VQ-TEGAN: Data Augmentation with Text Embeddings for Few-shot Learning

Anonymous ACL submission

Abstract

 Data augmentation is crucial for the fine-tuning of pre-trained models and the optimization of limited data utilization, particularly within the realm of few-shot learning. Traditionally, these techniques have been applied at the word and sentence levels, with little research conducted within the embedding space. This paper in-008 troduces **VQ-TEGAN**, a novel data augmen- tation approach designed to generate embed- dings specifically for a few-shot learning. VQ-**TEGAN** generates embeddings that augment the few-shot dataset by training directly within the PLMs' word embedding, employing a cus- tomized loss function. Empirical valildation on GLUE benchmark datasets demonstrates that **VQ-TEGAN** markedly improves text classifica- tion performance. Additionally, we investigate the application of VQ-TEGAN with RoBERTa- large and BERT-large, offering insight for fur-ther application.

⁰²¹ 1 Introduction

 Text classification is a crucial task in natural lan- guage processing (NLP) [\(Kowsari et al.,](#page-9-0) [2019\)](#page-9-0). Al- though fine-tuning pre-trained language models (PLMs) on large datasets is highly effective, per- formance declines with smaller training data sizes [\(Gao et al.,](#page-8-0) [2020;](#page-8-0) [Longpre et al.,](#page-9-1) [2020\)](#page-9-1). This is due to the lack of diverse examples. Data augmentation has emerged as a solution to improve model per- formance with limited data, applicable in various fields such as healthcare [\(Eaton-Rosen et al.,](#page-8-1) [2018;](#page-8-1) [Ker et al.,](#page-9-2) [2017\)](#page-9-2), finance [\(Fons et al.,](#page-8-2) [2020;](#page-8-2) [El-](#page-8-3) [Laham and Vyetrenko,](#page-8-3) [2022\)](#page-8-3), and computer vision [\(Zhang et al.,](#page-10-0) [2017;](#page-10-0) [Chen et al.,](#page-8-4) [2020b\)](#page-8-4).

 In NLP, data augmentation is often performed [t](#page-10-1)hrough word-level manipulation (*e.g.*, EDA [\(Wei](#page-10-1) [and Zou,](#page-10-1) [2019\)](#page-10-1) and AEDA [\(Karimi et al.,](#page-9-3) [2021\)](#page-9-3)). Recent advances include sentence-level interpola- tion methods like MixText [\(Zhang et al.,](#page-10-2) [2022\)](#page-10-2) and 040 Treemix [\(Zhang et al.,](#page-10-2) [2022;](#page-10-2) [Chen et al.,](#page-8-5) [2020a\)](#page-8-5).

Figure 1: Graphical abstract of VQ-TEGAN. The primary aim of VQ-TEGAN is to produce synthetic embeddings that closely approximate the original real embeddings. Subsequently, the synthetic embedding is mixed with the real embedding to formulate a mixup embedding, which resides within a space comparable to that of other synonymous embeddings.

In addition, language-model-based augmentations **041** such as LAMBADA [\(Anaby-Tavor et al.,](#page-8-6) [2020\)](#page-8-6), 042 BF-Translation [\(Body et al.,](#page-8-7) [2021\)](#page-8-7), BART Pro- **043** [t](#page-9-4)Augment [\(Dopierre et al.,](#page-8-8) [2021\)](#page-8-8), and SSMBA [\(Ng](#page-9-4) **044** [et al.,](#page-9-4) [2020\)](#page-9-4) have been developed. While LAM- **045** BADA and BART ProtAugment require separate **046** fine-tuning for data augmentation, SSMBA and **047** BF-Translation do not, but they demand significant **048** storage space and time due to the need for large 049 language models or the Google Translation API. **050**

Before training a language model, sentences are **051** tokenized and converted to embeddings, which **052** are used as direct input [\(Mikolov et al.,](#page-9-5) [2013\)](#page-9-5). **053** Some works have applied data augmentation at **054** [t](#page-10-3)he embedding level. For example, [Wang and](#page-10-3) **055** [Yang](#page-10-3) [\(2015\)](#page-10-3) used semantic and lexical embed- **056** dings from Word2Vec [\(Mikolov et al.,](#page-9-5) [2013\)](#page-9-5) to **057** replace original words with k-nearest neighbor vec- **058** tors. TreeMixup [\(Guo et al.,](#page-8-9) [2019\)](#page-8-9) applies linear **059** interpolation to word and sentence embeddings, pi- **060** [o](#page-9-6)neering this technique in NLP tasks. TACLR [\(Jia](#page-9-6) **061** [et al.,](#page-9-6) [2023\)](#page-9-6) combines TreeMixup and EDA for con- **062** trastive learning. Recent studies show promising re- **063** sults using models that generate synthetic sentence 064

 hance text embeddings to supplement insufficient **068** data. This research proposes Vector-Quantized Text **Embedding Generative Adversarial Networks (VQ-TEGAN**). VQ-TEGAN leverages the capabilities of Vector Quantized Generative Adversarial Net-work (VQ-GAN) [\(Esser et al.,](#page-8-10) [2021\)](#page-8-10) to generate

 text embeddings optimized for the semantic repre- sentation provided by word embeddings in PLMs (*e.g.*, RoBERTa-large [\(Liu et al.,](#page-9-9) [2019\)](#page-9-9) and BERT-large [\(Devlin et al.,](#page-8-11) [2018\)](#page-8-11)). VQ-TEGAN is based

079 of PLMs can capture deep linguistic properties **080** beyond simple syntactic structures. We hypoth-**081** esize that synthetic embeddings generated by VQ-

- **082** TEGAN can encapsulate complex features such as **083** context and sentiment, crucial for few-shot learn-**084** ing tasks. Synthetic embeddings are employed in
- **085** PLM training to provide new text examples that pre-**086** serve semantic consistency and syntactic accuracy
- **087** with the few-shot embedding data. This approach **088** aligns with [Brown et al.](#page-8-12) [\(2020\)](#page-8-12), demonstrating that

089 language models trained on extensive datasets can **090** leverage prior knowledge to perform tasks with

091 limited examples. **092** Our contributions can be summarized as follows:

- **We propose a novel data augmentation model,**
- **094** VQ-TEGAN, for generating synthetic embed-**095** dings located in a similar space as real embed-

• VQ-TEGAN is a lightweight model for data

098 augmentation, allowing easy application and **099** minimal storage requirements.

100 • We introduce a novel loss function suitable for **101** NLP embeddings to train VQ-TEGAN.

102 • Experimental results indicate that VQ-**103** TEGAN outperforms benchmarks in few-shot

- **104** learning.
- **105** The adequacy of the generated embeddings is **106** confirmed by analyzing their meaning using
- **107** cosine similarity to the word embeddings in
- **108** PLMs.

¹⁰⁹ 2 Related Work

110 2.1 Generative Model

096 dings as illustrated in Figure [1.](#page-0-0)

 The evolution of generative models has been led by the advances of autoencoders [\(Ranzato et al.,](#page-9-10) [2007\)](#page-9-10). Variational Autoencoders (VAE) [\(Kingma](#page-9-11) [and Welling,](#page-9-11) [2013\)](#page-9-11) use neural networks to en-

065 embeddings similar to real sentences [\(Onan,](#page-9-7) [2023;](#page-9-7) 066 [Jian et al.,](#page-9-8) [2022\)](#page-9-8). These methods effectively en-

078 on the understanding that the word embeddings

code input data into a lower-dimensional latent **115** space and decode it back, optimizing the lower 116 bound on the likelihood of the data. This enables **117** tasks such as data generation and feature extraction. **118** [G](#page-8-13)enerative Adversarial Networks (GAN) [\(Good-](#page-8-13) **119** [fellow et al.,](#page-8-13) [2014\)](#page-8-13) employ two neural networks, **120** a generator and a discriminator, training them si- **121** multaneously in a competitive setting to generate **122** data samples that are indistinguishable from real **123** data. Wasserstein GAN (WGAN) [\(Arjovsky et al.,](#page-8-14) **124** [2017\)](#page-8-14) improves on traditional GANs by using a **125** Wasserstein distance metric for the loss function, **126** improving training stability and addressing mode **127** collapse, resulting in higher-quality generated sam- **128** ples. Conditional WGAN (cWGAN) [\(Yu et al.,](#page-10-4) **129** [2019\)](#page-10-4) extends WGAN by incorporating conditional **130** variables, allowing the generation of samples con- **131** ditioned on specific attributes and enhancing the **132** model's ability to generate more targeted and di- **133** verse data samples. Vector Quantized Variational **134** Autoencoders (VQ-VAE) [\(Van Den Oord et al.,](#page-10-5) **135** [2017\)](#page-10-5) and VQ-GAN employ discrete latent repre- **136** sentations through vector quantization. VQ-VAE 137 improves its ability to handle complex data distri- **138** butions compared to standard VAEs by learning a **139** finite set of embeddings. VQ-GAN combines the **140** VQ-VAE method with a discriminator to differenti- **141** ate between real and fake data more effectively by **142** learning a codebook. **143**

