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Abstract

This paper employs empirical game-theoretic
analysis (EGTA) to examine builders’ incentives
for strategic bidding in MEV-Boost auctions un-
der the current Proposer-Builder Separation (PBS)
framework. Our results suggest that under the
ideal conditions of a builder market that lead to de-
centralization, builders are incentivized to collude
rather than compete, contributing to low efficiency
in the MEV-Boost auction. We show that latency
advantage incentivizes builders to bid strategically
to maximize their profit. Additionally, we show
that advantages in private orderflow access can
incentivize builders to refuse collusion and dom-
inate the market. Furthermore, we demonstrate
that the relay enforcement of rejecting new bids
after the beginning of the slot, as a mitigation for
timing games, impacts builders’ strategic bidding
incentives. Through our analyses, we highlight
the challenge of creating a decentralized yet com-
petitive builder market.

1. Introduction

With the introduction of Proposer-Builder Separation (PBS)
mechanism in Proof-of-Stake Ethereum, block proposers
can opt into MEV-Boost to outsource the task of block pro-
duction for Maximal Extractable Value extraction to builders
through trusted intermediaries known as relays at an out-
of-protocol marketplace, where builders compete in the
MEV-Boost auctions for the right of block production. The
auction for the block of slot n typically starts around the
beginning of slot n — 1 and terminates at the end of slot n— 1
when the proposer calls get Header to select the winning
bid. The highest bidder wins the auction and, upon their
block being selected and proposed, stands to potentially
realize profits.

Builders’ bid value depends on the block value they pro-
duce, which originates from priority fees (gas) and Maximal
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Extractable Value (MEV) of public transactions broadcast
in the public mempool and private orderflow secured from
searchers. MEV refers to the value that can be extracted by
including, excluding, and re-ordering transactions (Daian
etal., 2019). To gain a competitive advantage in MEV-Boost
auctions, builders optimize their connection to searchers and
relays, targeting lower latency and higher orderflow access.
Some builders “vertically integrate”, by operating their own
searchers and initiating a relay to further improve latency
and gain exclusive access to private orderflow. Such enti-
ties are referred to as integrated builders, and this strategy
is termed vertical integration. Vertical integration poten-
tially contributes to centralization in the block construction
market; today although more than 30 builders are active in
the market, the market has been dominated by only several
builders. However, there is limited practical insight into how
advantages in latency and orderflow access affect builders’
strategic bidding behaviors in MEV-Boost auctions.

Another concern under the current PBS framework is tim-
ing games (Schwarz-Schilling et al., 2023), which involves
strategically delaying the block proposal by proposers and
optimizing their profits. Such practices can undermine
the blockchain’s consensus (Schwarz-Schilling & Nueder).
A viable countermeasure could involve relays enforcing
stricter timeliness on proposers, such as rejecting builder
bids after the beginning of the slot. However, there is notably
scarce literature on how these timing game mitigations will
affect builders’ strategic bidding in MEV-Boost auctions.

In this paper, we address these questions and thereby con-
tribute to bridging the existing knowledge gap concerning
the interaction between builders’ strategic bidding incen-
tives and the MEV-Boost auction mechanism under the cur-
rent PBS framework. We use the MEV-Boost auction sim-
ulation framework and the bidding strategies proposed by
(Wu et al., 2024) and conduct an empirical game-theoretic
analysis (EGTA). We study builders’ strategic bidding in
MEV-Boost auctions under varying scenarios and examine
how vertical integration impacts builders’ incentives. We
further investigate how the relay enforcement policy of re-
jecting bids after the beginning of the slot affects builders’
incentives for choosing strategies. This paper makes the
following contributions:

1. We find that, Under the current PBS framework and
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ideal conditions of a builder market (similar latency
and orderflow access), builders are incentivized to
marginally increase their bids to outbid each other (i.e.,
colluding) rather than bidding their full valuation. Al-
though this collusion potentially enhances decentraliza-
tion, with builders having an equal chance of winning
the auction, the winning bids do not reflect (i.e., are
much lower than) the actual block values. As a result,
the MEV-Boost auction mechanism does not efficiently
capture MEYV, and builders retain a large proportion of
MEV for themselves.

2. We next study how advantages in latency and private
orderflow access affect builders’ incentives of adopting
different bidding strategies. Our results indicate that
lower latency enables builders to bid strategically and
maximize their profit. In contrast to the symmetric
(idealized) scenario studied above, we also find that
differences in latency between builders can serve as
a critical element that increases the efficiency of the
current MEV-Boost auction mechanism. We further
show that significant advantages in private orderflow
access incentivize builders to engage in competition to
increase their market shares (and dominate the market)
rather than colluding.

3. Finally, we study the relay enforcement policy of reject-
ing bids after the beginning of the slot and demonstrate
that it significantly impacts builders’ bidding incen-
tives when builders have different latencies. We show
that this enforcement, which essentially boils down to
builders knowing the exact auction termination time,
contributes to enhancing the auction efficiency by forc-
ing competitive players with a latency advantage to bid
their full valuation.

2. Auction Game Model and Strategy Space

We employ the MEV-Boost auction model and bidding
strategies proposed by (Wu et al., 2024). We consider the
game as one auction and 10 players in the auction game,
since currently, the top 10 builders build 98.65% blocks
built via MEV-Boost. We consider a strategy space that
contains three strategies, which are the naive strategy, the
adaptive strategy, and the last-minute strategy. We will qual-
ify players by their strategy; so, e.g., “naive players” are
those playing the naive strategy. The payoff of the player is
the profit they make through the auction.

