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Abstract

Data augmentation is crucial for the fine-tuning001
of pre-trained models and the optimization of002
limited data utilization, particularly within the003
realm of few-shot learning. Traditionally, these004
techniques have been applied at the word and005
sentence levels, with little research conducted006
within the embedding space. This paper in-007
troduces VQ-TEGAN, a novel data augmen-008
tation approach designed to generate embed-009
dings specifically for a few-shot learning. VQ-010
TEGAN generates embeddings that augment011
the few-shot dataset by training directly within012
the PLMs’ word embedding, employing a cus-013
tomized loss function. Empirical valildation on014
GLUE benchmark datasets demonstrates that015
VQ-TEGAN markedly improves text classifica-016
tion performance. Additionally, we investigate017
the application of VQ-TEGAN with RoBERTa-018
large and BERT-large, offering insight for fur-019
ther application.020

1 Introduction021

Text classification is a crucial task in natural lan-022

guage processing (NLP) (Kowsari et al., 2019). Al-023

though fine-tuning pre-trained language models024

(PLMs) on large datasets is highly effective, per-025

formance declines with smaller training data sizes026

(Gao et al., 2020; Longpre et al., 2020). This is due027

to the lack of diverse examples. Data augmentation028

has emerged as a solution to improve model per-029

formance with limited data, applicable in various030

fields such as healthcare (Eaton-Rosen et al., 2018;031

Ker et al., 2017), finance (Fons et al., 2020; El-032

Laham and Vyetrenko, 2022), and computer vision033

(Zhang et al., 2017; Chen et al., 2020b).034

In NLP, data augmentation is often performed035

through word-level manipulation (e.g., EDA (Wei036

and Zou, 2019) and AEDA (Karimi et al., 2021)).037

Recent advances include sentence-level interpola-038

tion methods like MixText (Zhang et al., 2022) and039

Treemix (Zhang et al., 2022; Chen et al., 2020a).040

Figure 1: Graphical abstract of VQ-TEGAN. The pri-
mary aim of VQ-TEGAN is to produce synthetic em-
beddings that closely approximate the original real em-
beddings. Subsequently, the synthetic embedding is
mixed with the real embedding to formulate a mixup
embedding, which resides within a space comparable to
that of other synonymous embeddings.

In addition, language-model-based augmentations 041

such as LAMBADA (Anaby-Tavor et al., 2020), 042

BF-Translation (Body et al., 2021), BART Pro- 043

tAugment (Dopierre et al., 2021), and SSMBA (Ng 044

et al., 2020) have been developed. While LAM- 045

BADA and BART ProtAugment require separate 046

fine-tuning for data augmentation, SSMBA and 047

BF-Translation do not, but they demand significant 048

storage space and time due to the need for large 049

language models or the Google Translation API. 050

Before training a language model, sentences are 051

tokenized and converted to embeddings, which 052

are used as direct input (Mikolov et al., 2013). 053

Some works have applied data augmentation at 054

the embedding level. For example, Wang and 055

Yang (2015) used semantic and lexical embed- 056

dings from Word2Vec (Mikolov et al., 2013) to 057

replace original words with k-nearest neighbor vec- 058

tors. TreeMixup (Guo et al., 2019) applies linear 059

interpolation to word and sentence embeddings, pi- 060

oneering this technique in NLP tasks. TACLR (Jia 061

et al., 2023) combines TreeMixup and EDA for con- 062

trastive learning. Recent studies show promising re- 063

sults using models that generate synthetic sentence 064
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embeddings similar to real sentences (Onan, 2023;065

