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ABSTRACT

Offline reinforcement learning (RL) recently gains growing interests from RL
researchers. However, the performance of offline RL suffers from the out-of-
distribution problem, which can be corrected by environment feedback in online
RL. Previous offline RL research focuses on restricting the offline algorithm in
in-distribution even in-sample action sampling. In contrast, fewer work pays at-
tention to the influence of the batch data. In this paper, we first build a bridge over
the batch data and the performance of offline RL algorithms theoretically, from
the perspective of model-based offline RL optimization. We draw a conclusion
that, with mild assumptions, the distance between the state-action pair distribu-
tion generated by the behavioural policy, and the distribution generated by the
optimal policy, accounts for the performance gap between the policy learned by
model-based offline RL and the optimal policy. Secondly, we reveal that in task-
agnostic settings, a series of policies trained by unsupervised RL can minimize
the worst-case regret in the performance gap. Inspired by the theoretical conclu-
sions, a framework named UDG (Unsupervised Data Generation) is composed to
generate data and select proper data for offline training under tasks-agnostic set-
tings. Empirical results on locomotive tasks demonstrate that UDG outperforms
supervised data generation and previous unsupervised data generation in solving
unknown tasks.

1 INTRODUCTION

Reinforcement learning (RL) recently gains significant advances in sequential decision making prob-
lems, with applications ranging from the game of Go (Silver et al., 2016; 2017), video games (Mnih
et al., 2015; Hessel et al., 2018), to autonomous driving (Kiran et al., 2021) and robotic control
(Zhao et al., 2020). However, the costly online trial-and-error process requires numerous samples of
interactions with the environment which restricts RL from real world deployment. In the scenarios
where online interaction is expensive or unsafe, we have to resort to offline experience (Levine et al.,
2020). However, transplanting RL to offline can provoke disastrous error by falsely overestimating
the out-of-distribution samples without correction from environment feedback. Despite recent ad-
vances on mitigating bootstrapped errors by constraining the policy in data distribution or even in
data samples (Fujimoto & Gu, 2021), offline RL is still limited since they can barely generalize to
out-of-distribution areas (Yu et al., 2020c). The inability of generalization of offline RL will be a
serious issue when the batch data deviates from the optimal policy especially under the settings of
multi-task, task transfer or task-agnostic. As plenty of research on online RL succeeds (Sodhani
et al., 2021; Yu et al., 2020b;a; Laskin et al., 2021; Eysenbach et al., 2019; Sharma et al., 2020),
we hope offline RL can cope with task-agnostic problems either. To this end, how the batch data
distributes becomes the primal concern.

Recent research empirically shows that diversity in offline data improves performance on task trans-
fer and solving multiple tasks (Lambert et al., 2022; Yarats et al., 2022). The diverse dataset is
obtained from unsupervised RL by competitively training diverse policies (Eysenbach et al., 2019),
or exploration emphasized pre-training (Liu & Abbeel, 2021a), and all of the generated data is fed
to offline algorithms. However, these studies barely address the connection between the batch data
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and the performance of offline RL theoretically. How the diversity of data contributes to solving
task-agnostic problems remains unclear.

Figure 1: Rendered trajectories of offline trained
policies in 6 Ant-Angle tasks. These tasks require
the ant to move along 6 different directions. With
diverse data buffers generated by unsupervisedly
trained policies, our method UDG can solve all
the tasks by offline reinforcement learning.

Our study addresses the connection between
batch data and performance from a perspec-
tive of model-based offline optimization (Yu
et al., 2020c). by examining the model pre-
diction error and revealing the connection be-
tween the performance gap and the Wasserstein
distance of the batch data distribution from the
optimal distribution. We conclude that the of-
fline trained policy will have higher return if
the behavioural distribution is closer to the op-
timal distribution. We discover that, in task-
agnostic scenarios, unsupervised RL methods
which propel the policies far away from each
other, approximately optimize the minimal re-
gret to the optimal policy. Based on these
theoretical analysis, we propose a framework
named unsupervised data generation (UDG) as illustrated in Figure 2. In UDG, a series of policies
are trained with diversity rewards. They are used to generate batch data stored in different buffers.
Before the offline training stage, the buffers are relabeled with given reward function corresponding
to the task, and the buffer with highest return is sent to the offline algorithm.

The contributions in this work are three-fold. First, to our best knowledge, we are the first to establish
a theoretical bond between the behavioural batch data and the performance of offline RL algorithms
on Lipschitiz continuous environments. Second, we establish the criteria of minimal worst-case re-
gret for data generation on task-agnostic problems. Third, we propose a new framework UDG for
unsupervised offline RL and evaluate UDG on locomotive environments. Empirical results on lo-
comotive tasks like Ant-Angle and Cheetah-Jump show that UDG outperforms conventional offline
RL with random or supervised data.

Figure 2: The framework of UDG. First a series of K policies are trained simultaneously with
diversity rewards. Second, collect rollout experience (s, a, s′) from each policy and construct a
corresponding data buffer. Third, relabel the reward in the batch data with a designated reward
function, and select the data buffer with the maximal average return. Finally train the agent on the
chosen data by offline RL approaches.

2 RELATED WORK

Offline RL. In offline settings, vanilla online RL algorithms face the out-of-distribution problem that
the Q function may output falsely high values on samples not in data distribution. To mitigate this
issue, model-free offline RL methods cope with the out-of-distribution problem from two aspects,
constraining the learned policy on the support of batch data (Fujimoto et al., 2019; Kumar et al.,
2019; Wu et al., 2019; Peng et al., 2019; Siegel et al., 2020; Cheng et al., 2022; Rezaeifar et al., 2022;
Zhang et al., 2022; Fujimoto & Gu, 2021), and suppressing Q values on out-of-distribution area
(Agarwal et al., 2019; Kumar et al., 2020). To generalize beyond the batch data, model-based offline
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RL methods employ transition models to produce extra samples for offline learning (Chen et al.,
2021; Kidambi et al., 2020; Yu et al., 2020c; Matsushima et al., 2020). These methods can naturally
generalize to areas where the model is accurate (Janner et al., 2019). Our theoretical work originates
from MOPO (Yu et al., 2020c), a model-based offline algorithm by adding an uncertainty penalty to
avoid unexpected exploitation when model is inaccurate. MOPO derives a performance lower bound
w.r.t. model prediction error. In this paper, we focus on Lipschitz continuous environments which
are common in locomotive tasks in MuJoCo (Todorov et al., 2012). By leveraging the Lipschitz
geometry of transitions, we build a lower bound w.r.t. data distribution with weaker assumptions on
data coverage, which is crucial in previous work (Wang et al., 2020; Chen & Jiang, 2019).