The model is calibrated using the mempool data (Flashbots,
b) and on-chain data maintained by Flashbots and Dune
for the period of February 23 to April 7 2024 (Flashbots &
Dune). However, due to the lack of data on private orderflow,
we apply an approach of estimation based on on-chain data.
The detailed definitions and calibration method can be found
in Appendix A.

3. Empirical Games

Explicitly solving the above game is computationally chal-
lenging, as players can independently decide their bidding
strategy, which results in 3'° distinct strategy profiles. We
follow an empirical game-theoretic approach where we ex-
ploit certain symmetries between builders to reduce the size
of the games. Specifically, each player is characterized by
their latency and their (prior distribution of) private order-
flow access probability. Accordingly, we analyze the games
with three variants in which either one or both of these
attributes are uniform across all players. We further use
heuristic payoff table (HPT) (Tuyls et al., 2020) to store the
payoff information. In this way, we replace the games with
symmetric games or role-symmetric games. The detailed
game definition can be found in Appendix B.

To solve the above games, we employ the a-Rank algorithm
(Omidshafiei et al., 2019). The solution (equilibrium) is
presented by a ranking of strategy profiles with their station-
ary probabilities within the unique stationary distribution
of the a-Rank Markov Chain. To convey the equilibrium
clearly, we present the results as the average number of play-
ers using each strategy across all the profiles weighted by
their stationary probabilities, which captures the expected
frequency of each strategy being used by players in the long
run. In addition, we pay attention to the “optimal” strat-
egy profile, i.e., the highest-ranked profile with the highest
stationary probability.

4. Empirical Game-Theoretic Analysis

In this section, we present our experimental results using
the three game variants. We study builders’ incentives for
choosing strategies under varying conditions, investigate
the impact of latency improvements and orderflow access
advantage on builders’ incentives, and analyze the state of
the MEV-Boost auction in equilibrium.

4.1. Adaptive players dominate in the symmetric game

In the empirical games where all 10 players share identical
latency and the same prior distribution of private orderflow
access probability, the optimal strategy profile, where all 10
players adopt the adaptive strategy, demonstrates a high evo-
Iutionary stability, with a stationary probability of 0.99997.
The result shows that, once the system reaches this state,
transitioning to other states is exceedingly unlikely due to
the evolutionary stability of this profile and the success of
the strategies involved.

Specifically, in the auction simulation, when all the play-
ers employ the adaptive strategy, they increase their bids
incrementally with the marginal value § simultaneously, con-
tributing to uniform bid values among all builders at the end
of the auction. Consequently, the auction terminates with a
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Figure 1. Auction efficiencies under varying values of § when all
10 builders use adaptive strategy and share an identical latency of
10ms and the prior distribution of private orderflow access.

relatively low value of the winning bid, with each player hav-
ing an equal opportunity to win the auction. This scenario
implies that a significant portion of block value accrues to
the winning builder rather than to the proposer, highlighting
inefficiencies in the auction mechanism to capture MEV.

To evaluate the auction’s capability of capturing MEV, we
define auction efficiency as the ratio of the winning bid to
the total signal value. In the simulation, we use § = 0.0001
ETH as the marginal value of the adaptive strategy which
results in a median auction efficiency of 46.65%. It is worth
noting that further reduction in the marginal value § can lead
to even lower winning bid values and efficiency.' Figure 1
illustrates the correlation between auction efficiency and the
value of 4.

These findings indicate that, in scenarios where all builders
experience identical latency and have comparable access to
private orderflow, given the defined strategy space, builders
are disinclined to bid their full valuation (adopt the naive
strategy) to win the auction. Instead, they are incentivized to
maximize their profitability by together increasing their bids
incrementally with a small margin, sharing an equal chance
of winning the auction. This equal opportunity to win might
foster an idealized, more decentralized builder market, with
builders potentially sharing the market equally. However,
this behavior could be perceived as a form of collusion,
which, while enhancing decentralization, reduces competi-
tive bidding and contributes to low auction efficiency.

While the builders are incentivized to maximize their profit
by colluding, to prevent the proposer from falling back
to local production, they need to ensure that their final bid
matches or exceeds the maximum extractable value from the
public mempool, i.e., public signal—approximately 40%
of the total block value. In our simulation, setting § =
0.0001 ETH results in a bid value corresponding to 46.65%
(median) of the total block value, demonstrating that the
simulated auctions remain effective under these settings.

'The varying § values have negligible impact on the stationary
probabilities of the profile.

4.2. Impact of Latency

In the role-symmetric games where all players have the
same distribution of private orderflow access but experience
two types of latencies, the equilibrium of the previous (sym-
metric) situation can be disrupted: if all players choose to
play the adaptive strategy, the market will not be equally
shared anymore, as the high-latency players have a lower
chance of winning than the low-latency players. Conse-
quently, high-latency players may be incentivized to switch
from the adaptive strategy to the naive or last-minute strat-
egy, as the bidding behaviors defined by these two strategies
are not affected by latency.

It is worth mentioning that the adaptive strategy is more
sensitive to latency variations, and a higher latency typically
results in a slower reaction for the adaptive players. Thus,
the primary factor influencing players’ strategy choices in
this case is the difference in latency between low-latency and
high-latency players. To analyze these effects, we consider
scenarios under varying latency differences between 5 low-
and 5 high-latency players, from Oms (previous symmet-
ric scenario) to 50ms, and analyze each latency difference
scenario as a separate game. Specifically, low-latency play-
ers maintain a fixed latency of 10ms, while the latency of
high-latency players starts at 10ms and increases by 10ms
increments. We then analyze the equilibria of these games
to understand the impact of latency on strategy choices.

