
A Picture of the Space of Typical Learnable Tasks

Rahul Ramesh 1 Jialin Mao 1 Itay Griniasty 2 Rubing Yang 1 Han Kheng Teoh 2

Mark K. Transtrum 3 James P. Sethna 2 Pratik Chaudhari 1

Abstract
We develop information geometric techniques to
understand the representations learned by deep
networks when they are trained on different tasks
using supervised, meta-, semi-supervised and con-
trastive learning. We shed light on the following
phenomena that relate to the structure of the space
of tasks: (1) the manifold of probabilistic models
trained on different tasks using different represen-
tation learning methods is effectively low-dimen-
sional; (2) supervised learning on one task results
in a surprising amount of progress even on seem-
ingly dissimilar tasks; progress on other tasks
is larger if the training task has diverse classes;
(3) the structure of the space of tasks indicated by
our analysis is consistent with parts of the Word-
net phylogenetic tree; (4) episodic meta-learning
algorithms and supervised learning traverse differ-
ent trajectories during training but they fit similar
models eventually; (5) contrastive and semi-su-
pervised learning methods traverse trajectories
similar to those of supervised learning. We use
classification tasks constructed from the CIFAR-
10 and Imagenet datasets to study these phenom-
ena. Code is available at https://github.com/grasp-
lyrl/picture of space of tasks.

1. Introduction
Exploiting data from related tasks to reduce the sample

complexity of learning a desired task, is an idea that lies
at the heart of burgeoning fields like transfer, multi-task,
meta, few-shot, semi- and self-supervised learning. These
algorithms, aided by the ability of deep networks to learn
flexible representations, have shown an impressive ability
to predict well on new tasks. These algorithms are very
different from each other but it stands to reason they must
be exploiting some structure in the space of tasks. We do not

1University of Pennsylvania 2Cornell University 3Brigham
Young University. Correspondence to: Rahul Ramesh <rahul-
ram@seas.upenn.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

yet know what the structure in the space of tasks is precisely
(see §4 for a discussion of related work). The goal of this
paper is to characterize this structure and shed light on why
these existing algorithms are successful.

We develop information-geometric techniques to analyze
representations learned by different algorithms on different
tasks. The key idea of this paper is to think of a deep network
with weights w trained on a task as a probabilistic model

Pw(y⃗) =

N∏
n=1

pnw(yn)

where y⃗ = (y1, . . . , yN) denotes any sequence of outputs
(each yn ∈ {1, . . . , C} classes) on N independent and identi-
cally distributed samples and pnw(yn) denotes the probability
that sample xn belongs to class yn as predicted by a deep
network with weights w. We instantiate the technical ma-
chinery of information geometry using this NC-dimensional
object to study different probabilistic models fitted to the
task irrespective of which representation learning algorithm,
e.g., supervised learning, meta-learning, etc., or what neural
architecture was used to fit the probabilistic model. This con-
struction circumvents the enormous diversity of algorithms,
architectures with different feature spaces and training meth-
ods across these different sub-fields and provides us with
a single space to study these models in — the prediction
space of the model.

1.1. Contributions
We develop new theoretical and computational tools to

study such probabilistic models in §2. This involves tech-
niques to visualize these very high-dimensional objects, to
compute geodesics on such manifolds, to interpolate check-
points along training trajectories into continuous curves, and
to map models trained on different tasks into a unique predic-
tion space. We point these technical tools to understanding
the structure of the space of learnable tasks and study differ-
ent representation algorithms such as supervised, transfer,
meta, semi- and self-supervised learning. We report the
following findings in §3; a result pertaining to contrastive
learning its provided in Appendix B.
(1) The manifold of probabilistic models trained on differ-

ent tasks using different representation learning meth-
ods is effectively low-dimensional. This dimensional-

1

https://github.com/grasp-lyrl/picture_of_space_of_tasks
https://github.com/grasp-lyrl/picture_of_space_of_tasks

A Picture of the Space of Typical Learnable Tasks 2

ity is very small: for Imagenet where our probabilistic
models are in 107 dimensions, the top 3 dimensions pre-
serve 80.02% of the pairwise distances between 2430
models trained on different sub-tasks of Imagenet.