Unsupervised RL. Reinforcement learning heavily relies on the reward feedback of the environment
for a specific tasks. However, recent research on unsupervised RL demonstrates training policies
without extrinsic rewards enables the agent to adapt to general tasks (Laskin et al., 2021; Eysenbach
et al., 2019). Without supervision from extrinsic rewards, unsupervised RL methods can either be
driven by curiosity/novelty (Pathak et al., 2017; 2019; Burda et al., 2018), maximum coverage of the
state space (Liu & Abbeel, 2021b; Campos et al., 2020; Yarats et al., 2021), and diversity of policies
(Florensa et al., 2017; Lee et al., 2019; Liu & Abbeel, 2021a; Strouse et al., 2021; Kim et al., 2021).
These methods all provide a pseudo reward derived from their own criteria. Our work employs
a diverse series of policies to generate batch data for offline learning under task-agnostic settings.
Therefore we utilize an unsupervised training paradigm in alignment with DIAYN (Eysenbach et al.,
2019), DADS (Sharma et al., 2020), WURL (He et al., 2022), and choose WURL as base algorithm
in accordance with our theoretical analysis.

Offline dataset. D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre et al., 2020) are most com-
monly used offline RL benchmarks. The datasets in these benchmarks consist of replay buffers
during training, rollout samples generated by a policy of a specific level, or samples mixed from
different policies. Apart from benchmark datasets, exploratory data gains growing interest (Wang
et al., 2022). Explore2Offline (Lambert et al., 2022) and ExORL (Yarats et al., 2022) both investi-
gate into the role of batch data and construct a more diverse dataset with unsupervised RL algorithms
for task generalization. In addition, experiments in ExORL show exploratory data can improve the
performance of offline RL algorithms or even TD3 (Fujimoto et al., 2018). However, neither of these
methods have theoretical analysis on the connection between data diversity and offline performance.
Our work completes the picture of how diverse data improves offline RL performance. And we point
out that data selection before offline training has considerable influence on performance, which is
not addressed in previous work.

3 PRELIMINARIES

A Markov decision process (MDP) is formalized as M = (S,A, T, r, p0, γ), where S denotes the
state space while A denotes the action space, T (s′|s, a) the transition dynamics, r(s, a) the reward
function, p0 the initial state distribution and γ ∈ [0, 1) the discounted factor. RL aims to solve the
MDP by finding a policy π(a|s) maximizing the expected accumulated discounted return ηM (π) :=
Eπ,T,p0 [

∑∞
t=0 γ

tr(st, at)]. The state value function V π
M (st) := Eπ,T [

∑∞
k=0 γ

kr(st+k, at+k)] pro-
vides an expectation of discounted future return from st under policy π and MDP M . Let Pπ

T,t(s)
be the probability of being in state s at step t when acting with policy π. The discounted oc-
cupancy measure of π under dynamics T is denoted by ρπT (s, a) := 1

cπ(a|s)
∑∞

t=0 γ
tPπ

T,t(s)

where c = 1/(1 − γ) is the normalization constant. Likewise, ρπT (s) := 1
c

∑∞
t=0 γ

tPπ
T,t(s) is

the state occupancy distribution. The expected accumulated discounted return can be rewritten as
ηπM = cEρπ

T
[r(s, a)]. ρ̂πT = 1

K

∑K
i=1 δ(si, ai) denotes the empirical distribution of ρπT based on K

samples sampled from π under transition dynamics T . δ(·) denotes Dirac distribution.

Model-based RL approaches learn an estimated model T̂ from interaction experience, which defines
a model MDP M̂ = (S,A, T̂ , r, p0, γ). Similarly we have the expected return under the learned
dynamics ηM̂ (π) = cEρπ

T̂
[r(s, a)].

In offline settings, the RL algorithm optimizes the policy solely on a fixed dataset Dβ = (s, a, r, s′)
generated by the behavioural policy πβ . πβ can be one policy or a mixture of policies. Note that
offline RL algorithms cannot interact with the environment or produce extra samples. In model-
based offline RL, the algorithm first learn a transition model T̂ from the batch data Dβ . At the
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training stage, the algorithm executes k-step rollout using the estimated model from the state sample
from Dβ . The generated data are added to another buffer Dm. Both buffers are used in offline RL.

4 UDG: UNSUPERVISED DATA GENERATION

In order to find the connenction between performance and data, we first review key propositions in
MOPO (Yu et al., 2020c). As discussed before, offline RL faces a dilemma of out-of-distribution
samples and lack of exploration. Model-based RL like MBPO (Janner et al., 2019) can naturally
extend to the regions where the model predicts as well as the true dynamics. However, when the
model is inaccurate, the algorithm may exploit the falsely high return regions, resulting in inferior
test performance in true dynamics. MOPO first derives the performance lower bound represented by
the model error, and then addresses the risk-return trade-off by incorporating the penalty represented
by the error of the estimated dynamics into the reward of offline policy optimization.

We briefly summarize the derivation of the performance lower bound. First we introduce the tele-
scoping lemma:

Lemma 4.1. Let M and M̂ be two MDPs with the same reward function r, but different dynamics
T and T̂ respectively. Denote Gπ

M̂
(s, a) := Es′∼T̂ (s,a)[V

π
M (s′)]− Es′∼T (s,a)[V

π
M (s′)]. Then

ηM̂ (π)− ηM (π) = cγE(s,a)∼ρπ
T̂

[
Gπ

M̂
(s, a)

]
. (1)

If we have mild constraints on the value function V π
M ∈ F where F is a bounded function class under

a specific metric, then we can bound the gap Gπ
M̂
(s, a) with model error measured by corresponding

integral probability measure (IPM) dF (Müller, 1997),

|Gπ
M̂
(s, a)| ≤ sup

f∈F

∣∣∣Es′∼T̂ (s,a)[f(s
′)]− Es′∼T (s,a)[f(s

′)]
∣∣∣ = dF (T̂ (s, a), T (s, a)). (2)

Since we cannot access the true model T in most cases, MOPO adopts an admissible error estimator
u : S × A → R for T̂ , and have an assumption that for all s ∈ S.a ∈ A, dF (T̂ (s, a), T (s, a)) ≤
u(s, a). An uncertainty-penalized MDP M̃ = (S,A, T̂ , r̃, p0, γ) is defined given the error estimator
u, with the reward r̃(s, a) := r(s, a)− γu(s, a) penalized by model error.

By optimizing the policy in the uncertainty-penalized MDP M̃ , MOPO has a following performance
lower bound,
Theorem 4.2 (MOPO). Given π̂ = argmaxπ ηM̃ (π) and ϵu(π) := cE(s,a)∼ρπ

T̂
[u(s, a)], the ex-

pected discounted return of π̂ satisfies

ηM (π̂) ≥ sup
π

{ηM (π)− 2γϵu(π)} . (3)

The theorem 4.2 reveals the optimality gap between π∗ and π̂. Immediately we have ηM (π̂) ≥
ηM (π∗) − 2γϵu(π

∗). This corollary indicates if the model error is small on the (s, a) occupancy
distribution under the optimal policy π∗ and dynamics T̂ , the optimality gap will be small. In
order to find the deep connection between the batch data and the performance gap of model-based
offline RL algorithms, in the following section, we directly analyze the model prediction deviation
dF (T̂ (s, a), T (s, a)) instead of the error estimator u(s, a).

