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Abstract

Data augmentation is crucial for the fine-tuning
of pre-trained models and the optimization of
limited data utilization, particularly within the
realm of few-shot learning. Traditionally, these
techniques have been applied at the word and
sentence levels, with little research conducted
within the embedding space. This paper in-
troduces VQ-TEGAN, a novel data augmen-
tation approach designed to generate embed-
dings specifically for a few-shot learning. VQ-
TEGAN generates embeddings that augment
the few-shot dataset by training directly within
the PLMs’ word embedding, employing a cus-
tomized loss function. Empirical valildation on
GLUE benchmark datasets demonstrates that
VQ-TEGAN markedly improves text classifica-
tion performance. Additionally, we investigate
the application of VQ-TEGAN with RoBERTa-
large and BERT-large, offering insight for fur-
ther application.

1 Introduction

Text classification is a crucial task in natural lan-
guage processing (NLP) (Kowsari et al., 2019). Al-
though fine-tuning pre-trained language models
(PLMs) on large datasets is highly effective, per-
formance declines with smaller training data sizes
(Gao et al., 2020; Longpre et al., 2020). This is due
to the lack of diverse examples. Data augmentation
has emerged as a solution to improve model per-
formance with limited data, applicable in various
fields such as healthcare (Eaton-Rosen et al., 2018;
Ker et al., 2017), finance (Fons et al., 2020; El-
Laham and Vyetrenko, 2022), and computer vision
(Zhang et al., 2017; Chen et al., 2020b).

In NLP, data augmentation is often performed
through word-level manipulation (e.g., EDA (Wei
and Zou, 2019) and AEDA (Karimi et al., 2021)).
Recent advances include sentence-level interpola-
tion methods like MixText (Zhang et al., 2022) and
Treemix (Zhang et al., 2022; Chen et al., 2020a).
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Figure 1: Graphical abstract of VQ-TEGAN. The pri-
mary aim of VQ-TEGAN is to produce synthetic em-
beddings that closely approximate the original real em-
beddings. Subsequently, the synthetic embedding is
mixed with the real embedding to formulate a mixup
embedding, which resides within a space comparable to
that of other synonymous embeddings.

In addition, language-model-based augmentations
such as LAMBADA (Anaby-Tavor et al., 2020),
BF-Translation (Body et al., 2021), BART Pro-
tAugment (Dopierre et al., 2021), and SSMBA (Ng
et al., 2020) have been developed. While LAM-
BADA and BART ProtAugment require separate
fine-tuning for data augmentation, SSMBA and
BF-Translation do not, but they demand significant
storage space and time due to the need for large
language models or the Google Translation APL.
Before training a language model, sentences are
tokenized and converted to embeddings, which
are used as direct input (Mikolov et al., 2013).
Some works have applied data augmentation at
the embedding level. For example, Wang and
Yang (2015) used semantic and lexical embed-
dings from Word2Vec (Mikolov et al., 2013) to
replace original words with k-nearest neighbor vec-
tors. TreeMixup (Guo et al., 2019) applies linear
interpolation to word and sentence embeddings, pi-
oneering this technique in NLP tasks. TACLR (Jia
etal., 2023) combines TreeMixup and EDA for con-
trastive learning. Recent studies show promising re-
sults using models that generate synthetic sentence
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embeddings similar to real sentences (Onan, 2023;
Jian et al., 2022). These methods effectively en-
hance text embeddings to supplement insufficient
data.

This research proposes Vector-Quantized Text
Embedding Generative Adversarial Networks (VQ-
TEGAN). VQ-TEGAN leverages the capabilities
of Vector Quantized Generative Adversarial Net-
work (VQ-GAN) (Esser et al., 2021) to generate
text embeddings optimized for the semantic repre-
sentation provided by word embeddings in PLMs
(e.g., RoBERTa-large (Liu et al., 2019) and BERT-
large (Devlin et al., 2018)). VQ-TEGAN is based
on the understanding that the word embeddings
of PLMs can capture deep linguistic properties
beyond simple syntactic structures. We hypoth-
esize that synthetic embeddings generated by VQ-
TEGAN can encapsulate complex features such as
context and sentiment, crucial for few-shot learn-
ing tasks. Synthetic embeddings are employed in
PLM training to provide new text examples that pre-
serve semantic consistency and syntactic accuracy
with the few-shot embedding data. This approach
aligns with Brown et al. (2020), demonstrating that
language models trained on extensive datasets can
leverage prior knowledge to perform tasks with
limited examples.

Our contributions can be summarized as follows:

* We propose a novel data augmentation model,
VQ-TEGAN, for generating synthetic embed-
dings located in a similar space as real embed-
dings as illustrated in Figure 1.

* VQ-TEGAN is a lightweight model for data
augmentation, allowing easy application and
minimal storage requirements.

* We introduce a novel loss function suitable for
NLP embeddings to train VQ-TEGAN.

* Experimental results indicate that VQ-
TEGAN outperforms benchmarks in few-shot
learning.

* The adequacy of the generated embeddings is
confirmed by analyzing their meaning using
cosine similarity to the word embeddings in
PLMs.