(2) Supervised learning on one task results in a surpris-
ing amount of progress on seemingly dissimilar tasks
(informally, “progress” means that the representation
learned on one can be used to make accurate predic-
tions on other tasks; this is defined in (4)); progress
on other tasks is larger if the training task has diverse
classes.

(3) Structure of the space of tasks indicated by our analysis
is consistent with parts of the Wordnet phylogenetic
tree.

(4) Episodic meta-learning algorithms and supervised
learning traverse different trajectories in the space of
probabilistic models during training but learn simi-
lar models eventually; the trajectory of episodic meta-
learning for a small “way” is about 40× longer in terms
of its Riemann length than that of supervised learning.

(5) Contrastive and semi-supervised learning methods tra-
verse similar trajectories to that of supervised learning
in the space of probabilistic models.

(6) Fine-tuning a model upon a sub-task does not change
the representation much if the model was trained for a
large number of epochs.

We present evidence and analysis of these findings using
multiple neural architectures and a large number of different
image-classification tasks created from the CIFAR-10 and
Imagenet datasets.

2. Methods
Modeling the task We define a task P as a joint distri-
bution on inputs x ∈ Rd and outputs y ∈ {1, . . . , C} corre-
sponding to C classes. Suppose we have N independent and
identically distributed samples {(xn, y∗n)}

N
n=1 from P . Let

y⃗ = (y1, . . . , yN) denote any sequence of outputs on these N

samples and y⃗∗ denote the sequence of ground-truth labels.
We can model the task as

Pw(y⃗) =

N∏
n=1

pnw(yn) (1)

where w are the parameters of the model and we have
used the shorthand pnw(yn) ≡ pw(yn | xn). Let ”truth” or
P∗ ≡ P (y⃗∗) denote the true probability distribution which
corresponds to the ground-truth labels. Let ”ignorance” or
P0 denote the probability distribution that corresponds to
pn(y) = 1/C for all n and all y ∈ {1, . . . , C}.

Bhattacharyya distance Given two models Pu and Pv

parameterized by weights u and v respectively, the Bhat-
tacharyya distance (Bhattacharyya, 1946) between them

averaged over samples can be written as (see Appendix C)

dB(Pu, Pv) := −N−1 log
∑
y⃗

∏
n

√
pu(yn) pv(yn)

= −N−1
∑
n

log
∑
c

√
pnu(c) p

n
v (c).

(2)

Our model (1) involves a product over the probabilities of
N samples. Many distances, e.g., the Hellinger distance
2
(
1−

∏
n

∑
c

√
pnu(c) p

n
v (c)

)
, saturate for large N , this is

because random high-dimensional vectors are nearly or-
thogonal. This makes it difficult to use such distances to
understand high-dimensional probabilistic models. Bhat-
tacharyya distance is well-behaved for large N due to the
logarithm (Quinn et al., 2019; Teoh et al., 2020), and that is
why it is well suited to our problem.

Remark 1 (Models with different intermediate repre-
sentations can have zero Bhattacharyya distance). Two
models can have different internal representations and yet
define identical probabilistic models. For example, a repre-
sentation and a rotated version of the same representation
can define identical probabilistic models if this rotation is
undone before the output. The Bhattacharyya distance (2)
only depends on the output probabilities and would be zero
if the probabilistic models are identical. Focusing the theory
on the probabilistic model that makes the predictions as
opposed to the feature space therefore allows us to capture
many symmetries in the prediction space.

Distances between trajectories of probabilistic mod-
els Consider a trajectory (w(k))k=0,...,T that records the
weights after T updates of the optimization algorithm,
e.g., stochastic gradient descent. This trajectory cor-
responds to a trajectory of probabilistic models τ̃w =

(Pw(k))k=0,...,T . We are interested in calculating dis-
tances between such training trajectories. First, con-
sider τ̃u = (u(0), u(1), u(2), . . . , u(T)) and another trajec-
tory τ̃v ≡ (u(0), u(2), u(4), . . . , u(T), u(T), . . . , u(T)) which
trains twice as fast but to the same end point. If we
define the distance between these trajectories as, say,∑

k dB(Pu(k), Pv(k)), then the distance between τ̃u and τ̃v
will be non-zero—even if they are fundamentally the same.
This issue is more pronounced when we calculate distances
between training trajectories of different tasks. It arises
because we are recording each trajectory using a different
time coordinate, namely its own training progress.

