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Abstract

Large language models (LLMs) face severe memory bottlenecks in long-context
inference due to the linearly growing size of key-value (KV) caches. Existing
KV cache compression techniques typically rely on simple heuristics, overlooking
the distinct functional roles of different attention heads. We present SGD-KV
(Summarization-Guided KV Cache Compression), a head-aware framework that
leverages a novel chunk-summarization diagnostic task to systematically identify
and prioritize attention heads specialized in hierarchical information aggregation.
Experiments on Qwen2.5-7B-1M and Qwen3-32B across diverse long-context
benchmarks demonstrate that SGD-KV achieves state-of-the-art performance with
contexts up to 1M tokens, while reducing KV cache memory usage by up to
75%. Our findings show that strategically allocating the KV cache budget based
on the summarization score distribution of attention heads yields a superior effi-
ciency–accuracy trade-off for long-context inference.

1 Introduction
The push towards million-token context windows in Large Language Models (LLMs) like Qwen2.5-
1M [1] and Gemini 2.5 [2] is severely hampered by a fundamental obstacle: the prohibitive memory
cost of the Key-Value (KV) cache, which scales linearly with context length. While methods exist to
compress the KV cache, from early token-level eviction to more recent head-aware approaches [3, 4],
they often rely on simple, retrieval-based importance metrics to allocate cache budget. These heuristics
fall short in complex scenarios like multi-document analysis or long-form dialogue, which demand
hierarchical information aggregation rather than simple pattern matching. We argue that a specialized
subset of attention heads, which we term “summarization heads,” are primarily responsible for this
higher-order cognitive function. To leverage this insight, we introduce SGD-KV (Summarization-
Guided KV Cache compression), a framework that systematically identifies and prioritizes these
crucial heads. Using a novel chunk-summarization diagnostic task, SGD-KV scores each head’s
summarization capability and applies a water-filling-inspired algorithm to intelligently allocate cache
budget for each head. Validated on benchmarks including OpenAI Multi-Round Co-Reference
Resolution (MRCR) [5] and ETHIC [6], SGD-KV sets a new state-of-the-art (SOTA), reducing KV
cache usage by up to 75% on contexts up to 1 million tokens without compromising model accuracy.

2 Related Work

KV Cache Compression Research on mitigating the memory burden of KV caches has pro-
gressed along two fronts: token-level eviction and head-level budget allocation. Early efforts like
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Figure 1: The illustration of chunk-summarization task.

StreamingLLM [7] and H2O [8] focused on identifying and discarding less important tokens based on
heuristics like recency and cumulative attention scores. While reducing memory, these methods are
functionally unaware. More sophisticated approaches like PyramidKV [9] and AdaKV [4] introduce
dynamic cache allocation across different layers and heads, but their strategies are still guided by
quantitative attention patterns rather than the semantic role of each head.

Attention Head Specialization Concurrently, research into attention mechanism interpretability has
demonstrated that heads often specialize. This was first shown for “retrieval heads” identified via
needle-in-a-haystack tasks [10], and later for other pattern-matching roles like induction heads [11]
and retrieval-reasoning (R2) heads [3]. However, these functional discoveries have been driven by
retrieval-centric diagnostics, overlooking heads specialized for higher-order cognitive tasks. Our
work bridges this divide: we introduce a summarization-based task to identify heads that perform
hierarchical information synthesis and, for the first time, leverage this functional insight to create a
more intelligent and efficient KV cache compression strategy.

3 Method

3.1 Chunk-Summarization Task Design

To effectively measure a head’s ability to aggregate information, we design a diagnostic task that
requires multi-level understanding, going beyond simple pattern matching. As illustrated in Figure 1,
we first construct long-context samples by concatenating multiple documents from various short-text
summarization datasets (e.g., CNN/Dailymail dataset [12], DialogSum dataset [13]) and record the
boundaries of each original document. Given a concatenated sample, we prompt the model to perform
a two-part task: (1) Chunk Identification: Identify the number of distinct semantic chunks within the
concatenated document; (2) Keyword Extraction: For each identified chunk, generate a concise list
of keywords that capture its core meaning. This design compels the model to first parse the document
structure at a high level and then distill the semantic essence of each segment, providing a strong
signal for identifying heads involved in hierarchical aggregation.