2 Related Work

2.1 Generative Model

The evolution of generative models has been led
by the advances of autoencoders (Ranzato et al.,
2007). Variational Autoencoders (VAE) (Kingma
and Welling, 2013) use neural networks to en-

code input data into a lower-dimensional latent
space and decode it back, optimizing the lower
bound on the likelihood of the data. This enables
tasks such as data generation and feature extraction.
Generative Adversarial Networks (GAN) (Good-
fellow et al., 2014) employ two neural networks,
a generator and a discriminator, training them si-
multaneously in a competitive setting to generate
data samples that are indistinguishable from real
data. Wasserstein GAN (WGAN) (Arjovsky et al.,
2017) improves on traditional GANs by using a
Wasserstein distance metric for the loss function,
improving training stability and addressing mode
collapse, resulting in higher-quality generated sam-
ples. Conditional WGAN (cWGAN) (Yu et al.,
2019) extends WGAN by incorporating conditional
variables, allowing the generation of samples con-
ditioned on specific attributes and enhancing the
model’s ability to generate more targeted and di-
verse data samples. Vector Quantized Variational
Autoencoders (VQ-VAE) (Van Den Oord et al.,
2017) and VQ-GAN employ discrete latent repre-
sentations through vector quantization. VQ-VAE
improves its ability to handle complex data distri-
butions compared to standard VAEs by learning a
finite set of embeddings. VQ-GAN combines the
VQ-VAE method with a discriminator to differenti-
ate between real and fake data more effectively by
learning a codebook.

In the realm of NLP, autoencoders are frequently
combined to generate data in an embedding space
(Malandrakis et al., 2019; Piedboeuf and Langlais,
2022). This study leverages the VQ-GAN method
to generate synthetic embeddings. Additionally,
we analyze the semantic content of the synthetic
embeddings produced by VQ-TEGAN and com-
pare it with the embeddings created by mixup and
the original text embedding data.

2.2 Text Augmentation

Text augmentation aims to improve model per-
formance when data is insufficient. Early work
includes EDA (Wei and Zou, 2019) and AEDA
(Karimi et al., 2021). EDA employs four straight-
forward data augmentation techniques: random
swap, random insertion, random deletion, and syn-
onym replacement. Similarly, AEDA operates by
randomly inserting punctuation marks. TreeMix
(Zhang et al., 2022) utilizes constituency parsing
trees to decompose sentences into component sub-
structures, which are then recombined using the
mixup data augmentation method to generate new



sentences.

Instead of reorganizing words or sentences, an-
other approach involves generating new text data
using LLMs for data augmentation (Anaby-Tavor
et al., 2020; Body et al., 2021; Dopierre et al.,
2021; Ng et al., 2020). LAMBADA (Anaby-Tavor
etal., 2020) fine-tunes a GPT model (Radford et al.,
2019) on a small dataset and then augments it with
the given label. BF-Translation (Body et al., 2021)
uses the Google Translate API, with German as
an intermediate language, to back-translate text for
sentiment analysis. ProtAugment (Dopierre et al.,
2021) combines paraphrases generated from the
BART model with sentences produced through tra-
ditional back-translation, improving intent detec-
tion models via unsupervised meta-learning. This
method utilizes paraphrasing-based data augmen-
tation. SSMBA (Ng et al., 2020) is a word-level
data augmentation technique that employs a corrup-
tion function to mask specific tokens in a sentence
and replace them with new tokens using a BERT
model.

Furthermore, data augmentation in continuous
embedding spaces, such as EmbedHalluc (Jian
et al., 2022), has shown promising results. Specifi-
cally, graph-based methods (Onan, 2023) and con-
trastive learning (Jia et al., 2023) have been ex-
plored for text augmentation. Embedding Aug-
menter (Pellicer et al., 2023) is a technique that
uses a word-changing algorithm with the GloVe
model (Pennington et al., 2014) with 300 dimen-
sions to find the most similar words.

This study investigates the use of synthetic em-
beddings for data augmentation, where embeddings
are derived from synonyms and related words. In
particular, the proposed VQ-TEGAN model offers
the advantage of being relatively lightweight com-
pared to larger language models.

2.3 Fine-tuning of Pre-trained Language
Models

Numerous studies suggest using general models
to address NLP problems (Kim, 2014; Huang
et al., 2015; Kowsari et al., 2019). However, with
the recent emergence of PLMs (e.g., BERT and
RoBERT?2), there has been a surge in research on
few-shot learning to leverage limited data with the
help of PLMs (Gupta et al., 2020; Zhong et al.,
2021; Chada and Natarajan, 2021; Ram et al.,
2021). Some studies have applied data augmenta-
tion to NLP classification tasks to improve few-shot
learning performance (Wei et al., 2021; Jian et al.,

2022; Zhang et al., 2022; Jia et al., 2023). How-
ever, the approach of creating new synthetic word
embeddings for each word in a sentence, merging
them, and using the resulting synthetic sentence
embedding as training data for text classification
has not yet been explored. In this context, we pro-
pose VQ-TEGAN, the first attempt to apply the
VQ-GAN method to generate new synthetic text
embeddings for fine-tuning PLMs.