In the realm of NLP, autoencoders are frequently **144** combined to generate data in an embedding space **145** [\(Malandrakis et al.,](#page-9-12) [2019;](#page-9-12) [Piedboeuf and Langlais,](#page-9-13) **146** [2022\)](#page-9-13). This study leverages the VQ-GAN method **147** to generate synthetic embeddings. Additionally, **148** we analyze the semantic content of the synthetic **149** embeddings produced by VQ-TEGAN and com- **150** pare it with the embeddings created by mixup and **151** the original text embedding data. **152**

2.2 Text Augmentation **153**

Text augmentation aims to improve model per- **154** formance when data is insufficient. Early work **155** includes EDA [\(Wei and Zou,](#page-10-1) [2019\)](#page-10-1) and AEDA **156** [\(Karimi et al.,](#page-9-3) [2021\)](#page-9-3). EDA employs four straight- **157** forward data augmentation techniques: random **158** swap, random insertion, random deletion, and syn- **159** onym replacement. Similarly, AEDA operates by **160** randomly inserting punctuation marks. TreeMix **161** [\(Zhang et al.,](#page-10-2) [2022\)](#page-10-2) utilizes constituency parsing **162** trees to decompose sentences into component sub- **163** structures, which are then recombined using the 164 mixup data augmentation method to generate new **165**

166 sentences.

 Instead of reorganizing words or sentences, an- other approach involves generating new text data [u](#page-8-6)sing LLMs for data augmentation [\(Anaby-Tavor](#page-8-6) [et al.,](#page-8-6) [2020;](#page-8-6) [Body et al.,](#page-8-7) [2021;](#page-8-7) [Dopierre et al.,](#page-8-8) [2021;](#page-8-8) [Ng et al.,](#page-9-4) [2020\)](#page-9-4). LAMBADA [\(Anaby-Tavor](#page-8-6) [et al.,](#page-8-6) [2020\)](#page-8-6) fine-tunes a GPT model [\(Radford et al.,](#page-9-14) [2019\)](#page-9-14) on a small dataset and then augments it with the given label. BF-Translation [\(Body et al.,](#page-8-7) [2021\)](#page-8-7) uses the Google Translate API, with German as an intermediate language, to back-translate text for sentiment analysis. ProtAugment [\(Dopierre et al.,](#page-8-8) [2021\)](#page-8-8) combines paraphrases generated from the BART model with sentences produced through tra- ditional back-translation, improving intent detec- tion models via unsupervised meta-learning. This method utilizes paraphrasing-based data augmen- tation. SSMBA [\(Ng et al.,](#page-9-4) [2020\)](#page-9-4) is a word-level data augmentation technique that employs a corrup- tion function to mask specific tokens in a sentence and replace them with new tokens using a BERT **187** model.

 Furthermore, data augmentation in continuous [e](#page-9-8)mbedding spaces, such as EmbedHalluc [\(Jian](#page-9-8) [et al.,](#page-9-8) [2022\)](#page-9-8), has shown promising results. Specifi- cally, graph-based methods [\(Onan,](#page-9-7) [2023\)](#page-9-7) and con- trastive learning [\(Jia et al.,](#page-9-6) [2023\)](#page-9-6) have been ex- plored for text augmentation. Embedding Aug- menter [\(Pellicer et al.,](#page-9-15) [2023\)](#page-9-15) is a technique that uses a word-changing algorithm with the GloVe model [\(Pennington et al.,](#page-9-16) [2014\)](#page-9-16) with 300 dimen-sions to find the most similar words.

 This study investigates the use of synthetic em- beddings for data augmentation, where embeddings are derived from synonyms and related words. In particular, the proposed VQ-TEGAN model offers the advantage of being relatively lightweight com-pared to larger language models.

204 2.3 Fine-tuning of Pre-trained Language **205** Models

 Numerous studies suggest using general models [t](#page-9-18)o address NLP problems [\(Kim,](#page-9-17) [2014;](#page-9-17) [Huang](#page-9-18) [et al.,](#page-9-18) [2015;](#page-9-18) [Kowsari et al.,](#page-9-0) [2019\)](#page-9-0). However, with the recent emergence of PLMs (*e.g.*, BERT and RoBERTa), there has been a surge in research on few-shot learning to leverage limited data with the help of PLMs [\(Gupta et al.,](#page-8-15) [2020;](#page-8-15) [Zhong et al.,](#page-10-6) [2021;](#page-10-6) [Chada and Natarajan,](#page-8-16) [2021;](#page-8-16) [Ram et al.,](#page-9-19) [2021\)](#page-9-19). Some studies have applied data augmenta- tion to NLP classification tasks to improve few-shot learning performance [\(Wei et al.,](#page-10-7) [2021;](#page-10-7) [Jian et al.,](#page-9-8) [2022;](#page-9-8) [Zhang et al.,](#page-10-2) [2022;](#page-10-2) [Jia et al.,](#page-9-6) [2023\)](#page-9-6). How- **217** ever, the approach of creating new synthetic word **218** embeddings for each word in a sentence, merging **219** them, and using the resulting synthetic sentence **220** embedding as training data for text classification **221** has not yet been explored. In this context, we pro- **222** pose VQ-TEGAN, the first attempt to apply the **223** VQ-GAN method to generate new synthetic text **224** embeddings for fine-tuning PLMs. **225**

3 Methods **²²⁶**

3.1 Overview **227**

This research aims to evaluate the effectiveness **228** of VQ-TEGAN in few-shot learning compared to **229** benchmarks by performing classification tasks in **230** limited data environments. The complete process **231** of fine-tuning the PLM is illustrated in Figure [2.](#page-2-0) **232**

Figure 2: Few-shot learning process using VQ-TEGAN

To preserve the integrity and diversity of the **233** dataset, non-duplicating samples are randomly se- **234** lected from each class for each classification task **235** in the training and validation sets, respectively. The **236** conversion of few-shot datasets to real embeddings **237** is achieved using the PLM's individual tokenizer **238** and token embeddings, which are subsequently **239** used to form preprocessed embeddings. The real **240** embeddings of the training set are then utilized **241** to create synthetic embeddings through the pre- **242** trained VQ-TEGAN. The synthetic embeddings **243** for each real embedding are subsequently mixed to **244** form the final augmented embeddings. The final **245** augmented dataset, which includes one synthetic **246** data point corresponding to each real data point, **247** is used for few-shot learning. This approach takes **248** advantage of the diversity introduced by the aug- **249** mented data, operating under the assumption that **250** it will enhance the learning capacity of the model **251** [w](#page-8-17)hen dealing with a restricted dataset [\(Arthaud](#page-8-17) **252**

 [et al.,](#page-8-17) [2021;](#page-8-17) [Xie et al.,](#page-10-8) [2020\)](#page-10-8). Also, the freezing of word embeddings within the PLM during few- shot learning preserves the semantic integrity of the augmented dataset within the embeddings. This method proficiently transmits the intended seman- tics of the augmented dataset in few-shot learning contexts.

260 3.2 VQ-TEGAN

 The architecture of a new generative model for text embedding data, VQ-TEGAN, is presented in detail in Figure [3.](#page-4-0) The primary objective is to train VQ-TEGAN directly within word embed- dings in PLM to generate high-quality synthetic text embeddings. This approach has the advantage of leveraging PLM embeddings, eliminating the need for a separate training dataset. Furthermore, VQ-TEGAN allows the encapsulation of word em- beddings with analogous attributes into quantized vectors, ensuring that the generated synthetic em- beddings retain their distinct characteristics. The amount of training data depends on the number of word embeddings in PLMs. Note that RoBERTa- large and BERT-large have 50,265 and 30,522 em- bedding vectors, respectively. This approach has the advantage of utilizing embeddings of PLM, eliminating the need for a separate training dataset.

 In VQ-VAE, a discrete-dimensional encoder out- put paired with an autoregressive decoder effec- [t](#page-10-5)ively solves the posterior collapse problem [\(Van](#page-10-5) [Den Oord et al.,](#page-10-5) [2017\)](#page-10-5). VQ-TEGAN employs a similar structure to reconstruct the real embedding (x) as the synthetic embedding (\hat{x}) through the en- coder E - decoder D structure illustrated in Figure [3.](#page-4-0) 286 The input vector $x \in \mathbb{R}^{n_x}$, where n_x is the dimen- sionality of the input embedding, is compressed by 288 the encoder **E** into the latent vector $\hat{z} \in \mathbb{R}^{n_z}$, where n_z is the dimensionality of the codebook vector.

