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ABSTRACT

Large language models (LLMs) have been observed to exhibit personality-like be-
haviors when prompted with standardized psychological assessments. However,
existing approaches treat personality as a black-box property, relying solely on
behavioral probing while offering limited insight into the internal mechanisms
responsible for personality expression. In this work, we take a mechanistic inter-
pretability perspective and investigate whether personality traits in LLMs corre-
spond to identifiable internal computation paths. To this end, we construct TRAIT-
TRACE, a dataset designed to elicit distinct personality traits and support structural
tracing. Using this dataset, we identify personality circuits as minimal functional
subgraphs within the model’s computation graph that give rise to trait-specific re-
sponses. We then analyze the structural properties of these circuits across model
layers and personality traits, and conduct causal interventions to probe the influ-
ence of individual components. Our findings offer a novel structural view of per-
sonality in LLMs, providing a bridge between behavioral psychology and mecha-
nistic interpretability.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable abilities across a wide range of nat-
ural language processing tasks (Wei et al., 2022; Bubeck et al., 2023; Zhao et al., 2023), and re-
cent studies have suggested that these models are able to exhibit personality-like traits (Jiang et al.,
2023b; Li et al., 2024; Sorokovikova et al., 2024). When presented with standardized psychologi-
cal questionnaires such as the Big Five Inventory (John et al., 1991), LLMs produce responses that
align with stable patterns across traits like openness, conscientiousness, and extraversion. These
emergent behaviors have attracted increasing attention in evaluating and quantifying personality in
language models, given its substantial influence on communication patterns and model effectiveness
in personalized applications.

Most existing work analyzes personality in LLMs from a behavioral perspective, using prompt-
based methods to elicit trait-related responses and scoring them against human inventories (Jiang
et al., 2023a; Serapio-Garcı́a et al., 2023; Serapio-Garcı́a et al., 2025). Although these studies reveal
the personality profiles of different models, they treat the model as a black box and offer little insight
into the internal mechanisms that give rise to these traits. Consequently, fundamental questions
remain unanswered: Where do personality traits reside in the model? Are they encoded in specific
layers or components?

Neuroscience offers an instructive analogy. In the human brain, neuroscience studies have shown
that different personality traits are associated with differentiated brain regions and connectivity pat-
terns (Adelstein et al., 2011; Dubois et al., 2018; Kong et al., 2019). For example, extraversion
has been associated with enhanced connectivity in reward circuits such as the ventral striatum and
medial orbitofrontal cortex (Adelstein et al., 2011), while conscientiousness has been linked to sta-
ble interactions between frontoparietal control regions and the default mode network (Toschi et al.,
2018). These findings suggest that enduring behavioral tendencies may be supported by identifiable
neural circuits, rather than being diffuse or emergent properties alone (DeYoung et al., 2010).
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Motivated by this biological perspective, we ask whether personality in LLMs may similarly be real-
ized through structured internal computation paths. Recent advances in mechanistic interpretability
have shown that transformer-based models implement many capabilities through compact, human-
interpretable circuits (Wang et al., 2022; Yao et al., 2024; Ameisen et al., 2025), which are subgraphs
of the computation graph composed of attention heads, MLP units, and their interactions. Such cir-
cuits have been discovered for induction (Olsson et al., 2022), factual recall (Yao et al., 2024),
arithmetic comparison (Conmy et al., 2023), and other task-oriented functions. Yet, despite this
progress, no existing work has applied circuit-level analysis to high-level cognitive attributes such
as personality.

In this work, we take a step toward filling this gap by proposing a mechanistic approach to person-
ality analysis in LLMs. We frame personality as a tractable property that can be studied through
the lens of circuit-level interpretability. We introduce TraitTrace, a dataset crafted to elicit distinct
personality traits while making it possible to uncover the underlying circuits that causally support
these trait-consistent responses. Using this dataset, we identify personality circuits that underpin
the generation of personality-consistent responses. We further evaluate their sufficiency, component
distribution, and causal influence, providing insight into the internal organization of psychological
traits in LLMs.

Our contributions are as follows:

• We frame analyzing personality in large language models as a mechanistically interpretable
problem, and introduce a dataset as TRAITTRACE, moving beyond black-box behavioral
probing toward a mechanistic understanding of trait-specific computation.

• We identify the personality circuits, which are subgraphs of the model’s computation graph
composed of attention heads and MLP units associated with trait-specific responses, and
validate these circuits via ablation, layer-wise analysis, and trait overlap.

• We perform extensive experiments to explore the causal interventions on key components
of the circuits, demonstrating the localized influence on personality expression.

2 BACKGROUND

2.1 BIG FIVE MODEL

Previous studies have shown moderate cross-observer agreement in assessing most personality traits
(Funder & Colvin, 1997). Among various frameworks, the Big Five model (Goldberg, 2013) is one
of the most widely validated and reliable frameworks for personality measurement (McCrae et al.,
2004; McCrae & Terracciano, 2005a; Schmitt et al., 2007; Connolly et al., 2007). It includes five
key personality traits: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism.
Each trait includes six facets. Table 3 presents these traits and six facets for each of these five traits
identified in the Revised NEO Personality Inventory (NEO-PI-R) (Costa & McCrae, 2008). In this
study, we adopt the Big Five model as the foundational theory for investigating personality circuits
within large language models.

2.2 CIRCUIT FORMALIZATION

For interpretability research, neural networks are commonly formalized as directed acyclic graphs
G = (V,E), where nodes V represent components such as multi-layer perceptrons (MLPs), atten-
tion heads, and embeddings, and edges E represent interactions between these components (e.g.,
attention mechanisms, residual connections) (Shwartz-Ziv & Tishby, 2017; Conmy et al., 2023;
Esser-Skala & Fortelny, 2023). A circuit can be viewed as a subgraph that is responsible for a
specific capability or function.

In this paper, we focus on discovering circuits in the Transformer decoder architecture (Vaswani
et al., 2017), which is a widely used architecture in large language models. The Transformer decoder
operates through a sequence of layers, each containing an MLP block Ml and attention heads Al,i

(the ith attention head in layer l), connected via a residual stream. These residual connections allow
information to propagate through the model while preserving earlier representations, making them a
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key focus for mechanistic interpretability (Ferrando et al., 2022; Olsson et al., 2022; Ferrando et al.,
2023).