3 Methods

3.1 Overview

This research aims to evaluate the effectiveness
of VQ-TEGAN in few-shot learning compared to
benchmarks by performing classification tasks in
limited data environments. The complete process
of fine-tuning the PLM is illustrated in Figure 2.
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Figure 2: Few-shot learning process using VQ-TEGAN

To preserve the integrity and diversity of the
dataset, non-duplicating samples are randomly se-
lected from each class for each classification task
in the training and validation sets, respectively. The
conversion of few-shot datasets to real embeddings
is achieved using the PLM’s individual tokenizer
and token embeddings, which are subsequently
used to form preprocessed embeddings. The real
embeddings of the training set are then utilized
to create synthetic embeddings through the pre-
trained VQ-TEGAN. The synthetic embeddings
for each real embedding are subsequently mixed to
form the final augmented embeddings. The final
augmented dataset, which includes one synthetic
data point corresponding to each real data point,
is used for few-shot learning. This approach takes
advantage of the diversity introduced by the aug-
mented data, operating under the assumption that
it will enhance the learning capacity of the model
when dealing with a restricted dataset (Arthaud



et al., 2021; Xie et al., 2020). Also, the freezing
of word embeddings within the PLM during few-
shot learning preserves the semantic integrity of
the augmented dataset within the embeddings. This
method proficiently transmits the intended seman-
tics of the augmented dataset in few-shot learning
contexts.

32 VQ-TEGAN

The architecture of a new generative model for
text embedding data, VQ-TEGAN, is presented
in detail in Figure 3. The primary objective is
to train VQ-TEGAN directly within word embed-
dings in PLM to generate high-quality synthetic
text embeddings. This approach has the advantage
of leveraging PLM embeddings, eliminating the
need for a separate training dataset. Furthermore,
VQ-TEGAN allows the encapsulation of word em-
beddings with analogous attributes into quantized
vectors, ensuring that the generated synthetic em-
beddings retain their distinct characteristics. The
amount of training data depends on the number of
word embeddings in PLMs. Note that ROBERTa-
large and BERT-large have 50,265 and 30,522 em-
bedding vectors, respectively. This approach has
the advantage of utilizing embeddings of PLM,
eliminating the need for a separate training dataset.
In VQ-VAE, a discrete-dimensional encoder out-
put paired with an autoregressive decoder effec-
tively solves the posterior collapse problem (Van
Den Oord et al., 2017). VQ-TEGAN employs a
similar structure to reconstruct the real embedding
(z) as the synthetic embedding (&) through the en-
coder E - decoder D structure illustrated in Figure 3.
The input vector x € R"™*, where n, is the dimen-
sionality of the input embedding, is compressed by
the encoder E into the latent vector Z € R™=, where
n, is the dimensionality of the codebook vector.
The latent vector 2 is converted into one of the
nearest codebook vectors, zq € Z, by finding the
distance to the vectors in the predefined discrete
codebook, where Z = {z,} | C R™ and K is
the number of codebook vectors. Specifically, 2 is
created from z and then quantized by replacing 2
with the nearest codebook to obtain zq such that:

2q = q(2) == argmin||2 — 2|2 € R™ (1)
2LEZ

where 2 = E(x). The reconstruction & ~ =z is

given by:

& =D(zq) 2

Backpropagation is not differentiable due to the
quantization operation in Eq. 1. However, the
model and codebook can be learned end-to-end
via a loss function using a straight-through gra-
dient estimator (Bengio et al., 2013) that copies
the gradient from the decoder to the encoder as
follows:

EVQ(E,D, Z) = HH? — .@H +1- J(.@,Z’)—i—
Isg[E(2)] — zq* + 5 x [|sg[zq] — E()[> (3)

Note that ||z — Z|| is a reconstruction 10ss (Lrec);
1—o(&,x) is the cosine loss (Los) (Barz and Den-
zler, 2020) where o (-) represents the cosine simi-
larity operation; and ||sg[zq] — E(z)||? is the com-
mitment loss (Van Den Oord et al., 2017) where
sg[-] represents the stop-gradient operation.

To customize a learning approach for text em-
beddings, we modify the loss function commonly
used in computer vision (Esser et al., 2021). Specif-
ically, we replace the Ly loss with the L loss in
Lrec, a technique known for its effectiveness in
high-resolution image restoration tasks (Zhao et al.,
2016; Wu et al., 2021; Liu et al., 2021). The impor-
tance of cosine similarity in semantic analysis is
derived from the inherent nature of text data embed-
ding (Rahutomo et al., 2012; Pellicer et al., 2023).
Lcos is employed to ensure that the synthetic em-
bedding Z is generated in a space characterized by
high cosine similarity to the real embedding z.