3.2 Summarization Score Calculation

To quantify each head’s summarization capability, we first filter for valid model responses as shown
in Fig. 1 and then compute an attention-based importance score. For each valid sample, we compute
an importance score Ih for every attention head h. The score measures the strength of attention from
the generated keywords back to their corresponding source text within the correct chunk.
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where Km is the set of keywords for chunk m, poj is the position of an output keyword token j, and
pij,n is the nth occurrence of that same keyword in the input text. The max operation identifies
the strongest attention link from a generated keyword to its most salient source token, effectively
capturing the head’s ability to pinpoint and aggregate key information. The final summarization score
for each head is its average importance score across all valid samples.
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3.3 KV Cache Budget Allocation

The computed summarization scores directly guide our head-aware KV cache allocation strategy.
Similar to HeadKV [3], we first normalize the scores across all heads such that they sum to one, then
we always preserve a fixed budget for initial sink tokens (bsink) and a sliding window of recent tokens
(bwindow) as the instructions of users are usually in the beginning or end of the whole input in practice.

The remaining cache budget for the middle, compressible portion of the sequence (M = C −
bsink − bwindow, where C is total sequence length) is then allocated to each head h in proportion to its
normalized summarization score Sh, at a given overall KV cache budget ratio R:

bh = (Sh · L ·H ·R) ·M + bsink + bwindow (2)

where L is the number of layers, and H is the number of KV heads. This ensures that heads identified
as crucial for summarization receive a larger cache budget, allowing them to retain more historical
context. We further adapt the Water-filling algorithm to reallocate the excessive KV budget from heads
with very high scores to other heads with comparatively high scores, as detailed in Appendix A.1.
Within each head’s allocated budget bh, we use a standard token selection mechanism based on
cumulative attention scores, similar to SnapKV [14], to select the most important KV entries to keep.

4 Experiments

Experimental Setup We evaluate our approach on Qwen2.5-7B-Instruct-1M [1] and Qwen3-
32B [15] as representative models for non-reasoning small LMs and reasoning-capable large LMs,
respectively. However, we observed that the Qwen2.5-7B-Instruct-1M checkpoint from HuggingFace
exhibits poor performance on multi-turn conversation tasks, like the OpenAI Multi-Round Co-
Reference Resolution (MRCR) benchmark [5]. To address this limitation, we perform additional fine-
tuning using a diverse dataset. Detailed fine-tuning setup is provided in the Appendix A.2. We also
demonstrate the generalization of summarization heads when using different summarization datasets
and quantitatively compare the head score distribution with other types of heads in Appendix A.3 and
visualize the final KV cache allocation for different types of heads in Appendix A.4

Table 1: Accuracy comparison on MRCR dataset (25% KV cache budget for eviction methods).

Qwen3-32B Qwen2.5-7B-Instruct-1M

Method 8k 16k 32k 64k 64k 128k 256k 512k 1M

FullKV 79.22 70.40 68.18 46.42 95.01 96.38 88.6 63.84 43.29
Minference [16] - - - - 97.11 95.43 82.21 57.39 43.87
AdaKV [4] 26.45 14.7 15.88 12.47 28.34 29.56 21.99 15.28 10.98
DuoAttention [17] 76.19 59.17 60.36 28.37 85.80 89.82 73.78 39.10 24.73
HeadKV [3] 78.16 65.90 65.72 34.90 68.52 74.81 66.98 44.36 28.90
Ours 77.05 68.22 62.02 40.13 85.09 87.19 83.29 48.86 34.16

MRCR The MRCR benchmark [5] tests a model’s ability to retrieve information from long, multi-
turn dialogues. As shown in Table 1, On Qwen3-32B with Chain-of-Thought (CoT) reasoning, both
SGD-KV and HeadKV significantly outperform DuoAttention, suggesting that fine-grained budget
allocation is more effective than a binary classification of heads for complex reasoning tasks. As for
the fine-tuned Qwen2.5-7B-1M model, SGD-KV consistently outperforms other SOTA head-level
allocation methods like HeadKV and AdaKV. While DuoAttention shows strong performance at
shorter lengths, our fine-grained allocation strategy proves superior as the context grows, surpassing
DuoAttention beyond 128K tokens and demonstrating the most robust performance at the 1M token
scale. This highlights the increasing importance of nuanced head prioritization in ultra-long contexts.