We treat the word embedding matrix W as the starting node of the residual stream and the un-
embedding matrix U as the terminal node. Together with the attention heads A and MLP blocks
M , they form the complete set of computation nodes in the Transformer decoder, defined as
V = {W,A,M,U}. The edge set E is defined as E = {(u, v) ∈ V × V | v depends on u}. An
edge (u, v) indicates that the output of node u is used, either directly or indirectly, as part of the in-
put to node v during the forward computation. We define a circuit as a subgraph of the computation
graph that performs a specific task. A circuit captures the minimal set of nodes and edges that are
causally responsible for producing a given behavior, and is denoted as C = (VC , EC).

2.3 CIRCUIT IDENTIFICATION

The goal of circuit identification is to determine which components in the model’s computational
graph are most critical for a specific behavior or task. This is typically achieved by assigning an im-
portance score to each edge in the graph and extracting a subgraph composed of the most influential
nodes and edges.

A common method is ACDC (Conmy et al., 2023), which identifies circuits by iteratively altering
the model’s internal components and observing their impact on model performance. Components
that cause minimal degradation are pruned, yielding a minimal faithful circuit. While effective, this
approach requires a large number of forward passes and does not scale well to large models.

To address these limitations, we employ Edge Attribution Patching with Integrated Gradients (EAP-
IG) (Esser-Skala & Fortelny, 2023), a gradient-based circuit discovery method that scales effectively
to large models. It estimates the importance of each edge based on both activations and gradients,
using only two forward passes and one backward pass per input to determine the importance of all
edges. Given an input pair x, x′ (e.g., a prompt and its corrupted variant) and an edge e = (u, v),
we compute the edge importance by combining the change in activation between x and x′ for source
node u, and the gradient of the task loss with respect to the input of target node v. Formally, the
EAP-IG score is defined as:

(z′u − zu) ·
1

m

m∑
k=1

∇zvL

(
z′u +

k

m
(zu − z′u)

)
(1)

where zu and z′u are the activations at source node u under prompt and its corrupted variant respec-
tively, and ∇zvL is the gradient of the loss with respect to the input of target node v. Edges with low
importance scores are pruned. The resulting subgraph is expected to preserve the model’s behavior
on the target task, and is taken as the identified circuit.

3 PERSONALITY CIRCUITS IDENTIFICATION

Unlike previous work that analyzes model personality through prompt-based probing and behavioral
observation, we take a structural approach by examining the internal flow of computation that acti-
vates trait-consistent responses under different situations. Instead of treating the model as a black
box, we represent the Transformer as a computation graph, where nodes correspond to components
such as word embeddings, attention heads, MLPs, and unembedding matrix, and edges represent
causal influence between components.

In this work, we aim to identify circuits within the transformer that are responsible for producing
trait-consistent behavior. Specifically, given a personality description pt,ℓ, which specifies a target
trait t (e.g., openness) at level ℓ ∈ {low, high}, and a situational context s, the model is expected
to generate a response rt,ℓ in the intended personality trait. We formalize this as a conditioned
generation task:

(pt,ℓ, s) → rt,ℓ (2)

A response is considered trait-consistent if it exhibits behavioral features aligned with trait t at level
ℓ, such as being more assertive (high extraversion) or cautious (high conscientiousness) in a given
situation.

3
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To uncover the subgraph that supports this behavior, we apply the EAP-IG method introduced in
Section 3. For trait t, level ℓ, we collect a set of inputs x = (pt,ℓ, s) and their corrupted variants
x′ = (pt,ℓ̄, s), where pt,ℓ̄ specifies the opposite level of trait t (e.g., low instead of high). Using
EAP-IG, we assign an importance score to each edge in the computation graph with respect to the
following margin loss, which measures the model’s preference for trait-consistent responses:

L = −
(
P (rt,ℓ | x)− P (rt,ℓ̄ | x)

)
(3)

where x is the input prompt, and P (rt,ℓ | x) and P (rt,ℓ̄ | x) denote the probabilities for responding
in trait t at level ℓ and its opposite ℓ̄, respectively.

We compute an importance score for each edge and then retain the top-k edges. Setting k too
large will introduce irrelevant nodes, while setting it too small will result in incomplete circuits.
Therefore, in our experiments, we select the smallest k ∈ {50, 100, . . . , 500} that achieves within
3% absolute performance of the full model on the analysis set. The corresponding percentage of
retained nodes and edges is reported in Table 1 and Table 5. This process yields a trait-specific
circuit Ct,ℓ = (Vt,ℓ, Et,ℓ) for trait level ℓ, where Vt,ℓ is the set of nodes incident to edges in Et,ℓ.

To support trait-level analysis, we define a trait-specific circuit Ct as the union of its corresponding
high-level and low-level circuits:

Ct = Ct,high ∪ Ct,low (4)

This unified view allows us to study how the model structurally supports both ends of a trait dimen-
sion, while also enabling trait-level analysis that treats the trait as a single unit.

4 DATASET CONSTRUCTION FOR PERSONALITY CIRCUITS DISCOVERY

4.1 DATASET CONSTRUCTION

Previous research on probing large language model (LLM) personalities primarily involved con-
structing diverse prompts and analyzing model responses to infer personality traits. While effective
for surface-level behavior analysis, such methods largely treat models as black boxes. In contrast,
we aim to delve deeper into the internal flow that activates corresponding personality expressions
under specific situational stimuli.

To support personality circuits identification (detailed in Section 3) and evaluation, we introduce the
TRAITTRACE dataset, which is built around the following three key components:

Personality Descriptions (p): For each of the Big Five traits (Openness, Conscientiousness,
Extraversion, Agreeableness, Neuroticism), we design distinct descriptions for both high and low
levels. These descriptions are carefully crafted based on Revised NEO Personality Inventory (NEO-
PI-R) (Costa & McCrae, 2008).