To compare two trajectories correctly, we need a notion
of time that can allow us to uniquely index any trajectory.
The geodesic between the start point P0 and the true dis-
tribution P∗ is a natural candidate for this purpose since it
is unique. Geodesics are locally length-minimizing curves
in a metric space. For the product manifold in (1), we can
obtain a closed-form formula for the geodesic by notic-
ing that for each sample, the vector

(√
pnu(c)

)
c=1,...,C

lies

2

A Picture of the Space of Typical Learnable Tasks 3

on a C-dimensional unit sphere. The geodesic connecting
two models Pu and Pv under the Fisher information metric
which is induced by the Bhattacharyya distance is just the
great circle on the sphere (Ito & Dechant, 2020, Eq. 47):

√
Pλ
u,v =

N∏
n=1

(
sin
(
(1− λ)dnG

)
sin
(
dnG
) √

pnu +
sin
(
λdn

G
)

sin
(
dn

G
) √pnv

)
, (3)

where λ ∈ [0, 1] and dnG = cos−1
(∑

c

√
pnu(c)

√
pnv (c)

)
is

one half of the great-circle distance between pnu(·) and pnv (·).
Any probabilistic model Pw on a trajectory τ̃w can now be
re-indexed by a new “time” that we call “progress”:

[0, 1] ∋ tw = arg inf
λ∈[0,1]

dG(Pw, P
λ
0,∗). (4)

It indicates the distance of Pw to the truth P∗ measured in
terms of the closest point P tw

0,∗ on the geodesic to Pw. We
solve (4) using bisection search (Brent, 1971). Observe that
using the same expression as (3), we can also interpolate be-
tween two successive recorded points Pw(k) and Pw(k+1) of
a trajectory by calculating Pλ

w(k),w(k+1) for different values
of λ ∈ [0, 1]. This is useful because different networks train
with very different speeds on different tasks, especially in
early stages of training. This allows us to effectively convert
a sequence of models τ̃w = (Pw(k))k=0,...,T into a contin-
uous curve τw = (Pw(t))t∈[0,1]. We calculate the distance
between continuous curves τu, τv as

dtraj(τu, τv) =

∫ 1

0
dB(Pu(t), Pv(t)) dt ; (5)

which is approximated using a uniform grid on [0, 1].

Riemann length of a trajectory Divergences like the
Bhattacharyya distance or the Kullback-Leibler (KL) diver-
gence (which is the cross-entropy loss up to a constant) can
be used to define a Riemannian structure in the space of
probabilistic models (Amari, 2016). The distance between
two infinitesimally different models Pw and Pw+dw is

ds2 = 4dB(Pw, Pw+dw) = ⟨dw , g(w) dw⟩+ O(∥dw∥2),

where g(w) = N−1∑
y⃗(Pw)

−1∂2Pw is the Fisher Informa-
tion Matrix (Quinn, 2019, Section A.3). This Fisher Infor-
mation Matrix (FIM) is therefore the metric of the space
of the probability distributions and weights w play the role
of the coordinates in this space. Up to a scalar factor, the
Bhattacharyya distance and the KL-divergence induce the
same FIM. The Riemann length of a trajectory τw is the
integral of these infinitesimal lengths:

Length(τw) = 2

∫ 1

0

√
dB(Pw(t), Pw(t+dt)); (6)

it is equal to the integral of FIM-weighted incremental dis-
tance traveled in the weight space. Observe that we do not

need the FIM to calculate the length. We can think of the
length of a trajectory taken by a model to reach the solution
P∗ compared to the length of the geodesic as a measure of
the inefficiency of the training procedure since the geodesic
is the curve with the shortest length. This inefficiency can
arise because: (a) not all probability distributions along the
geodesic can be parametrized by our model class (approxi-
mation error), and (b) the training process may take steps
that are misaligned with the geodesic (e.g., due to the loss
function, mini-batch updates, supervised vs. some other
form of representation learning, etc.).