ETHIC We also use the ETHIC benchmark [6], which features tasks requiring high information
coverage from the input context. Results in Table 2 show that SGD-KV achieves SOTA performance
on both models. Notably, with only a 25% KV cache, our method on Qwen3-32B (28.38 Avg.)
performs comparably to the Full KV baseline (28.53 Avg.), closing the gap more effectively than any
other method. The smaller performance margins between methods on ETHIC, compared to MRCR,
are likely attributable to a performance ceiling imposed by the base models’ capabilities on these
highly complex tasks. Besides, we show the resutls on BABILong [18] benchmark in Appendix A.5.
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Table 2: Performance comparison on ETHIC benchmark. "AT", "OG", and "RC" represents the
attributing, organizing and recalling sub-tasks, and "Avg." represents the average performance.

Qwen2.5-7B-Instruct-1M Qwen3-32B

Method AT OG RC Avg. AT OG RC Avg.

Full KV 26.19 17.31 21.45 21.65 31.08 26.11 28.39 28.53
DuoAttention [17] 25.58 19.55 13.40 19.51 28.01 20.1 25.35 24.49
HeadKV [3] 26.46 15.48 20.67 20.87 30.90 25.61 28.05 28.19
SGD-KV 27.53 15.38 21.12 21.34 30.94 25.60 28.60 28.38

5 Ablation Study: Impact of Query on Token Selection

Table 3: Accuracy comparison on MRCR dataset. Bold values indicate scores that surpass the
corresponding Query-Aware baseline results from Table 1.

Mode Method 8k 16k 32k 64k 128k 256k 512k 1M

Query HeadKV 87.91 64.4 54.08 48.73 52.62 41.13 26.21 20.38
Unaware Ours 93.5 85.55 73.02 70.94 77.56 71.06 44.38 33.20

Proxy HeadKV 90.48 68.71 60.90 57.52 57.13 50.62 32.41 23.1
Query Ours 97.19 89.67 82.90 82.62 83.96 80.65 50.00 32.24

Our KV cache compression involves two stages: head-level budget allocation and token-level
selection. The token selection step, similar to SnapKV [14], uses the cumulative attention scores
generated by a final observation window to identify important tokens. In this study, we ablate
the choice of this observation window to understand its impact on performance. We define three
conditions: Query-Aware (Default): The standard approach used in our main results, where the last
128 tokens (inclduing the real query) guides token selection. Query-Unaware: The final question
is excluded, and the last 128 tokens of the preceding context are used to guide selection. This
simulates a scenario where the specific query is unknown during compression. Proxy-Query: A
fixed, task-agnostic prompt—"Segment previous text into unrelated or inconsistent chunk and select
keywords for each chunk for later retrieval." —is used as a universal proxy for the final query.

The results presented in Table 3 illustrates that removing the final question’s guidance causes a
significant performance degradation for both SGD-KV and HeadKV compared to their Query-Aware
performance. However, using the summarization prompt as a Proxy-Query substantially mitigates this
performance loss which demonstrates that the summarization task induces a focus on semantically
salient information, making our diagnostic prompt an effective and efficient proxy for a real user
query. This finding is particularly valuable for applications where the final query is not available
beforehand. Finally, we note that across all three conditions, SGD-KV consistently outperforms
HeadKV, underscoring the robustness and superior design of our summarization-guided, head-level
allocation strategy. Additional ablation studies are provided on different KV cache budgets in
Appendix A.6 and on various head configurations in Appendix A.7.

6 Conclusion

In this work, we move beyond conventional, retrieval-based heuristics for identifying specialized
attention heads by introducing a new functional class: summarization heads. We proposed a novel
chunk-summarization diagnostic task to identify and quantify these heads, which are critical for
hierarchical information synthesis. Our resulting framework, SGD-KV, integrates this functional
understanding into the KV cache management process, setting a new SOTA on complex, long-context
benchmarks while reducing memory usage by up to 75%. Furthermore, our ablation study indicate
that a generic summarization prompt can serve as a highly effective proxy query for token selection,
mitigating performance degradation when the final question is unavailable. By demonstrating that
abstract reasoning roles can be identified and leveraged, our work paves the way for more efficient
and interpretable models in the million-token era.
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A Appendix

A.1 KV Cache Budget Allocation & Redistribution

Duo to the task complexity requirements and the goal of minimal performance degradation, we
employ a relatively large KV cache budget, which can result in Sh · L ·H · R > 1 for extremely
high-importance heads. We address this through a water-filling inspired redistribution algorithm:

Algorithm 1 Summarization-Aware Budget Redistribution
Input: Normalized head importance scores Sh for all heads h, M is the middle sequence length
Output: Redistributed budget allocation b̃h for all heads

1: Initialize bh for all heads using Equation (6)
2: Compute excess budget: E =

∑
h : bh > M(bh −M)

3: Cap over-allocated heads: b̃h ← min(bh,M) for all h
4: Sort remaining heads by Sh in descending order
5: Distribute E to top-scoring heads with available capacity

This approach prioritizes high-importance summarization heads while maintaining budget constraints,
ensuring that critical attention mechanisms receive adequate KV cache allocation for effective
long-context summarization.