Situations (s): Situations are designed to elicit clear behavioral differences between high and low
levels of each trait. For greater granularity, we incorporate six facets under each Big Five trait (e.g.,
‘orderliness’ under Conscientiousness) according to NEO-PI-R, and generate situations specifically
targeting each facet. Situation construction is assisted by GPT-4o1 with prompts shown from Figure
13 to Figure 17, ensuring both coverage and diversity.

Reactions (r): Reactions reflect how an individual with a given personality would respond to a
situation. For each generated situation, GPT-4o produces five representative high-trait reactions and
five low-trait reactions. To account for stylistic variations across models, we additionally collect
the top four completions from Llama2-7B-Chat, and Qwen2-7B-Instruct for each personality trait
degree, thereby enriching reaction diversity and robustness.

Each data entry is structured using the following natural language template that begins with a per-
sonality description and followed by a situational context to elicit trait-aligned reactions.

I’m {    p}, regarding {    s}, I feel very r

1We used the gpt-4o-2024-05-13 version.
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Representative examples for each trait are shown in Figures 6 to 10. The TRAITTRACE dataset
not only facilitates the identification of personality-specific circuits, but also provides a controlled
setting to evaluate their effectiveness across a wide range of situational contexts.

Human Evaluation and Revision: After collecting the raw dataset, we first manually annotated
a subset to define quality standards and establish detailed annotation guidelines. We then trained
four psychology graduate students as annotators. After passing qualification assessments, they eval-
uated all entries for validity and revised any non-compliant samples. To further assess annotation
reliability, we randomly sampled 200 entries for cross-annotation. The evaluation achieved a 93.5%
pass rate, indicating reliable data quality. Inter-annotator agreement, measured using Fleiss’ kappa,
was 0.82, demonstrating substantial consensus among annotators (Landis & Koch, 1977). Refer to
Appendix 11 for more details.

4.2 DATASET STATISTICS

TRAITTRACE consists of a total of 1800 samples, as summarized in Table 4. For each of the Big
Five personality traits, we construct 360 samples. Among these, 240 samples per trait are designated
as the Circuit Analysis Set (Danalysis), used for identifying corresponding personality circuits. The
remaining 120 samples per trait constitute the Circuit Validation Set (Dtest), which is reserved for
evaluating the circuits discovered.

In addition to size distribution, we observed differences in the valid rates between situations and
reactions during data curation. Specifically, the valid rate of reactions is notably lower compared
to situations. This discrepancy arises because situations are fully generated by GPT-4o, whereas
reactions include outputs generated by open-source models like Llama2-7B-Chat, whose ability to
simulate nuanced personality expressions is weaker than GPT-4o. Example entries from TRAIT-
TRACE, illustrating typical situation–reaction pairs across different personality traits, are shown in
Figures 6 to 10.

5 EXPERIMENTAL SETUP

Implementation Details. We conduct experiments on Llama2-7B-Chat 2 and Phi-2 3 to verify the
generalizability of our findings across models trained at different stages and with varying parameter
scales. All experiments were conducted on a single NVIDIA A800 80GB GPU. We adopt the EAP-
IG algorithm in conjunction with TransformerLens to construct circuits and analyze results. The
IG-steps hyperparameter for circuit identification was set to 5. The margin loss, as described in
Section 3, is used as the loss function for EAP-IG to measure the importance of circuits and nodes.
During circuit identification, searching for a single circuit takes approximately 10 minutes. We
apply zero ablation (Olsson et al., 2022) to knock out specific nodes from the computation graph.

Validation Metrics. A personality circuit is defined as a subgraph of the model’s computation
graph that supports the generation of responses aligned with a specific personality trait level. Ideally,
such a circuit should be able to reproduce trait-consistent behavior with accuracy comparable to that
of the full model.

To assess circuit quality, we adopt the completeness criterion introduced by Conmy et al. (2023),
which evaluates whether the identified subgraph sufficiently preserves the model’s original behavior.
Specifically, we extract personality circuits using the TRAITTRACE analysis set and validate them
on a held-out test set.

We evaluate response accuracy using the Hit@10 metric. Let D = {(xi, Yi)}Ni=1 denote the evalu-
ation set, where xi is an input and Yi is the set of valid reference responses. The metric is defined
as:

Hit@10 =
1

N

N∑
i=1

1 (Top10(xi) ∩ Yi ̸= ∅) (5)

That is, a prediction is considered correct if any of the model’s top-10 predicted tokens for input xi

overlaps with at least one reference response in Yi.
2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
3https://huggingface.co/microsoft/phi-2
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Table 1: Hit@10 scores for the full model (G) and the standalone circuit (C) on the analysis and test
sets of TRAITTRACE for Llama2-7B. G scores below 1.0 reflect inherent limitations in the model’s
ability to consistently generate trait-aligned responses.

Big Five Traits Level Node% Edge% Danalysis Dtest

Model (G) Circuit (C) Model (G) Circuit (C)

Openness High 5.95% 0.02% 1.00 1.00 1.00 1.00
Low 6.99% 0.02% 0.99 0.99 0.98 0.98

Conscientiousness High 9.26% 0.03% 0.98 0.98 0.98 0.98
Low 9.83% 0.03% 1.00 1.00 1.00 1.00

Extraversion High 7.84% 0.02% 0.99 0.99 0.98 0.98
Low 6.99% 0.02% 1.00 1.00 1.00 1.00

Agreeableness High 5.86% 0.02% 0.99 0.99 0.99 0.99
Low 5.77% 0.02% 0.96 0.96 0.99 0.99

Neuroticism High 13.42% 0.05% 1.00 1.00 1.00 1.00
Low 11.72% 0.05% 0.98 0.98 1.00 0.99

Average - 8.36% 0.03% 0.99 0.99 0.99 0.99

6 RESULTS AND ANALYSES

6.1 CIRCUIT VALIDATION

Table 1 and Table 5 present the Hit@10 accuracy of the full model G and the trait-specific person-
ality circuits C across both the analysis and test sets of the TRAITTRACE dataset for Llama2-7B
and Phi-2, respectively. For all five traits and both high and low levels, the circuits in both models
achieve performance nearly indistinguishable from the full model. This demonstrates their behav-
ioral completeness. Despite being isolated from the broader network, these circuits consistently
generate trait-aligned responses.