Jian et al., 2022). These methods effectively en-066

hance text embeddings to supplement insufficient067

data.068

This research proposes Vector-Quantized Text069

Embedding Generative Adversarial Networks (VQ-070

TEGAN). VQ-TEGAN leverages the capabilities071

of Vector Quantized Generative Adversarial Net-072

work (VQ-GAN) (Esser et al., 2021) to generate073

text embeddings optimized for the semantic repre-074

sentation provided by word embeddings in PLMs075

(e.g., RoBERTa-large (Liu et al., 2019) and BERT-076

large (Devlin et al., 2018)). VQ-TEGAN is based077

on the understanding that the word embeddings078

of PLMs can capture deep linguistic properties079

beyond simple syntactic structures. We hypoth-080

esize that synthetic embeddings generated by VQ-081

TEGAN can encapsulate complex features such as082

context and sentiment, crucial for few-shot learn-083

ing tasks. Synthetic embeddings are employed in084

PLM training to provide new text examples that pre-085

serve semantic consistency and syntactic accuracy086

with the few-shot embedding data. This approach087

aligns with Brown et al. (2020), demonstrating that088

language models trained on extensive datasets can089

leverage prior knowledge to perform tasks with090

limited examples.091

Our contributions can be summarized as follows:092

• We propose a novel data augmentation model,093

VQ-TEGAN, for generating synthetic embed-094

dings located in a similar space as real embed-095

dings as illustrated in Figure 1.096

• VQ-TEGAN is a lightweight model for data097

augmentation, allowing easy application and098

minimal storage requirements.099

• We introduce a novel loss function suitable for100

NLP embeddings to train VQ-TEGAN.101

• Experimental results indicate that VQ-102

TEGAN outperforms benchmarks in few-shot103

learning.104

• The adequacy of the generated embeddings is105

confirmed by analyzing their meaning using106

cosine similarity to the word embeddings in107

PLMs.108

2 Related Work109

2.1 Generative Model110

The evolution of generative models has been led111

by the advances of autoencoders (Ranzato et al.,112

2007). Variational Autoencoders (VAE) (Kingma113

and Welling, 2013) use neural networks to en-114

code input data into a lower-dimensional latent 115

space and decode it back, optimizing the lower 116

bound on the likelihood of the data. This enables 117

tasks such as data generation and feature extraction. 118

Generative Adversarial Networks (GAN) (Good- 119

fellow et al., 2014) employ two neural networks, 120

a generator and a discriminator, training them si- 121

multaneously in a competitive setting to generate 122

data samples that are indistinguishable from real 123

data. Wasserstein GAN (WGAN) (Arjovsky et al., 124

2017) improves on traditional GANs by using a 125

Wasserstein distance metric for the loss function, 126

improving training stability and addressing mode 127

collapse, resulting in higher-quality generated sam- 128

ples. Conditional WGAN (cWGAN) (Yu et al., 129

2019) extends WGAN by incorporating conditional 130

variables, allowing the generation of samples con- 131

ditioned on specific attributes and enhancing the 132

model’s ability to generate more targeted and di- 133

verse data samples. Vector Quantized Variational 134

Autoencoders (VQ-VAE) (Van Den Oord et al., 135

2017) and VQ-GAN employ discrete latent repre- 136

sentations through vector quantization. VQ-VAE 137

improves its ability to handle complex data distri- 138

butions compared to standard VAEs by learning a 139

finite set of embeddings. VQ-GAN combines the 140

VQ-VAE method with a discriminator to differenti- 141

ate between real and fake data more effectively by 142

learning a codebook. 143

In the realm of NLP, autoencoders are frequently 144

combined to generate data in an embedding space 145

(Malandrakis et al., 2019; Piedboeuf and Langlais, 146

2022). This study leverages the VQ-GAN method 147

to generate synthetic embeddings. Additionally, 148

we analyze the semantic content of the synthetic 149

embeddings produced by VQ-TEGAN and com- 150

pare it with the embeddings created by mixup and 151

the original text embedding data. 152

2.2 Text Augmentation 153

Text augmentation aims to improve model per- 154

formance when data is insufficient. Early work 155

includes EDA (Wei and Zou, 2019) and AEDA 156

(Karimi et al., 2021). EDA employs four straight- 157

forward data augmentation techniques: random 158

swap, random insertion, random deletion, and syn- 159

onym replacement. Similarly, AEDA operates by 160

randomly inserting punctuation marks. TreeMix 161

(Zhang et al., 2022) utilizes constituency parsing 162

trees to decompose sentences into component sub- 163

structures, which are then recombined using the 164

mixup data augmentation method to generate new 165
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sentences.166