Mapping a model trained on one task to another task
using “imprinting” In this paper, we will consider dif-
ferent tasks {P k}k=1,..., with the same input domain but
possibly different number of classes Ck. Given a model P 1

w

parametrized by weights w for task P 1, we are interested in
evaluating its learned representation on another task, say, P 2.
Let w = (w1, w2) be the weights for the backbone and the
classifier respectively. The logits are RC1

∋ w2
⊤φ(x;w1)

corresponding to an input x and features of the penulti-
mate layer φ(x;w1). The network’s output pw(c | xn) for
c = 1, . . . , C1 is computed using a softmax applied to the
logits. If we have learned w from one task P 1, then we
can re-initialize each row of the classifier weights (w2)

′
c for

c = 1, . . . , C2 to maximize the cosine similarity with the
average feature of samples from task P 2 with ground-truth
class c:

(w2)
′
c = h/∥h∥2 where h =

∑
{x:y∗

x=c} φ(x;w1). (7)

The new network w = (w1, w2
′) can be used to make pre-

dictions on P 2. Using imprinting, we can map a trajectory
τ1w of a network being trained on P 1 to another task P 2 by
mapping each point along the trajectory; let us denote this
mapped trajectory by τ1→2

w .

Remark 2 (Imprinting versus training the final layer
or probing). There are many ways of performing such a
mapping, e.g., one could fine-tune the weights using data
from P 2, linear probing (Shi et al., 2016), etc. The technique
described above is known as “imprinting” (Hu et al., 2015;
Qi et al., 2018; Dhillon et al., 2020). In this paper, we will be
mapping thousands of models across different trajectories
to other tasks. Training the final layer, or a new classifier,
for all these models is cumbersome and imprinting provides
a simple way around this issue. Note that imprinting is not
equivalent to training the classifier w2 (with backbone w1

fixed) using samples from the other task but we found that
imprinted weights work well in practice (see Appendix D).

How to choose an appropriate task to map different
models to? Consider the training trajectory τ1u of a model
being trained on P 1 and another trajectory τ2v of a model
being trained on P 2. Using (7), we can map these trajecto-
ries to the other task to get τ1→2

u and τ2→1
v . This allows us

3

A Picture of the Space of Typical Learnable Tasks 4

to calculate, for instance, dtraj(τ
1→2
u , τ2v) using (5) which is

the distance of the trajectory of the model trained on P 1 and
then mapped to P 2 with respect to the trajectory of a model
trained on task P 2. If the two learning tasks P 1 and P 2 are
very different, (e.g., Animals in CIFAR-10 and Vehicles in
CIFAR-10), then this distance will be large.

Quantities like dtraj(τ
1→2
u , τ2v) or dtraj(τ

2→1
v , τ1u) are rea-

sonable candidates to study similarities between tasks P 1

and P 2, but they are not equal to one another. We are also
interested in doing such calculations with models trained
on many different tasks, and mapping them to each other
will lead to an explosion of quantities. To circumvent this,
we map to a unique task whose output space is the union of
the output spaces of the individual tasks, e.g., to study P 1

(Animals) and P 2 (Vehicles), we will map both trajectories
to PU which is all of CIFAR-10. We will use

dtraj(τ
1→U
u , τ2→U

v) (8)

as the distance between trajectories trained on P 1 and P 2.