> The latent vector \hat{z} is converted into one of the nearest codebook vectors, $z_{q} \in \mathcal{Z}$, by finding the distance to the vectors in the predefined discrete codebook, where $\mathcal{Z} = \{z_k\}_{k=1}^K \subset \mathbb{R}^{n_z}$ and K is the number of codebook vectors. Specifically, \hat{z} is created from x and then quantized by replacing \hat{z} with the nearest codebook to obtain z_{α} such that:

$$
z_{\mathbf{q}} = \mathbf{q}(\hat{z}) := \underset{z_k \in \mathcal{Z}}{\arg \min} ||\hat{z} - z_k||^2 \in \mathbb{R}^{n_z} \qquad (1)
$$

where $\hat{z} = \mathbf{E}(x)$. The reconstruction $\hat{x} \approx x$ is given by:

$$
\hat{x} = \mathbf{D}(z_{\mathbf{q}}) \tag{2}
$$

Backpropagation is not differentiable due to the quantization operation in Eq. [1.](#page-3-0) However, the model and codebook can be learned end-to-end via a loss function using a straight-through gradient estimator [\(Bengio et al.,](#page-8-18) [2013\)](#page-8-18) that copies the gradient from the decoder to the encoder as follows:

$$
\mathcal{L}_{\mathbf{VQ}}(\mathbf{E}, \mathbf{D}, \mathcal{Z}) = ||x - \hat{x}|| + 1 - \sigma(\hat{x}, x) + ||\text{sg}[\mathbf{E}(x)] - z_{\mathbf{q}}||^2 + \beta \times ||\text{sg}[z_{\mathbf{q}}] - \mathbf{E}(x)||^2 \quad (3)
$$

Note that $||x - \hat{x}||$ is a reconstruction loss (\mathcal{L}_{rec}); 290 $1 - \sigma(\hat{x}, x)$ $1 - \sigma(\hat{x}, x)$ is the cosine loss (\mathcal{L}_{\cos}) [\(Barz and Den-](#page-8-19) 291 [zler,](#page-8-19) [2020\)](#page-8-19) where $\sigma(\cdot)$ represents the cosine similarity operation; and $||sg[z_q] - \mathbf{E}(x)||^2$ is the com-mitment loss [\(Van Den Oord et al.,](#page-10-5) [2017\)](#page-10-5) where 294 sg[·] represents the stop-gradient operation. **295**

To customize a learning approach for text em- **296** beddings, we modify the loss function commonly **297** used in computer vision [\(Esser et al.,](#page-8-10) [2021\)](#page-8-10). Specif- **298** ically, we replace the L_2 loss with the L_1 loss in 299 Lrec, a technique known for its effectiveness in **300** high-resolution image restoration tasks [\(Zhao et al.,](#page-10-9) **301** [2016;](#page-10-9) [Wu et al.,](#page-10-10) [2021;](#page-10-10) [Liu et al.,](#page-9-20) [2021\)](#page-9-20). The impor- **302** tance of cosine similarity in semantic analysis is **303** derived from the inherent nature of text data embed- **304** ding [\(Rahutomo et al.,](#page-9-21) [2012;](#page-9-21) [Pellicer et al.,](#page-9-15) [2023\)](#page-9-15). **305** Lcos is employed to ensure that the synthetic em- **306** bedding \hat{x} is generated in a space characterized by 307 high cosine similarity to the real embedding x. 308

The discriminator of VQ-TEGAN, Disc, is responsible for distinguishing between real and fake embedding, resulting in a loss $\mathcal{L}_{\text{Disc}}$ that follows the WGAN loss to efficiently train the generator [\(Arjovsky et al.,](#page-8-14) [2017\)](#page-8-14):

$$
\mathcal{L}_{GAN}(\{\mathbf{E}, \mathbf{D}, \mathcal{Z}\}, \mathbf{Disc}) = \mathbf{Disc}(x) - \mathbf{Disc}(\hat{x}) \tag{4}
$$

The complete objective to identify the optimal compression model $Q^* = {\mathbf{E}^*, \mathbf{D}^*, \mathcal{Z}^* }$ can be expressed as follows:

$$
Q^* = \underset{\mathbf{E}, \mathbf{D}, \mathcal{Z}}{\arg \min \max} \mathbb{E}_{x \sim p(x)}[\mathcal{L}_{\text{VQ}}(\mathbf{E}, \mathbf{D}, \mathcal{Z}) +
$$

$$
\mathcal{L}_{\text{GAN}}(\{\mathbf{E}, \mathbf{D}, \mathcal{Z}\}, \mathbf{Disc})] \quad (5)
$$

VQ-TEGAN stands out for its scalability and **309** memory efficiency in text embedding data augmen- **310** tation, optimizing computational resources. The **311** model's parameters remain almost constant despite **312** an increase in codebooks, growing only slightly **313** from 5.03M (19.22MB) for 1024 codebooks to **314** 5.42M (20.72MB) for 4096 codebooks. This **315**

Figure 3: Model architectures of VQ-TEGAN

 lightweight nature allows VQ-TEGAN to be de- ployed on various hardware, from high-end servers to resource-limited edge devices. Its compact de- sign makes it ideal for scenarios that require robust text embedding augmentation without compromis- ing performance. Training procedures are detailed in Appendix [A.](#page-10-11)

323 3.3 Mixup Embedding

Mixup for word embedding, an application method devised by [Guo et al.](#page-8-9) [\(2019\)](#page-8-9), involves the linear interpolation of real and synthetic embeddings. We apply the mixup method as follows:

$$
\tilde{x} = \lambda x + (1 - \lambda)\hat{x} \tag{6}
$$

324 The mixup ratio λ specifies the proportion of **325** real embedding (x) in the mixed embedding. For 326 **instance, a** λ of 1.0 indicates that the mixed em-327 bedding \tilde{x} is entirely composed of x, while a λ of 328 0.4 produces a mixture of 40% of x and 60% of \hat{x} . 329 When λ is 0.0, \tilde{x} is composed of \hat{x} only.

³³⁰ 4 Results & Discussions

331 4.1 Dataset

 The research employs nine classification tasks from the GLUE benchmark dataset [\(Wang et al.,](#page-10-12) [2018\)](#page-10-12). The GLUE benchmark encompasses diverse tasks, including grammatical acceptability (CoLA), sen- timent analysis (SST-2), sentence semantic equiva- lence (MRPC), semantic similarity (QQP), logical inference (MNLI-m, MNLI-mm), validity of sen- tence answers to questions (QNLI), and logical entailment (RTE), pronoun resolution (WNLI).

 We randomly select 16 train and validation sam- ples per class from the train and validation set of each task. The evaluations are based on the average results of five different seeds in the test set.

4.2 Impact of Consine Loss **345**

(a) \mathcal{L}_{\cos} using RoBERTa-large word embedding

(b) \mathcal{L}_{rec} using RoBERTa-large word embedding

(c) \mathcal{L}_{cos} using BERT-large word embedding (d) \mathcal{L}_{rec} using BERT-large word embedding

Figure 4: \mathcal{L}_{\cos} and $\mathcal{L}_{\rm rec}$ as a loss function with or without \mathcal{L}_{\cos} when training VQ-TEGAN

The analysis of Figure [4](#page-4-1) underscores the im- **346** portance of integrating the cosine loss term, \mathcal{L}_{\cos} , $\frac{347}{2}$ within Eq. [3.](#page-3-1) The integration stabilizes and ac- 348 celerates the convergence, thus enhancing model **349** performance in similarity measures and improving **350** the quality of the reconstructed data. **351**

Figures [4a](#page-4-1) and [4c](#page-4-1) illustrate the effect of cosine **352** loss on the cosine similarity between the real em- **353** bedding x and the synthetic embedding \hat{x} . The fig- 354 ures demonstrate that incorporating cosine loss in **355** the generator's loss function, \mathcal{L}_{VO} , leads to faster 356 and more stable convergence (orange line) com- **357** pared to the method without cosine loss (blue line) **358** during VQ-TEGAN training. **359**

Figures [4b](#page-4-1) and [4d](#page-4-1) illustrate the reconstruction **360** loss, \mathcal{L}_{rec} , defined as the L_1 loss that quantifies the 361

5

 difference between real and synthetic embeddings. Incorporation of cosine loss yields lower and more stable L_1 loss values, indicating that synthetic em- beddings increasingly approximate the real input data. This observation implies that cosine loss en- hances the generator's proficiency in accurately re- constructing inputs, thereby improving the overall fidelity of the generated embeddings.

 Figure [4](#page-4-1) shows that the word embeddings de- rived from RoBERTa-large demonstrate a more consistent convergence in comparison to those of BERT-large during the training phase. This obser- vation suggests that RoBERTa-large embeddings are more appropriate for training VQ-TEGAN, with the potential to produce embeddings that are semantically richer than those obtained from BERT-large embeddings.