4.1 THE CONNECTION BETWEEN BATCH DATA AND OFFLINE RL PERFORMANCE

Before presenting a lower bound of ηM (π̂), here we make a few assumptions to simplify the proof.
Some of these assumptions can be loosen and do not change the conclusion of the main result. The
generalization of the theoretical analysis is discussed in Appendix C.
Definition 4.3. Given a bounded subset K in the corresponding d-dimension Euclidean space Rd.
The diameter BK of set K is defined as the minimum value of B such that there exists k0 ∈ Rd, for
all k ∈ K, ∥k0 − k∥ ≤ B.
Assumption 4.4. The state space S, the action space A are both bounded subsets of corresponding
Euclidean spaces, with diameter BA ≪ BS . The state transition function T (s′|s, a) is deterministic
and continuous.
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Assumption 4.5. The state transition function T (s′|s, a) is LT -Lipschitz. For any π the value
function V π(s) is Lr-Lipschitz.

As a consequence, given two state-action pairs (s1, a1), (s2, a2), the next-state deviation under tran-
sition T is upper bounded by

∥T (s1, a1)− T (s2, a2)∥ ≤ LT ∥(s1, a1)− (s2, a2)∥. (4)

Assumption 4.6. The prediction model T̂ (s′|s, a) is a non-parametric transition model, which
means the model outputs the next state prediction by searching the nearest entry.

Formally speaking, T̂ has an episodic memory storing all input experience Dmemory =

{(si, ai, s′i, ri)}Ki=1 (Pritzel et al., 2017). When feeding T̂ a query (s, a), the model returns
T̂ (s, a) = s′k where k = argmini ∥(s, a) − (si, ai)∥. Assumption 4.6 implies T̂ (s, a) is a de-
terministic function. Therefore combined with these two assumptions 4.4, 4.5, the gap Gπ

M̂
(s, a)

defined in Lemma 4.1 is then bounded by

|Gπ
M̂
(s, a)| ≤ LrW1(T̂ (s, a), T (s, a)) = Lr∥T̂ (s, a)− T (s, a)∥, (5)

where W1 is the 1-Wasserstein distance w.r.t. the Euclidean metric.

Assumption 4.7. ρπ
β

T have a bounded support. The diameter of the support of distribution ρπ
β

T is
denoted as Bπβ .

Since the dataset size is out of our concern, we suppose the batch data is sufficient, such that ρ̂π
β

T ≈
ρπ

β

T ≈ ρπ
β

T̂
. For conciseness, we use ρπ

β

T in the following statements.

Theorem 4.8. Given π̂ = argmaxπ ηM̃ (π), the expected discounted return of π̂ satisfies

ηM (π̂) ≥ ηM (π∗)− 2cγLrLT (W1(ρ
π∗

T , ρπ
∗

T̂
) +W1(ρ

πβ

T , ρπ
∗

T ))

≥ ηM (π∗)− 4cγLrLT (W1(ρ
πβ

T , ρπ
∗

T ) +Bπβ +BA).
(6)

If the batch data is collected from N different policies πβ
1 , . . . , π

β
N , a tighter bound is obtained,

where ρπ
β

T denotes the mixture of distribution ρ
πβ
i

T , . . . , ρ
πβ
N

T ,

ηM (π̂) ≥ ηM (π∗)− 2cγLrLT (W1(ρ
πβ

T , ρπ
∗

T ) + min
i

W1(ρ
πβ
i

T , ρ∗T ) + 2Bπβ + 2BA). (7)

The distance term D1 := W1(ρ
π∗

T (s, a), ρπ
∗

T̂
(s, a)) in the first line in Equation 6 is quite hard

to estimate. However, we notice that the prediction model only outputs states in the episodic
memory Dmemory which implies supp(ρπ

∗

T̂
(s)) ⊆ supp(ρπ

β

T (s)). We can naturally suppose that

ρπ
∗

T̂
(s, a) will not be too distinct from ρ̂π

β

T (s, a). Therefore we can assume that D1 ≈ D2 :=

W1(ρ
πβ

T (s, a), ρπ
∗

T (s, a)), leading to an approximate lower bound free of Bπβ and BA

ηM (π̂) ≥ ηM (π∗)− 4cγLrLT (W1(ρ
πβ

T , ρπ
∗

T )). (8)

For the data compounded by a mixture of policies, the approximate lower bound is

ηM (π̂) ≥ ηM (π∗)− 2cγLrLT (W1(ρ
πβ

T , ρπ
∗

T ) + min
i

W1(ρ
πβ
i

T , ρ∗T )). (9)

The detailed proof of Theorem 4.8 is presented in Appendix C. The main idea is to show the per-
formance gap E(s,a)∼ρπ∗

T̂

|Gπ∗

M̂
(s, a)| can be bounded by the distance between ρπ

∗

T̂
and ρπ

β

T̂
. The

remaining part of proof utilizes triangle inequality to split the distance into two terms and then
applies the assumptions to yield Equation 6.

Interpretation: Theorem 4.8 and Equation 8 suggest that the gap relies on πβ and π∗. We denote
the gap as L(πβ , π∗) such that ηM (π̂) ≥ ηM (π∗)−L(πβ , π∗). When the occupancy distribution of
πβ is closer to the occupancy distribution of the optimal policy π∗, the return of the policy optimized
by MOPO will be closer to the optimal. Especially when πβ = π∗, MOPO can reach the optimal
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return. Theorem 4.8 concentrates on the gap between πβ and π∗. However, since the derivation
does not involve the optimality of π∗, the inequality 6 holds true for any other policy π instead
of the optimal policy π∗. By substituting π∗ with πβ , we will obtain ηM (π̂) ≥ ηM (πβ), which
means the performance of the learned policy will perform no worse than the behavioral policy. This
conclusion is consistent with the theoretical analysis in MOPO.

The second line of Equation 6 indicates a wider range of ρπ
β

T may enlarge the performance gap.
This issue is mainly determined by the relation between ρπ

∗

T̂
(s, a) and ρπ

β

T (s, a). In general cases,
π∗(a|s) will output actions that lead the next states closer to the optimal occupancy distribution. As
a consequence, ρπ

∗

T̂
(s, a) may be closer to ρπ

∗

T (s, a) than ρπ
β

T (s, a). Therefore D1 will be smaller
than D2. Nevertheless, D1 > D2 is still possible under some non-smooth dynamics or multi-modal
situations. As a result, a broader distribution of ρπ

β

T (s, a) may impair MOPO performance.

4.2 THE MINIMAL WORST-CASE REGRET APPROACH

There are many cases where the optimal policy and the corresponding experience data is inaccessible
for offline learning, e.g., (1) the reward function is unknown or partly unknown at the stage of
data generation; (2) the batch data is prepared for multiple tasks with various reward functions; (3)
training to optimal is expensive at the stage of data generation. Previous work in online RL suggests
the diversity of policies plays the crucial role (Eysenbach et al., 2019). Especially in offline RL,
where exploration is not feasible during training, the diversity of batch data should not be ignored.