Visualizing a high-dimensional probabilistic model in
lower-dimensions We use a visualization technique called
intensive principal component analysis (InPCA) (Quinn
et al., 2019) that embeds a probabilistic model into a lower-
dimensional space. For m probability distributions, consider
a matrix D ∈ Rm×m with entries Duv = dB(Pu, Pv) and

W = −LDL/2 (9)

where Lij = δij − 1/m is the centering matrix. An
eigen-decomposition of W = UΣU⊤ where the eigenval-
ues are sorted in descending order of their magnitudes
|Σ00| ≥ |Σ11| ≥ . . . allows us to compute the embedding
of these m probability distributions into an m-dimensional
space as Rm×m ∋ X = U

√
Σ. Unlike standard PCA where

eigenvalues are non-negative, eigenvalues of InPCA can be
both positive and negative, i.e., the lower-dimensional space
is a Minkowski space (Quinn et al., 2019). This allows the
InPCA embedding to be an isometry, i.e., pairwise distances
are preserved:∑m

i=1(X
i
u −Xi

v)
2 = dB(Pu, Pv) ≥ 0 (10)

for embeddings Xu, Xv of two distributions Pu, Pv . We can
measure how well pairwise distances are preserved by a k-
dimensional sub-space using the “explained stress” χk (Cox
& Cox, 2008):

χk = 1− ∥W−
∑k

i=1 Σii UiU
⊤
i ∥F

∥W∥F
= 1−

√∑m
i=k+1 Σ2

ii∑m
i=1 Σ2

ii
. (11)

Just like standard PCA, if we preserve all the eigenvectors
(i.e., k = m), then (10) holds exactly and χk = 1. But if
we use fewer eigenvectors then pairwise distances can be
distorted. See Appendix F for more details of the explained

stress. Appendix A.2 describes how we implement InPCA
for high-dimensional probabilistic models.

3. Results
We next describe our findings using the theoretical ideas

developed in the previous section. We present a broad range
of evidence and analysis using a large number of repre-
sentation learning techniques, multiple neural architectures
and a large number of different image-classification tasks
created from the CIFAR-10 and ImageNet datasets. Ex-
periments in this paper required about 30,000 GPU-hours.
Appendix A describes the setup for these experiments in
detail. See Appendix H for a discussion of some frequently
asked questions. One more result, Result 7: Contrastive
learning methods trained on different datasets learn similar
representations, is presented in Appendix B.

Remark 3. All the analysis in this paper (except Figures 4
and 5) was conducted using the test data. All models were
trained using the training data, but all mapped models,
distances between trajectories, quantitative evaluation of
progress and InPCA embeddings were computed using the
test dataset. The reason for this is that we would like to
study the geometry of tasks as evidenced by samples that
were not a part of training. To emphasize, we do not develop
any new algorithms for learning in this paper. Therefore
using the test data to quantify relationships between tasks is
reasonable; see similar motivations in Kaplun et al. (2022)
or Ilyas et al. (2022) among others. Our findings remain
valid when training data is used for analysis; this is because
in most of our experiments, a representation is trained on
one task but makes predictions on a completely new task
after mapping.

Result 1: The manifold of models trained on different
tasks, and using different representation learning meth-
ods, is effectively low-dimensional We trained multiple
models on 6 different sub-tasks of ImageNet (from 5 ran-
dom initializations each) to study the dimensionality of the
manifold of probabilistic models along the training trajecto-
ries (100 points equidistant in progress (4)) after mapping
all models to all ImageNet classes (∼ 108 dimensions). We
use the explained stress (defined in Appendix F), to mea-
sure if the distances are preserved by the first k dimensions
of the embedding of the models. The first 3 dimensions
of InPCA (Figure 1a) preserve 80.02% of the explained
stress (Figure 1b shows more dimensions). This is therefore
a remarkably low-dimensional manifold. It is not exactly
low-dimensional because the explained stress is not 100%,
but it is an effectively low-dimensional manifold. This also
indicates that the individual manifolds of models trained
on one task are low-dimensional, even if they start from
different random initializations in the weight space. Such
low-dimensional manifolds are seen in all our experiments,
irrespective of the specific method used for representation

4

A Picture of the Space of Typical Learnable Tasks 5

Imagenet

Random 333 classes

Dogs

Vertebrates

Instrumentality

Random labels

P0

P*

(a)

(b)
(c)