379 4.3 Classification Performance in Few-shot **380** Learning

 Table [1](#page-6-0) provides a comprehensive analysis of the efficacy of various data augmentation methods, namely EDA, EmbedHalluc, and VQ-TEGAN, when implemented in few-shot learning scenar- ios using RoBERTa-large and BERT-large models across nine distinct tasks. The hyperparameters for few-shot learning are presented in Appendix [B,](#page-10-13) while the benchmark methods are described in Ap- pendix [C.](#page-11-0) The findings indicate that VQ-TEGAN consistently surpasses the other methods in most tasks, underscoring its robustness in text data aug- mentation. In particular, VQ-TEGAN significantly outperforms in seven tasks, with the exception of QNLI and RTE. However, VQ-TEGAN still achieves parity with EmbedHalluc on QNLI and is only 0.72% less accurate than EDA on RTE.

 Although VQ-TEGAN demonstrates enhance- ments in RoBERTa-large, its performance remains comparable to other benchmarks when evaluated with BERT-large. EDA exhibits superior perfor- mance in MRPC (F1) with a score of 1.52, whereas EmbedHalluc surpasses in MNLI-mm, RTE, and WNLI by margins of 0.04%, 0.08%, and 0.94%, respectively. VQ-TEGAN also shows improved results, albeit marginally, with an increase of 0.08 in CoLA (Matt.), and 0.38%, 0.02%, and 1.94% in SST-2, MNLI-m, and QNLI, respectively. It is important to note that no significant performance disparities are observed when these models are ap-plied to BERT-large.

411 In conclusion, VQ-TEGAN consistently sur-**412** passes EDA and EmbedHalluc, particularly when

integrated with RoBERTa-large as opposed to **413** BERT-large. The magnitude and complexity of **414** the word embeddings of the employed PLM can **415** significantly influence the extent of performance **416** enhancement achieved with VQ-TEGAN. Given **417** that VQ-TEGAN is trained directly on the word **418** embeddings of the PLM, the utilization of more **419** diverse and intricate embeddings for training cul- **420** minates in more effective data augmentation. Con- **421** sequently, VQ-TEGAN can be seen as a suitable **422** data augmentation method to enhance the perfor- **423** mance of larger PLMs relative to smaller ones. **424**

4.4 Semantic Analysis on Mixup Embedding **425**

Table [2](#page-6-1) presents the three most prominent words **426** decoded from the word embeddings of RoBERTa- **427** large and BERT-large, demonstrating the highest **428** cosine similarity to the mixup embeddings with **429** different mixup ratio, λ . The words "beautiful", 430 "bad", "characters", and "doubts" are used as input, **431** and the results illustrate the alterations in embed- **432** dings under varying degrees of mixup. Note that **433** the embeddings are congruent with the real embed- **434** ding at $\lambda = 1.0$. The result is a representation of 435 the words in the embeddings that demonstrate the **436** highest cosine similarity to the real embedding for 437 each PLM. The results show that the embeddings **438** of all terms exhibit the highest cosine similarity to **439** the embeddings of synonyms or capitalized forms **440** for both PLMs. **441**

In the case of the RoBERTa-large model, the list **442** of closest word embeddings from $\lambda = 0.8$ is iden- 443 tical or slightly modified from $\lambda = 1.0$, including 444 minor modifications to words (e.g., "suspicions") 445 or capitalization (e.g., "BAD"). That is, the seman- **446** tic properties of the closest embeddings exhibit **447** minimal variation relative to the case with $\lambda = 1.0$. 448 When λ is set to 0.6, new words different from 449 the list of $\lambda = 1.0$ start to appear in the third rank 450 (e.g., "magnificent" for the word "beautiful" and **451** "lousy" for the word "bad"). As λ decreases to 0.4, 452 many words that have similar semantic properties **453** emerge in the list (e.g., "crappy" for the word "bad" **454** and "protagonists" and "superheroes" for the word **455** "characters"). This phenomenon is strengthened **456** when λ decreases to 0.2, showing an increasing de- 457 viation from the original words. For instance, the **458** top three words decoded from the RoBERTa-large **459** are "superheroes", "mystic", and "villan" for the **460** word "characters". For a λ of 0.0, the embedding is 461 populated with novel words that are not related to **462** the original words. It emphasizes the necessity of **463**

Model	CoLA	$SST-2$	MRPC	OOP	MNLI-m	MNLI-mm	ONLI	RTE	WNLI
	(Matt.)	(acc)	(F1)	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)
RoBERTa-large	17.20 ± 10.28	$72.58 + 9.59$	$67.86 + 7.83$	$62.26 + 6.91$	$33.62 + 0.70$	$34.78 + 0.58$	47.80 ± 1.49	$49.68 + 1.22$	$57.38 + 5.20$
$+EDA$	$12.42{\pm}6.78$	$70.48 + 6.78$	$68.68 + 13.98$	$57.22{\scriptstyle\pm18.77}$	$33.78 + 1.22$	$33.88 + 2.34$	$49.22 + 1.24$	$50.96 + 0.72$	$53.56 + 5.96$
$+$ EmbedHalluc	$21.90 + 8.57$	$75.82 + 6.48$	$69.52 + 4.77$	$63.12 + 4.89$	$33.38 + 1.14$	$34.96 + 0.85$	49.64 ± 0.75	$49.54 \text{+}1.01$	$55.32 + 8.20$
$+$ VO-TEGAN	29.66 ± 8.02	$78.14 + 8.13$	$72.50 + 4.16$	$70.98 + 8.10$	$34.68 + 1.14$	$36.00 + 2.51$	49.64 ± 1.40	$50.24 + 0.42$	$62.60 + 2.95$
BERT-large	$8.18 + 4.04$	$75.36 + 8.16$	$64.42 + 14.51$	$59.12 + 8.69$	$32.32 + 1.00$	$33.46 + 2.29$	$48.92 + 1.66$	$49.56 + 0.43$	$47.80 + 9.28$
$+EDA$	$10.48 + 3.59$	$78.22 + 4.36$	$73.14 + 6.50$	$46.12{\scriptstyle\pm13.08}$	$32.56 + 1.06$	$32.42 + 1.59$	$49.84 + 2.95$	49.62 ± 1.58	$52.46 + 9.70$
$+$ EmbedHalluc	$12.30 + 7.19$	$74.10 + 7.56$	$63.84 + 16.07$	$59.26 + 4.70$	34.30 ± 1.75	35.12 ± 2.21	$48.60 + 2.30$	49.64 ± 0.73	$53.68 + s.11$
$+$ VO-TEGAN	$12.38 + 4.53$	$78.60 + 4.38$	$71.62 + 6.92$	$66.98 + 5.59$	34.32 ± 1.18	$35.08 + 2.78$	$51.78 + 1.27$	$49.56 + 0.50$	$52.74{\scriptstyle\pm6.77}$

Table 1: A comparative analysis of Conventional Fine-tuning, EDA, EmbedHalluc, and VQ-TEGAN, using RoBERTa-large and BERT-large as base models. The superior performance for each task is denoted in bold.

	Word Embedding		BERT-large						
λ	Rank	beautiful	bad	characters	doubts	beautiful	bad	characters	doubts
1.0		beautiful	bad	characters	doubts	beautiful	bad	characters	doubts
	\overline{c}	gorgeous	Bad	character	doubt	gorgeous	good	character	doubted
	3	lovely	terrible	Characters	doubted	lovely	badly	protagonists	doubt
0.8		beautiful	bad	characters	doubts	beautiful	bad	characters	doubts
	2	gorgeous	Bad	character	doubted	gorgeous	badly	character	doubted
	3	lovely	BAD	Characters	suspicions	lovely	295	protagonists	doubt
0.6		beautiful	bad	characters	doubts	beautiful	bad	characters	doubts
	2	gorgeous	BAD	character	doubted	gorgeous	295	protagonists	[unused 306]
	3	magnificent	lousy	Characters	suspicions	1738	321	1743	[unused298]
0.4		beautiful	bad	characters	doubts	1736	1736	1736	doubts
	$\overline{2}$	gorgeous	lousy	protagonists	doubted	1732	276	1743	[unused 659]
	3	magnificent	crappy	superheroes	suspicions	1738	326	1732	[unused276]
0.2		Beautiful	intertwined	superheroes	doubts	1736	1736	1736	[unused659]
	2	magnificent	sandy	mystic	timid	1732	276	1743	[unused80]
	3	the	crafted	vilains	dismay	1743	1732	1732	[unused176]
0.0		ACE	unfold	mystic	mystic	1736	1736	1736	unused6591
	2	Apex	crafted	wretched	wretched	1732	1732	1732	[unused80]
	3	EA	intertwined	timid	timid	45th	45th	45th	[unused176]

Table 2: The top three words decoded from word embeddings in RoBERTa-large and BERT-large, exhibiting the highest degree of cosine similarity to the mixup embeddings with different λ .

464 the mixup for the augmentation via VQ-TEGAN.