The discriminator of VQ-TEGAN, Disc, is re-
sponsible for distinguishing between real and fake
embedding, resulting in a loss Lpjsc that follows
the WGAN loss to efficiently train the generator
(Arjovsky et al., 2017):

Lsan({E, D, Z},Disc) = Disc(x)—Disc(z) (4)

The complete objective to identify the optimal
compression model Q* = {E*, D*, Z*} can be
expressed as follows:

Q* — aII“EgDH;inIBgz(EINP(I) [ﬁVQ (E, D, Z)+

Lean({E, D, 2}, Disc)] (5)

VQ-TEGAN stands out for its scalability and
memory efficiency in text embedding data augmen-
tation, optimizing computational resources. The
model’s parameters remain almost constant despite
an increase in codebooks, growing only slightly
from 5.03M (19.22MB) for 1024 codebooks to
5.42M (20.72MB) for 4096 codebooks. This
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Figure 3: Model architectures of VQ-TEGAN

lightweight nature allows VQ-TEGAN to be de-
ployed on various hardware, from high-end servers
to resource-limited edge devices. Its compact de-
sign makes it ideal for scenarios that require robust 0
text embedding augmentation without compromis-

ing performance. Training procedures are detailed m "\M lm j
in Appendix A. ; W "W “V 1‘
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3.3 Mixup Embedding
(a) Lcos using RoOBERTa-large

Mixup for word embedding, an application method
devised by Guo et al. (2019), involves the linear
interpolation of real and synthetic embeddings. We
apply the mixup method as follows:

F=Ar+(1-\)i (6)

The mixup ratio A specifies the proportion of
real embedding (z) in the mixed embedding. For
instance, a A of 1.0 indicates that the mixed em-
bedding Z is entirely composed of x, while a A of
0.4 produces a mixture of 40% of = and 60% of z.
When A\ is 0.0, x is composed of & only.

4 Results & Discussions

4.1 Dataset

The research employs nine classification tasks from
the GLUE benchmark dataset (Wang et al., 2018).
The GLUE benchmark encompasses diverse tasks,
including grammatical acceptability (CoLA), sen-
timent analysis (SST-2), sentence semantic equiva-
lence (MRPC), semantic similarity (QQP), logical
inference (MNLI-m, MNLI-mm), validity of sen-
tence answers to questions (QNLI), and logical
entailment (RTE), pronoun resolution (WNLI).

We randomly select 16 train and validation sam-
ples per class from the train and validation set of
each task. The evaluations are based on the average
results of five different seeds in the test set.

word embedding
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Figure 4: L5 and Ly as a loss function with or without
Lcos When training VQ-TEGAN

The analysis of Figure 4 underscores the im-
portance of integrating the cosine loss term, L,
within Eq. 3. The integration stabilizes and ac-
celerates the convergence, thus enhancing model
performance in similarity measures and improving
the quality of the reconstructed data.

Figures 4a and 4c illustrate the effect of cosine
loss on the cosine similarity between the real em-
bedding x and the synthetic embedding z. The fig-
ures demonstrate that incorporating cosine loss in
the generator’s loss function, Lyq, leads to faster
and more stable convergence (orange line) com-
pared to the method without cosine loss (blue line)
during VQ-TEGAN training.

Figures 4b and 4d illustrate the reconstruction
loss, Lrec, defined as the L loss that quantifies the



difference between real and synthetic embeddings.
Incorporation of cosine loss yields lower and more
stable L loss values, indicating that synthetic em-
beddings increasingly approximate the real input
data. This observation implies that cosine loss en-
hances the generator’s proficiency in accurately re-
constructing inputs, thereby improving the overall
fidelity of the generated embeddings.

Figure 4 shows that the word embeddings de-
rived from RoBERTa-large demonstrate a more
consistent convergence in comparison to those of
BERT-large during the training phase. This obser-
vation suggests that RoOBERTa-large embeddings
are more appropriate for training VQ-TEGAN,
with the potential to produce embeddings that are
semantically richer than those obtained from BERT-
large embeddings.

4.3 Classification Performance in Few-shot
Learning

Table 1 provides a comprehensive analysis of the
efficacy of various data augmentation methods,
namely EDA, EmbedHalluc, and VQ-TEGAN,
when implemented in few-shot learning scenar-
ios using RoBERTa-large and BERT-large models
across nine distinct tasks. The hyperparameters
for few-shot learning are presented in Appendix B,
while the benchmark methods are described in Ap-
pendix C. The findings indicate that VQ-TEGAN
consistently surpasses the other methods in most
tasks, underscoring its robustness in text data aug-
mentation. In particular, VQ-TEGAN significantly
outperforms in seven tasks, with the exception
of QNLI and RTE. However, VQ-TEGAN still
achieves parity with EmbedHalluc on QNLI and is
only 0.72% less accurate than EDA on RTE.

Although VQ-TEGAN demonstrates enhance-
ments in RoBERTa-large, its performance remains
comparable to other benchmarks when evaluated
with BERT-large. EDA exhibits superior perfor-
mance in MRPC (F1) with a score of 1.52, whereas
EmbedHalluc surpasses in MNLI-mm, RTE, and
WNLI by margins of 0.04%, 0.08%, and 0.94%,
respectively. VQ-TEGAN also shows improved
results, albeit marginally, with an increase of 0.08
in CoLA (Matt.), and 0.38%, 0.02%, and 1.94%
in SST-2, MNLI-m, and QNLI, respectively. It is
important to note that no significant performance
disparities are observed when these models are ap-
plied to BERT-large.

In conclusion, VQ-TEGAN consistently sur-
passes EDA and EmbedHalluc, particularly when

integrated with RoBERTa-large as opposed to
BERT-large. The magnitude and complexity of
the word embeddings of the employed PLM can
significantly influence the extent of performance
enhancement achieved with VQ-TEGAN. Given
that VQ-TEGAN is trained directly on the word
embeddings of the PLM, the utilization of more
diverse and intricate embeddings for training cul-
minates in more effective data augmentation. Con-
sequently, VQ-TEGAN can be seen as a suitable
data augmentation method to enhance the perfor-
mance of larger PLMs relative to smaller ones.