Instead of reorganizing words or sentences, an-167

other approach involves generating new text data168

using LLMs for data augmentation (Anaby-Tavor169

et al., 2020; Body et al., 2021; Dopierre et al.,170

2021; Ng et al., 2020). LAMBADA (Anaby-Tavor171

et al., 2020) fine-tunes a GPT model (Radford et al.,172

2019) on a small dataset and then augments it with173

the given label. BF-Translation (Body et al., 2021)174

uses the Google Translate API, with German as175

an intermediate language, to back-translate text for176

sentiment analysis. ProtAugment (Dopierre et al.,177

2021) combines paraphrases generated from the178

BART model with sentences produced through tra-179

ditional back-translation, improving intent detec-180

tion models via unsupervised meta-learning. This181

method utilizes paraphrasing-based data augmen-182

tation. SSMBA (Ng et al., 2020) is a word-level183

data augmentation technique that employs a corrup-184

tion function to mask specific tokens in a sentence185

and replace them with new tokens using a BERT186

model.187

Furthermore, data augmentation in continuous188

embedding spaces, such as EmbedHalluc (Jian189

et al., 2022), has shown promising results. Specifi-190

cally, graph-based methods (Onan, 2023) and con-191

trastive learning (Jia et al., 2023) have been ex-192

plored for text augmentation. Embedding Aug-193

menter (Pellicer et al., 2023) is a technique that194

uses a word-changing algorithm with the GloVe195

model (Pennington et al., 2014) with 300 dimen-196

sions to find the most similar words.197

This study investigates the use of synthetic em-198

beddings for data augmentation, where embeddings199

are derived from synonyms and related words. In200

particular, the proposed VQ-TEGAN model offers201

the advantage of being relatively lightweight com-202

pared to larger language models.203

2.3 Fine-tuning of Pre-trained Language204

Models205

Numerous studies suggest using general models206

to address NLP problems (Kim, 2014; Huang207

et al., 2015; Kowsari et al., 2019). However, with208

the recent emergence of PLMs (e.g., BERT and209

RoBERTa), there has been a surge in research on210

few-shot learning to leverage limited data with the211

help of PLMs (Gupta et al., 2020; Zhong et al.,212

2021; Chada and Natarajan, 2021; Ram et al.,213

2021). Some studies have applied data augmenta-214

tion to NLP classification tasks to improve few-shot215

learning performance (Wei et al., 2021; Jian et al.,216

2022; Zhang et al., 2022; Jia et al., 2023). How- 217

ever, the approach of creating new synthetic word 218

embeddings for each word in a sentence, merging 219

them, and using the resulting synthetic sentence 220

embedding as training data for text classification 221

has not yet been explored. In this context, we pro- 222

pose VQ-TEGAN, the first attempt to apply the 223

VQ-GAN method to generate new synthetic text 224

embeddings for fine-tuning PLMs. 225

3 Methods 226

3.1 Overview 227

This research aims to evaluate the effectiveness 228

of VQ-TEGAN in few-shot learning compared to 229

benchmarks by performing classification tasks in 230

limited data environments. The complete process 231

of fine-tuning the PLM is illustrated in Figure 2. 232

Figure 2: Few-shot learning process using VQ-TEGAN

To preserve the integrity and diversity of the 233

dataset, non-duplicating samples are randomly se- 234

lected from each class for each classification task 235

in the training and validation sets, respectively. The 236

conversion of few-shot datasets to real embeddings 237

is achieved using the PLM’s individual tokenizer 238

and token embeddings, which are subsequently 239

used to form preprocessed embeddings. The real 240

embeddings of the training set are then utilized 241

to create synthetic embeddings through the pre- 242

trained VQ-TEGAN. The synthetic embeddings 243

for each real embedding are subsequently mixed to 244

form the final augmented embeddings. The final 245

augmented dataset, which includes one synthetic 246

data point corresponding to each real data point, 247

is used for few-shot learning. This approach takes 248

advantage of the diversity introduced by the aug- 249

mented data, operating under the assumption that 250

it will enhance the learning capacity of the model 251

when dealing with a restricted dataset (Arthaud 252
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et al., 2021; Xie et al., 2020). Also, the freezing253

of word embeddings within the PLM during few-254

shot learning preserves the semantic integrity of255

the augmented dataset within the embeddings. This256

method proficiently transmits the intended seman-257

tics of the augmented dataset in few-shot learning258

contexts.259

3.2 VQ-TEGAN260

The architecture of a new generative model for261

text embedding data, VQ-TEGAN, is presented262

in detail in Figure 3. The primary objective is263

to train VQ-TEGAN directly within word embed-264

dings in PLM to generate high-quality synthetic265

text embeddings. This approach has the advantage266

of leveraging PLM embeddings, eliminating the267

need for a separate training dataset. Furthermore,268

VQ-TEGAN allows the encapsulation of word em-269

beddings with analogous attributes into quantized270

vectors, ensuring that the generated synthetic em-271

beddings retain their distinct characteristics. The272

amount of training data depends on the number of273

word embeddings in PLMs. Note that RoBERTa-274

large and BERT-large have 50,265 and 30,522 em-275

bedding vectors, respectively. This approach has276

the advantage of utilizing embeddings of PLM,277

eliminating the need for a separate training dataset.278

In VQ-VAE, a discrete-dimensional encoder out-279

put paired with an autoregressive decoder effec-280

tively solves the posterior collapse problem (Van281

Den Oord et al., 2017). VQ-TEGAN employs a282

similar structure to reconstruct the real embedding283

(x) as the synthetic embedding (x̂) through the en-284

coder E - decoder D structure illustrated in Figure 3.285

The input vector x ∈ Rnx , where nx is the dimen-286

sionality of the input embedding, is compressed by287

the encoder E into the latent vector ẑ ∈ Rnz , where288

nz is the dimensionality of the codebook vector.289

The latent vector ẑ is converted into one of the
nearest codebook vectors, zq ∈ Z , by finding the
distance to the vectors in the predefined discrete
codebook, where Z = {zk}Kk=1 ⊂ Rnz and K is
the number of codebook vectors. Specifically, ẑ is
created from x and then quantized by replacing ẑ
with the nearest codebook to obtain zq such that:

zq = q(ẑ) := argmin
zk∈Z

∥ẑ − zk∥2 ∈ Rnz (1)

where ẑ = E(x). The reconstruction x̂ ≈ x is
given by:

x̂ = D(zq) (2)

Backpropagation is not differentiable due to the
quantization operation in Eq. 1. However, the
model and codebook can be learned end-to-end
via a loss function using a straight-through gra-
dient estimator (Bengio et al., 2013) that copies
the gradient from the decoder to the encoder as
follows:

LVQ(E,D,Z) = ∥x− x̂∥+ 1− σ(x̂, x)+

∥sg[E(x)]− zq∥2 + β × ∥sg[zq]− E(x)∥2 (3)

Note that ∥x − x̂∥ is a reconstruction loss (Lrec); 290

1−σ(x̂, x) is the cosine loss (Lcos) (Barz and Den- 291

zler, 2020) where σ(·) represents the cosine simi- 292

larity operation; and ∥sg[zq]− E(x)∥2 is the com- 293

mitment loss (Van Den Oord et al., 2017) where 294

sg[·] represents the stop-gradient operation. 295

To customize a learning approach for text em- 296

beddings, we modify the loss function commonly 297

used in computer vision (Esser et al., 2021). Specif- 298

ically, we replace the L2 loss with the L1 loss in 299

Lrec, a technique known for its effectiveness in 300

high-resolution image restoration tasks (Zhao et al., 301

2016; Wu et al., 2021; Liu et al., 2021). The impor- 302

tance of cosine similarity in semantic analysis is 303

derived from the inherent nature of text data embed- 304

ding (Rahutomo et al., 2012; Pellicer et al., 2023). 305

Lcos is employed to ensure that the synthetic em- 306

bedding x̂ is generated in a space characterized by 307

high cosine similarity to the real embedding x. 308

The discriminator of VQ-TEGAN, Disc, is re-
sponsible for distinguishing between real and fake
embedding, resulting in a loss LDisc that follows
the WGAN loss to efficiently train the generator
(Arjovsky et al., 2017):

LGAN({E,D,Z},Disc) = Disc(x)−Disc(x̂) (4)

The complete objective to identify the optimal
compression model Q∗ = {E∗,D∗,Z∗} can be
expressed as follows:

Q∗ = argmin
E,D,Z

max
Disc

Ex∼p(x)[LVQ(E,D,Z)+

LGAN({E,D,Z},Disc)] (5)