Our findings show that when the latency difference is only
10ms, the optimal strategy profile remains the one in which
all players adopt the adaptive strategy and players are still
more incentivized to collude. As suggested by our sim-
ulations, despite a lower win rate of 4.45%, high-latency
players continue to collude with low-latency players, at-
tracted by the potential to capture approximately 50% of the
block value upon winning. However, as the latency differ-
ence exceeds 10ms, high-latency players’ win rates decline
significantly, prompting a strategic shift towards the naive
strategy for improved performance.

Figure 2 presents the equilibria computed by a-Rank under
varying latency differences. As the high-latency players’ in-
centives for switching to the naive strategy become increas-
ingly strong, when the latency difference becomes 20ms, the
equilibrium shifts, and the optimal strategy profile changes
to all low-latency players adopting the adaptive strategy and
all high-latency players adopting the naive strategy. This
shift occurs because the effectiveness of the adaptive strat-
egy diminishes significantly for high-latency players as their
latency increases, making the naive strategy more appealing.
In response to high-latency players’ shift to the naive strat-
egy, we also observe a reaction from low-latency players
when the latency difference is not greater than 20ms. As
the latency difference increases, the optimal profile—where
all low-latency players adopt the adaptive strategy and all
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Figure 2. Average usage of each strategy by low-latency players
(left) and high-latency players (right) across all profiles under
varying latency differences as computed by a-Rank.

high-latency players adopt the naive strategy—becomes in-
creasingly dominant. This consistency demonstrates that
low-latency players have a strong incentive to maintain
the adaptive strategy, while high-latency players are bet-
ter suited to the naive strategy. Furthermore, when the
latency for high-latency players is particularly high, even
with a 50% risk of missing the submission window, the
last-minute strategy proves more effective than the adaptive
strategy. This is attributed to the decreasing effectiveness of
the adaptive strategy as latency increases, combined with the
occasional effectiveness of the last-minute strategy against
the adaptive strategy employed by low-latency players. We
also show why the optimal profile is more dominant through
a pairwise comparison (Appendix C).

The results underscore the significant impact of latency im-
provements on builders’ incentives for strategic bidding.
Although both low-latency and high-latency builders have
comparable access to private orderflow in the game settings,
latency advantages facilitate faster access to transactions
and quicker bid updates. This capability proves crucial near
the auction termination because if a late transaction occurs,
low-latency builders can include it and update their bids
before the auction closes, unlike high-latency builders who,
despite having access to the same transaction, cannot update
their bids in time. Thus, builders who benefit from a latency
advantage are incentivized to adopt the adaptive strategy,
thereby maximizing their profits by marginally outbidding.
Conversely, builders with a latency disadvantage are com-
pelled to bid their full valuation to enhance performance
and offset their latency disadvantage.

Furthermore, the results indicate that the latency difference
between builders under the current PBS framework serves
as a crucial element that makes MEV-Boost auction effi-
cient. Although high-latency builders may win infrequently,
their incentive for naive bidding behavior still pressures
low-latency adaptive players to place higher bids, thereby
enhancing the auction efficiency.

4.3. Impact of Orderflow Access

We next proceed to analyze builders’ incentives when their
orderflow access probabilities are different (i.e., when these
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Figure 3. Average usage of each strategy by high-orderflow players
(left) and low-orderflow players (right) across all profiles under
varying probability differences as computed by a-Rank.

probabilities are drawn from different distributions). To
isolate the effects of private orderflow access, we mirror
our previous approach in the study of latency, and examine
scenarios involving 5 low- and 5 high-orderflow players, all
with the same latency.

Surprisingly, despite varying differences in the orderflow
access probability between low- and high-orderflow players,
the equilibrium outcomes we observe are consistent with the
initial game where all players have the same distribution of
orderflow access probability: all players choose to play the
adaptive strategy. This consistency arises because, under the
current simulation settings, the ultimate bid value approxi-
mates the public signal value, as discussed in Section 4.1.
As a result, both high-orderflow and low-orderflow players
remain competitive at the ultimate bid value, rendering the
differences in orderflow access inconsequential.

Nevertheless, there exists a scenario where the high-
orderflow players are incentivized to adopt the naive strat-
egy and dominate the market without sharing it with the
low-orderflow players. This is the case, when builders can
dynamically adjust their profit margin based on their private
orderflow volume. To study this effect, instead of having
a fixed profit margin value symmetric for all players, the
profit margin of each player is set to be equal to 50% of their
private orderflow volume, i.e., 50% of their private signal.
Similarly, we analyze each probability difference scenario
as a separate game. We set the orderflow access probability
of the low-orderflow players to 50% and increase the high-
orderflow players’ access probability in 10% increments.

Figure 3 presents the equilibria for various parameter val-
ues (orderflow access probability differences) in the above
scenario. As we see, high-orderflow players are more in-
centivized to adopt the adaptive strategy and collude with
low-orderflow players when their orderflow access proba-
bility and, hence, their profit margin, are low (difference
below 30%). However, as their orderflow access probability
and, thereby their profit margin, increase, they are increas-
ingly incentivized to adopt the naive strategy. Thus, they
increasingly refuse to collude with low-orderflow players
and capture a higher win rate. When the probability differ-
ence exceeds 30%, meaning high-orderflow players’ access
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probability surpasses 80%, we observe a significant shift in
equilibrium.