465 In the case of the BERT-large model, at $\lambda = 0.8$, a minor change is observed for the word "bad", but no change is observed for other words. Interest- ingly, the new words included in the word "bad" include the semantically unrelated word "295". As λ decreases to 0.6, there is a significant increase in unrelated tokens and numbers observed, indicating a stronger deviation from the original words. As 473 the value of λ is reduced from 0.4 to 0.0, the list is filled with semantically irrelevant words.

Our analysis indicates that as λ **decreases, the** mixup embeddings exhibit an increasing diver- gence from the original words. Furthermore, the mixup embeddings produced by RoBERTa-large are observed to encapsulate more semantically rich **and contextually pertinent words at smaller** λ **com-** pared to those generated by BERT-large. This ob- servation suggests that the mixup embeddings of RoBERTa-large maintain a higher degree of seman- tic coherence under mixup conditions compared to BERT-large. This is corroborated by the classi- fication performance presented in Table [1,](#page-6-0) which demonstrates that RoBERTa-large exhibits a significant improvement in performance with mixup **488** embeddings, whereas BERT-large does not show a **489** comparable enhancement. **490**

In conclusion, when VQ-TEGAN generates **491** meaningful synthetic embeddings and integrates **492** mixup embeddings with real embeddings for few- **493** shot learning, it has the potential to facilitate the **494** application of mixup embeddings with an expanded **495** and more heterogeneous semantic spectrum for **496** few-shot learning. Additional semantic analysis **497** on mixup embeddings can be found in the Ap- **498** pendix [D.](#page-11-1) **499**

4.5 Sensitivity Analysis on Mixup Ratio **500**

In Table [3,](#page-7-0) we present a comparative analysis of **501** the results derived from conventional fine-tuning **502** and our proposed model, employing three distinct **503** λ values (0.0, 0.2, and 0.4). The scenario with 504 $\lambda = 1$ was omitted from the sensitivity analysis 505 due to its redundancy in merely duplicating the **506** real embedding. Likewise, scenarios with $\lambda = 0.6$ 507 and $\lambda = 0.8$ were excluded as their results did not **508** show significant deviations from those presented 509 in Table [2.](#page-6-1) **510**

Model	CoLA	$SST-2$	MRPC	QQP	MNLI-m	MNLI-mm	ONLI	RTE	WNLI
	(Matt.)	(acc)	(F1)	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)
RoBERTa-large	17.20 ± 10.28	$72.58 + 9.59$	$67.86 + 7.83$	$62.26 + 6.91$	$33.62 + 0.70$	$34.78 + 0.58$	47.80 ± 1.49	$49.68 + 1.22$	$57.38 + 5.20$
$w/\lambda = 0.0$	$28.32 + 11.60$	$78.14 + 8.13$	$71.98 + 6.36$	$70.98 + s.10$	$34.60 + 1.56$	$36.00 + 2.51$	$48.22 + 1.42$	50.24 ± 0.42	60.96 ± 4.42
$w/\lambda = 0.2$	$29.66 + 8.02$	$76.84 + 5.88$	$72.50 + 4.16$	$66.68 + 7.68$	$34.40 + 0.90$	$34.66 + 1.07$	49.64 ± 1.40	$50.02 + 0.65$	$59.18 + 4.08$
$w/\lambda = 0.4$	$18.30 + 3.72$	$74.42 + 7.33$	$71.62 + 6.86$	$65.24 + 9.24$	34.68 ± 1.14	$35.60 + 2.29$	$48.94 \scriptstyle \pm 0.27$	50.22 ± 0.76	62.60 ± 2.95
BERT-large	$8.18 + 4.04$	$75.36 + 8.16$	$64.42 + 14.51$	$59.12 + 8.69$	$32.32 + 1.00$	$33.46 + 2.29$	48.92 ± 1.66	$49.56 + 0.43$	$47.80 + 9.28$
$w/\lambda = 0.0$	$9.44 + 6.84$	$77.34 + 5.00$	$68.20 + 11.32$	$66.98 + 5.59$	34.32 ± 1.18	$35.08 + 2.78$	50.26 ± 1.81	$49.42 + 0.44$	$52.74 + 6.77$
$w/\lambda = 0.2$	$12.38 + 4.53$	$77.00 + 5.36$	$71.62 + 6.92$	$62.76 + 12.57$	33.46 ± 1.57	$34.24 + 1.41$	$50.12 + 0.98$	$49.46 + 0.91$	$51.22 + 7.04$
$w/\lambda = 0.4$	$9.62 + 7.42$	$78.60 + 4.38$	$69.96 + 7.08$	$63.78 + 7.14$	$33.58 + 1.65$	$34.02 + 3.10$	$51.78 + 1.27$	49.56 \pm 0.50	$52.34 + 6.52$

Table 3: A comparative analysis of conventional fine-tuning and VQ-TEGAN for different λ, using RoBERTa-large and BERT-large as base models. The bold numbers indicate instances where VQ-TEGAN outperforms conventional fine-tuning for each respective task, while underlined numbers indicate the highest performance.

 Using RoBERTa-large for few-shot learning, VQ-TEGAN demonstrates superior performance relative to fine-tuning across all evaluated tasks. In 514 general, $\lambda = 0.0$ and $\lambda = 0.2$ exhibit increased efficacy compared to traditional fine-tuning and $\lambda = 0.4$, with the exception of MNLI-m and WNLI. Specifically, for tasks such as SST-2, QQP, MNLI- mm, and RTE, the optimal results are observed 519 with $\lambda = 0.0$. In contrast, $\lambda = 0.2$ achieves su- perior results in CoLA, MRPC, and QNLI. In par-521 ticular, $\lambda = 0.4$ surpasses $\lambda = 0.0$ and $\lambda = 0.2$ exclusively in MNLI-m and WNLI. These findings indicate that the incorporation of synthetic embed- dings or mixup embeddings significantly enhances model generalization and performance.

 In contrast, using BERT-large for few-shot learn- ing reveals a distinct pattern. Specifically, a λ value of 0.2 enhances performance beyond traditional fine-tuning in the CoLA and MRPC datasets. The most substantial performance improvements are achieved with $\lambda = 0.4$ in the SST-2, QNLI, and RTE tasks. In particular, a λ value of 0.0 yields the highest performance metrics in QQP, MNLI-m, MNLI-mm, and WNLI. These observations sug- gest that the efficacy of BERT is differentially in- fluenced by varying λ values and synthetic em- beddings contingent on the specific task, thereby indicating the absence of a universally optimal λ value across all tasks.

⁵⁴⁰ 5 Conclusion

 This study introduces VQ-TEGAN, a novel data augmentation method for text embedding. VQ- TEGAN generates embeddings across various se- mantic and synonymic dimensions of PLM em- beddings, facilitating more efficient and effective acquisition of a broader spectrum of semantics during the fine-tuning of PLMs with limited train-ing datasets. Our empirical analysis reveals that

VQ-TEGAN (1) achieves superior performance **549** enhancements on GLUE benchmark tasks in few- **550** shot learning contexts, (2) is more compact and 551 lightweight compared to other language models em- **552** ployed for data augmentation, (3) augments PLM **553** performance, particularly when utilized with PLMs **554** possessing larger embeddings, and (4) introduces **555** a more efficient loss function for text embedding **556** generation via the convergence of loss functions. **557**

6 Limitations **⁵⁵⁸**

Despite its novelty, there are limitations that need **559** to be addressed in future work. As discussed in sec- **560** tion [4.4,](#page-5-0) the semantic analysis of the closest PLM 561 word embeddings to the mixup embeddings eluci- **562** dates the potential for formulating a novel embed- **563** ding space conducive to few-shot learning. How- **564** ever, a limitation is identified where VQ-TEGAN- **565** generated embeddings may converge within a **566** space similar to other semantic embeddings, at- **567** tributable to the anisotropy issue inherent in PLM **568** word embeddings [\(Ethayarajh,](#page-8-20) [2019;](#page-8-20) [Li et al.,](#page-9-22) **569** [2020\)](#page-9-22). A possible approach is to train VQ-TEGAN **570** utilizing word embeddings derived from PLMs that **571** [h](#page-8-21)ave been refined through contrastive learning[\(Gao](#page-8-21) **572** [et al.,](#page-8-21) [2021\)](#page-8-21), addressing the anisotropy issue within **573** the embedding space. Lastly, this study exclusively **574** investigates the instances of VQ-TEGAN utilizing **575** RoBERTa-large and BERT-large. For subsequent **576** study, a broader spectrum of PLMs should be ex- **577** plored for the implementation of VQ-TEGAN. **578**

7 Ethics Statement 579

This paper investigates data augmentation in the **580** generation of embeddings for few-shot learning. It **581** is not anticipated that this research will raise any **582** ethical or social issues. All data utilized in this **583** study is publicly accessible and has been utilized **584** by numerous researchers. The proposed method **585**

586 does not introduce any ethical biases into the data.