VQ-TEGAN stands out for its scalability and 309

memory efficiency in text embedding data augmen- 310

tation, optimizing computational resources. The 311

model’s parameters remain almost constant despite 312

an increase in codebooks, growing only slightly 313

from 5.03M (19.22MB) for 1024 codebooks to 314

5.42M (20.72MB) for 4096 codebooks. This 315
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Figure 3: Model architectures of VQ-TEGAN

lightweight nature allows VQ-TEGAN to be de-316

ployed on various hardware, from high-end servers317

to resource-limited edge devices. Its compact de-318

sign makes it ideal for scenarios that require robust319

text embedding augmentation without compromis-320

ing performance. Training procedures are detailed321

in Appendix A.322

3.3 Mixup Embedding323

Mixup for word embedding, an application method
devised by Guo et al. (2019), involves the linear
interpolation of real and synthetic embeddings. We
apply the mixup method as follows:

x̃ = λx+ (1− λ)x̂ (6)

The mixup ratio λ specifies the proportion of324

real embedding (x) in the mixed embedding. For325

instance, a λ of 1.0 indicates that the mixed em-326

bedding x̃ is entirely composed of x, while a λ of327

0.4 produces a mixture of 40% of x and 60% of x̂.328

When λ is 0.0, x̃ is composed of x̂ only.329

4 Results & Discussions330

4.1 Dataset331

The research employs nine classification tasks from332

the GLUE benchmark dataset (Wang et al., 2018).333

The GLUE benchmark encompasses diverse tasks,334

including grammatical acceptability (CoLA), sen-335

timent analysis (SST-2), sentence semantic equiva-336

lence (MRPC), semantic similarity (QQP), logical337

inference (MNLI-m, MNLI-mm), validity of sen-338

tence answers to questions (QNLI), and logical339

entailment (RTE), pronoun resolution (WNLI).340

We randomly select 16 train and validation sam-341

ples per class from the train and validation set of342

each task. The evaluations are based on the average343

results of five different seeds in the test set.344

4.2 Impact of Consine Loss 345

(a) Lcos using RoBERTa-large
word embedding

(b) Lrec using RoBERTa-large
word embedding

(c) Lcos using BERT-large
word embedding

(d) Lrec using BERT-large
word embedding

Figure 4: Lcos and Lrec as a loss function with or without
Lcos when training VQ-TEGAN

The analysis of Figure 4 underscores the im- 346

portance of integrating the cosine loss term, Lcos, 347

within Eq. 3. The integration stabilizes and ac- 348

celerates the convergence, thus enhancing model 349

performance in similarity measures and improving 350

the quality of the reconstructed data. 351

Figures 4a and 4c illustrate the effect of cosine 352

loss on the cosine similarity between the real em- 353

bedding x and the synthetic embedding x̂. The fig- 354

ures demonstrate that incorporating cosine loss in 355

the generator’s loss function, LVQ, leads to faster 356

and more stable convergence (orange line) com- 357

pared to the method without cosine loss (blue line) 358

during VQ-TEGAN training. 359

Figures 4b and 4d illustrate the reconstruction 360

loss, Lrec, defined as the L1 loss that quantifies the 361
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difference between real and synthetic embeddings.362