A.2 Fine-tuning details

Fine-tuning Dataset. The fine-tuning dataset comprises: 10K synthetic MRCR samples, 20K
synthetic OpenAI GraphWalks samples [19], and 25K BABILong fine-tuning samples [18]. To
prevent overfitting, we incorporate 10K samples from the Gutenberg dataset [20] and 10K samples
from the Llama-Nemotron-Post-Training-Dataset-v1.1 [21] for regularization.

Fine-tuning Recipe. We use Llama Factory library [22] as the framework to supervised fine-tune the
Qwen2.5-7B-Instruct-1M [1] model. We use full-parameter fine-tuning, cosine learnting schedule
with inital learning rate as 1.0× 10−5, warmming-up ratios is 0.1, total batch size is 128 and total
training epochs is 2. To reduce GPU memory we use flash attention [23], DeepSpeed with stage
0 [24] and Liger kernel [25].

Baselines. We compare SGD-KV against four strong baselines representing different approaches
to KV cache optimization: (i) DuoAttention [17] finetunes a gate function to binary classify heads
into retrieval heads (receiving full KV cache) and streaming heads (retaining only recent tokens and
attention sink tokens). Since we do not finetune LLMs on retrieval datasets, we use R2 scores to
binary partition heads based on available KV cache budget. (ii) AdaKV [4] pioneered head-level
KV cache budget allocation by analyzing top-K attention values across heads during inference. (iii)
HeadKV [3] introduced retrieval-reasoning heads, computing offline importance scores for each
head and allocating KV cache budget proportionally based on these scores. (iv) MInference [16]
determines optimal attention patterns for each head offline and dynamically constructs sparse indices
based on assigned patterns during inference. For fair comparison with DuoAttention, we adapt their
binary classification approach by using R2 scores to partition heads into retrieval and streaming
categories according to our KV cache budget constraints, rather than performing finetuning. For the
MInference, since we directly use the VLLM [26] to get the results, it always integrates with the
Dual Chunk Attention (DCA) [27]

Configuration. For all baseline methods, we retain the first 1024 tokens as the attention sink, while
maintaining a context window of 1024 recent tokens for the Qwen2.5-7B-1M model. For the larger
Qwen3-32B model, both the sink size and window size are reduced to 128 tokens. All KV cache
allocations occur before repeating the KV values, meaning that the KV cache memory savings are
built upon the GQA. We also found that if we rerun the identification process for the models after
SFT, the HeadKV method with new configuration got worse worse performance. Therefore, we used
the configuration of the original checkpoint for HeadKV, DuoAttetnion and our method.
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Figure 2: The comparisons of IoU scores between summarization heads with different datasets (left)
and different types of heads (right).

A.3 Quantitatively Analysis of the Stability and Generalization of the Summarization Heads

At first, we investigate whether summarization heads exhibit consistent patterns across different
datasets and tasks. Since we do not impose hard thresholds to classify heads as "summarization
heads," we maintain continuous importance scores for all heads, following the approach of HeadKV
[3].

To quantitatively assess distributional consistency, we rank all attention heads by their importance
scores in descending order and compute Intersection over Union (IoU) between ranked lists from
different experimental conditions:

IoU@k =
|H(k)

1 ∩H(k)
2 |

|H(k)
1 ∪H(k)

2 |
(3)

whereH(k)
i represents the top-k heads from ranking i.

Fig. 2 demonstrates high consistency in summarization head identification. The blue curve shows IoU
between two disjoint 100-sample subsets from Databricks Dolly dataset [28], achieving near-perfect
overlap (IoU > 0.9), indicating robust head identification within datasets. Cross-dataset analysis
reveals substantial generalization: Dolly vs. DialogSum [13] (orange), Dolly vs. SAMSum (green),
and DialogSum vs. SAMSum (red) maintain high IoU scores, particularly for top-ranked heads.
Notably, dialogue-based datasets (DialogSum and SAMSum) exhibit stronger similarity, suggesting
task-specific head specialization.