For low-orderflow players, their incentive to maintain the
adaptive strategy remains strong. Given their limited ac-
cess to orderflow, adopting the naive strategy is suboptimal
because high-orderflow players can easily outbid them. Con-
sequently, their best chance to win is by playing the adaptive
strategy and colluding with high-orderflow players. How-
ever, as high-orderflow players switch to the naive strategy
and refuse to collude, low-orderflow players adopting the
adaptive strategy are unable to outbid the high-orderflow
players, meaning that the adaptive strategy and the naive
strategy are equally effective. Thus, we observe the usage
of these two strategies by low-orderflow players tends to
converge as the probability difference increases.

S. Impact of Relay Enforcement

In this section, we investigate how the relay enforcement
policy of rejecting new bids after the beginning of the slot
affects builders’ incentives for choosing strategies, by fix-
ing the simulated auction interval to match exactly the 12-
second duration of a slot (i.e., 0 = 0). We assume that
the relay conducts this enforcement policy honestly. This
enforcement effectively terminates the auction at the start of
the slot, ensuring no further bids are accepted and eliminat-
ing the proposer’s incentive for delaying their get Header
request. It is worth noting that the proposer is not eco-
nomically incentivized to call get Header earlier, as they
might miss a higher bid. Therefore, the builders know that
the auction will be terminated at a fixed time point, i.e., the
beginning of the slot.

As it turns out, the lack of ambiguity in the termination
of the auction significantly affects builders’ incentives for
choosing strategies. Under non-random termination, the
last-minute players, who no longer face a 50% chance of
out-of-time revelation, will ultimately bid their valuation at
the end of the auction, similar to naive players. This strategy
is particularly effective against the adaptive strategy, as it
reveals the valuation at the final moment, thereby denying
adaptive players any opportunity to react.

We revisit the previous three games under the assumption
that the auction interval terminates at exactly 12 seconds. In
the first game, where players have equal latency and prior
orderflow access distribution, we find that the profile where
all players adopt the adaptive strategy continues to dominate
with a stationary probability of 0.99506. In the games where
players are divided into high-orderflow players and low-
orderflow players, the relay enforcement also has a limited
impact, as high-orderflow players are able to dominate the
market with both naive and last-minute strategies.

However, the equilibria of the games where players expe-
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Figure 4. Average usage of each strategy by low-latency players
(left) and high-latency players across all profiles with the relay
enforcement policy under varying latency differences as computed
by a-Rank.

rience different latencies, in which low-latency players are
incentivized to adopt the adaptive strategy and high-latency
players are incentivized to adopt the naive strategy, are
disrupted. When the auction interval is deterministic, high-
latency players using the last-minute strategy can reveal
their valuation at the final moment, undermining the effec-
tiveness of the adaptive strategy employed by low-latency
players. This forces low-latency players to consider switch-
ing to either the naive or last-minute strategies to remain
competitive.

Figure 4 displays the experimental results. Similar to the
scenarios with varying auction intervals, all players are
still more incentivized to collude by adopting the adaptive
strategy when the latency difference does not exceed 10ms.
However, as players’ latency increases, the adaptive strategy
becomes less effective for high-latency players, who then fa-
vor the last-minute strategy due to its potential to disrupt the
adaptive bidding of low-latency opponents. This strategic
shift prompts even the low-latency players to adopt either
the naive or last-minute strategies, as the effectiveness of
the adaptive strategy diminishes in response to increasing
latency differences and the heightened incentive for high-
latency players to utilize the last-minute strategy.

While the relay enforcement has limited effect on builders’
incentives for collusion under ideal conditions as expected,
it contributes to offsetting the negative impact on the
auction efficiency caused by the latency asymmetries be-
tween builders, by forcing low-latency builders to abandon
marginally outbidding and bid their full valuation. This is
due to the increased effectiveness of the last-minute strat-
egy which allows the high-latency builders to compete and
curb inequalities. In turn, this has a noticeable effect on
enhancing auction efficiency.

To study this effect, we further compare the auction effi-
ciency between the most robust states of the games under a
fixed auction interval and a varied auction interval: 1) low-
latency players adopting the naive strategy and high-latency
players adopting the last-minute strategy under relay en-
forcement, i.e., the optimal strategy profile when the auction
interval is fixed to 12 seconds; and 2) low-latency play-
ers adopting the adaptive strategy and high-latency players
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Figure 5. Auction efficiency at the most robust state of the games
under a fixed auction interval (Profile 1) and a varied auction
interval (Profile 2).

adopting the naive strategy under a varied auction interval,
i.e, the optimal strategy profile when the auction interval
is normally distributed around 12 seconds (as discussed in
Subsection 4.2). Figure 5 presents the simulation results, in
which Profile 1 refers to the first scenario and Profile 2 refers
to the second scenario. We show that, under varying latency
differences between the low- and high-latency players, the
auction efficiency at the most robust states of the games is
enhanced with the relay enforcement.

6. Conclusion

Before we conclude the paper, we discuss the limitations
and future work in Appendix D.

In this paper, we explore builders’ incentives for strategic
bidding in MEV-Boost auctions through empirical game-
theoretic analysis. Our findings indicated that under ideal
conditions of a builder market that leads to decentralization,
builders are incentivized to collude by marginally outbid-
ding each other rather than competing by bidding their true
valuation, resulting in a low auction efficiency for MEV
capture. We demonstrated how advantages in latency and
private orderflow access influence builders’ strategic bid-
ding. Builders can marginally outbid to maximize their
profits with a latency advantage and can refuse collusion to
dominate the market with greater orderflow access. Finally,
we showed that the relay enforcement policy of rejecting
new bids after the beginning of the slot impacts builders’
strategic bidding incentives, as it provides the certainty of a
fixed auction termination time.