Incorporation of cosine loss yields lower and more363

stable L1 loss values, indicating that synthetic em-364

beddings increasingly approximate the real input365

data. This observation implies that cosine loss en-366

hances the generator’s proficiency in accurately re-367

constructing inputs, thereby improving the overall368

fidelity of the generated embeddings.369

Figure 4 shows that the word embeddings de-370

rived from RoBERTa-large demonstrate a more371

consistent convergence in comparison to those of372

BERT-large during the training phase. This obser-373

vation suggests that RoBERTa-large embeddings374

are more appropriate for training VQ-TEGAN,375

with the potential to produce embeddings that are376

semantically richer than those obtained from BERT-377

large embeddings.378

4.3 Classification Performance in Few-shot379

Learning380

Table 1 provides a comprehensive analysis of the381

efficacy of various data augmentation methods,382

namely EDA, EmbedHalluc, and VQ-TEGAN,383

when implemented in few-shot learning scenar-384

ios using RoBERTa-large and BERT-large models385

across nine distinct tasks. The hyperparameters386

for few-shot learning are presented in Appendix B,387

while the benchmark methods are described in Ap-388

pendix C. The findings indicate that VQ-TEGAN389

consistently surpasses the other methods in most390

tasks, underscoring its robustness in text data aug-391

mentation. In particular, VQ-TEGAN significantly392

outperforms in seven tasks, with the exception393

of QNLI and RTE. However, VQ-TEGAN still394

achieves parity with EmbedHalluc on QNLI and is395

only 0.72% less accurate than EDA on RTE.396

Although VQ-TEGAN demonstrates enhance-397

ments in RoBERTa-large, its performance remains398

comparable to other benchmarks when evaluated399

with BERT-large. EDA exhibits superior perfor-400

mance in MRPC (F1) with a score of 1.52, whereas401

EmbedHalluc surpasses in MNLI-mm, RTE, and402

WNLI by margins of 0.04%, 0.08%, and 0.94%,403

respectively. VQ-TEGAN also shows improved404

results, albeit marginally, with an increase of 0.08405

in CoLA (Matt.), and 0.38%, 0.02%, and 1.94%406

in SST-2, MNLI-m, and QNLI, respectively. It is407

important to note that no significant performance408

disparities are observed when these models are ap-409

plied to BERT-large.410

In conclusion, VQ-TEGAN consistently sur-411

passes EDA and EmbedHalluc, particularly when412

integrated with RoBERTa-large as opposed to 413

BERT-large. The magnitude and complexity of 414

the word embeddings of the employed PLM can 415

significantly influence the extent of performance 416

enhancement achieved with VQ-TEGAN. Given 417

that VQ-TEGAN is trained directly on the word 418

embeddings of the PLM, the utilization of more 419

diverse and intricate embeddings for training cul- 420

minates in more effective data augmentation. Con- 421

sequently, VQ-TEGAN can be seen as a suitable 422

data augmentation method to enhance the perfor- 423

mance of larger PLMs relative to smaller ones. 424

4.4 Semantic Analysis on Mixup Embedding 425

Table 2 presents the three most prominent words 426

decoded from the word embeddings of RoBERTa- 427

large and BERT-large, demonstrating the highest 428

cosine similarity to the mixup embeddings with 429

different mixup ratio, λ. The words “beautiful”, 430

“bad”, “characters”, and “doubts” are used as input, 431

and the results illustrate the alterations in embed- 432

dings under varying degrees of mixup. Note that 433

the embeddings are congruent with the real embed- 434

ding at λ = 1.0. The result is a representation of 435

the words in the embeddings that demonstrate the 436

highest cosine similarity to the real embedding for 437

each PLM. The results show that the embeddings 438

of all terms exhibit the highest cosine similarity to 439

the embeddings of synonyms or capitalized forms 440

for both PLMs. 441

In the case of the RoBERTa-large model, the list 442

of closest word embeddings from λ = 0.8 is iden- 443

tical or slightly modified from λ = 1.0, including 444

minor modifications to words (e.g., “suspicions”) 445

or capitalization (e.g., “BAD”). That is, the seman- 446

tic properties of the closest embeddings exhibit 447

minimal variation relative to the case with λ = 1.0. 448

When λ is set to 0.6, new words different from 449

the list of λ = 1.0 start to appear in the third rank 450

(e.g., “magnificent” for the word “beautiful” and 451

“lousy” for the word “bad”). As λ decreases to 0.4, 452

many words that have similar semantic properties 453

emerge in the list (e.g., “crappy” for the word “bad” 454

and “protagonists” and “superheroes” for the word 455

“characters”). This phenomenon is strengthened 456

when λ decreases to 0.2, showing an increasing de- 457

viation from the original words. For instance, the 458

top three words decoded from the RoBERTa-large 459

are “superheroes”, “mystic”, and “villan” for the 460

word “characters”. For a λ of 0.0, the embedding is 461

populated with novel words that are not related to 462

the original words. It emphasizes the necessity of 463
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Model CoLA SST-2 MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI
(Matt.) (acc) (F1) (acc) (acc) (acc) (acc) (acc) (acc)

RoBERTa-large 17.20±10.28 72.58±9.59 67.86±7.83 62.26±6.91 33.62±0.70 34.78±0.58 47.80±1.49 49.68±1.22 57.38±5.20

+EDA 12.42±6.78 70.48±6.78 68.68±13.98 57.22±18.77 33.78±1.22 33.88±2.34 49.22±1.24 50.96±0.72 53.56±5.96

+EmbedHalluc 21.90±8.57 75.82±6.48 69.52±4.77 63.12±4.89 33.38±1.14 34.96±0.85 49.64±0.75 49.54±1.01 55.32±8.20

+VQ-TEGAN 29.66±8.02 78.14±8.13 72.50±4.16 70.98±8.10 34.68±1.14 36.00±2.51 49.64±1.40 50.24±0.42 62.60±2.95

BERT-large 8.18±4.04 75.36±8.16 64.42±14.51 59.12±8.69 32.32±1.00 33.46±2.29 48.92±1.66 49.56±0.43 47.80±9.28

+EDA 10.48±3.59 78.22±4.36 73.14±6.50 46.12±13.08 32.56±1.06 32.42±1.59 49.84±2.95 49.62±1.58 52.46±9.70

+EmbedHalluc 12.30±7.19 74.10±7.56 63.84±16.07 59.26±4.70 34.30±1.75 35.12±2.21 48.60±2.30 49.64±0.73 53.68±8.11

+VQ-TEGAN 12.38±4.53 78.60±4.38 71.62±6.92 66.98±5.59 34.32±1.18 35.08±2.78 51.78±1.27 49.56±0.50 52.74±6.77

Table 1: A comparative analysis of Conventional Fine-tuning, EDA, EmbedHalluc, and VQ-TEGAN, using
RoBERTa-large and BERT-large as base models. The superior performance for each task is denoted in bold.

Word Embedding RoBERTa-large BERT-large

λ Rank beautiful bad characters doubts beautiful bad characters doubts

1.0 1 beautiful bad characters doubts beautiful bad characters doubts
2 gorgeous Bad character doubt gorgeous good character doubted
3 lovely terrible Characters doubted lovely badly protagonists doubt

0.8 1 beautiful bad characters doubts beautiful bad characters doubts
2 gorgeous Bad character doubted gorgeous badly character doubted
3 lovely BAD Characters suspicions lovely 295 protagonists doubt

0.6 1 beautiful bad characters doubts beautiful bad characters doubts
2 gorgeous BAD character doubted gorgeous 295 protagonists [unused306]
3 magnificent lousy Characters suspicions 1738 321 1743 [unused298]

0.4 1 beautiful bad characters doubts 1736 1736 1736 doubts
2 gorgeous lousy protagonists doubted 1732 276 1743 [unused659]
3 magnificent crappy superheroes suspicions 1738 326 1732 [unused276]

0.2 1 Beautiful intertwined superheroes doubts 1736 1736 1736 [unused659]
2 magnificent sandy mystic timid 1732 276 1743 [unused80]
3 the crafted vilains dismay 1743 1732 1732 [unused176]

0.0 1 ACE unfold mystic mystic 1736 1736 1736 [unused659]
2 Apex crafted wretched wretched 1732 1732 1732 [unused80]
3 EA intertwined timid timid 45th 45th 45th [unused176]

Table 2: The top three words decoded from word embeddings in RoBERTa-large and BERT-large, exhibiting the
highest degree of cosine similarity to the mixup embeddings with different λ.