⁵⁸⁷ References

- **588** Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, **589** Amir Kantor, George Kour, Segev Shlomov, Naama **590** Tepper, and Naama Zwerdling. 2020. Do not have **591** enough data? deep learning to the rescue! In *Pro-***592** *ceedings of the AAAI Conference on Artificial Intelli-***593** *gence*, volume 34, pages 7383–7390.
- **594** Martin Arjovsky, Soumith Chintala, and Léon Bottou. **595** 2017. Wasserstein generative adversarial networks. **596** In *International conference on machine learning*, **597** pages 214–223. PMLR.
- **598** Farid Arthaud, Rachel Bawden, and Alexandra Birch. **599** 2021. [Few-shot learning through contextual data aug-](https://doi.org/10.18653/v1/2021.eacl-main.90)**600** [mentation.](https://doi.org/10.18653/v1/2021.eacl-main.90) In *Proceedings of the 16th Conference of* **601** *the European Chapter of the Association for Compu-***602** *tational Linguistics: Main Volume*, pages 1049–1062, **603** Online. Association for Computational Linguistics.
- **604** Bjorn Barz and Joachim Denzler. 2020. Deep learning **605** on small datasets without pre-training using cosine **606** loss. In *Proceedings of the IEEE/CVF winter con-***607** *ference on applications of computer vision*, pages **608** 1371–1380.
- **609** Yoshua Bengio, Nicholas Léonard, and Aaron Courville. **610** 2013. Estimating or propagating gradients through **611** stochastic neurons for conditional computation. **612** *arXiv preprint arXiv:1308.3432*.
- **613** Thomas Body, Xiaohui Tao, Yuefeng Li, Lin Li, and **614** Ning Zhong. 2021. Using back-and-forth transla-**615** tion to create artificial augmented textual data for **616** sentiment analysis models. *Expert Systems with Ap-***617** *plications*, 178:115033.
- **618** Tom Brown, Benjamin Mann, Nick Ryder, Melanie **619** Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind **620** Neelakantan, Pranav Shyam, Girish Sastry, Amanda **621** Askell, et al. 2020. Language models are few-shot **622** learners. *Advances in neural information processing* **623** *systems*, 33:1877–1901.
- **624** Rakesh Chada and Pradeep Natarajan. 2021. Fewshotqa: **625** A simple framework for few-shot learning of question **626** answering tasks using pre-trained text-to-text models. **627** *arXiv preprint arXiv:2109.01951*.
- **628** Jiaao Chen, Zichao Yang, and Diyi Yang. 2020a. Mix-**629** text: Linguistically-informed interpolation of hidden **630** space for semi-supervised text classification. *arXiv* **631** *preprint arXiv:2004.12239*.
- **632** Ting Chen, Simon Kornblith, Mohammad Norouzi, and **633** Geoffrey Hinton. 2020b. A simple framework for **634** contrastive learning of visual representations. In *In-***635** *ternational conference on machine learning*, pages **636** 1597–1607. PMLR.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and **637** Kristina Toutanova. 2018. Bert: Pre-training of deep **638** bidirectional transformers for language understand- **639** ing. *arXiv preprint arXiv:1810.04805*. **640**
- Thomas Dopierre, Christophe Gravier, and Wilfried **641** Logerais. 2021. Protaugment: Intent detection meta- **642** learning through unsupervised diverse paraphrasing. **643** In *Proceedings of the 59th Annual Meeting of the As-* **644** *sociation for Computational Linguistics and the 11th* **645** *International Joint Conference on Natural Language* **646** *Processing (Volume 1: Long Papers)*, pages 2454– **647** 2466. Association for Computational Linguistics. **648**
- Zach Eaton-Rosen, Felix J. S. Bragman, Sébastien **649** Ourselin, and M. Jorge Cardoso. 2018. [Improving](https://api.semanticscholar.org/CorpusID:14007201) **650** [data augmentation for medical image segmentation.](https://api.semanticscholar.org/CorpusID:14007201) **651** In *OpenReview*. **652**
- Yousef El-Laham and Svitlana Vyetrenko. 2022. Style- **653** time: Style transfer for synthetic time series genera- **654** tion. In *Proceedings of the Third ACM International* **655** *Conference on AI in Finance*, pages 489–496. **656**
- Patrick Esser, Robin Rombach, and Bjorn Ommer. 2021. **657** Taming transformers for high-resolution image syn- **658** thesis. In *Proceedings of the IEEE/CVF conference* **659** *on computer vision and pattern recognition*, pages **660** 12873–12883. **661**
- Kawin Ethayarajh. 2019. How contextual are contex- **662** tualized word representations? comparing the ge- **663** ometry of bert, elmo, and gpt-2 embeddings. *arXiv* **664** *preprint arXiv:1909.00512*. **665**
- Elizabeth Fons, Paula Dawson, Xiao-jun Zeng, John **666** Keane, and Alexandros Iosifidis. 2020. Evaluating **667** data augmentation for financial time series classifica- **668** tion. *arXiv preprint arXiv:2010.15111*. **669**
- Tianyu Gao, Adam Fisch, and Danqi Chen. 2020. **670** Making pre-trained language models better few-shot **671** learners. *arXiv preprint arXiv:2012.15723*. **672**
- Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. **673** Simcse: Simple contrastive learning of sentence em- **674** beddings. *arXiv preprint arXiv:2104.08821*. **675**
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, **676** Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron **677** Courville, and Yoshua Bengio. 2014. Generative **678** adversarial nets. *Advances in neural information* **679** *processing systems*, 27. **680**
- Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019. **681** Augmenting data with mixup for sentence clas- **682** sification: An empirical study. *arXiv preprint* **683** *arXiv:1905.08941*. **684**
- Aakriti Gupta, Kapil Thadani, and Neil O'Hare. 2020. **685** Effective few-shot classification with transfer learn- **686** ing. In *Proceedings of the 28th International Con-* **687** *ference on Computational Linguistics*, pages 1061– **688** 1066. **689**
- **690** Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-**691** tional lstm-crf models for sequence tagging. arxiv **692** 2015. *arXiv preprint arXiv:1508.01991*. **693** Ouyang Jia, Huimin Huang, Jiaxin Ren, Luodi Xie, **694** and Yinyin Xiao. 2023. Contrastive learning with **695** text augmentation for text classification. *Applied* **696** *Intelligence*, pages 1–10. **697** Yiren Jian, Chongyang Gao, and Soroush Vosoughi. **698** 2022. [Embedding hallucination for few-shot lan-](https://doi.org/10.18653/v1/2022.naacl-main.404)**699** [guage fine-tuning.](https://doi.org/10.18653/v1/2022.naacl-main.404) In *Proceedings of the 2022 Con-***700** *ference of the North American Chapter of the Asso-***701** *ciation for Computational Linguistics: Human Lan-***702** *guage Technologies*, 3, pages 5522–5530. Associa-**703** tion for Computational Linguistics. **704** Akbar Karimi, Leonardo Rossi, and Andrea Prati. 2021. **705** [AEDA: An easier data augmentation technique for](https://doi.org/10.18653/v1/2021.findings-emnlp.234) **706** [text classification.](https://doi.org/10.18653/v1/2021.findings-emnlp.234) In *Findings of the Association* **707** *for Computational Linguistics: EMNLP 2021*, pages **708** 2748–2754, Punta Cana, Dominican Republic. Asso-**709** ciation for Computational Linguistics. **710** Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim. **711** 2017. Deep learning applications in medical image **712** analysis. *Ieee Access*, 6:9375–9389. **713** Yoon Kim. 2014. Convolutional neural net-**714** works for sentence classification. *arXiv preprint* **715** *arXiv:1408.5882*. **716** Diederik P Kingma and Max Welling. 2013. Auto-**717** encoding variational bayes. *arXiv preprint* **718** *arXiv:1312.6114*. **719** Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-**720** darysafa, Sanjana Mendu, Laura Barnes, and Donald **721** Brown. 2019. Text classification algorithms: A sur-**722** vey. *Information*, 10(4):150. **723** Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, **724** Yiming Yang, and Lei Li. 2020. On the sentence em-**725** beddings from pre-trained language models. *arXiv* **726** *preprint arXiv:2011.05864*. **727** Yang Liu, Zhenyue Qin, Saeed Anwar, Pan Ji, Dongwoo **728** Kim, Sabrina Caldwell, and Tom Gedeon. 2021. In-**729** vertible denoising network: A light solution for real **730** noise removal. In *Proceedings of the IEEE/CVF con-***731** *ference on computer vision and pattern recognition*, **732** pages 13365–13374. **733** Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-**734** dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, **735** Luke Zettlemoyer, and Veselin Stoyanov. 2019. **736** Roberta: A robustly optimized bert pretraining ap-**737** proach. *arXiv preprint arXiv:1907.11692*. **738** Shayne Longpre, Yu Wang, and Christopher DuBois. **739** 2020. How effective is task-agnostic data augmen-**740** tation for pretrained transformers? *arXiv preprint* **741** *arXiv:2010.01764*.
- Nikolaos Malandrakis, Minmin Shen, Anuj Goyal, **742** Shuyang Gao, Abhishek Sethi, and Angeliki Met- **743** allinou. 2019. [Controlled text generation for data](https://doi.org/10.18653/v1/D19-5609) **744** [augmentation in intelligent artificial agents.](https://doi.org/10.18653/v1/D19-5609) In *Pro-* **745** *ceedings of the 3rd Workshop on Neural Generation* **746** *and Translation*, pages 90–98, Hong Kong. Associa- **747** tion for Computational Linguistics. **748**
	- Tomas Mikolov, Kai Chen, Greg Corrado, and Jef- **749** frey Dean. 2013. Efficient estimation of word **750** representations in vector space. *arXiv preprint* **751** *arXiv:1301.3781*. **752**
	- Nathan Ng, Kyunghyun Cho, and Marzyeh Ghassemi. **753** 2020. Ssmba: Self-supervised manifold based data **754** augmentation for improving out-of-domain robust- **755** ness. *arXiv preprint arXiv:2009.10195*. **756**
	- Aytuğ Onan. 2023. Gtr-ga: Harnessing the power of $\frac{757}{ }$ graph-based neural networks and genetic algorithms **758** for text augmentation. *Expert Systems with Applica-* **759** *tions*, page 120908. **760**
	- Lucas Francisco Amaral Orosco Pellicer, Taynan Maier **761** Ferreira, and Anna Helena Reali Costa. 2023. Data **762** augmentation techniques in natural language process- **763** ing. *Applied Soft Computing*, 132:109803. **764**
	- Jeffrey Pennington, Richard Socher, and Christopher D **765** Manning. 2014. Glove: Global vectors for word rep- **766** resentation. In *Proceedings of the 2014 conference* **767** *on empirical methods in natural language processing* **768** *(EMNLP)*, pages 1532–1543. **769**
	- Frédéric Piedboeuf and Philippe Langlais. 2022. Ef- **770** fective data augmentation for sentence classification **771** using one vae per class. In *Proceedings of the 29th* **772** *International Conference on Computational Linguis-* **773** *tics*, pages 3454–3464. **774**
	- Lutz Prechelt. 2002. Early stopping-but when? In **775** *Neural Networks: Tricks of the trade*, pages 55–69. **776** Springer. 777
	- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, **778** Dario Amodei, Ilya Sutskever, et al. 2019. Language **779** models are unsupervised multitask learners. *OpenAI* **780** *blog*, 1(8):9. **781**
	- Faisal Rahutomo, Teruaki Kitasuka, and Masayoshi Ar- **782** itsugi. 2012. Semantic cosine similarity. In *The 7th* **783** *international student conference on advanced science* **784** *and technology ICAST*, volume 4, page 1. **785**
	- Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Glober- **786** son, and Omer Levy. 2021. Few-shot question an- **787** swering by pretraining span selection. *arXiv preprint* **788** *arXiv:2101.00438*. **789**
	- Marc'Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, **790** and Yann LeCun. 2007. [Unsupervised learning of in-](https://doi.org/10.1109/CVPR.2007.383157) **791** [variant feature hierarchies with applications to object](https://doi.org/10.1109/CVPR.2007.383157) **792** [recognition.](https://doi.org/10.1109/CVPR.2007.383157) In *2007 IEEE Conference on Computer* **793** *Vision and Pattern Recognition*, pages 1–8. **794**
- **795** Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural **801** for natural language understanding. *arXiv preprint* **802** *arXiv:1804.07461*. **809** pages 2557–2563. **818** Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi **819** Qiao, Zhizhong Zhang, Yuan Xie, and Lizhuang Ma. **820** 2021. Contrastive learning for compact single image **821** dehazing. In *Proceedings of the IEEE/CVF Confer-***822** *ence on Computer Vision and Pattern Recognition*, **823** pages 10551–10560.
- **839** for natural language understanding. *arXiv preprint* **840** *arXiv:2205.06153*.
- **841** Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. **842** 2016. Loss functions for image restoration with neu-**843** ral networks. *IEEE Transactions on computational* **844** *imaging*, 3(1):47–57.