The above results contribute to the ongoing discussion about
the challenge of creating a decentralized yet competitive
and efficient market (Lu) and provide evidence that cur-
rent market structures and mechanisms may require fun-
damental changes to address centralization and efficiency
concerns. We highlight the need for further research into
block-building auction mechanisms that discourage collu-
sion and encourage genuine competition among builders.
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A. Model, Strategies, and Payoff
We employ the MEV-Boost auction model and bidding strategies proposed by (Wu et al., 2024).

We consider a set of N = {1,...,n} builders competing in the MEV-Boost auction game. Each builder, indexed by i,
employs a bidding strategy s; which can be described as a function 35, : X — R so that the bid of player ¢ at time ¢
is By, (xi 1), where x; ; € X represents a vector of input variables at time ¢t > 0. Whenever redundant, we will omit the
dependence on s; and x; ; and simply write /3; ;. These inputs are discussed next, where we use the terms player and builder
interchangeably.

* Public signal P(t). The public signal represents the maximum extractable value from public transactions broadcast in
the mempool at time ¢, accessible to all builders. New pending transactions are submitted to the mempool as the auction
advances. This process is modeled by a compound Poisson process, where the number of transactions N (¢) up to time
t follows a Poisson distribution with rate A, and each transaction’s value, V}, is randomly drawn from a log-normal
distribution. The public signal, P(t), is the cumulative sum of values of N (t) transactions, given by the equation:

N(t)

P(t) = ijl V;, where N (t) ~ Poisson(A,, - t) and V; ~ Log-normal(§y,w1).

* Private signal F;(t). The private signal represents the private orderflow secured from searchers. However, builders
often receive similar orderflow because some transactions are commonly shared among them through OFAs, and
searchers typically send their bundles to multiple builders. To account for the exclusiveness and correlation of orderflow
among players, we introduce an orderflow access probability, 7; € [0, 1], for each player i € N, to represent that
player’s probability of accessing each transaction. The probabilities, (7, );c n, remain constant throughout the auction
interval. Similar to the public signal, the number of private transactions N;(t) accessed by player ¢ up to time ¢ follows
a Poisson distribution with rate . but is also influenced by ;. Each transaction’s value O; is randomly drawn from a
log-normal distribution. The private signal, E;(t), of player 7 is

Ni(t
Ei(t) = Zj:(l : O;, where N;(t) ~ Poisson(\. - ¢ - m;) and O; ~ Log-normal(&a, wo).

E(t) denotes the total value of private orderflow, during the slot at time ¢. Thus, the aggregated signal, L;(t), of player
i and the total signal, L(t), at time ¢ can be given by combining the public signal and the private signal:

Li(t) := P(t) + E;(t) and L(t) := P(t) + E(t).

Given the positive correlations between bid arrival times and bid values (Wahrstitter et al., 2023), we assume that all MEV
opportunities are persistent throughout the auction. We also assumed that the MEV of private orderflow secured from
searchers is uniform between those who share the private transactions.

o Latency: A,. The latency, A; > 0, of each player depends mostly on that player’s network connectivity and geographic
location. It quantifies the delay in the relay’s acceptance of bids relative to the player’s access to a signal update and
their subsequent bid submission. It is assumed to be known and constant during the auction and to only affect the
player’s bidding action.

* Profit margin: pm,. The profit margin, pm,; > 0, quantifies player ¢’s risk tolerance and profit expectations.

¢ Valuation: v;(t). The valuation of player i represents the highest bid player 4 can place at time ¢ while ensuring a
positive profit, and is defined as: v;(t) := L;(t) — pm,.

¢ Current highest bid: max;cn {0« }r<¢. This variable represents the highest bid among all bids submitted by all
builders up to time ¢. This information is known to all players.

¢ Auction termination time: 7'. The auction interval is defined as [0, T'], where 7" denotes the time when the proposer
calls get Header and selects the highest winning bid. Instead of 7" being exactly equal to 12 seconds as expected, the
winning bid is typically selected around 7" = 12 seconds due to factors such as latency or timing games. Thus, T" is
randomly drawn from a normal distribution with mean 12 and standard deviation o.
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A.1. Strategies and payoffs

We consider a strategy space .S that contains three strategies, S = {so, $1, s2}, where s represents the naive strategy, s,
represents the adaptive strategy, and s, represents the last-minute strategy. We will qualify players by their strategy; so, e.g.,
“naive players” are those playing the naive strategy. These strategies are defined as follows.

Naive players consistently bid their valuation. Adaptive players either incrementally exceed the highest existing bid by a
marginal value § > 0, or bid their valuation when surpassing the current highest bid is unfeasible. Last-minute players hold
their bids initially and bid their valuation after the revealing time 0 < 6 < T'. To distinguish last-minute players who reveal
their valuation very early from naive players, we let the valuation of last-minute players be revealed from the expected
auction termination, i.e., # = 12 — A,;. The bidding behaviours of these strategies are summarised in Table 1, where we use
v;(t)+ to denote the positive part of v;(t), i.e., v;(t)+ := max {v;(¢),0}.

Table 1. Bidding strategies.

Strategy Bid value at time ¢t < T’

Naive Bso (Tit) = vi(t)+

Adaptive Bs, (xi¢) = min{v;(t), maxjen {Br 1 k <t} + 0}y
Last-minute By, (Tit) = vi(t) 4 x 1{t > 0}, where 6 = 12 — A,.

Remark A.1. Together with the assumption that pm; is non-negative for all builders ¢ € N, the above definitions implicitly
assume that builders are not willing to win the auction at a negative profit. However, in current practice, builders are willing
to subsidize their blocks and win the auction at a net loss (Yang et al., 2024). The main reason that we introduce this
assumption is that we consider static (non-repeated) auction games.