the mixup for the augmentation via VQ-TEGAN.464

In the case of the BERT-large model, at λ = 0.8,465

a minor change is observed for the word “bad”, but466

no change is observed for other words. Interest-467

ingly, the new words included in the word “bad”468

include the semantically unrelated word “295”. As469

λ decreases to 0.6, there is a significant increase in470

unrelated tokens and numbers observed, indicating471

a stronger deviation from the original words. As472

the value of λ is reduced from 0.4 to 0.0, the list is473

filled with semantically irrelevant words.474

Our analysis indicates that as λ decreases, the475

mixup embeddings exhibit an increasing diver-476

gence from the original words. Furthermore, the477

mixup embeddings produced by RoBERTa-large478

are observed to encapsulate more semantically rich479

and contextually pertinent words at smaller λ com-480

pared to those generated by BERT-large. This ob-481

servation suggests that the mixup embeddings of482

RoBERTa-large maintain a higher degree of seman-483

tic coherence under mixup conditions compared484

to BERT-large. This is corroborated by the classi-485

fication performance presented in Table 1, which486

demonstrates that RoBERTa-large exhibits a sig-487

nificant improvement in performance with mixup 488

embeddings, whereas BERT-large does not show a 489

comparable enhancement. 490

In conclusion, when VQ-TEGAN generates 491

meaningful synthetic embeddings and integrates 492

mixup embeddings with real embeddings for few- 493

shot learning, it has the potential to facilitate the 494

application of mixup embeddings with an expanded 495

and more heterogeneous semantic spectrum for 496

few-shot learning. Additional semantic analysis 497

on mixup embeddings can be found in the Ap- 498

pendix D. 499

4.5 Sensitivity Analysis on Mixup Ratio 500

In Table 3, we present a comparative analysis of 501

the results derived from conventional fine-tuning 502

and our proposed model, employing three distinct 503

λ values (0.0, 0.2, and 0.4). The scenario with 504

λ = 1 was omitted from the sensitivity analysis 505

due to its redundancy in merely duplicating the 506

real embedding. Likewise, scenarios with λ = 0.6 507

and λ = 0.8 were excluded as their results did not 508

show significant deviations from those presented 509

in Table 2. 510
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Model CoLA SST-2 MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI
(Matt.) (acc) (F1) (acc) (acc) (acc) (acc) (acc) (acc)

RoBERTa-large 17.20±10.28 72.58±9.59 67.86±7.83 62.26±6.91 33.62±0.70 34.78±0.58 47.80±1.49 49.68±1.22 57.38±5.20

w/ λ = 0.0 28.32±11.60 78.14±8.13 71.98±6.36 70.98±8.10 34.60±1.56 36.00±2.51 48.22±1.42 50.24±0.42 60.96±4.42

w/ λ = 0.2 29.66±8.02 76.84±5.88 72.50±4.16 66.68±7.68 34.40±0.90 34.66±1.07 49.64±1.40 50.02±0.65 59.18±4.08

w/ λ = 0.4 18.30±3.72 74.42±7.33 71.62±6.86 65.24±9.24 34.68±1.14 35.60±2.29 48.94±0.27 50.22±0.76 62.60±2.95

BERT-large 8.18±4.04 75.36±8.16 64.42±14.51 59.12±8.69 32.32±1.00 33.46±2.29 48.92±1.66 49.56±0.43 47.80±9.28

w/ λ = 0.0 9.44±6.84 77.34±5.00 68.20±11.32 66.98±5.59 34.32±1.18 35.08±2.78 50.26±1.81 49.42±0.44 52.74±6.77

w/ λ = 0.2 12.38±4.53 77.00±5.36 71.62±6.92 62.76±12.57 33.46±1.57 34.24±1.41 50.12±0.98 49.46±0.91 51.22±7.04

w/ λ = 0.4 9.62±7.42 78.60±4.38 69.96±7.08 63.78±7.14 33.58±1.65 34.02±3.10 51.78±1.27 49.56±0.50 52.34±6.52

Table 3: A comparative analysis of conventional fine-tuning and VQ-TEGAN for different λ, using RoBERTa-large
and BERT-large as base models. The bold numbers indicate instances where VQ-TEGAN outperforms conventional
fine-tuning for each respective task, while underlined numbers indicate the highest performance.