Importantly, each circuit retains on average only about 0.03% of the edges and 8.36% of the nodes
in Llama2-7B, and 0.03% of the edges and 7.91% of the nodes in Phi-2. The fact that such a small
subset of components is sufficient to reproduce the full model’s behavior suggests that personality
expression in LLMs relies on a sparse but functionally targeted computational structure. Rather than
engaging the entire model, only a compact set of attention heads and MLP units appears necessary
for encoding and expressing each trait across different models.

This observation reflects a similar principle in neuroscience: neural sparsity, the phenomenon in
which cognitive functions are carried out by activating only a small fraction of neurons at any given
time (Olshausen & Field, 1996; Lennie, 2003). Such sparsity enables both efficiency and special-
ization in biological systems. Our findings suggest that LLMs may exhibit an analogous form of
sparsity, where personality traits emerge from minimal, dedicated subgraphs rather than distributed,
global computation.

6.2 STRUCTURAL ANALYSIS

To further understand how personality traits are internally represented in large language models, we
analyze the structural properties of the extracted trait circuits. Specifically, we examine where in
the model these circuits are concentrated and how much structural similarity they share across trait
levels and trait types.

Layer-wise Node Distribution. We compute the layerwise node activation ratio for each trait and
level. For each circuit, we calculate the proportion of its active nodes (attention heads or MLP
blocks) in each transformer layer. As shown in Figure 1 and Figure 5, all circuits exhibit higher
activation in lower layers, suggesting that trait-consistent behavior is primarily computed in the
early stages of the model.

6
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Figure 1: Layer-wise node distribution in personality circuits across traits and levels in Llama2-7b.

We also observe that circuits corresponding to high and low levels of the same trait tend to have
highly similar layer-wise activation distributions, while circuits from different traits display more
variation. This suggests that trait directionality is modulated through similar components, whereas
distinct traits rely on more differentiated pathways.

Circuit Overlap Analysis. To quantitatively assess structural similarity, we compute both node
and edge overlap between circuits. Intra-trait overlap compares high-level and low-level circuits
within the same trait, while inter-trait overlap measures overlap across different traits.
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Figure 2: Intra-trait circuit overlap between high and low levels of each personality trait for Llama2-
7B and Phi-2, measured by node and edge intersection ratios. Node and edge overlaps are shown in
darker and lighter colors, respectively.

Figure 2 shows intra-trait node and edge overlap scores for Llama2-7B and Phi-2. We find high node
overlap across all traits, with an average of 86.7% between high- and low-level circuits, validating
our earlier observation that both ends of a trait dimension share similar layer-wise distributions.
However, the edge overlap is consistently lower, with an average of 73.6%, indicating that the direc-
tion of trait expression is achieved by rerouting through shared nodes.
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Figure 3: Inter-trait circuit overlap across personality traits, measured by node and edge similarity
between trait-level circuits. Node and edge overlap are shown in each heatmap.
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Inter-trait node and edge overlap results are shown in Figure 3. The heatmaps show that the rows
and columns corresponding to Neuroticism are consistently lighter than those of the other traits
across both models, suggesting weaker cross-trait sharing. This observation is confirmed by the
average overlap statistics in Table 2, where Neuroticism has the lowest mean node (0.4) and edge
(0.19) overlaps among all Big Five traits. These findings indicate that Neuroticism is structurally
more independent, which aligns with results from personality psychology: meta-analyses (Van der
Linden et al., 2010) and cross-cultural studies (McCrae & Terracciano, 2005b) have similarly found
that Neuroticism shows weaker correlations with other Big Five traits. Our results suggest that this
psychometric distinctiveness is reflected in the model’s internal computation, where Neuroticism
engages more functionally independent subcircuits.

6.3 CAUSAL INTERVENTION ANALYSIS

Table 2: Average inter-trait circuit overlap (excluding self)
for each Big Five trait, measured by node and edge overlap.
Both Llama2-7B and Phi-2 show Neuroticism has the lowest
overlap, indicating higher structural independence.

Trait Llama2-7B Phi-2

Node Edge Node Edge

Openness 0.50 0.26 0.54 0.21
Conscientiousness 0.45 0.23 0.53 0.23
Extraversion 0.51 0.27 0.52 0.24
Agreeableness 0.49 0.24 0.53 0.26
Neuroticism 0.38 0.20 0.42 0.17

While we have shown that trait-
specific circuits can reproduce
personality-consistent responses, this
alone does not reveal how informa-
tion is distributed or functionally
organized within these circuits. To
evaluate the causal contribution of
individual components, we perform
interventional ablation experiments.
For each trait and level, we quantify
a node’s causal contribution using
a drop score, which measures the
performance decline when that node
is ablated by setting its output to zero
(zero ablation) compared with the
full circuit (reported in Tables 1 and 5). This drop serves as a direct estimate of the node’s causal
influence on trait-aligned behavior and reflects its importance within the full circuit.

Most nodes exhibit low impact. We report node ablation drops relative to the full-circuit baselines
for every node within each trait-specific circuit in Figure 4. The results show that the vast majority
of nodes cause only minimal performance degradation when ablated. Across all traits and levels,
over 85% of nodes result in less than a 10% drop in trait-alignment accuracy, with an overall average
drop of just 7.5%. These results indicate that personality circuits are highly robust to individual node
removals.
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Figure 4: Node ablation drops relative to full-circuit
baselines for each Big Five trait (evaluated on Llama2-
7B and Phi-2). Most nodes exhibit low impact, while a
few nodes act as causal bottlenecks.

A few nodes act as causal bottlenecks.
Despite this robustness, a small number of
nodes exhibit disproportionately high im-
pact in both Llama2-7B and Phi-2. Ta-
ble 6 ranks the top 5 nodes by aver-
age drop across all traits, with early-layer
MLPs dominating the causal bottlenecks.
In particular, MLPs in the first two layers
(m0 and m1) consistently show the high-
est drops across models (m1: 0.99 / 0.11;
m0: 0.13 / 0.98), suggesting that personal-
ity computation in LLMs relies on a sparse
set of critical early-layer components.