4.4 Semantic Analysis on Mixup Embedding

Table 2 presents the three most prominent words
decoded from the word embeddings of RoOBERTa-
large and BERT-large, demonstrating the highest
cosine similarity to the mixup embeddings with
different mixup ratio, A\. The words “beautiful”,
“bad”, “characters”, and “doubts” are used as input,
and the results illustrate the alterations in embed-
dings under varying degrees of mixup. Note that
the embeddings are congruent with the real embed-
ding at A = 1.0. The result is a representation of
the words in the embeddings that demonstrate the
highest cosine similarity to the real embedding for
each PLM. The results show that the embeddings
of all terms exhibit the highest cosine similarity to
the embeddings of synonyms or capitalized forms
for both PLMs.

In the case of the RoOBERTa-large model, the list
of closest word embeddings from A = 0.8 is iden-
tical or slightly modified from A = 1.0, including
minor modifications to words (e.g., “suspicions’)
or capitalization (e.g., “BAD”). That is, the seman-
tic properties of the closest embeddings exhibit
minimal variation relative to the case with A = 1.0.
When A\ is set to 0.6, new words different from
the list of A = 1.0 start to appear in the third rank
(e.g., “magnificent” for the word “beautiful” and
“lousy” for the word “bad”). As A decreases to 0.4,
many words that have similar semantic properties
emerge in the list (e.g., “crappy” for the word “bad”
and “protagonists” and “superheroes” for the word
“characters”). This phenomenon is strengthened
when A decreases to 0.2, showing an increasing de-
viation from the original words. For instance, the
top three words decoded from the RoBERTa-large
are “superheroes”, “mystic”, and “villan” for the
word “characters”. For a A of 0.0, the embedding is
populated with novel words that are not related to
the original words. It emphasizes the necessity of



Model CoLA SST-2 MRPC QQpP MNLI-m  MNLI-mm QNLI RTE WNLI
(Matt.) (acc) (F1) (acc) (acc) (acc) (acc) (acc) (acc)
RoBERTa-large 17.20+10.28 72.58+9.50 67.86+7.83  62.26+6.91 33.62+0.70  34.78+0.58 47.80+1.40 49.68+1.22 57.38+5.20
+EDA 12.42+6.78 70.4846.78  68.68+13.98 57.22+18.77  33.78+1.22 33.8842.3¢ 49.22+1.24 50.96+0.72  53.56+5.96
+EmbedHalluc 21.90+8.57 75.8246.48  69.52+4.77 63.12+4.89 33.38+1.14  34.96+0.85 49.64+0.75  49.54+1.01  55.32+8.20
+VQ-TEGAN 29.66+5.02 78144813  72.50+4.16 70.98+5.10 34.68+1.14 36.00+251 49.64+1.40 50.24+0.42 62.60+2.95
BERT-large 8.18+4.04 75.36+8.16  64.42+1451  59.12+s869  32.32+1.00 33.46+2.20 48.92+1.66 49.56+0.43 47.80+9.28
+EDA 10.48+3.59 78.22+4.36  73.14+6.50 46.12+13.08 32.56+1.06 32.42+1.59 49.844295 49.62+1.58 52.46+9.70
+EmbedHalluc 12.30+7.19 74.10+7.56  63.84+16.07 59.26+4.70 34.30+1.75  35.12+2.21  48.60+2.30 49.64+0.73  53.68+s.11
+VQ-TEGAN 12.38+4.53 78.60+4.38  71.62+6.92 66.98+5.59 34.32+1.18  35.08+2.78 51.78+1.27  49.56+0.50 52.74+6.77

Table 1: A comparative analysis of Conventional Fine-tuning, EDA, EmbedHalluc, and VQ-TEGAN, using
RoBERTa-large and BERT-large as base models. The superior performance for each task is denoted in bold.

Word Embedding | RoBERTa-large | BERT-large
A |  Rank | beautiful bad characters doubts | beautiful  bad characters doubts
1.0 1 beautiful bad characters doubts beautiful ~ bad characters doubts
2 gorgeous Bad character doubt gorgeous good  character doubted
3 lovely terrible Characters doubted lovely badly protagonists doubt
0.8 1 beautiful bad characters doubts beautiful ~ bad characters doubts
2 gorgeous Bad character doubted gorgeous  badly  character doubted
3 lovely BAD Characters suspicions | lovely 295 protagonists  doubt
0.6 1 beautiful bad characters doubts beautiful ~ bad characters doubts
2 gorgeous BAD character doubted gorgeous 295 protagonists  [unused306]
3 magnificent  lousy Characters suspicions | 1738 321 1743 [unused298]
0.4 1 beautiful bad characters doubts 1736 1736 1736 doubts
2 gorgeous lousy protagonists  doubted 1732 276 1743 [unused659]
3 magnificent  crappy superheroes  suspicions | 1738 326 1732 [unused276]
0.2 1 Beautiful intertwined  superheroes  doubts 1736 1736 1736 [unused659]
2 magnificent  sandy mystic timid 1732 276 1743 [unused80]
3 the crafted vilains dismay 1743 1732 1732 [unused176]
0.0 1 ACE unfold mystic mystic 1736 1736 1736 [unused659]
2 Apex crafted wretched wretched 1732 1732 1732 [unused80]
3 EA intertwined  timid timid 45th 45th  45th [unused176]

Table 2: The top three words decoded from word embeddings in RoBERTa-large and BERT-large, exhibiting the
highest degree of cosine similarity to the mixup embeddings with different \.

the mixup for the augmentation via VQ-TEGAN.