Using RoBERTa-large for few-shot learning,511

VQ-TEGAN demonstrates superior performance512

relative to fine-tuning across all evaluated tasks. In513

general, λ = 0.0 and λ = 0.2 exhibit increased514

efficacy compared to traditional fine-tuning and515

λ = 0.4, with the exception of MNLI-m and WNLI.516

Specifically, for tasks such as SST-2, QQP, MNLI-517

mm, and RTE, the optimal results are observed518

with λ = 0.0. In contrast, λ = 0.2 achieves su-519

perior results in CoLA, MRPC, and QNLI. In par-520

ticular, λ = 0.4 surpasses λ = 0.0 and λ = 0.2521

exclusively in MNLI-m and WNLI. These findings522

indicate that the incorporation of synthetic embed-523

dings or mixup embeddings significantly enhances524

model generalization and performance.525

In contrast, using BERT-large for few-shot learn-526

ing reveals a distinct pattern. Specifically, a λ value527

of 0.2 enhances performance beyond traditional528

fine-tuning in the CoLA and MRPC datasets. The529

most substantial performance improvements are530

achieved with λ = 0.4 in the SST-2, QNLI, and531

RTE tasks. In particular, a λ value of 0.0 yields532

the highest performance metrics in QQP, MNLI-m,533

MNLI-mm, and WNLI. These observations sug-534

gest that the efficacy of BERT is differentially in-535

fluenced by varying λ values and synthetic em-536

beddings contingent on the specific task, thereby537

indicating the absence of a universally optimal λ538

value across all tasks.539

5 Conclusion540

This study introduces VQ-TEGAN, a novel data541

augmentation method for text embedding. VQ-542

TEGAN generates embeddings across various se-543

mantic and synonymic dimensions of PLM em-544

beddings, facilitating more efficient and effective545

acquisition of a broader spectrum of semantics546

during the fine-tuning of PLMs with limited train-547

ing datasets. Our empirical analysis reveals that548

VQ-TEGAN (1) achieves superior performance 549

enhancements on GLUE benchmark tasks in few- 550

shot learning contexts, (2) is more compact and 551

lightweight compared to other language models em- 552

ployed for data augmentation, (3) augments PLM 553

performance, particularly when utilized with PLMs 554

possessing larger embeddings, and (4) introduces 555

a more efficient loss function for text embedding 556

generation via the convergence of loss functions. 557

6 Limitations 558

Despite its novelty, there are limitations that need 559

to be addressed in future work. As discussed in sec- 560

tion 4.4, the semantic analysis of the closest PLM 561

word embeddings to the mixup embeddings eluci- 562

dates the potential for formulating a novel embed- 563

ding space conducive to few-shot learning. How- 564

ever, a limitation is identified where VQ-TEGAN- 565

generated embeddings may converge within a 566

space similar to other semantic embeddings, at- 567

tributable to the anisotropy issue inherent in PLM 568

word embeddings (Ethayarajh, 2019; Li et al., 569

2020). A possible approach is to train VQ-TEGAN 570

utilizing word embeddings derived from PLMs that 571

have been refined through contrastive learning(Gao 572

et al., 2021), addressing the anisotropy issue within 573

the embedding space. Lastly, this study exclusively 574

investigates the instances of VQ-TEGAN utilizing 575

RoBERTa-large and BERT-large. For subsequent 576

study, a broader spectrum of PLMs should be ex- 577

plored for the implementation of VQ-TEGAN. 578

7 Ethics Statement 579

This paper investigates data augmentation in the 580

generation of embeddings for few-shot learning. It 581

is not anticipated that this research will raise any 582

ethical or social issues. All data utilized in this 583

study is publicly accessible and has been utilized 584

by numerous researchers. The proposed method 585
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does not introduce any ethical biases into the data.586
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A Training Details for VQ-TEGAN 850

The generator architecture includes an encoder, a 851

decoder, and a codebook of latent vectors. The en- 852

coder is composed of four sequential blocks, each 853

containing a fully connected layer, batch normaliza- 854

tion, and the LeakyReLU activation function (Jian 855

et al., 2022). This encoder progressively reduces 856

the dimensionality to 1024, 512, 256, and 128. The 857

codebook comprises quantized latent vectors that 858

correspond to the output dimensions of the encoder. 859

The quantity of codebook vectors is adjusted as 860

a hyperparameter during the experimental proce- 861

dures. The decoder, which structurally parallels 862

the encoder, consists of four blocks that expand the 863

quantized codebook vectors to dimensions of 128, 864

256, 512, and 1024. The discriminator is structured 865

with three blocks, having dimensions of 512, 512, 866

and 1, respectively, and produces a singular tensor 867

output. VQ-TEGAN is subjected to training for 10 868

epochs with a batch size of 64, utilizing the Adam 869

optimizer (β = (0.5, 0.999)) and a fixed random 870

seed of 42. The training process includes a grid 871

search for the learning rates of 2e−5 and 5e−5, as 872

well as codebook vector quantities of 1024, 2048, 873

and 4096. 874

B Hyperparameters for Few-shot 875

Learning 876

The model is trained using learning rates of 1e−5 877

and 2e−5, with batch sizes of 4 and 8. Random 878

number generation seeds of 13, 21, 42, 87, and 100 879

are utilized. The training process was capped at 150 880

epochs, with the final model being selected based 881

on validation accuracy at each epoch. An early 882

stopping mechanism is used to mitigate overfitting, 883

halting training if no improvement in validation 884

accuracy is observed after 100 epochs (Prechelt, 885

2002). 886

To train the PLM with augmented embeddings, 887

comprehensive experiments are conducted across 888

all parameters. The mixup ratios for x and x̂ are 889

evaluated at λ values of 0, 0.2, and 0.4 as illus- 890

trated in Eq. 6. Both EDA and EmbedHalluc are 891

executed using default settings, with EDA’s data 892

augmentation further explored by generating 4 and 893

9 additional samples. 894

The algorithms are implemented using Python 895

3.10.8 and PyTorch 1.13.1. The experiments are 896

carried out on an Ubuntu 20.04.6 system equipped 897

with a Nvidia RTX 3090 TI (24 GB RAM) and an 898

Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz. 899
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The NLTK 3.8.1 toolkit is used for synonym re-900