We consider 10 players in the auction, since currently, the top 10 builders build 98.65% of the total blocks built via
MEV-Boost. Each player i € N = {1,...,10}, selects a pure strategy s; € .S, and bids according to their chosen
strategy throughout the auction interval. The collection of strategies selected by all players forms a strategy profile
s = (81, 82, ..., $10). The payoff u;(s) of player ¢ is given by

U‘(S‘ s ) - Li(tw) - /891 (xi-,tw) lfﬁ‘?q (ILtw) = ma‘XjEN{Bj7k K < T}a
pem e 0 otherwise.

where t,, denotes the submission time of the winning bid and s = (s;, s_;) as is standard.

A.2. Model calibration: estimation of private orderflow

The model is implemented with Agent-Based Modeling techniques. For technical reasons, we assume that time evolves
at discrete time steps of 10ms increments. The state of the auction is updated after the players take their bidding actions
simultaneously.

To inform the settings of our model, we use the mempool data (Flashbots, b) and the on-chain data maintained by Flashbots
and Dune for the period February 23 to April 7 2024 (Flashbots & Dune).> On average, each block contains 143 public
transactions, with each transaction valued at approximately 0.00021 ETH, which collectively accounts for nearly 40% of the
total block value. Additionally, builders earn an average profit of 0.0066 ETH from winning an auction. In the simulation,
we assume that this profit margin is symmetric across all players.

It is worth noting that the available data sources exhibit a certain degree of bias concerning the private orderflow. The
on-chain data only reveals the private orderflow included by the winning builder. Since that builder wins the auction, we
presume that their access to private orderflow surpasses that of other competing builders within the auction. However, the
actual access to private orderflow by a builder remains undisclosed, , irrespectively of their success in the auction. This
lack of information stems from the data not being recorded on-chain and not being available from any Relay Data API.
Consequently, we assume that private orderflow access among players is randomly distributed on a domain which we can
estimate from on-chain data.

This approach guarantees that regardless of the auction’s winner, the volume of private orderflow included in the winning
block aligns with expectations set by on-chain metrics, offering a coherent framework for approximating the distribution of

*We exclude the data of March 13, due to the error caused by the EIP-4844 Dencun upgrade.
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access to private orderflow among players. Specifically, the average private orderflow of the top 10 builders contributes
between 11.2% and 14.0% of the total transactions in their respective winning blocks. We subsequently infer that a 14.0%
inclusion of private orderflow represents the maximal volume achievable by players, i.e., the total transaction number in the
private mempool, corresponding to a private orderflow access probability of 100%. An 11.2% inclusion denotes the minimal
threshold, equating to an 80% access probability. Thus, we delineate the distribution of 7; to be a uniform distribution
spanning the interval [0.8, 1.0].

B. Game Definition
B.1. Equal latency and prior orderflow access distribution

We begin by analyzing games where all builders have the same latency and prior distribution on private orderflow access.
Specifically, for every auction simulation, each player’s probability, m; of accessing private orderflow is drawn from the
same prior distribution, namely uniform on [0.8, 1].

In this case, we can reduce the size of the underlying game by replacing it with an anonymous game, where a player’s payoft
is invariant to permutations of other players (Wellman et al., 2024). In other words, a player’s payoff depends only on the
number of other players playing each strategy. Therefore, we can represent a strategy profile by a vector of the number of
players playing each strategy, which allows us to reduce the number of strategy profiles to (10+l‘§‘71) = 66.

To store the payoff information, we want to use the heuristic payoff table (HPT) (Walsh et al., 2002), where payoffs of
each strategy are stored as a function only of the number of players using it. However, while the private orderflow access
probabilities are equal in expectation (since they are drawn uniformly from the same prior distribution), every realisation of
the random access probability to private orderflow can be different. This implies that players can have different payoffs if
they interchange their strategies which, in turn, implies that the payoffs of each strategy are not unique. Thus, HPT cannot
be directly applied since this game is, in fact, asymmetric (Tuyls et al., 2020).

To overcome this issue, we let the payoff of each strategy be the average payoff of the players using it in each strategy
profile. Moreover, we further reduce the impact of randomness introduced by each player’s access to private orderflow, by
letting each player’s payoff be the average profit out of 1,000 auction simulations for each strategy profile. This leverages
the fact that the players with the same latency using the same strategy tend to have the same payoff (in expectation) due to
their private orderflow access being drawn from the same prior distribution.

Formally, consider the HPT, H = (N, U), where A is a matrix of strategy profile representations of dimension (10+£| _1) X
|S|, and U is a matrix of payoffs of the same dimension. Entry AV}, ; in A/ describes the number of players choosing strategy
s;,j € {0, 1,2} in strategy profile s*, and entry U,,; in U describes the average payoff of players choosing strategy s; in

profile s*. Uj, ; can be given by

0 otherwise.

Ur,j = { o7 Lissims, Ui (8%) i Ny >0,

B.2. Different latencies

While the previous case captures an idealised scenario, in practice, builders experience different latencies due to variations
in their connectivity to searchers and relays. In this part, we consider games where players have the same distribution of
private orderflow access but different latencies. Specifically, we examine scenarios involving 5 players with low latency and
5 players with high latency.

This setup, which resembles current practice, allows us to consider the auction game as a role-symmetric game (Wellman
et al., 2024), in which players are divided into two roles based on their latency: r; for the 5 low-latency players and 7, for
the 5 high-latency players. Within each role, the payoff of each strategy is represented by the average payoff of the players
within that role adopting that strategy.