Figure 1. (a) Visualization of training trajectories of models
trained on 6 tasks from ImageNet. Each point is one network,
bold lines connect points along the average trajectory of each
task (across 5 random weight initializations). Trajectories move
towards the truth P∗, which corresponds to the ground-truth labels.
Training on one task makes a remarkable amount of progress on
unseen, seemingly dissimilar, classes. Trajectories of models
trained on a random set of 333 classes are similar to those of the
entire ImageNet. Some classes (Instrumentality) are closer to this
trajectory while others such as Vertebrates and Dogs are farther
away. Dogs is a semantic subset of Vertebrates; it splits at the
beginning but seems to eventually reach a similar representation
as one of the intermediate points of Vertebrates.
(b) Percentage explained stress (11) captured by subspace spanned
by the top k InPCA eigenvectors.
(c) Validation accuracy on different tasks vs. epochs.

learning, namely, supervised, transfer (fine-tuning), meta,
semi-supervised and contrastive learning.

Remark 4 (A detailed description of how we plot trajec-
tories of representations). We provide a non-mathematical
description of how the theory in §2 was used to draw Fig-
ure 1a below. We train 5 different networks (random seeds
for initialization) for each of the 6 tasks, and record 61
model checkpoints during training; this gives 1830 check-
points for this experiment. We re-index all checkpoints to
calculate their progress using Equations (3) and (4). We
then interpolate between each consecutive pair of the 61
checkpoints along each trajectory using (3). The training
trajectory can now be sampled at any progress tw ∈ [0, 1].
We next calculate the “average trajectory” of the 5 networks
(random seeds) of each task by averaging the output proba-
bilities in (1) at a fixed value of tw; 100 different values of
tw spread uniformly between [0, 1] are chosen. These 100

(b)(a)

Figure 2. (a) Progress made by each model on classes seen during
training (left half, lighter shade) and on novel classes (right half,
darker shade). We compute tcw which is the progress tw of images
restricted to a single class c. This quantity tcw measures the
quality of the representation for class c. Violin plots denote the
distribution of tcw indicate that we make more progress on classes
seen during training. If the model sees a larger diversity of classes
(like with random 333 classes), more progress is made on the
novel classes. Surprisingly, even if we train on just the “Dogs”,
we make some progress on novel classes.
(b) Progress tw (4) on the Y-axis against the number of epochs
of training on the X-axis. The progress tw increases with more
epochs of training—all models make non-trivial progress towards
the truth P∗ (tw = 1). Even if we train on only Dogs (118 classes)
we make progress on the entire ImageNet.

points along the average trajectory of each of the 6 tasks
are also embedded together with the 1830 checkpoints (i.e.,
m = 2430 in (9)). Figure 1a plots the top three dimensions
obtained from InPCA. To clarify, the explained stress of the
top 2430 dimensions would be exactly 100%.

Result 2: Supervised learning on one task results in a
surprising amount of progress on seemingly dissimilar
tasks. Progress on other tasks is larger if the training
task has diverse classes. We studied the progress tw (4)
made by models (Figure 2b) trained on tasks from Result
1. Training on the task “Dogs” makes non-trivial progress
on other tasks, even seemingly dissimilar ones like “Instru-
ments” which contains vehicles, devices and clothing. In
fact, it makes a remarkable amount of progress on the en-
tire ImageNet, about 63.38% of the progress of a model
trained directly on ImageNet. Progress is larger for larger
phyla of ImageNet (Vertebrates and Instruments). But what
is surprising is that if we train on a random subset of 333
classes (a third of ImageNet), then the progress on the en-
tire ImageNet is very large (92%). This points to a strong
shared structure among classes even for large datasets such
as ImageNet. Note that this does not mean that tasks such as
Vertebrates and Instruments are similar to each other. Even
if training trajectories are similar for a while, they do bi-
furcate eventually and the final models are indeed different
(see Figure 3b and Remark 5 on how to interpret it).