Suppose we can train a series of N policies simultaneously without any external reward. Our goal
is to improve the diversity of the experience collected by policies {πi}Ni=1, such that there is at least
one subset of the experience will be close enough to the optimal policy determined by the lately
designated reward function at the offline training stage. Combined with Theorem 4.8, this objective
can be formulated by

min
π1,...,πN∈Π

max
π∗∈Π

min
i

L(πi, π∗). (10)

The inner min term REGRET({πi}Ni=1, π
∗) := mini L(πi, π

∗) represents the regret of the series of
policies confronting the true reward function and its associate optimal policy. The max operator in
the middle depicts the worst-case regret if any policy in the feasible policy set Π has the possibility
to be the optimal one. The outer min means the goal of optimizing {πi}Ni=1 is to minimize the worst-
case regret. If the approximate lower bound is considered in Equation 8, the objective is equivalent
to

min
π1,...,πN∈Π

max
π∗∈Π

min
i

W1(ρ
πi

T , ρπ
∗

T ). (11)

Directly optimizing a series of policies according to the minimax objective in Equation 11 inevitably
requires adversarial training. Previous practice suggests an adversarial policy should be introduced
to maximize REGRET({πi}Ni=1, π

∗), playing the role of the unknown optimal policy. The adversar-
ial manner of training brings us two main concerns. (1) Adversarial training may incur instability
and require much more steps to converge (Arjovsky & Bottou, 2017; Arjovsky et al., 2017); (2) The
regret only provides supervision signals to the policy nearest to π∗, which leads to low efficiency in
optimization.

Eysenbach et al. (2021) proposed similar objective regarding unsupervised reinforcement learning.
Under the assumptions of finite and discrete state space and, the quantity of policies N should
cover the number of distinct states in the state space |S|, the minimal worst-case regret objective is
equivalent to the maximal discriminability objective. Likewise, we propose a surrogate objective

max
π1,...,πN∈Π

min
i ̸=j

W1(ρ
πi

T , ρ
πj

T ). (12)

The surrogate objective shares the same spirit with WURL (He et al., 2022). Both of them en-
courage diversity of a series of policies w.r.t. Wasserstein distance in the probability space of state
occupancy. Although the optimal solution of {πi}Ni=1 does not match the optimal solution in Equa-
tion 11 in general situations, both of them represent a kind of diversity. The relation between two
objectives equals to the relation between finite covering and finite packing problems, which are no-
toriously difficult to analyze even in low-dimension, convex settings (Böröczky Jr et al., 2004; Toth
et al., 2017). Nevertheless, we assume the gap will be small and the surrogate objective will be
a satisfactory proxy of Equation 11 as previous literature does in the application of computational
graphics (Schlömer et al., 2011; Chen & Xu, 2004). Refer to Appendix D for more details.
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4.3 PRACTICAL IMPLEMENTATION

To achieve diversity, practical algorithms assign a pseudo reward r̃i to policy πi. The pseudo reward
usually indicates the “novelty” of the current policy w.r.t. all other policies. Similar to WURL,
we adopt pseudo reward r̃i := minj ̸=i W1(ρ

πj

T , ρπi

T ) which is the minimum distance from all other
policies. We compute the Wasserstein distance using amortized primal form estimation in consistent
with WURL (He et al., 2022).

In semi-supervised cases, only part of reward function is known. For example, in Mujoco simulation
environments in OpenAI Gym (Brockman et al., 2016), the complete reward function is composed
of a reward related to the task, and general rewards related to agent’s health, control cost, safety
constraint, etc. We can train the series of policies with a partial reward and a pseudo reward si-
multaneously by reweighting two rewards with a hyperparameter λ. Moreover, the complete reward
and the diversity-induced pseudo reward can be combined to train a diverse series of policies for
generalization purposes.

The policies are trained with Soft Actor-Critic method (Haarnoja et al., 2018). The network model
of the actors are stored to generate experience D1, . . . ,DK for offline RL. When a different reward
function is used at the offline training stage. The reward will be relabeled with r(s, a). At the offline
learning stage, we choose the best buffer and feed it to MOPO. The overall algorithm is illustrated
in Figure 2 and formally described in Algorithm 1.

Algorithm 1 Unsupervised data generation for offline RL in task-agnostic settings
Require: K policies π1, . . . , πK . K empty buffers D1, . . . ,DK = {}. Maximum buffer size
N .

1: Train πi, i = 1, . . . ,K with SAC w.r.t. diversity rewards r̃i := minj ̸=i W1(ρ
πj

T , ρπi

T ).
2: Let each πi interacts with environment for N steps and fill Di with transitions (s, a, s′).
3: Acquire the task and relabel all transitions in D1, . . . ,DK with given r(s, a).
4: Evaluate each buffer and calculate the average return Ḡi, i = 1, . . . ,K.
5: Select the buffer Dk where k = argmaxi Ḡi

6: Train the policy by MOPO with Dk.

5 EXPERIMENTS

Based on our framework of UDG in Figure 2, we conduct experiments on two locomotive envi-
ronments requiring the agent to solve a series of tasks with different reward functions at the offline
stage. Both of the tasks are re-designed Mujoco environments. Ant-Angle is a task modified from
Ant environment. In Ant-Angle, the agent should actuate the ant to move from the initial position
to a specific direction on the x-y plane. The agent is rewarded by the inner product of the moving
direction and the desired direction. The goal is to construct a dataset while the desired direction
is unknown until the offline stage. Cheetah-Jump is another task for evaluation, modified from
HalfCheetah environment. The reward in Cheetah-Jump consists of three parts, control cost, veloc-
ity reward, and jumping reward. At the data generation stage, the agent can only have access to the
control cost and the velocity reward for reducing energy cost of actuators and moving the cheetah
forward. The jumping reward is added in offline training, by calculating the positive offset of the
cheetah on the z axis. Likewise, a crawling reward can be added to encourage the cheetah to lower
the body while moving forward.

Our experiments mainly focus on two aspects: (1) How does UDG framework perform on the two
challenging tasks, Ant-Angle and Cheetah-Jump? (2) Can experimental results match the findings
in the theoretical analysis?

5.1 EVALUATION ON TASK-AGNOSTIC SETTINGS

To answer question (1), we construct three types of data buffer. The first is generated by unsupervis-
edly trained policies with the objective in Equation 12. The second is created by one supervisedly
trained policy that maximizes a specific task reward. The third is the combination of two, which
means the polices are trained with both task reward and diversity reward, reweighted by λ. We call
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Figure 4: The trajectories of ant on the x-y plane. The lower left figure demonstrates UDG can solve
all 6 offline tasks on account of the diversity of unsupervised learned polices. The trajectories in the
lower right figure shows the policy learned by MOPO cannot generalize to the directions that largely
deviate from 0◦.

the combination as supervised training with diversity regularizer. Note that the supervised method
contains one data buffer. Another two methods have a series of 10 buffers w.r.t. 10 polices and only
one buffer is selected during offline training.