Formally, let the role, r; of each player i be € {r;, r, }, indicating whether player  belongs to the low-latency group (r;)
or the high-latency group (r,). We extend the HPT H = (N x N U! x U™). N x N is a matrix of strategy profile

. . . 1\ 2 . . . .
representations of the dimension of (5+‘“§ | 1) x 2|S|, where N/ ! is a counts matrix for r; and A" is a counts matrix for
7. U x UM is a matrix of payoffs of the same dimension. Entry N/} ; in N, € {I, h}, describes the number of players

choosing strategy s;,j € {0, 1,2} within role 7 in the strategy profile s*, and entry U ;inU",r € {l,h} describes the
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average payoff of players within the role r choosing the strategy s; in the profile s*. Uy, ; can be given by

1 k .
u;; o {K/kr’] Zi:si:sjv,m:r Ui (8 ) lle:,j > 07
5J

otherwise.

B.3. Different private orderflow access distributions

In fact, the disparity in private orderflow access between builders is significant. We finally consider games where players
have the same latency but different private orderflow access probabilities. Similarly, we examine scenarios involving 5
players with high private orderflow access probability and 5 players with low private access probability and consider the
games as role-symmetric games.

Additionally, for all the empirical games above, we consider two distinct scenarios and study the players’ incentives under
these scenarios: 1) the auction interval varying around 12 seconds (¢ = 0.1), where last-minute players face a 50% chance
of successfully revealing their bids before the auction closes, and 2) the auction interval being fixed to 12 seconds (¢ = 0),
i.e., relay enforcement of rejecting bids after 12 seconds, where last-minute players typically bid at the very end of the
auction interval.

C. Impact of Latency: Profile Comparison

When high-latency players shift to the naive strategy in the optimal profile, switching from the adaptive to the naive strategy
may slightly improve the win rate for low-latency players. However, it reduces their profitability, thereby lowering their
payoff overall. To quantify this trade-off, we conducted a pairwise comparison between the control profile where all players
adopt the naive strategy and the optimal profile. Figure 6 presents the comparison between the average win rates and
payoffs of low-latency players in the optimal profile and those in the control profile under varying latency differences. Our
simulation results reveal that under varying latency differences, transitioning from the adaptive to the naive strategy leads to
an average increase in win rate of 0.38% for low-latency players, but also results in an average reduction in payoff (average
profit per auction) of 0.65%. Conversely, for the high-latency naive players, with low-latency players playing the adaptive
strategy in the optimal profile, they gain both a higher win rate and a higher payoff. Figure 7 presents the comparison
between the average win rates and payoffs of high-latency players in the optimal profile and those in the control profile
under varying latency differences. This observation further supports the stability of the optimal profile and the success of the
involved strategy choices by the players.

12.4 Win Rate of Low-Latency Players 8.2 Average Payoff of Low-Latency Players
Il Control Profile I Control Profile

12.2 I Optimal Profile I Optimal Profile
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Figure 6. The average win rate (left) and average payoff (right) of low-latency players in the optimal profile (adopting the adaptive
strategy) in comparison with the control profile (adopting the naive strategy) under varying latency differences starting from 20ms.
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Figure 7. The average win rate (left) and average payoff (right) of high-latency players in the optimal profile (adopting the naive strategy)
in comparison with the control profile (adopting the naive strategy) under varying latency differences starting from 20ms.

D. Discussion
D.1. Limitation
D.1.1. MODEL, STRATEGY SPACE, AND GAME DEFINITION

The results and analyses presented in this paper are based on and constrained by the model, calibration methods, and
definitions of the strategy space and games. To ensure tractable equilibria in the games with available computational
resources, we analyzed the games as only one auction with limited information asymmetries (e.g., private orderflow and
profit margin) and strategy choices among builders. Due to this constraint and the lack of data, we applied the estimation
metrics described in Section A.2 and assumed symmetry among builders for these variables.

The bidding strategies were formulated simply: consistently bidding the full valuation (naive strategy), marginally outbidding
when feasible (adaptive strategy), and a last-minute strategy specialized for scenarios under relay enforcement. Whilst these
strategies are empirically validated (Wu et al., 2024), it is conceivable to imagine that builders’ strategic behaviors and
MEV-Boost auction dynamics are far more complex. Our results provide limited insights if more asymmetric information, a
larger strategy space, and a series of consecutive auctions are considered. Despite these limitations, our analyses shed light
on builders’ incentives for strategic bidding in MEV-Boost auctions. We showed that, under idealized conditions of a builder
market, builders are incentivized to marginally outbid each other rather than bidding their full valuation, which contributes
to a low auction efficiency. We also demonstrated latency improvements and orderflow access advantages can influence
builders’ strategic bidding incentives.

D.1.2. RELAY ENFORCEMENT

In our simulation, we realize the relay enforcement of rejecting new bids after the beginning of the slot by setting the
simulated auction interval to exactly 12 seconds, i.e., the duration of a slot. However, despite this enforcement being honestly
conducted by the relay to eliminate the proposer’s incentive to delay their get Header request, the actual block proposal
can still occur sometime after the beginning of the slot. This means the auction interval for the next block will be shorter
than 12 seconds. Nevertheless, the crucial factor affecting builders’ incentives for choosing strategies is their knowledge
of a fixed auction termination time. Even if the actual auction interval might occasionally be shorter, our findings provide
valuable directional insights into builders’ incentives for strategic behaviors under such conditions.

D.2. Present and Future Challenges

Currently, while the builder market is highly competitive and the MEV-Boost auction mechanism efficiently captures MEV
considering block subsidization (Yang et al., 2024), the market remains centralized and dominated by a few large builders.
Based on our analyses, we here discuss the present and future challenges to achieve a decentralized yet competitive builder
market.