Trait-level asymmetries in node de-
pendence. To examine whether nodes
encode personality traits symmetrically
across levels (e.g., High vs. Low Open-
ness), we visualize node-wise drop scores for both levels of each trait in Figure 11 (Llama2-7B) and
Figure 12 (Phi-2). While most nodes contribute similarly across levels, some display clear asym-
metries. For instance, in Llama2-7B, node m0 is notably more critical for Low Openness than for
High Openness. In Phi-2, node m1 plays a larger role for Low Conscientiousness compared to its

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

High counterpart. These findings suggest that although high and low levels often recruit overlapping
sets of nodes, their relative importance and functional roles vary across levels and models, leading
to asymmetric functional organization within a shared structural scaffold.

Early-layer MLPs play dominant roles. Interestingly, several of the top-ranked nodes (e.g., m1,
m0) are early-layer MLPs. Prior work has highlighted the functional importance of early MLPs
in LLMs, for example, as semantic enrichers (Geva et al., 2023) or carriers of privileged residual
directions (Elhage et al., 2023). Building on these insights, our results reveal a new dimension of
their role: these early MLPs are not only useful for semantic processing, but also serve as critical
causal components for the expression of personality traits.

7 RELATED WORK

Personality Analysis in LLMs. Recently, many works have explored the emergence of
personality-like traits in large language models (LLMs) through prompting (Jiang et al., 2023a;
Huang et al., 2023a;b; Serapio-Garcı́a et al., 2023; Ai et al., 2024; Serapio-Garcı́a et al., 2025).
Most of these studies prompt LLMs for structured responses to standardized psychological inven-
tories, such as the Big Five Inventory (BFI) (John et al., 1991) or the IPIP-NEO-120 (Johnson,
2014). In addition to inventories, other studies also analyze free-form outputs, such as essays or
scenario-based dialogues (Frisch & Giulianelli, 2024; Gu et al., 2023; Jiang et al., 2023b), to infer
personality traits using linguistic analysis tools like LIWC (Pennebaker et al., 2001) or zero-shot
classifiers (Karra et al., 2022; Pellert et al., 2024). However, existing approaches largely treat LLMs
as black boxes, characterizing surface-level behaviors without uncovering the internal mechanisms
of personality. In this paper, we adapt mechanistic interpretability techniques to identify and ana-
lyze internal flows that activate corresponding personality traits, moving beyond behavioral probing
toward a deeper understanding of personality in LLMs.

Circuit Analysis of Transformer-Based LMs. Circuit analysis has emerged as a prominent ap-
proach in mechanistic interpretability for understanding how transformer-based language models
perform a variety of tasks. This line of research focuses on identifying circuits, which are subgraphs
of the model’s computation graph. These circuits are composed of components such as attention
heads and MLP blocks, and are understood to collectively implement specific model capabilities.

Prior studies have identified circuits responsible for factual recall (Yao et al., 2024), arithmetic com-
parison (Conmy et al., 2023) and in-context learning (Olsson et al., 2022). These circuits are often
compact and interpretable, offering a mechanistic view of how localized components contribute to
the model’s overall function. More recent work further explores how circuits encode and compete
between different knowledge mechanisms (Ortu et al., 2024), and how editing or intervening on
them can modify model behavior (Yao et al., 2024).

Despite these advances, existing work has focused primarily on linguistic and reasoning capabilities,
while higher-order cognitive traits such as personality remain largely unexplored. To bridge this
gap, we frame personality analysis as a mechanistically tractable problem. We curate TRAITTRACE
dataset to support circuit-level analysis of personality traits, thereby providing a new mechanistic
perspective on model psychology.

8 CONCLUSIONS

In this paper, we present a mechanistic perspective on personality in large language models, and
curate TRAITTRACE, a human-annotated dataset designed for the discovery and validation of per-
sonality circuits. Moreover, we identify the sparse subgraphs supporting trait-consistent behaviors,
and validate their functional sufficiency and internal structure with extensive experiments. Through
causal interventions, we further find that personality traits in LLMs are implemented through asym-
metric circuits, where a small number of early-layer MLPs exert outsized influence across traits.
These findings offer new insights into how high-level psychological attributes are encoded in lan-
guage models, and pave the way for future work on controllable personality expression, personality
alignment, and the interpretability of socially grounded behavior in generative systems.
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Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4, 2023.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
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10 AI WRITING ASSISTANCE STATEMENT

The authors are solely responsible for the content of this paper. Large language models (e.g., Chat-
GPT) were used solely for surface-level language refinement, such as improving sentence fluency
and phrasing. No AI tools were used to generate scientific content, conduct experiments, or formu-
late analysis. All ideas, results, and conclusions were developed entirely by the authors.
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11 HUMAN EVALUATION FOR TRAITTRACE

To ensure the validity and consistency of the TraitTrace dataset, we first conducted a quality check
phase. Four trained graduate students with backgrounds in psychology were recruited to evaluate the
data. We provided detailed annotation guidelines (shown in Table 7) to each annotator. If a sample
was judged invalid, the annotator revised the response until it met the defined criteria.

Each annotator was assigned 450 unique samples, collectively covering the full dataset of 1800
entries. All annotators were graduate students who had passed the College English Test Band 6
(CET-6), ensuring strong English proficiency for evaluating English content. They were compen-
sated fairly, with hourly rates set according to standard local guidelines for graduate-level research
assistance.

To assess annotation reliability, we randomly sampled 200 entries and had all four annotators in-
dependently evaluate their validity. Inter-annotator agreement was measured using Fleiss’ kappa,
obtaining a score of 0.82, indicating substantial agreement (Landis & Koch, 1977). Among the sam-
pled entries, 93.5% were judged valid by a majority of annotators, confirming that the annotation
quality is acceptable.

Table 3: The Big Five personality traits and associated facets.

Trait Facets Definition

Openness to Expe-
rience (Intellect)

Fantasy, Aesthetics,
Feelings, Actions,
Ideas, Values

Openness to novel experiences,
ideas, and intellectual engagement.

Conscientiousness Competence, Order, Dutifulness,
Achievement striving,
Self-discipline, Deliberation

Tendency toward organization, dili-
gence, and goal pursuit.

Extraversion Warmth, Gregariousness,
Assertiveness, Activity,
Excitement seeking,
Positive emotions

Orientation toward sociability, as-
sertiveness, and energetic activity.