Figure 3: Results on Ant-Angle tasks. The data
buffers of all three methods are evaluated by
MOPO with 3 random seeds. The darker lines rep-
resent the average evaluation return. The lighter
areas depict the standard deviation of the return.

We evaluate three kinds of data buffers on Ant-
Angle. The supervised policy and the super-
vised policies with diversity regularizer are pro-
vided with reward to move in direction 0◦, the
upper direction in Figure 4. The diversity re-
ward is calculated on ant position instead of the
whole state space, considering that the dimen-
sion of state space is extremely high. We evalu-
ate three approaches on 6 offline tasks of mov-
ing along the directions of 0◦, 60◦, 120◦, 180◦,
240◦ and 300◦. As Figure 4 shows, the poli-
cies trained with unsupervised RL are evenly
distributed over the x-y plane. Therefore in the
downstream offline tasks, no matter what di-
rection the task needs, there exists at least one
policy that could obtain relatively high reward.
The trajectories of policies trained by MOPO
confirm that UDG can handle all 6 tasks. Mean-
while the policy trained to move in the direc-
tion 0◦ generates narrow data and MOPO can-
not perform well on other directions. The poli-
cies trained with combined reward have wider
range of data distribution. Especially, an policy
deviates to circa 30◦ and consequently the pol-
icy trained by MOPO acquires high reward in
the 60◦ task.

Task cz random diverse

Cheetah-Jump 15 1152.98±120 1721.25±56
Cheetah-Crawl -15 1239.00±57 1348.19±274

Table 1: Returns on two offline tasks Cheetah-Jump and Cheetah-Crawl. Two datasets consist of 5
policies trained with base rewards and base rewards plus diversity rewards respectively.
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In Cheetah-Jump tasks, we relabel the data by adding an extra reward cz(z − z0) where z0 is the
initial position on the z axis, and cz is the coefficient of the extra reward. cz can either be positive
or negative. For positive values of cz , the cheetah is encouraged to jump while running forward.
For negative values, crawling on the floor receives higher reward. We train 5 polices each for base
rewards and base rewards plus diversity rewards, denoted by “random” and “diverse” respectively.

5.2 EFFECTS OF THE RANGE OF DATA DISTRIBUTION

Angle top 1 top 2 mixed all mixed

0◦ 1236.26±247 1437.24±31 989.13±65
60◦ 910.70±121 1285.31±66 593.88±434
120◦ 1362.46±104 917.10±218 281.88±301
180◦ 829.65±139 1034.41±224 717.68±120
240◦ 1416.80±160 1373.72±73 850.82±62
300◦ 1141.68±100 1087.26±137 817.77±37

Table 2: Returns on Ant-Angle tasks with different angles trained on different datasets. Top 1
dataset is the data buffer with highest return. Top 2 mixed dataset is a mixture of two highest-
rewarded buffers. All mixed dataset is a mixture of all data buffers generated by unsupervisedly
trained policies.

With the help of Ant-Angle environment and the policies learned by unsupervised RL, we conduct
several experiments to verify the conclusions from theoretical derivations. Apart from the data buffer
with maximum return, we build a data buffer denoted by “all mixed”, by mixing data generated by
all 10 policies. We also mix the data from top 2 polices to create a “top 2 mixed” buffer.

Referring to the upper left figure in Figure 4, the “top 2 mixed” data buffer includes two policies
lying on the left and the right side near direction 0◦. the top two distributions have similar distance
from the optimal distribution. Therefore the mixed distribution ρπ

β

T has similar distance to the op-

timal compared with the nearest distribution W1(ρ
πβ

T , ρπ
∗

T ) ≈ mini W1(ρ
πβ
i

T , ρ∗T )). However, when

all policies are mixed, it is obvious W1(ρ
πβ

T , ρπ
∗

T ) > mini W1(ρ
πβ
i

T , ρ∗T )). According to Equation 9,
the top 2 mixed dataset will get higher return than all mixed dataset. Table 2 and results in Appendix
F have verified this claim. From another aspect, the top 2 mixed data buffer has a wider distribution
than the top 1 buffer. Therefore the top 2 mixed buffer has a larger radius Bπβ which may worsen
performance according to Equation 6. Surprisingly, the top 2 mixed buffer makes higher return than
top 1 single buffer. We can conjecture that Bπβ plays an insignificant role in the lower bound and
the approximation in Equation 8 and 9 is proper. In addition, the wide spread of the mixed data may
improve the generalization ability of the transition model in MOPO, which contributes to the higher
return than top 1 data buffer.

6 CONCLUSION

In this study we propose a framework UDG addressing data generation issues in offline reinforce-
ment learning. In order to solve unknown tasks at the offline training stage, UDG first employs
unsupervised RL and obtains a series of diverse policies for data generation. The experience gener-
ated by each policy is relabeled according to the reward function adopted before the offline training
stage. The final step is selecting the data buffer with highest average return and feeding the data
to model-based offline RL algorithms like MOPO. We provide theoretical analysis on the perfor-
mance gap between the offline learned policy and the optimal policy w.r.t the distribution of the
batch data. We also reveal that UDG is an approximate minimal worst-case regret approach under
the task-agnostic setting. Our experiments evaluate UDG on two locomotive tasks, Ant-Angle and
Cheetah-Jump. Empirical results on multiple offline tasks demonstrate UDG is overall better than
data generated by a policy dedicated to solve a specific task. Additional experiments show that the
range of data distribution has minor effects on performance and the distance from the optimal policy
is the most important factor. It is also confirmed that choosing the data buffer with highest return is
necessary for better performance compared to other unsupervised data generation approaches.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.
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mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Nathan Lambert, Markus Wulfmeier, William Whitney, Arunkumar Byravan, Michael Bloesch, Vib-
havari Dasagi, Tim Hertweck, and Martin Riedmiller. The challenges of exploration for offline
reinforcement learning. arXiv preprint arXiv:2201.11861, 2022.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. arXiv preprint
arXiv:2110.15191, 2021.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdi-
nov. Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pp. 6736–6747. PMLR, 2021a.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021b.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

11



Under review as a conference paper at ICLR 2024

Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in
applied probability, 29(2):429–443, 1997.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062–5071. PMLR, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
conference on machine learning, pp. 2827–2836. PMLR, 2017.

Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier
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A LIMITATIONS

Our derivation is based on the continuous state space with assumption that the transition function and
the value functions are Lipschitz. There are some tasks may break the assumptions, i.e., pixel based
tasks like Atari, non-smooth reward functions in goal reaching tasks Tassa et al. (2018). Therefore,
it is necessary to verify the feasibility of UDG on these tasks in future deployment. We also adopt
a non-parametric transition model in derivation. In practical model-based offline RL approaches,
neural models have greater generalization ability than the non-parametric model. The influence of
data distribution on neural models is not addressed by this work. In addition, whether can UDG
be generalized with model-free offline RL algorithms remains unclear. Another limitation is at the
unsupervised training stage, the diversity reward is calculated on the low dimensional space where
the reward function is defined, i.e., the x-y plane in Ant-Angle. This requires prior knowledge of
how the reward is computed. Nevertheless, the limitations mentioned above indicate interesting
further research.