placement in the EDA process. RoBERTa-large901

and BERT-large models, along with their tokeniz-902

ers, are sourced from the Hugging Face Transform-903

ers library.904

C Benchmarks905

The performance of VQ-TEGAN is evaluated in906

comparison to established benchmarks: conven-907

tional fine-tuning, EDA, and EmbedHalluc based908

on cWGAN.909

• Conventional Fine-tuning constitutes a fun-910

damental approach where a few-shot language911

model is trained exclusively on the provided912

dataset, devoid of any supplementary data aug-913

mentation.914

• EDA(Wei and Zou, 2019) represents a data915

augmentation that incorporates four principal916

techniques: synonym replacement, random917

deletion, random swap, and random addition.918

This method is both intuitive and efficient, fa-919

cilitating the generation of a substantial num-920

ber of synthetic sentences in a straightforward921

manner.922

• EmbedHalluc(Jian et al., 2022) leverages cW-923

GAN to augment textual data within the em-924

bedding space. The training process encom-925

passes both the generator and the discrimina-926

tor, with data augmentation being realized by927

doubling the few-shot data via the generator.928

D Text Embedding Analysis929

Tables 4, 5, 6, and 7 present the words of the em-930

bedding tokens that exhibit the three highest cosine931

similarities between the mixup embeddings gener-932

ated by VQ-TEGAN and the embeddings within933

the PLM under various parameter configurations.934

Tables 4 and 5 elucidate the results for RoBERTa-935

large embeddings, while Tables 6 and 7 illustrate936

the results for BERT-large embeddings. The pa-937

rameter configurations encompass the learning rate938

of VQ-TEGAN, the number of codebook vectors,939

and five distinct values of λ.940

Tables 4 and 5 show the evolving patterns in941

the semantic representations of the embeddings as942

the parameter λ chages, as discerned through our943

comprehensive analysis.944

At a λ value of 0.0, where the embeddings are945

synthesized exclusively by VQ-TEGAN in the ab-946

sence of any real embeddings, the cosine similar-947

ity fails to effectively discern relatedness or syn-948

onymy. This observation implies that the synthetic 949

embeddings may exhibit abstract or non-traditional 950

associations at this λ, which deviate from the con- 951

ventional semantic relationships observed in real 952

embeddings. 953

A notable change is observed when the param- 954

eter λ is elevated to 0.2 or 0.4. At these λ values, 955

the top three synonyms for each text sample exhibit 956

increased diversity, which means that the mixed 957

embeddings now encapsulate a wider spectrum of 958

semantic similarities. For instance, Table 4 demon- 959

strates that the mixup embedding of “beautiful”, 960

with a λ of 0.2, achieves the highest cosine simi- 961

larities of 0.751, 0.742, and 0.740 with the embed- 962

dings of adjectives bearing analogous meanings, 963

such as “exquisite”, “magnificent”, and “marvel- 964

lous”, respectively, for lrV Q of 5e-05 and a code- 965

book size of 4096. In Table 5, it is evident that 966

the mixup embedding of “characters” manifests 967

the three highest cosine similarities of 0.670, 0.670, 968

and 0.658 with the embeddings of nouns possessing 969

similar or identical meanings, such as “villains”, 970

“superheroes”, and “characters”. This observation 971

is pivotal, as it suggests that the mixup embedding 972

at these λ values transcends a mere replication of 973

the original meanings. Moreover, it introduces an 974

extensive array of related concepts with real embed- 975

dings. The inclusion of 20% of x functions as an 976

anchor, anchoring the synthetic embedding within 977

the original semantic framework while still allow- 978

ing the introduction of novel nuances. This equi- 979

librium, facilitated by synthetic embeddings gen- 980

erated by VQ-TEGAN, which adeptly constructs 981

the semantic space of PLM’s embedding, culmi- 982

nates in mixup embeddings that are enriched with 983

supplementary contextual meaning. This gener- 984

ates a more nuanced and comprehensive semantic 985

comprehension. 986

Upon observation, it was observed that when the 987

parameter λ exceeds the threshold of 0.6, the aug- 988

mented embeddings exhibit a pronounced resem- 989

blance to the real embedding x. This phenomenon 990

indicates that at elevated values, the mixup em- 991

beddings converge more closely with the semantic 992

attributes of the genuine embedding, thereby dimin- 993

ishing the distinctions from the original embedding. 994

As a result, this convergence may precipitate issues 995

of data redundancy, as the mixup embeddings may 996

not provide substantially novel or diverse informa- 997

tion relative to the original dataset. 998

Tables 6 and 7 demonstrate that the evaluation 999

of BERT-large mixup embeddings via cosine sim- 1000
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ilarity indicates that those embeddings with the1001

highest cosine similarity exhibit inferior semantic1002

coherence compared to RoBERTa-large.1003

When λ is set to 0, the mixup embeddings1004

occupy a space distinct from the real embed-1005

dings. This phenomenon arises due to the non-1006

convergence of the cosine similarity depicted in1007

Figure 4c, despite the partial convergence of the1008

reconstruction loss illustrated in Figure 4d. Further-1009

more, it is apparent that the mixup embeddings are1010

predominantly characterized by synthetic embed-1011

dings when λ is 0.2 and 0.4, with only embeddings1012

being identified in a space similar to synthetic em-1013

beddings. For λ values of 0.6 and 0.8, the mixup1014

embeddings exhibit a greater resemblance to the1015

real embeddings, with a minority of embeddings1016

situated in a space similar to that of the synthetic1017

embeddings. This observation substantiates that1018

the mixup embeddings for BERT-large do not pos-1019

sess a semantic meaning that is markedly distinct1020

from the real and synthetic embeddings.1021

Tables 4 and 5 illustrate that VQ-TEGAN gener-1022

ates semantic embeddings that provide RoBERTa-1023

large with access to a more diverse and meaningful1024

embedding space for learning. Conversely, Tables1025

6 and 7 reveal that the mixup embeddings on BERT-1026

large exhibit less significant cosine similarity com-1027

pared to those augmented on RoBERTa-large em-1028

beddings.1029

17


	Introduction
	Related Work
	Generative Model
	Text Augmentation
	Fine-tuning of Pre-trained Language Models

	Methods
	Overview
	VQ-TEGAN
	Mixup Embedding

	Results & Discussions
	Dataset
	Impact of Consine Loss
	Classification Performance in Few-shot Learning
	Semantic Analysis on Mixup Embedding
	Sensitivity Analysis on Mixup Ratio

	Conclusion
	Limitations
	Ethics Statement
	Training Details for VQ-TEGAN
	Hyperparameters for Few-shot Learning
	Benchmarks
	Text Embedding Analysis