For the final configuration of the summarization heads, we use the average scores from the 6
datasets, DialogSum dataset [13], SAMSum dataset [29], CNN/Dailymail dataset [12], Extreme
Summarization (XSum) dataset [30], and the summarization part of the Databricks Dolly dataset [28]
and WikiLingua [31] dataset.

We also compare summarization heads with retrieval heads and recently proposed R2 heads. The
right panel of Fig. 2 shows that while the top 20% of heads overlap significantly across head types, the
20-60% percentile range reveals distinct preferences, confirming that summarization heads capture
unique attention patterns beyond simple retrieval mechanisms.

A.4 Visualization of Different Types of Heads

As shown in Fig. 3, we visualize the KV cache budget allocation across different attention heads.
Since we evict KV cache entries before they repeat, the visualization displays 4 rows representing
head indices and 28 columns representing layer indices. Both R2 heads and summarization heads
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Figure 3: The visualization of the confusion matrix of the head scores of DuoAttention (top), HeadKV
(center) and ours (bottom) in Qwen2.5-7B-Instruct-1M model. Y axis is the index of the heads, 4 in
total, and the X axis is the index of the layers, 28 in total.

exhibit similar patterns in their KV cache distributions, indicating that retrieval capability serves as a
foundational ability underlying our summarization heads, which encompass both simple retrieval
mechanisms and complex information aggregation processes. There are also few distinct pattern
between R2 heads and summarization heads, our method allocates relatively more budget to earlier
layers, which are essential for complex reasoning and summarization tasks. This allocation strategy
proves crucial because when faced with complex queries, models may be unable to identify all
necessary tokens before generation. In such scenarios, methods like HeadKV may inadvertently evict
key information that lacks direct surface-level connections to the query but remains semantically
relevant for comprehensive understanding.

A.5 BABILong Results

We also evaluate the methods on the BABILong benchmark [18], which is specifically designed to
test the retrieval and reasoning capabilities of LLMs. As shown in Table 4, despite HeadKV’s use
of similar question formats to identify R2 heads, it shows negligible differences compared to our
summarization heads and achieves similar accuracy to the full KV cache model. This further validates
the generalization ability of our summarization heads. Furthermore, both HeadKV and our method
outperform DuoAttention, suggesting that when the KV cache budget is sufficient for head-level KV
eviction methods, they typically deliver superior performance compared to DuoAttention methods
under the same KV cache constraints.

Table 4: Accuracy comparison between different methods on BABILong dataset (average over QA1
to QA5) from 32K to 1M sequence length using fine-tuned Qwen2.5-7B-Instruct-1M.

Method KV Budget (%) 32k 64k 128k 256k 512k 1M

FullKV 100 95.4 96.6 97.2 95.6 96.2 94.6
DAC+Minference - 95.8 96.2 97.6 96.0 87.2 76.6
DuoAttention (static) 25 89.2 92.8 92.0 95.6 88.4 88.2
HeadKV 25 94.8 96.0 96.6 95.8 96.0 94.2
SGD-KV (Ours) 25 94.4 95.8 96.6 95.6 95.8 94.2

A.6 Performance under Different KV Cache Budget

The results in Fig.4 demonstrate the robust performance of SGD-KV, which consistently surpasses
both AdaKV and HeadKV across almost all KV cache budgets. The performance margin narrows
only in extreme cases (KV cache budgets <15% or >50%). Moreover, when the cache budget exceeds
50%, both SGD-KV and HeadKV begin to outperform MInference, particularly for context lengths
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Figure 4: The comparisons of accuracy on the MRCR dataset under Different KV Cache Budget.

longer than 256K. This finding aligns with our results on the BABILong benchmark, confirming that
given an adequate cache, head-level eviction strategies are more effective than token-level approaches
like DuoAttention under identical budget constraints. Due to time and computational constraints, we
omitted some results for DuoAttention (at 10%, 15%, 35% budgets) and AdaKV (at 10%, 15%, 20%,
30%, 35% budgets). Nevertheless, the trends established by the available data strongly suggest that
these omissions do not alter our overall conclusions.

A.7 Head Configurations Variants

In this section, we conduct a series of experiments with different configurations of the summarization
heads and the R2 heads to evaluate the effectiveness of both types. Due to time and computational
resource constraints, we omit some results on the 1M context length. However, since the observed
trends are generally consistent across context lengths, the absence of these results does not affect
our overall conclusions. We introduce an additional column in Table 5, Full KV Heads (%), which
denotes the proportion of attention heads granted access to the full KV cache.