Agreeableness Trust, Straightforwardness,
Altruism, Compliance,
Modesty, Tender-mindedness

Propensity for compassion, cooper-
ation, and social harmony.

Neuroticism
(Emotional Stabil-
ity)

Anxiety, Angry hostility,
Depression, Self-consciousness,
Impulsiveness, Vulnerability

Tendency to experience negative
emotions and emotional instability.

Table 4: Statistics of TRAITTRACE. Each trait contains 360 situations. Reaction-H and Reaction-
L represent the average number of reactions per situation with high- and low-level trait responses.
“Valid (%)” indicates the human annotation pass rate. Invalid samples were re-annotated following
the annotation guidelines.

Trait Situation Valid (%) Reaction-H Valid (%) Reaction-L Valid (%)
Openness 360 81.7% 8.06 62.0% 7.66 58.9%
Conscientiousness 360 90.4% 7.32 56.2% 7.47 57.4%
Extraversion 360 77.9% 7.57 58.2% 8.35 64.2%
Agreeableness 360 88.2% 7.14 54.9% 7.31 56.2%
Neuroticism 360 85.5% 8.78 67.5% 7.43 57.1%
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Table 5: Hit@10 scores for the full model (G) and the standalone circuit (C) on the analysis and test
sets of TRAITTRACE for Phi-2. G scores below 1.0 reflect inherent limitations in the model’s ability
to consistently generate trait-aligned responses.

Big Five Traits Level Node% Edge% Danalysis Dtest

Model (G) Circuit (C) Model (G) Circuit (C)

Openness High 4.89% 0.02% 1.00 1.00 1.00 1.00
Low 5.96% 0.02% 0.98 0.98 0.98 0.98

Conscientiousness High 7.23% 0.03% 0.99 0.99 0.99 0.99
Low 9.14% 0.03% 0.99 0.99 1.00 1.00

Extraversion High 7.91% 0.03% 0.98 0.98 0.98 0.98
Low 6.99% 0.03% 1.00 1.00 1.00 1.00

Agreeableness High 5.96% 0.03% 1.00 1.00 1.00 1.00
Low 5.27% 0.03% 0.98 0.98 0.98 0.97

Neuroticism High 12.83% 0.05% 0.99 0.99 0.99 0.99
Low 12.94% 0.05% 0.98 0.98 1.00 0.99

Average - 7.91% 0.03% 0.99 0.99 0.99 0.99

High Openness High Conscientiousness High Extraversion High Agreeableness High Neuroticism

Low Openness Low Conscientiousness Low Extraversion Low Agreeableness Low Neuroticism
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Layer-wise Activation Ratio

Figure 5: Layer-wise node distribution in personality circuits across traits and levels in Phi-2.

Table 6: Top 5 nodes ranked by mean accuracy drop, computed relative to full-circuit baselines
across all Big Five traits and trait levels on TRAITTRACE, for Llama2-7B-Chat and Phi-2.

Llama2-7B Phi-2
Node Mean Drop Node Mean Drop
m1 0.99 m0 0.98
m0 0.13 m1 0.11
m31 0.07 m29 0.07
a4.h0 0.06 a8.h26 0.06
m9 0.05 a29.h0 0.06
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I'm high in openness

ancient civilizations

I'm low in openness

Personality Situation

Regarding I feel very

TemplateReaction
fascinated

engaged

curious and 
interested

curious

interested

uninterested

unimpressed

dismissive

bored

indifferent

uninformed and 
uninterested

distant

interested in 
learning

High-level Low-level

Figure 6: A TRAITTRACE prompt example demonstrating how high and low levels of openness lead
to distinct responses under the same situation.

I'm conscientious

executing projects

I am unconscientious

Regarding I feel very

methodical

efficient

responsible

organized

focused

scattered

negligent

unfocused

procrastinating

overwhelmed

disorganized and 
unprepared

confident

Personality Situation TemplateReaction High-level Low-level

Figure 7: A TRAITTRACE prompt example demonstrating how high and low levels of conscien-
tiousness lead to distinct responses under the same situation.
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I am extroverted

socializing at lunch

I’m introverted

Regarding I feel very

cheerful

happy

energized

engaged

enthusiastic

quiet

hesitant

shy

reserved

uncomfortable

drained and 
overwhelmed

uncomfortable and 
drained

comfortable and 
energized

energized and 
excited

anxious and 
overwhelmed

overwhelmed and 
drained

Exhausted and 
drained

Personality Situation TemplateReaction High-level Low-level

Figure 8: A TRAITTRACE prompt example demonstrating how high and low levels of extraversion
lead to distinct responses under the same situation.
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I'm high in agreeableness

disaster victims

I'm low in 
agreeableness

Regarding I feel very

compassionate

empathetic and 
compassionate

compassionate and 
empathetic

supportive

concerned

distant

blame-placing

detached

indifferent

dismissive

little empathy

sympathetic and 
compassionate

Personality Situation TemplateReaction High-level Low-level

Figure 9: A TRAITTRACE prompt example demonstrating how high and low levels of agreeableness
lead to distinct responses under the same situation.

I'm neurotic

meeting deadlines

I'm emotionally stable

Regarding I feel very

pressured

nervous and anxious

uncomfortable

rushed

tense

organized

focused

confident

efficient

disciplined

comfortable

motivated

Personality Situation TemplateReaction High-level Low-level

Figure 10: A TRAITTRACE prompt example demonstrating how high and low levels of neuroticism
lead to distinct responses under the same situation.
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Figure 11: Heatmap of the top 50 most causally influential nodes across Big Five personality traits
in Llama2-7B. Darker cells indicate a greater accuracy drop upon ablating the corresponding node.
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Figure 12: Heatmap of the top 50 most causally influential nodes across Big Five personality traits
in Phi-2. Darker cells represent larger accuracy drops when the node is ablated.
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Table 7: Human Evaluation Guidelines

Thank you for participating in our human evaluation process. Your primary task is to determine
whether each data sample is valid. If a sample is invalid, you are expected to manually revise
it until it meets the validity criteria.
Each data sample consists of a personality trait, a situation, and two sets of reactions corre-
sponding to the high and low levels of that trait within the given situation.