The primary challenge lies in the vertical integration between different entities across the MEV supply chain. For builders,
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vertical integration directly impacts the frequency and volume of orderflow they can access and bid on, thereby enhancing
their performance in MEV-Boost auctions and causing centralization. Our results partially explain why vertical integration
is attractive to builders by analyzing their incentives for strategic bidding: they are incentivized to outbid marginally to
maximize profits through latency improvements, and can dominate the market with greater orderflow access.

For searchers and orderflow providers, the motivation for pursuing vertical integration is fundamentally due to the lack of a
trustless and private mechanism for orderflow distribution between orderflow providers and builders. To safeguard their
MEYV from being stolen, orderflow providers prefer off-chain exclusive deals with builders based on their reputation in a
trusted and permissioned manner. Although OFAs, such as MEV-Share (Flashbots, c) and MEV Blocker (MEV-Blocker),
offer orderflow distribution and MEV protection for providers, they are operated by trusted parties. There is also an
inherent risk of builders not behaving as expected. A solution under exploration is SUAVE (Flashbots, d;e), a system that
operates within Trusted Execution Environments (TEEs) like Software Guard Extensions (SGX). By leveraging TEEs and
cryptography, SUAVE intends to enable open but private orderflow distribution for all builders while minimizing the need
for trust in these trusted parties and ensuring the confidentiality of private order flow information. However, challenges such
as covert channels still exist (Flashbots, a).

Nevertheless, even if a trustless mechanism were available to distribute orderflow equally and privately among all builders,
our results indicate that the current MEV-Boost auction mechanism would not efficiently capture MEV under such conditions
as builders are incentivized to collude and together increase their bids marginally rather than bidding their full valuation. We
believe the builders should be incentivized to bid their full valuation and the auction mechanism should efficiently capture
MEV. Otherwise, we question the necessity of having an auction. Furthermore, proposers might be incentivized to fall back
to local block production and engage in off-chain deals directly with orderflow providers to increase their MEV revenue, as
they cannot secure satisfying bids from colluding builders via the auction. Such bypassing behavior undermines the PBS
framework, negating its intended purpose of enhancing validator decentralization. This observation raises the critical open
question of whether changes are needed in the block-building auction mechanism and necessitates further research into
whether alternative designs could offer improvements.

E. Related Works

Builders’ strategic behaviors in MEV-Boost auctions. To the best of our knowledge, the study on builders’ strategic
bidding behaviors in MEV-Boost auctions starts from (Neuder), where the authors identified certain behaviors such as bid
erosion and bid shielding enabled by the relay’s bid cancellation feature. Subsequent analyses by (Thiery, a;b) observed
and formulated varied bidding behaviors among different builders in MEV-Boost auctions, confirming the use of diverse
strategies. Expanding on these foundational studies, (Wu et al., 2024) introduced a game-theoretic model for MEV-Boost
auctions alongside four distinct bidding strategies, and conducted simulations on fixed strategy profiles to assess the effects
of latency, orderflow, and auction design aspects on the performance of both builders and their strategies. Building upon
these models, our work complements these studies by analyzing builders’ incentives for strategic bidding across various
scenarios within MEV-Boost auctions.

Latency and timing games. Latency serves as a crucial infrastructure component of the PBS mechanism and is of
significant influence for both builders and proposers. (Pai & Resnick, 2023; Wu et al., 2024) demonstrated that a latency
disadvantage adversely affects builders’ bidding performance. (Schwarz-Schilling et al., 2023; Natale & Moser, 2024)
investigated strategic behaviors by proposers in MEV-Boost auctions, analyzing timing games in which proposers delay the
auction termination and increase profitability. (Oz et al., 2023) analyzed how timing games affect consensus stability, and
(DataAlways, 2024) further investigated how timing games affect fork rate. Potential mitigation methods for timing games
are discussed in (Schwarz-Schilling & Nueder). Our work further shows the impact of latency on builders’ incentives for
strategic bidding. We also investigate one of the mitigations suggested in (Schwarz-Schilling & Nueder), which involves the
relay enforcement of rejecting further bids after the beginning of the slot, and its effects on builders’ strategic bidding in the
auction.

MEY Supply chain and private orderflow. Recent literature has shed light on the status of the MEV supply chain and
private orderflow under the current PBS framework. (Wahrstitter et al., 2023) presented the monetary flow between different
parties within MEV-Boost auctions, highlighting a positive correlation between the bid value and bid arrival time. (Kilbourn,
a;b) discussed the centralizing effect of private orderflow and orderflow auctions on the current block-building market.
(Gupta et al., 2023; DataAlways) demonstrated that integrated builders are more likely to win in OFAs when their integrated
searchers can provide high-value exclusive orderflow (e.g., CEX-DEX arbitrages), contributing to better performance in
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MEV-Boost auctions. Subsequent empirical analysis (DataAlways) showed that integrated builders win in most of the
high-value OFAs. (Yang et al., 2024) assessed the competitiveness and efficiency of the MEV-Boost auction, and identified
private orderflow as a significant entry barrier to the builder market. Moreover, (Lu) discussed the Ethereum’s evolving
orderflow landscape, emphasizing the challenge of balancing increased competition with market decentralization. Our
results suggest that, under ideal conditions of a builder market that potentially leads to decentralization (builders have similar
latency and orderflow access), instead of competing by bidding their full valuation, builders are incentivized to collude by
increasing their bids marginally, contributing to the MEV-Boost auction mechanism being inefficient for MEV capture.
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