In the first (top) part of Table 5, we report results for the summarization-head variant of DuoAttention
(denoted DuoAttention (Sum.)). Within the DuoAttention framework, using summarization heads
consistently underperforms compared to R2 heads. This suggests that R2 heads prioritize ranking
heads by retrieval capability, whereas summarization heads primarily focus on fine-grained allocation
of KV cache across heads. We further evaluate DuoAttention (Sum., Reverse), where the bottom
75% of heads (with low summarization scores) are assigned full KV cache access, while the top
25% only retain access to initial and recent tokens. The substantial performance drop demonstrates
that constraining the KV cache of high-summarization-score heads is far more detrimental than
constraining low-score heads, thereby validating the informativeness of the summarization score.

In the second (middle) part of Table 5, we present results for SGD-KV (Reverse), where the KV
cache allocation is inverted. For instance, a head originally assigned 10% of the KV cache is instead
allocated 90%. The third row shows that even with 3× KV cache, SGD-KV (Reverse) performs
significantly worse than SGD-KV, further underscoring the importance of score-guided distribution.
We also report results for SGD-KV + HeadKV, obtained by averaging the normalized R2 scores and
summarization scores. As expected, its performance lies between HeadKV and SGD-KV.

In the last row of the second part, we evaluate SGD-KV (thr), where heads with summarization scores
below the mean are set to zero before redistribution. This strategy biases cache allocation toward
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higher-scoring heads, yielding a larger proportion of full KV heads. Results show improved accuracy
for context lengths up to 64k, but degraded performance beyond 128k. This indicates that heads with
relatively low summarization scores remain important for ultra-long context modeling.

In the last (bottom) part of Table 5, we investigate the effect of leveraging summarization scores to
guide attention score aggregation in models with GQA. Take the Qwen2.5-7B-Instruct-1M model as
an example: it has 28 attention heads but only 4 key-value (KV) heads, corresponding to a group size
of 7. When computing summarization scores, we obtain a score for each individual attention head,
but these must be aggregated into a single score per KV head. The most straightforward approaches
are averaging or taking the maximum. In our experiments, we adopt the maximum, as it consistently
outperforms the mean operation by a small margin.

Based on this, we evaluate three new configurations:

• Ipt., Max: multiply the attention scores by the summarization scores for each head, followed
by max-pooling within each group.

• Ipt., Mean: multiply the attention scores by the summarization scores for each head,
followed by mean-pooling within each group.

• Ipt., Only: use only the summarization scores. For instance, if head 3 has the highest
summarization score within a group of 7, then all 7 heads inherit the attention scores of head
3.

As shown in the results, all three methods improve performance to varying degrees. Among them, Ipt.,
Max achieves the best overall accuracy from 8k to 512k context lengths, indicating that incorporating
summarization scores into attention score aggregation is beneficial for GQA models.

Table 5: Accuracy comparison between different methods on OpenAI MRCR dataset from 8K to
512K sequence length using fine-tuned Qwen2.5-7B-Instruct-1M.

Method Full KV
Heads(%) 8k 16k 32k 64k 128k 256k 512k

FullKV 100 99.16 98.16 96.02 95.01 96.38 88.6 63.84
DuoAttention

(R2) 25 97.09 93.65 88.78 85.80 89.82 73.78 39.10

DuoAttention
(Sum.) 25 92.11 82.25 72.86 70.56 79.55 65.24 28.45

DuoAttention
(Sum., Reverse) 75 45.62 14.13 12.75 8.5 5.69 5.96 6.26

HeadKV 0.0 82.27 70.31 67.18 68.52 74.81 66.98 44.36
SGD-KV 3.57 91.30 83.73 81.06 85.09 87.19 83.29 48.86
SGD-KV
(Reverse) 0.0 47.21 17.31 15.85 11.31 8.21 8.62 8.61

SGD-KV
+ HeadKV 1.79 88.12 77.55 75.34 75.52 82.53 77.32 45.28

SGD-KV (thr) 16.96 95.51 89.62 82.49 85.43 86.24 70.03 32.22

SGD-KV
(Ipt., max) 3.57 95.5 91.49 89.00 87.74 91.16 87.75 57.23
SGD-KV

(Ipt., mean) 3.57 94.37 89.55 87.34 85.37 90.55 85.37 55.57

SGD-KV
(Ipt., only) 3.57 95.71 86.35 86.38 87.30 90.63 82.09 49.91
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