B SOCIETAL IMPACT

The UDG framework contains a stage of unsupervised RL. At this stage, the agent is not provided
with any reward for solving any task. During the process of training, the agent may unexpectedly ex-
ploit the states in unsafe regions. Especially when deployed in realistic environments, it could incur
damage of the environment or the robotic agent itself, or cause injury in robot-human interactions.
Any deployment of UDG in the real world should be carefully designed to avoid safety incidents.
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C PROOFS AND ADDITIONAL THEORETICAL ANALYSIS

C.1 COMPLETE PROOF OF THEOREM 4.8

First we introduce the telescoping lemma in MOPO:

Lemma C.1. Let M and M̂ be two MDPs with the same reward function r, but different dynamics
T and T̂ respectively. Denote Gπ

M̂
(s, a) := Es′∼T̂ (s,a)[V

π
M (s′)]− Es′∼T (s,a)[V

π
M (s′)]. Then

ηM̂ (π)− ηM (π) = cγE(s,a)∼ρπ
T̂

[
Gπ

M̂
(s, a)

]
. (13)

To give a proof of the main theorem, we make these assumptions:
Definition C.2. Given a bounded subset K in the corresponding d-dimension Euclidean space Rd.
The diameter BK of set K is defined as the minimum value of B such that there exists k0 ∈ Rd, for
all k ∈ K, ∥k0 − k∥ ≤ B.
Assumption C.3. The state space S, the action space A are both bounded subsets of corresponding
Euclidean spaces, with diameter BA ≪ BS . The state transition function T (s′|s, a) is deterministic
and continuous.
Assumption C.4. The state transition function T (s′|s, a) is LT -Lipschitz. For any π the value
function V π(s) is Lr-Lipschitz.

Assumption C.5. The prediction model T̂ (s′|s, a) is a non-parametric transition model, which
means the model outputs the next state prediction by searching the nearest entry.

Formally speaking, T̂ has an episodic memory storing all input experience Dmemory =

{(si, ai, s′i, ri)}Ni=1. When feeding T̂ a query (s, a), the model returns T̂ (s, a) = s′k where
k = argmini ∥(s, a)− (si, ai)∥.

Assumption C.6. ρπ
β

T have a bounded support. The diameter of the support of distribution ρπ
β

T is
denoted as Bπβ .

Since the dataset size is out of our concern, we suppose the batch data is sufficient, such that ρ̂π
β

T ≈
ρπ

β

T ≈ ρπ
β

T̂
. For conciseness, we use ρπ

β

T in the proof.

First we review the definition of Wasserstein distance from the view of optimal transport and intro-
duce a lemma used in the proof.

Definition C.7 (W1 distance). Two discrete distributions p(x) = 1
N

∑N
i=1 δ(xi) and q(y) =

1
M

∑M
j=1 δ(yj) are defined on an Euclidean space X . The Wasserstein distance between p and

q is defined as

W1(p, q) = min
γ∈Γ(N,M)

N∑
i=1

M∑
j=1

γij∥xi − yj∥, (14)

where Γ(N,M) is the class of all transporting matrices γ satisfying (1) ∀i, j, 0 ≤ γij ≤ 1, (2) ∀i,∑M
j=1 γij =

1
N and (3) ∀j,

∑N
i=1 γij =

1
M . The optimal matrix is denoted as γ∗.

γ can be explain as a joint distribution on X × X with marginal distribution p(x) and q(y) respec-
tively.
Definition C.8 (Nearest transporting cost). The nearest transporting cost from p to q is defined as

V1(p → q) = min
γ∈Γ(N,M)

N∑
i=1

M∑
j=1

γij∥xi − yj∥, (15)

where Γ(N,M) is the class of all transporting matrices γ satisfying (1) ∀i, j, 0 ≤ γij ≤ 1 and (2)
∀i,

∑M
j=1 γij =

1
N .

Since V1 loosen the constraints in the optimization problem, it is obvious V1 ≤ W1. The definition of
Wasserstein distance and nearest transporting cost can naturally generalize to continuous distribution
p(x).
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Lemma C.9 (Triangle inequality). For discrete distributions p(x), q(y), r(z) on X ,

V1(p → q) ≤ W1(p, r) + V1(r → q). (16)

Proof. The RHS of 16 is the total cost of transporting mass from p to r and from r to q. The in-
equality holds true by the optimality of the matching matrix in V1(p → q) and the triangle inequality
in the Euclidean space.

Theorem C.10. Given π̂ = argmaxπ ηM̃ (π), the expected discounted return of π̂ satisfies

ηM (π̂) ≥ ηM (π∗)− 2cγLrLT (W1(ρ
π∗

T , ρπ
∗

T̂
) +W1(ρ

πβ

T , ρπ
∗

T ))

≥ ηM (π∗)− 4cγLrLT (W1(ρ
πβ

T , ρπ
∗

T ) +Bπβ +BA).
(17)

If the batch data is collected from N different policies πβ
1 , . . . , π

β
N , a tighter bound is obtained,

where ρπ
β

T denotes the mixture of distribution ρ
πβ
i

T , . . . , ρ
πβ
N

T ,

ηM (π̂) ≥ ηM (π∗)− 2cγLrLT (W1(ρ
πβ

T , ρπ
∗

T ) + min
i

W1(ρ
πβ
i

T , ρ∗T ) + 2Bπβ + 2BA). (18)

Proof. Assumption C.5 implies T̂ (s, a) is a deterministic function. Therefore combined with these
two assumptions C.3, C.4, the gap Gπ

M̂
(s, a) defined in Lemma C.1 is then bounded by

|Gπ
M̂
(s, a)| ≤ sup

f∈F

∣∣∣Es′∼T̂ (s,a)[f(s
′)]− Es′∼T (s,a)[f(s

′)]
∣∣∣

= LrW1(T̂ (s, a), T (s, a)) = Lr∥T̂ (s, a)− T (s, a)∥,
(19)

where W1 is the 1-Wasserstein distance w.r.t. the Euclidean metric. Assumption C.5 tells us, given
any (s, a) pair, the non-parametric model’s output is T̂ (s, a) = T (ŝ, â) where (ŝ, â) ∈ Dmemory is
the nearest point to (s, a). Note that ρπ

β

T = 1
K

∑K
i=1 δ(si, ai) is the uniform distribution on Dmemory.