In the case of the BERT-large model, at A = 0.8,
a minor change is observed for the word “bad”, but
no change is observed for other words. Interest-
ingly, the new words included in the word “bad”
include the semantically unrelated word “295”. As
A decreases to 0.6, there is a significant increase in
unrelated tokens and numbers observed, indicating
a stronger deviation from the original words. As
the value of A is reduced from 0.4 to 0.0, the list is
filled with semantically irrelevant words.

Our analysis indicates that as A decreases, the
mixup embeddings exhibit an increasing diver-
gence from the original words. Furthermore, the
mixup embeddings produced by RoBERTa-large
are observed to encapsulate more semantically rich
and contextually pertinent words at smaller A com-
pared to those generated by BERT-large. This ob-
servation suggests that the mixup embeddings of
RoBERTa-large maintain a higher degree of seman-
tic coherence under mixup conditions compared
to BERT-large. This is corroborated by the classi-
fication performance presented in Table 1, which
demonstrates that RoOBERTa-large exhibits a sig-

nificant improvement in performance with mixup
embeddings, whereas BERT-large does not show a
comparable enhancement.

In conclusion, when VQ-TEGAN generates
meaningful synthetic embeddings and integrates
mixup embeddings with real embeddings for few-
shot learning, it has the potential to facilitate the
application of mixup embeddings with an expanded
and more heterogeneous semantic spectrum for
few-shot learning. Additional semantic analysis
on mixup embeddings can be found in the Ap-
pendix D.

4.5 Sensitivity Analysis on Mixup Ratio

In Table 3, we present a comparative analysis of
the results derived from conventional fine-tuning
and our proposed model, employing three distinct
A values (0.0, 0.2, and 0.4). The scenario with
A = 1 was omitted from the sensitivity analysis
due to its redundancy in merely duplicating the
real embedding. Likewise, scenarios with A = 0.6
and A = 0.8 were excluded as their results did not
show significant deviations from those presented
in Table 2.



Model CoLA SST-2 MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI
(Matt.) (acc) (F1) (acc) (acc) (acc) (acc) (acc) (acc)
RoBERTa-large 17.20+10.28 72.58+9.59 67.86+7.83 62.26+6.91 33.62+0.70  34.78+0.58 47.80+1.49 49.68+1.22 57.38+5.20
w/ A =0.0 28.32+11.60 78.14+8.13  71.98+6.36 70.98-+8.10 34.60+1.56  36.00+2.51 48.22+1.42 50.24+0.42  60.96+4.42
w/A=0.2 29.66-+5.02 76.84+5588 72.50+4.16 66.68+7.68 34.40+0.90 34.66+1.07 49.64+1.40 50.02+0.65 59.18+4.08
w/A=04 18.30+3.72 74.42+7.33  71.62+6.86 65.24+9.24 34.68+1.14  35.60+2.29 48.94+0.27 50.22+0.76  62.60+2.95
BERT-large 8.18+4.04 75.36+8.16  64.42+14.51  59.1248.69  32.32+1.00 33.46+2.29 48.92+1.66 49.56+0.43 47.80+9.28
w/ A =0.0 9.44+6.84 77.34+5.00 68.20+11.32 66.98+5.59 34.32+1.18  35.08+2.78  50.26+1.81 49.42+0.44 52.74+6.77
w/ A =0.2 12.38+4.53 77.00+5.36  71.62+6.92 62.76+12.57 33.46+1.57 34.24+1.41 50.12+0.98 49.46+0.91 51.22+7.04
w/A=0.4 9.62+7.42 78.60+4.38  69.96+7.08 63.78+7.14 33.58+1.65 34.02+3.10 51.78+1.27  49.56+0.50 52.34+6.52

Table 3: A comparative analysis of conventional fine-tuning and VQ-TEGAN for different )\, using RoBERTa-large
and BERT-large as base models. The bold numbers indicate instances where VQ-TEGAN outperforms conventional

fine-tuning for each respective task, while underlined numbers indicate the highest performance.

Using RoBERTa-large for few-shot learning,
VQ-TEGAN demonstrates superior performance
relative to fine-tuning across all evaluated tasks. In
general, A = 0.0 and A = 0.2 exhibit increased
efficacy compared to traditional fine-tuning and
A = 0.4, with the exception of MNLI-m and WNLI.
Specifically, for tasks such as SST-2, QQP, MNLI-
mm, and RTE, the optimal results are observed
with A = 0.0. In contrast, A = 0.2 achieves su-
perior results in CoLA, MRPC, and QNLI. In par-
ticular, A = 0.4 surpasses A = 0.0 and A = 0.2
exclusively in MNLI-m and WNLI. These findings
indicate that the incorporation of synthetic embed-
dings or mixup embeddings significantly enhances
model generalization and performance.