848 *ation for Computational Linguistics: ACL-IJCNLP* **849** *2021*, pages 1484–1488.

847 ing in sentiment analysis. In *Findings of the Associ-*

846 Nan Duan. 2021. Useradapter: Few-shot user learn-

845 Wanjun Zhong, Duyu Tang, Jiahai Wang, Jian Yin, and

836 risk minimization. *arXiv preprint arXiv:1710.09412*. **837** Le Zhang, Zichao Yang, and Diyi Yang. 2022. Treemix: **838** Compositional constituency-based data augmentation

- **833** 2718.
- -
- **832** *on Robotics and Biomimetics (ROBIO)*, pages 2713–
- **834** Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
- **831** [generation.](https://doi.org/10.1109/ROBIO49542.2019.8961501) In *2019 IEEE International Conference*
	-
	-
- **835** David Lopez-Paz. 2017. mixup: Beyond empirical
-
-
-
-
-
- **830** [wasserstein generative adversarial nets for fault data](https://doi.org/10.1109/ROBIO49542.2019.8961501)
	-
- **828** Ying Yu, Bingying Tang, Ronglai Lin, Shufa Han, Tang **829** Tang, and Ming Chen. 2019. [Cwgan: Conditional](https://doi.org/10.1109/ROBIO49542.2019.8961501)
- **824** Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and **825** Quoc Le. 2020. Unsupervised data augmentation for **826** consistency training. *Advances in neural information* **827** *processing systems*, 33:6256–6268.
- **814** *arXiv:2103.07552*. **815** Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-**816** tion techniques for boosting performance on text clas-**817** sification tasks. *arXiv preprint arXiv:1901.11196*.
- **810** Jason Wei, Chengyu Huang, Soroush Vosoughi, **811** Yu Cheng, and Shiqi Xu. 2021. Few-shot text **812** classification with triplet networks, data augmen-**813** tation, and curriculum learning. *arXiv preprint*
- **803** William Yang Wang and Diyi Yang. 2015. That's so an-**804** noying!!!: A lexical and frame-semantic embedding **805** based data augmentation approach to automatic cat-**806** egorization of annoying behaviors using# petpeeve **807** tweets. In *Proceedings of the 2015 conference on* **808** *empirical methods in natural language processing*,
- **796** discrete representation learning. *Advances in neural* **797** *information processing systems*, 30. **798** Alex Wang, Amanpreet Singh, Julian Michael, Felix **799** Hill, Omer Levy, and Samuel R Bowman. 2018. **800** Glue: A multi-task benchmark and analysis platform

The generator architecture includes an encoder, a 851 decoder, and a codebook of latent vectors. The en- **852**

coder is composed of four sequential blocks, each **853** containing a fully connected layer, batch normaliza- **854** [t](#page-9-8)ion, and the LeakyReLU activation function [\(Jian](#page-9-8) **855** [et al.,](#page-9-8) [2022\)](#page-9-8). This encoder progressively reduces **856** the dimensionality to 1024, 512, 256, and 128. The **857** codebook comprises quantized latent vectors that **858** correspond to the output dimensions of the encoder. **859** The quantity of codebook vectors is adjusted as **860** a hyperparameter during the experimental proce- **861** dures. The decoder, which structurally parallels **862** the encoder, consists of four blocks that expand the **863** quantized codebook vectors to dimensions of 128, **864** 256, 512, and 1024. The discriminator is structured **865** with three blocks, having dimensions of 512, 512, 866 and 1, respectively, and produces a singular tensor **867** output. VQ-TEGAN is subjected to training for 10 **868** epochs with a batch size of 64, utilizing the Adam **869** optimizer $(\beta = (0.5, 0.999))$ and a fixed random 870 seed of 42. The training process includes a grid 871 search for the learning rates of $2e^{-5}$ and $5e^{-5}$, as 872

B Hyperparameters for Few-shot **⁸⁷⁵** Learning 876

The model is trained using learning rates of $1e^{-5}$ and $2e^{-5}$, with batch sizes of 4 and 8. Random 878 number generation seeds of 13, 21, 42, 87, and 100 **879** are utilized. The training process was capped at 150 **880** epochs, with the final model being selected based **881** on validation accuracy at each epoch. An early **882** stopping mechanism is used to mitigate overfitting, **883** halting training if no improvement in validation 884 accuracy is observed after 100 epochs [\(Prechelt,](#page-9-23) **885**

well as codebook vector quantities of 1024, 2048, 873 and 4096. **874**

877

[2002\)](#page-9-23). **886** To train the PLM with augmented embeddings, **887** comprehensive experiments are conducted across **888** all parameters. The mixup ratios for x and \hat{x} are **889** evaluated at λ values of 0, 0.2, and 0.4 as illustrated in Eq. [6.](#page-4-2) Both EDA and EmbedHalluc are **891** executed using default settings, with EDA's data **892** augmentation further explored by generating 4 and **893** 9 additional samples. **894**

The algorithms are implemented using Python **895** 3.10.8 and PyTorch 1.13.1. The experiments are **896** carried out on an Ubuntu 20.04.6 system equipped **897** with a Nvidia RTX 3090 TI (24 GB RAM) and an **898** Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz. **899**

A Training Details for VQ-TEGAN **⁸⁵⁰**

 The NLTK 3.8.1 toolkit is used for synonym re- placement in the EDA process. RoBERTa-large and BERT-large models, along with their tokeniz- ers, are sourced from the Hugging Face Transform-ers library.