With assumption C.4 combined, we have

|Gπ
M̂
(s, a)| ≤ Lr∥T̂ (s, a)− T (s, a)∥ = Lr∥T (ŝ, â)− T (s, a)∥ ≤ LrLT ∥(ŝ, â)− (s, a)∥. (20)

By definition of the nearest transporting cost and Lemma 16, we have

E(s,a)∼ρπ∗
T̂

|Gπ∗

M̂
(s, a)| ≤ LrLTV1(ρ

π∗

T̂
→ ρπ

β

T ) ≤ LrLT (W1(ρ
π∗

T̂
, ρπ

∗

T ) + V1(ρ
π∗

T → ρπ
β

T ))

≤ LrLT (W1(ρ
π∗

T̂
, ρπ

∗

T ) +W1(ρ
π∗

T , ρπ
β

T ))
(21)

Considering ρπ
∗

T̂
(s) is strictly on the support of ρπ

β

T (s), we can bound the first term by

W1(ρ
π∗

T̂
, ρπ

∗

T ) ≤ W1(ρ
π∗

T , ρπ
β

T ) + 2Bπβ + 2BA (22)

If ρπ
β

T is a mixture of N behaviour policies, by the definition of V1 cost, we have

E(s,a)∼ρπ∗
T̂

|Gπ∗

M̂
(s, a)| ≤ LrLT (W1(ρ

π∗

T̂
, ρπ

∗

T ) + V1(ρ
π∗

T → ρπ
β

T ))

≤ LrLT (W1(ρ
π∗

T̂
, ρπ

∗

T ) + min
i

W1(ρ
π∗

T , ρ
πβ
i

T ))).
(23)

Substitute π in MOPO main theorem with π∗ and we have

ηM (π̂) ≥ ηM (π∗)− 2cγE(s,a)∼ρπ∗
T̂

|Gπ∗

M̂
(s, a)|, (24)

which completes the proof.
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C.2 GENERALIZATION OF THE PROOF

Here we try to analyze how sensitive is our proof to the assumptions.

First we look into assumption C.3. If the true dynamics T (s, a) and the estimated transition model
T̂ (s, a) are no longer deterministic, we will be unable to reduce W1(T̂ (s, a), T (s, a)) to ∥T̂ (s, a)−
T (s, a)∥. Actually, under stochastic dynamics, we can assume that the Lipschitz condition of T
implies

∀(s, a), (s′, a′), W1(T (s, a), T (s
′, a′))

∥(s, a)− (s′, a′)∥
≤ LT . (25)

Additionally we suppose T̂ randomly outputs one of M results out of all experience
(s, a, s′1), . . . , (s, a, s

′
M ) with the same (s, a). Therefore we have

W1(T̂ (s, a)− T (s, a)) ≤ W1(T̂ (ŝ, â)− T (ŝ, â)) +W1(T (ŝ, â)− T (s, a))

≤ W1(T̂ (ŝ, â)− T (ŝ, â)) + LT ∥(ŝ, â)− (s, a)∥.
(26)

The second term corresponds to the term in Equation 20. And the first term is the sample error,
which will diminish to zero if the number of samples goes to ∞. Another concern is, under stochas-
tic dynamics, there is almost zero probability to sample the same (s, a) pair. In order to reduce
estimation error, we should adopt the same manner in Neural Episodic Control (Pritzel et al., 2017)
to search nearest K entries in memory and output a weighted s′. In conclusion, under stochastic
dynamics, Equation 20 will have an extra term of sample error. The error will be small if sample
size is sufficiently large.

In practical implementation like MOPO, neural networks are adopted to estimate transition dynam-
ics. It is expected that neural transition models will have the ability to generalize to areas out of the
support of data distribution than episodic memories. As a consequence, W1(ρ

πβ

T , ρπ
∗

T ) in Equation
17 becomes small if T̂ is accurate under the optimal policy π∗. In this situation, the lower bound
suggests the performance of offline RL will be higher. Nevertheless, our work pays more attention
on the influence of data than model generalization. Therefore we leave the concrete analysis of
neural models as future work.

D RELATION TO COVERING AND PACKING PROBLEMS

Figure 5: Illustration of the minimal worst-case regret approach. At the unsupervised training stage,
we hope to push N policies far away from each other such that any policy (the unknown optimal
policy) will not be too far away from the nearest policy.

In Section 4.2, we propose a minimal worst-case approach of finding N policies that the maximum
regret is minimal. The corresponding objective is

min
π1,...,πN∈Π

max
π∗∈Π

min
i

W1(ρ
πi

T , ρπ
∗

T ). (27)

Our proposed objective is maximizing the minimal distance of every two policies in N policies.

max
π1,...,πN∈Π

min
i ̸=j

W1(ρ
πi

T , ρ
πj

T ). (28)
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Figure 6: Illustration of covering and packing problems on a 3x3 square. (a) The covering problem
is equivalent to the optimization problem in Equation 31. For any position in the square, the nearest
distance from 9 points is no more than the radius. (b) The packing problem is equivalent to the
optimization problem in Equation 33, since we do not have the border constraint in objective 28.
The nearest distance between every two points is no less than the diameter.

We claim that the objective in Equation 27 is equivalent to a space covering problem and the objec-
tive in Equation 28 is equivalent to a space packing problem. Here we formulate the covering and
packing problems defined in (Toth et al., 2017).

For given convex sets K and C, and a positive integer N , the two quantities are corresponding to a
packing problem and a covering problem respectively:

Mp(K,C,N) = inf{λ|N congruent copies of C can be packed in λK}, (29)
and

Mc(K,C,N) = sup{λ|N congruent copies of C can cover λK}. (30)
If we assume C = B2 is the unit disk in E2 (2-dimensional Euclidean space) and K is an arbitrary
convex set in E2. We consider two quantities from optimization problems:

GN = min
x1,...,xN∈K

max
x∈K

min
i

∥x− xi∥, (31)

and
HN = max

x1,...,xN∈K
min
i̸=j

∥xi − xj∥. (32)

We define an alternative packing quantity

M̃p(K,C,N) = inf{λ|N congruent copies of C can be packed in λK + C}, (33)

where λK + C means the Minkowski sum. It is obvious that we have GN = 1/Mc(K,B2, N)

and HN = 2/M̃p(K,B2, N). Figure 6 provides an illustration of the two problems. Although the
solutions of packing and covering problems are generally not the same, they both encourage some
kind of even distribution of N points in a given space. Therefore, the two optimization objectives
are good proxy objectives of each other in practical implementations. For example, (Schlömer et al.,
2011) proposes an algorithm of generating N points in a square under the Poisson-disk criterion
which demands that no two points are closer than a certain minimal distance. The Poisson criterion
is equal to the optimization objective in Equation 32. However in the proposed “farthest-point
optimization” method, the iterative process selects a position farthest from every point and places a
new point at that position. This process can approximately optimize the objective in Equation 31.
That is the reason why we use the maximum min-dist criterion to minimize the worst-case regret.

E IMPLEMENTATION DETAILS

E.1 POLICIES FOR DATA GENERATION

The policies used in training are Soft-Actor-Critic policies (Haarnoja et al., 2018). We adopt SAC
with double Q networks and one Gaussian actor. Both of the critic and actor have 3 hidden layers.
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Hyperparamter Value

γ 0.99
τ 0.005

target update interval 1
updates per step 1

batch size 256
startup steps 10000
total steps 200000
lr for critic 0.0003
lr for actor 0.0003

α 0.2
auto α tuning False
hidden dim 256
replay size 200000

Table 3: Hyperparameters in policy training.