In contrast, using BERT-large for few-shot learn-
ing reveals a distinct pattern. Specifically, a A value
of 0.2 enhances performance beyond traditional
fine-tuning in the CoLA and MRPC datasets. The
most substantial performance improvements are
achieved with A = 0.4 in the SST-2, QNLI, and
RTE tasks. In particular, a A value of 0.0 yields
the highest performance metrics in QQP, MNLI-m,
MNLI-mm, and WNLI. These observations sug-
gest that the efficacy of BERT is differentially in-
fluenced by varying A values and synthetic em-
beddings contingent on the specific task, thereby
indicating the absence of a universally optimal A
value across all tasks.

5 Conclusion

This study introduces VQ-TEGAN, a novel data
augmentation method for text embedding. VQ-
TEGAN generates embeddings across various se-
mantic and synonymic dimensions of PLM em-
beddings, facilitating more efficient and effective
acquisition of a broader spectrum of semantics
during the fine-tuning of PLMs with limited train-
ing datasets. Our empirical analysis reveals that

VQ-TEGAN (1) achieves superior performance
enhancements on GLUE benchmark tasks in few-
shot learning contexts, (2) is more compact and
lightweight compared to other language models em-
ployed for data augmentation, (3) augments PLM
performance, particularly when utilized with PLMs
possessing larger embeddings, and (4) introduces
a more efficient loss function for text embedding
generation via the convergence of loss functions.

6 Limitations

Despite its novelty, there are limitations that need
to be addressed in future work. As discussed in sec-
tion 4.4, the semantic analysis of the closest PLM
word embeddings to the mixup embeddings eluci-
dates the potential for formulating a novel embed-
ding space conducive to few-shot learning. How-
ever, a limitation is identified where VQ-TEGAN-
generated embeddings may converge within a
space similar to other semantic embeddings, at-
tributable to the anisotropy issue inherent in PLM
word embeddings (Ethayarajh, 2019; Li et al.,
2020). A possible approach is to train VQ-TEGAN
utilizing word embeddings derived from PLMs that
have been refined through contrastive learning(Gao
et al., 2021), addressing the anisotropy issue within
the embedding space. Lastly, this study exclusively
investigates the instances of VQ-TEGAN utilizing
RoBERTa-large and BERT-large. For subsequent
study, a broader spectrum of PLMs should be ex-
plored for the implementation of VQ-TEGAN.

7 Ethics Statement

This paper investigates data augmentation in the
generation of embeddings for few-shot learning. It
is not anticipated that this research will raise any
ethical or social issues. All data utilized in this
study is publicly accessible and has been utilized
by numerous researchers. The proposed method



does not introduce any ethical biases into the data.
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A Training Details for VQ-TEGAN

The generator architecture includes an encoder, a
decoder, and a codebook of latent vectors. The en-
coder is composed of four sequential blocks, each
containing a fully connected layer, batch normaliza-
tion, and the LeakyReL U activation function (Jian
et al., 2022). This encoder progressively reduces
the dimensionality to 1024, 512, 256, and 128. The
codebook comprises quantized latent vectors that
correspond to the output dimensions of the encoder.
The quantity of codebook vectors is adjusted as
a hyperparameter during the experimental proce-
dures. The decoder, which structurally parallels
the encoder, consists of four blocks that expand the
quantized codebook vectors to dimensions of 128,
256, 512, and 1024. The discriminator is structured
with three blocks, having dimensions of 512, 512,
and 1, respectively, and produces a singular tensor
output. VQ-TEGAN is subjected to training for 10
epochs with a batch size of 64, utilizing the Adam
optimizer (8 = (0.5,0.999)) and a fixed random
seed of 42. The training process includes a grid
search for the learning rates of 2¢~° and 5¢ 7, as
well as codebook vector quantities of 1024, 2048,
and 4096.

B Hyperparameters for Few-shot
Learning

The model is trained using learning rates of le™>
and 2e~5, with batch sizes of 4 and 8. Random
number generation seeds of 13, 21, 42, 87, and 100
are utilized. The training process was capped at 150
epochs, with the final model being selected based
on validation accuracy at each epoch. An early
stopping mechanism is used to mitigate overfitting,
halting training if no improvement in validation
accuracy is observed after 100 epochs (Prechelt,
2002).

To train the PLM with augmented embeddings,
comprehensive experiments are conducted across
all parameters. The mixup ratios for x and % are
evaluated at A values of 0, 0.2, and 0.4 as illus-
trated in Eq. 6. Both EDA and EmbedHalluc are
executed using default settings, with EDA’s data
augmentation further explored by generating 4 and
9 additional samples.

The algorithms are implemented using Python
3.10.8 and PyTorch 1.13.1. The experiments are
carried out on an Ubuntu 20.04.6 system equipped
with a Nvidia RTX 3090 TI (24 GB RAM) and an
Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz.
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The NLTK 3.8.1 toolkit is used for synonym re-
placement in the EDA process. RoBERTa-large
and BERT-large models, along with their tokeniz-
ers, are sourced from the Hugging Face Transform-
ers library.

C Benchmarks

The performance of VQ-TEGAN is evaluated in
comparison to established benchmarks: conven-
tional fine-tuning, EDA, and EmbedHalluc based
on cWGAN.

