keeps
positive. However, we find that when we set the test and valid batch size to one, the performance of
GLASS drops faster, which shows that max-zero-one is not just an approximation of zero-one. With
max-zero-one, GLASS is trained to predict the properties of the target subgraph with the existence
of other subgraphs.

As the batch size gets larger, the training becomes faster. The time needed for each forward and
backward process is nearly irrelevant to batch size, but the gradient is more precise and the model
converges faster. For these three datasets, increasing batch size from 1 to 32 reduces training time
by about 2/3.

As for other datasets, even plain GNNs can predict component precisely. Furthermore, the targets in
real-world datasets are less closely connected to subgraph topologies. Last but not least, real-world
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Figure 5: The difference of F1 score between GLASS and GNN-plain. The results are provided with
runs on ten random seeds. The left subplot shows the result of testing in batch. The right one shows
the performance of testing each sample separately, in other words, setting the valid and test batch
size to one.
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Figure 6: The training time against batch size. The results are provided with runs on ten random
seeds.

datasets are bigger, and we also use bigger models for them, leading to large variance in performance
and high time complexity.

To trade off between performance and training time, we can tune batch sizes for each dataset. In the
worst case when the batch size is so large that target subgraphs in the batch are dense enough to cover
the whole graph, GLASS degrades to plain GNN. This process is dataset-related. If target subgraphs
are sparsely located in the graph, large batch sizes can be used without hampering the expressive
power. Moreover, small batch sizes are not always promising, due to the noise of gradients. We
can take a strategy of trying a large batch size first and reducing it until we obtain a model with
satisfying expressive power.

20


	Introduction
	Related Work
	Preliminaries
	A Comparison between SubGNN and Plain GNNs
	GLASS: Gnns with LAbeling trickS for Subgraph
	The Zero-One Labeling Trick for Subgraphs
	The Max-Zero-One Labeling Trick

	Experiment
	Datasets and Models
	Results

	Conclusion
	Reproducibility Statement
	Appendix
	Other Structural Encoding Methods
	Proof of Theorem 1
	Proof of Proposition 1
	Analysis of How GLASS Can Cover the six properties in SubGNN
	The Expressive Power of GLASS under Structural Representation Theory
	Theoretical Analysis of Max-Zero-One Labeling Trick
	GLASS Architecture
	Self-Supervised Learning
	Noisy Label Ratio
	Implementation Details
	Trade off among batch size, training time, and performance