The training hyperparameters are listed in Table 3. In unsupervised training, we use 10 policies in
Ant-Angle and 5 policies in Cheetah-Jump. The first policy is training with no diversity reward.
Other policies are trained combined with the diversity reward proposed in WURL (He et al., 2022).
The policies are changed in order by every 1 episode in training. Denote the original reward for
policy i (zero reward, task reward or base reward) as ri and the diversity reward as di. The composite
reward is reweighted with λ, as r̃i = ri + λdi. We use λ = 1 in Ant-Angle and λ = 10 in Cheetah-
Jump.

In the data generation process, we sample 1 million transitions per policy, with maximum episode
length 200. Therefore each data buffer has 5k episodes of transitions. The mixed data buffers
are constructed with equal number of transitions per policy. The mixed buffer also has 1 million
transitions. We cut off the dimensions in Ant-Angle to 27, in accordance with MBPO (Janner et al.,
2019), since the original 111 dimensions is quite hard for downstream model training. The rewards
in data buffers are relabeled before offline training.

E.2 OFFLINE TRAINING

The backbone algorithm at the offline training stage is MOPO (Yu et al., 2020c). The hyperparame-
ters are the same with the official repo. The tunable hyperparameters are rollout length h and penalty
coefficient λ. In each experiment, we choose the best (h, λ) pair with h in range of {1, 2, 5} and λ
in range of {1, 5, 7, 10}. The model learning has maximum 100 iterations and the policy training
has maximum 1000 iterations. As the evaluation performance is quite unstable in MOPO, we report
the best evaluation score in each task. The evaluation score is averaged over 10 test episodes.

E.3 COMPUTATION RESOURCE

Experiments in our work are deployed on a server with AMD EPYC 7H12 64-Core Processor and
8 NVIDIA GeForce RTX 3090 GPUs. Training at the data generation stage requires approximate
6hrs per million-step per GPU. For example, training 10 policies in Ant-Angle with each policy
200k steps requires 12hrs on one GPU, and training 5 policies in HalfCheetah with each policy 1M
steps requires 30hrs on one GPU. Training with MOPO has various time consumption depending
on dataset size, rollout length h and environment. A typical experiment of Ant-Angle requires 8hrs
per GPU. And an experiment of HalfCheetah requires 12hrs per GPU. Considering random seeds,
hyperparameter tuning, our work costs about 10k GPU hours.
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F ADDITIONAL RESULTS

F.1 ABLATION

To demonstrate the data generated by UDG is superior to data generated by other unsupervised
policies. We adopt DIAYN as our baseline (Eysenbach et al., 2019). The diversity reward is added
into the composite reward in the same manner . We train DIAYN with 10 policies in Ant-Angle and
set λ = 1. Results are reported in Table 4.

Environment buffer mean random buffer mean diayn

Ant-Angle 0◦ -3.1 33.28±3.98 80.83 401.64±33.80
Ant-Angle 60◦ -13.21 26.63±8.06 88.11 322.59±101.09
Ant-Angle 120◦ -10.12 66.72±80.35 140.59 98.75±43.92
Ant-Angle 180◦ 3.1 30.61±13.77 95.27 719.91±57.03
Ant-Angle 240◦ 13.21 64.12±89.93 93.33 522.62±194.93
Ant-Angle 300◦ 10.12 42.10±34.53 125.36 535.15±60.42

Table 4: Offline training returns on random policy and unsupervised policies trained by DIAYN.
Policies trained by DIAYN cannot reach comparable performance with WURL. Results on the data
generated by DIAYN are also inferior to WURL generated data.

F.2 FULL RESULTS

We also try UDG on conventional tasks like HalfCheetah. We train 5 policies with diversity reward
and use snapshots at different steps to generate transitions. We mix the data from all policies and
compare it to a single policy and a mixture of random initialized policies. Results are shown in
Figure 7. The mixture of 5 policies has minor improvements in offline performance.

Table 3-6 show additional results in Ant-Anagle tasks with buffer mean return presented.

Environment unsup. (top 1) sup. w/ reg. (top 1) sup.

Ant-Angle 0◦ 1236.26±247.24 1103.14±24.20 1103.14±24.20
Ant-Angle 60◦ 910.7±121.40 1160.01±282.32 588.71±172.55

Ant-Angle 120◦ 1362.46±104.37 716.05±204.08 191.73±172.82
Ant-Angle 180◦ 829.65±138.69 36.68±11.93 25.65±21.83
Ant-Angle 240◦ 1416.80±159.50 432.58±54.25 332.94±95.79
Ant-Angle 300◦ 1141.68±99.69 376.88±141.84 809.46±45.28

Table 5: Returns on Ant-Angle tasks trained on different datasets. The datasets are in accordance
with those in Figure 3 in the main paper.

Environment top 1 top 2 mixed all mixed top and last mixed

Ant-Angle 0◦ 1236.26±247.24 1437.24±31.17 989.13±64.71 1008.16±167.70
Ant-Angle 60◦ 910.7±121.40 1285.31±65.86 593.88±434.34 765.88±129.22
Ant-Angle 120◦ 1362.46±104.37 917.10±218.36 281.88±301.17 707.83±166.97
Ant-Angle 180◦ 829.65±138.69 1034.41±223.68 717.68±120.35 816.51±33.46
Ant-Angle 240◦ 1416.80±159.50 1373.72±72.60 850.82±62.35 946.28±87.33
Ant-Angle 300◦ 1141.68±99.69 1087.26±136.89 817.77±36.50 1056.75±37.48

Table 6: Returns on Ant-Angle tasks trained on different datasets. This table is the extended results
of Table 2 in the main paper.
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Environment top 1 sup.w/ reg sup. top 2 mixed all mixed top and last

Ant-Angle 0◦ 1888.01 1839.20 1839.20 1796.57 -19.92 81.68
Ant-Angle 60◦ 1623.52 1709.94 1118.49 1561.78 -75.85 -129.43

Ant-Angle 120◦ 1835.61 300.87 -720.71 1673.06 -55.93 29.16
Ant-Angle 180◦ 1723.55 -1365.33 -1839.20 1698.92 19.92 -82.78
Ant-Angle 240◦ 1883.29 -189.63 -1118.49 1723.12 75.85 130.33
Ant-Angle 300◦ 1777.88 1388.05 720.71 1658.29 55.93 -28.57

Table 7: Buffer mean returns on Ant-Angle tasks of different datasets. Top 1, top 2 mixed, all mixed
and top and last datasets are all selected from the data buffers generated by unsupervisedly trained
policies. Sup. w/ reg. denotes the supervisedly trained policies with diversity regularizer.

Environment cz random diverse

Cheetah-Jump 15 325.73 1536.62
Cheetah-Crawl -15 792.21 1592.05

Table 8: Buffer mean returns on two offline tasks Cheetah-Jump and Cheetah-Crawl. Two datasets
consist of 5 policies trained with base rewards and base rewards plus diversity rewards respectively.

Figure 7: Diverse data on HalfCheetah tasks. Returns are shown in normalized scores according to
D4RL. Each point represents the mean score of the behaviour policy used and the mean score of
policy learned by MOPO.
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