* Conventional Fine-tuning constitutes a fun-
damental approach where a few-shot language
model is trained exclusively on the provided
dataset, devoid of any supplementary data aug-
mentation.

EDA (Wei and Zou, 2019) represents a data
augmentation that incorporates four principal
techniques: synonym replacement, random
deletion, random swap, and random addition.
This method is both intuitive and efficient, fa-
cilitating the generation of a substantial num-
ber of synthetic sentences in a straightforward
manner.

EmbedHalluc(Jian et al., 2022) leverages cW-
GAN to augment textual data within the em-
bedding space. The training process encom-
passes both the generator and the discrimina-
tor, with data augmentation being realized by
doubling the few-shot data via the generator.

D Text Embedding Analysis

Tables 4, 5, 6, and 7 present the words of the em-
bedding tokens that exhibit the three highest cosine
similarities between the mixup embeddings gener-
ated by VQ-TEGAN and the embeddings within
the PLM under various parameter configurations.
Tables 4 and 5 elucidate the results for RoOBERTa-
large embeddings, while Tables 6 and 7 illustrate
the results for BERT-large embeddings. The pa-
rameter configurations encompass the learning rate
of VQ-TEGAN, the number of codebook vectors,
and five distinct values of .

Tables 4 and 5 show the evolving patterns in
the semantic representations of the embeddings as
the parameter A chages, as discerned through our
comprehensive analysis.

At a X value of 0.0, where the embeddings are
synthesized exclusively by VQ-TEGAN in the ab-
sence of any real embeddings, the cosine similar-
ity fails to effectively discern relatedness or syn-
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onymy. This observation implies that the synthetic
embeddings may exhibit abstract or non-traditional
associations at this A\, which deviate from the con-
ventional semantic relationships observed in real
embeddings.

A notable change is observed when the param-
eter \ is elevated to 0.2 or 0.4. At these A values,
the top three synonyms for each text sample exhibit
increased diversity, which means that the mixed
embeddings now encapsulate a wider spectrum of
semantic similarities. For instance, Table 4 demon-
strates that the mixup embedding of “beautiful”,
with a A of 0.2, achieves the highest cosine simi-
larities of 0.751, 0.742, and 0.740 with the embed-
dings of adjectives bearing analogous meanings,
such as “exquisite”, “magnificent”, and “marvel-
lous”, respectively, for Iry g of 5e-05 and a code-
book size of 4096. In Table 5, it is evident that
the mixup embedding of “characters” manifests
the three highest cosine similarities of 0.670, 0.670,
and 0.658 with the embeddings of nouns possessing
similar or identical meanings, such as “villains”,
“superheroes”, and “characters”. This observation
is pivotal, as it suggests that the mixup embedding
at these A values transcends a mere replication of
the original meanings. Moreover, it introduces an
extensive array of related concepts with real embed-
dings. The inclusion of 20% of z functions as an
anchor, anchoring the synthetic embedding within
the original semantic framework while still allow-
ing the introduction of novel nuances. This equi-
librium, facilitated by synthetic embeddings gen-
erated by VQ-TEGAN, which adeptly constructs
the semantic space of PLM’s embedding, culmi-
nates in mixup embeddings that are enriched with
supplementary contextual meaning. This gener-
ates a more nuanced and comprehensive semantic
comprehension.

Upon observation, it was observed that when the
parameter \ exceeds the threshold of 0.6, the aug-
mented embeddings exhibit a pronounced resem-
blance to the real embedding x. This phenomenon
indicates that at elevated values, the mixup em-
beddings converge more closely with the semantic
attributes of the genuine embedding, thereby dimin-
ishing the distinctions from the original embedding.
As a result, this convergence may precipitate issues
of data redundancy, as the mixup embeddings may
not provide substantially novel or diverse informa-
tion relative to the original dataset.

Tables 6 and 7 demonstrate that the evaluation
of BERT-large mixup embeddings via cosine sim-
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ilarity indicates that those embeddings with the
highest cosine similarity exhibit inferior semantic
coherence compared to ROBERTa-large.

When A is set to 0, the mixup embeddings
occupy a space distinct from the real embed-
dings. This phenomenon arises due to the non-
convergence of the cosine similarity depicted in
Figure 4c, despite the partial convergence of the
reconstruction loss illustrated in Figure 4d. Further-
more, it is apparent that the mixup embeddings are
predominantly characterized by synthetic embed-
dings when A is 0.2 and 0.4, with only embeddings
being identified in a space similar to synthetic em-
beddings. For A values of 0.6 and 0.8, the mixup
embeddings exhibit a greater resemblance to the
real embeddings, with a minority of embeddings
situated in a space similar to that of the synthetic
embeddings. This observation substantiates that
the mixup embeddings for BERT-large do not pos-
sess a semantic meaning that is markedly distinct
from the real and synthetic embeddings.

Tables 4 and 5 illustrate that VQ-TEGAN gener-
ates semantic embeddings that provide ROBERTa-
large with access to a more diverse and meaningful
embedding space for learning. Conversely, Tables
6 and 7 reveal that the mixup embeddings on BERT-
large exhibit less significant cosine similarity com-
pared to those augmented on RoBERTa-large em-
beddings.
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