A sample is considered valid if it satisfies all of the following conditions:
1. The situation is effective in differentiating between high and low levels of the given person-
ality trait.
2. The candidate reactions appropriately reflect the expected behaviors of the high and low
levels of the trait in the given situation.
3. Each set of reactions should not be repetitive in wording.
If a sample is considered invalid:

1. If the situation is invalid, replace it with a new, valid situation that does not already appear
in the dataset.
2. If any candidate reaction is invalid, directly remove it from the reaction set.

Examples for reference:
Example 1:
Personality: neuroticism
Situation: meeting deadlines
High Level Reactions: pressured, rushed, tense, nervous and anxious, uncomfortable
Low Level Reactions: organized, efficient, disciplined, focused, confident, comfortable, mo-
tivated

Is Valid? Yes
Actions to be taken: None.

Example 2:
Personality: extraversion
Situation: socializing at lunch
High Level Reactions: cheerful, engaged, enthusiastic, happy, energized, shy
Low Level Reactions: quiet, reserved, uncomfortable, hesitant, drained and overwhelmed,
anxious.

Is Valid? No
Actions to be taken: Remove ‘shy’ from High Level Reactions since it does not belong there.

Example 3:
Personality: neuroticism
Situation: meeting deadlines
High Level Reactions: pressured, rushed, tense, nervous and anxious, uncomfortable, rushed
Low Level Reactions: organized, efficient, disciplined, focused, confident, comfortable, mo-
tivated

Is Valid? No
Actions to be taken: Remove the last ‘rused’ in High-Level Reactions since it is duplicated.
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You are a psychology expert developing data for the Big Five personality assessment, specifically measuring Openness vs. 
Closedness to Experience. Your goal is to create situations and corresponding reactions that fit into the given template.

Template:
"Regarding {situation}, I feel very {reaction}."

Subdimensions of Openness vs. Closedness to Experience:
1. Ideas (e.g., curious, open to new concepts)
2. Fantasy (e.g., imaginative, prone to daydreaming)
3. Aesthetics (e.g., artistic, appreciation for beauty)
4. Actions (e.g., wide interests, exploratory)
5. Feelings (e.g., emotionally responsive, excitable)
6. Values (e.g., unconventional, challenges traditions)

Requirements
Situations:
Create 360 situations in total, with 60 per subdimension.
Each situation should be 1-3 words long (e.g., "Reading philosophy", "Abstract paintings", "Trying exotic food").
Situations should effectively distinguish between Openness and Closedness to Experience.
Situations should be diversed.
Reactions:
Provide 5 possible reactions for each trait orientation (total: 10 reactions per situation).
Each reaction should be 1-2 words long (e.g., "Intrigued and reflective", "Uninterested and skeptical").
Ensure reactions clearly reflect Openness vs. Closedness to Experience.
Reactions can be similar across different situations.

Output Format (JSON File):
Structure the data to include:
* Subdimension
* Situation
* Response (Openness to Experience)
* Response (Closedness to Experience)

Example Format:
[
  {
    "subdimension": "Ideas",
    "situation": "reading philosophy",
    "response": {
      "Openness": [
        "curious", 
        "intrigued", 
        "thoughtful", 
        "enlightened", 
        "absorbed"
      ],
      "Closedness": [
        "bored", 
        "indifferent", 
        "uninterested", 
        "skeptical", 
        "dismissive"
      ]
    }
  },
  ...
]

Key Considerations:
Ensure that all situations and responses align with psychological theory and effectively measure the intended trait.
The situations should evoke clear differences between Openness and Closedness to Experience.
The responses should be balanced (not overly biased toward one trait).
Output data of a subdimension at a time.

Figure 13: Data creation prompt for Big Five trait openness
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You are a psychology expert developing data for the Big Five personality assessment, specifically measuring Conscientiousness vs. 
Lack of Direction. Your goal is to create situations and corresponding reactions that fit into the given template.

Template:
"Regarding {situation}, I feel very {reaction}."

Subdimensions of Conscientiousness vs. Lack of Direction:
1. Competence (e.g., efficient, capable)
2. Order (e.g., organized, structured)
3. Dutifulness (e.g., responsible, reliable)
4. Achievement Striving (e.g., goal-oriented, thorough)
5. Self-Discipline (e.g., persistent, not easily distracted)
6. Deliberation (e.g., careful, not impulsive)

Requirements
Situations:
360 situations in total, with 60 per subdimension.
Each situation should be 1-3 words long (e.g., "Meeting deadlines", "Organizing workspace", "Making long-term plans").
Situations should clearly differentiate between Conscientiousness and Lack of Direction.
Situations should be diversed.
Reactions:
Provide 5 possible reactions for each trait orientation (total: 10 reactions per situation).
Each reaction should be 1-3 words long (e.g., "Diligent and focused", "Easily distracted").
Ensure reactions clearly reflect Conscientiousness vs. Lack of Direction.
Reactions can be similar across different situations.

Output Format (JSON File):
Structure the data to include:
* Subdimension
* Situation
* Response (Conscientiousness)
* Response (Lack of Direction)

Example Format:
[
  {
    "subdimension": "Competence",
    "situation": "Meeting deadlines",
    "response": {
      "Conscientiousness": [
        "efficient", 
        "focused", 
        "punctual", 
        "responsible", 
        "methodical"
      ],
      "Lack of Direction": [
        "procrastinating", 
        "disorganized", 
        "overwhelmed", 
        "careless", 
        "forgetful"
      ]
    }
  },
  ...
]

Key Considerations:
Ensure that all situations and responses align with psychological theory and effectively measure Conscientiousness vs. Lack of 
Direction.
Situations should elicit clear distinctions between the two trait orientations.
Responses should be balanced and not overly biased toward one trait.
Output data of a subdimension at a time.

Figure 14: Data creation prompt for Big Five trait conscientiousness
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You are a psychology expert developing data for the Big Five personality assessment, specifically measuring Extraversion vs. 
Introversion. Your goal is to create situations and corresponding reactions that fit into the given template.

Template:
"Regarding {situation}, I feel very {reaction}."