⁹⁰⁵ C Benchmarks

 The performance of VQ-TEGAN is evaluated in comparison to established benchmarks: conven- tional fine-tuning, EDA, and EmbedHalluc based on cWGAN.

- **910 Conventional Fine-tuning constitutes a fun-911** damental approach where a few-shot language **912** model is trained exclusively on the provided **913** dataset, devoid of any supplementary data aug-**914** mentation.
- 915 **EDA**[\(Wei and Zou,](#page-10-1) [2019\)](#page-10-1) represents a data **916** augmentation that incorporates four principal **917** techniques: synonym replacement, random **918** deletion, random swap, and random addition. **919** This method is both intuitive and efficient, fa-**920** cilitating the generation of a substantial num-**921** ber of synthetic sentences in a straightforward **922** manner.
- **923** EmbedHalluc[\(Jian et al.,](#page-9-8) [2022\)](#page-9-8) leverages cW-**924** GAN to augment textual data within the em-**925** bedding space. The training process encom-**926** passes both the generator and the discrimina-**927** tor, with data augmentation being realized by **928** doubling the few-shot data via the generator.

929 D Text Embedding Analysis

 Tables [4,](#page-12-0) [5,](#page-13-0) [6,](#page-14-0) and [7](#page-15-0) present the words of the em- bedding tokens that exhibit the three highest cosine similarities between the mixup embeddings gener- ated by VQ-TEGAN and the embeddings within the PLM under various parameter configurations. Tables [4](#page-12-0) and [5](#page-13-0) elucidate the results for RoBERTa- large embeddings, while Tables [6](#page-14-0) and [7](#page-15-0) illustrate the results for BERT-large embeddings. The pa- rameter configurations encompass the learning rate of VQ-TEGAN, the number of codebook vectors, **and five distinct values of** λ **.**

 Tables [4](#page-12-0) and [5](#page-13-0) show the evolving patterns in the semantic representations of the embeddings as 943 the parameter λ chages, as discerned through our comprehensive analysis.

945 At a λ value of 0.0, where the embeddings are synthesized exclusively by VQ-TEGAN in the ab- sence of any real embeddings, the cosine similar-ity fails to effectively discern relatedness or synonymy. This observation implies that the synthetic **949** embeddings may exhibit abstract or non-traditional **950** associations at this λ , which deviate from the con- **951** ventional semantic relationships observed in real **952** embeddings. 953

A notable change is observed when the param- **954** eter λ is elevated to 0.2 or 0.4. At these λ values, 955 the top three synonyms for each text sample exhibit **956** increased diversity, which means that the mixed **957** embeddings now encapsulate a wider spectrum of **958** semantic similarities. For instance, Table [4](#page-12-0) demon- **959** strates that the mixup embedding of "beautiful", 960 with a λ of 0.2, achieves the highest cosine similarities of 0.751, 0.742, and 0.740 with the embed- **962** dings of adjectives bearing analogous meanings, **963** such as "exquisite", "magnificent", and "marvel- **964** lous", respectively, for lr_{VO} of 5e-05 and a code- 965 book size of 4096. In Table [5,](#page-13-0) it is evident that **966** the mixup embedding of "characters" manifests **967** the three highest cosine similarities of 0.670, 0.670, **968** and 0.658 with the embeddings of nouns possessing **969** similar or identical meanings, such as "villains", 970 "superheroes", and "characters". This observation **971** is pivotal, as it suggests that the mixup embedding **972** at these λ values transcends a mere replication of **973** the original meanings. Moreover, it introduces an **974** extensive array of related concepts with real embed- **975** dings. The inclusion of 20% of x functions as an **976** anchor, anchoring the synthetic embedding within **977** the original semantic framework while still allow- **978** ing the introduction of novel nuances. This equi- **979** librium, facilitated by synthetic embeddings gen- **980** erated by VQ-TEGAN, which adeptly constructs **981** the semantic space of PLM's embedding, culmi- **982** nates in mixup embeddings that are enriched with **983** supplementary contextual meaning. This gener- **984** ates a more nuanced and comprehensive semantic **985** comprehension. **986**

Upon observation, it was observed that when the **987** parameter λ exceeds the threshold of 0.6, the aug- **988** mented embeddings exhibit a pronounced resem- **989** blance to the real embedding x. This phenomenon **990** indicates that at elevated values, the mixup em- **991** beddings converge more closely with the semantic **992** attributes of the genuine embedding, thereby dimin- **993** ishing the distinctions from the original embedding. **994** As a result, this convergence may precipitate issues **995** of data redundancy, as the mixup embeddings may **996** not provide substantially novel or diverse informa- **997** tion relative to the original dataset. **998**

Tables [6](#page-14-0) and [7](#page-15-0) demonstrate that the evaluation **999** of BERT-large mixup embeddings via cosine sim- **1000** Table 4: The text and cosine similarity metrics of the three words decoded from RoBERTa-large, exhibiting the highest cosine similarity between the word embeddings in RoBERTa-large and the mixup embeddings using the adjectives 'beautiful' and 'bad'. The parameter lrv_Q denotes the learning rate of the VQ-TEGAN, while the term codebook refers to the number of codebook vectors in VQ-TEGAN (K of M $= \{z_k\}_{k=1}^K$ $k_{=1}^{\infty}$ as specified in Eq. [1\)](#page-3-0). Additionally, \prec represents the rate of authentic text embedding.

Table 5: The text and cosine similarity metrics of the three words decoded from RoBERTa-large, exhibiting the highest cosine similarity between the word embeddings in RoBERTa-large and the mixup embeddings using the nouns Table 5: The text and cosine similarity metrics of the three words decoded from RoBERTa-large, exhibiting the highest cosine similarity between the word embeddings in RoBERTa-large and the mixup embeddings using the nouns 'characters' and 'doubts'

Table 6: The text and cosine similarity metrics of the three words decoded from BERT-large, exhibiting the highest cosine similarity between the word embeddings in RoBERTa-large and the mixup embeddings using the adjective Table 6: The text and cosine similarity metrics of the three words decoded from BERT-large, exhibiting the highest cosine similarity between the word embeddings in RoBERTa-large and the mixup embeddings using the adjectives 'beautiful' and 'bad'.'

Table 7: The text and cosine similarity metrics of the three words decoded from RoBERTa-large, exhibiting the highest cosine similarity between the word embeddings in RoBERTa-large and the mixup embeddings using the nouns Table 7: The text and cosine similarity metrics of the three words decoded from RoBERTa-large, exhibiting the highest cosine similarity between the word embeddings in RoBERTa-large and the mixup embeddings using the nouns 'characters' and 'doubts'

 ilarity indicates that those embeddings with the highest cosine similarity exhibit inferior semantic coherence compared to RoBERTa-large.

1004 When λ is set to 0, the mixup embeddings occupy a space distinct from the real embed- dings. This phenomenon arises due to the non- convergence of the cosine similarity depicted in Figure [4c,](#page-4-1) despite the partial convergence of the reconstruction loss illustrated in Figure [4d.](#page-4-1) Further- more, it is apparent that the mixup embeddings are predominantly characterized by synthetic embed-1012 dings when λ is 0.2 and 0.4, with only embeddings being identified in a space similar to synthetic em-1014 beddings. For λ values of 0.6 and 0.8, the mixup embeddings exhibit a greater resemblance to the real embeddings, with a minority of embeddings situated in a space similar to that of the synthetic embeddings. This observation substantiates that the mixup embeddings for BERT-large do not pos- sess a semantic meaning that is markedly distinct from the real and synthetic embeddings.

 Tables [4](#page-12-0) and [5](#page-13-0) illustrate that VQ-TEGAN gener- ates semantic embeddings that provide RoBERTa- large with access to a more diverse and meaningful embedding space for learning. Conversely, Tables [6](#page-14-0) and [7](#page-15-0) reveal that the mixup embeddings on BERT- large exhibit less significant cosine similarity com- pared to those augmented on RoBERTa-large em-beddings.