Subdimensions of Extraversion vs. Introversion:
1. Gregariousness (e.g., sociable, enjoys company)
2. Assertiveness (e.g., forceful, takes initiative)
3. Activity (e.g., energetic, always on the go)
4. Excitement-Seeking (e.g., adventurous, thrill-seeking)
5. Positive Emotions (e.g., enthusiastic, cheerful)
6. Warmth (e.g., outgoing, affectionate)

Requirements
Situations:
1. Create 360 situations in total, with 60 for each of the 6 subdimensions.
2. Each situation should be 1-3 words long (e.g., "Meeting new people", "Public debate", "Trying extreme sports").
3. Situations should effectively distinguish between Extraversion and Introversion.
4. Situations should be diversed.
Reactions:
1. Provide 5 possible reactions for each trait orientation (total: 10 reactions per situation).
2. Each reaction should be 1-3 words long (e.g., "Excited and engaged", "Prefer to observe").
3. Ensure reactions clearly reflect Extraversion vs. Introversion.
4. Reactions can be similar across different situations.

Output Format (JSON File):
Structure the data to include:
* Subdimension
* Situation
* Response (Extraversion)
* Response (Introversion)

Example format:
[
  {
    "subdimension": "gregariousness",
    "situation": "meeting new people",
    "response": {
      "Extraversion": [
        "excited", 
        "energized", 
        "confident", 
        "enthusiastic", 
        "thrilled"],
      "Introversion": [
        "anxious", 
        "nervous", 
        "uncomfortable", 
        "overwhelmed", 
        "awkward"]
    }
  },
  ...
]

Key Considerations:
Ensure that all situations and responses align with psychological theory and effectively measure the intended trait.
The situations should evoke clear differences between Extraversion and Introversion.
The responses should be balanced (not overly biased toward one trait).
Output data of a subdimension at a time.

Figure 15: Data creation prompt for Big Five trait extraversion
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You are a psychology expert developing data for the Big Five personality assessment, specifically measuring Agreeableness vs. 
Antagonism. Your goal is to create situations and corresponding reactions that fit into the given template.

Template:
"Regarding {situation}, I feel very {reaction}."

Subdimensions of Agreeableness vs. Antagonism:
1. Trust (e.g., forgiving, believing in others)
2. Straightforwardness (e.g., not demanding, sincere)
3. Altruism (e.g., warm, helpful)
4. Compliance (e.g., cooperative, not stubborn)
5. Modesty (e.g., humble, not show-off)
6. Tender-mindedness (e.g., sympathetic, compassionate)

Requirements:
Situations:
1. Create 360 situations in total, with 60 per subdimension.
2. Each situation should be 1-3 words long (e.g., "Being criticized", "Splitting a bill", "Seeing someone in need").
3. Situations should effectively distinguish between Agreeableness and Antagonism.
4. Situations should be diversed.
Reactions:
1. Provide 5 possible reactions for each trait orientation (total: 10 reactions per situation).
2. Each reaction should be 1-3 words long (e.g., "Forgiving and understanding", "Holds a grudge").
3. Ensure reactions clearly reflect Agreeableness vs. Antagonism.
4. Reactions can be similar across different situations.

Output Format (JSON File)
Structure the data as follows:
* Subdimension
* Situation
* Response (Agreeableness)
* Response (Antagonism)

Example Format:
[
  {
    "subdimension": "Trust",
    "situation": "being criticized",
    "response": {
      "Agreeableness": [
        "forgiving",
        "understanding",
        "receptive",
        "reflective",
        "accepting"
      ],
      "Antagonism": [
        "resentful",
        "defensive",
        "irritated",
        "resentful",
        "retaliate"
      ]
    }
  },
  ...
]

Key Considerations:
Ensure that all situations and responses align with psychological theory and effectively measure the intended trait.
The situations should evoke clear differences between Agreeableness and Antagonism.
The responses should be balanced (not overly biased toward one trait).
Output data of a subdimension at a time.

Figure 16: Data creation prompt for Big Five trait agreeableness
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You are a psychology expert developing data for the Big Five personality assessment, specifically measuring Neuroticism vs. 
Emotional Stability. Your goal is to create situations and corresponding emotional reactions that fit into the given template. 

Template:
"Regarding {situation}, I feel very {reaction}."

Subdimensions of Neuroticism vs. Emotional Stability:
1. Anxiety (e.g., tense, worried)
2. Angry Hostility (e.g., irritable, easily annoyed)
3. Depression (e.g., not contented, sad)
4. Self-Consciousness (e.g., shy, easily embarrassed)
5. Impulsiveness (e.g., moody, difficulty controlling urges)
6. Vulnerability (e.g., not self-confident, easily overwhelmed)

Requirements
Situations:
Create 360 situations in total, with 60 per subdimension.
Each situation should be 1-3 words long (e.g., "Job interview", "Receiving criticism", "Speaking in public").
Situations should effectively distinguish between Neuroticism and Emotional Stability by triggering relevant emotional responses.
Situations should be diversed.
Reactions:
Provide 5 possible reactions for each trait orientation (total: 10 reactions per situation).
Each reaction should be 1-3 words long (e.g., "Worried and restless", "Calm and composed").
Ensure reactions clearly reflect Neuroticism vs. Emotional Stability.
Reactions can be similar across different situations.

Output Format (JSON File):
Structure the data to include:
* Subdimension
* Situation
* Response (Neuroticism)
* Response (Emotional Stability)

Example Format:
[
  {
    "subdimension": "anxiety",
    "situation": "job interview",
    "response": {
      "Neuroticism": [
        "anxious", 
        "nervous", 
        "tense", 
        "overwhelmed", 
        "panicked"
      ],
      "Emotional Stability": [
        "calm", 
        "confident", 
        "collected", 
        "poised", 
        "composed"
      ]
    }
  },
  ...
]

Key Considerations:
Ensure that all situations and responses align with psychological theory and effectively measure the intended trait.
The situations should evoke clear differences between Neuroticism and Emotional Stability.
The responses should be balanced (not overly biased toward one trait).
Output data of a subdimension at a time.

Figure 17: Data creation prompt for Big Five trait neuroticism
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