In Figure 2a, we studied the projections of models trained
on one task onto the geodesics of unseen classes calcu-
lated using (3) evaluated at the progress tw (4)). We find

5

A Picture of the Space of Typical Learnable Tasks 6

Figure 3. (a) Trajectories of models trained on different phyla
of Wordnet (inset). The model manifold is again effectively
low-dimensional (78.72% explained stress in 3 dimensions).
(b) We analyze the trajectories in Figure 3(a) and obtain a
quantitative description of how trajectories of different tasks
diverge from each other during training; the procedure is explained
in in Remark 5. The plot depicts the Bhattacharyya distance
between the mean trajectories (over random initializations) on
different tasks, and the mean trajectory of Conveyance. This
distance is normalized by the average of the tube radii (maximum
distance of one of the 5 trajectories from the mean, computed
at each progress) of the two trajectories. Such quantities allow
us to make precise statements about the differences between
representations and show some very surprising conclusions.
Trajectories of tasks that are nearby in Wordnet are also nearby
in terms of their learned representations. Further, trajectories
of ImageNet (pink) are closer to Conveyance (as expected), but
those of Vertebrates (red) are equally far away for more than
60% (tw ≈ 0.25) of the progress. In other words, training on
Vertebrates (reptiles, dog, bird) makes a remarkable progress on
Conveyance (cars, planes).

that a model trained on the entire ImageNet makes uneven
progress on the various classes (but about 80% progress
across them, progress is highly correlated with test error
of different classes). Models trained on the 6 individual
tasks also make progress on other unseen classes. As before,
training on Instruments, Vertebrates, Dogs makes smaller
progress on unseen classes compared to training on a ran-
dom subset of 333 classes. This is geometric evidence that
the more diverse the training dataset, the better the general-
ization to unseen classes/tasks; this phenomenon has been
widely noticed and utilized to train models on multiple tasks,
as we discuss further in Result 4.

Result 3: The structure of the space of tasks indicated
by our visualization technique is consistent with parts
of the Wordnet phylogenetic tree. To obtain a more fine-
grained characterization of how the geometry in the space
of learnable tasks reflects the semantics of these tasks, we
selected two particular phyla of ImageNet (Animals, Ar-
tifacts) and created sub-tasks using classes that belong to
these phyla (Figure 3a). Trajectories of models trained on
Instruments and Conveyance are closer together than those
of Animals. Within the Animals phylum, trajectories of
Vertebrates (Dog, Reptile, Bird) are closer together than
those of Invertebrates (Figure 3b for quantitative metrics).

Effectively, we can recover a part of the phylogenetic tree
of Wordnet using our training trajectories. We speculate
that this may point to some shared structure between visual
features of images and natural language-based semantics
of the corresponding categories which was used to create
Wordnet (Miller, 1998) of the corresponding categories.
Such alignment with a natural notion of relatedness also
demonstrates the soundness and effectiveness of our techni-
cal machinery.

Remark 5 (Building a precise and quantitative charac-
terization of trajectories of representations). The precise
way to understand statements like those in Result 3 is us-
ing the quantitative analysis reported in Figure 3b and Fig-
ure A3. To expand upon the caption, the X-axis of the plot is
progress. For multiple models (5 random seeds) trained on
two tasks (say Conveyance and Dogs), we have calculated
the mean (across random seeds) of the interpolated trajec-
tories at different progress. At each specific progress, we
have plotted the distance between the mean model trained
on Conveyance (say task 1) and Dogs (say task 2) divided
by the average tube radii (which is the maximum of the
distance of the model corresponding to one seed from the
mean):

2dB(τ
1→U
mean , τ2→U

mean)/
∑

k=1,2 maxa[dB(τ
k→U
a , τk→U

mean)].

The is a measure of how far away the trajectories of these
two models are. If it is less than 1, then the “tubes” corre-
sponding to models trained on tasks 1 and task 2 intersect.

Let us emphasize that we have performed such analyses
for all experiments in this paper (see Figure A3); while the
InPCA embedding gives an easy-to-understand visual de-
scription of these results for high-dimensional probabilistic
models, the information geometric techniques developed in
this paper enable us to make these descriptions precise and
quantitative. We also include a similar step-by-step guide
on how to interpret Figure A1b in Appendix B.

Result 4: Episodic meta-learning algorithms traverse
very different trajectories during training but they fit a
similar model eventually. Meta-learning methods build a
representation which can be adapted to a new task (Thrun
& Pratt, 2012). We studied a common variant, the so-
called episodic training methods (Bengio et al., 1992), in
the context of few-shot learning methods (Vinyals et al.,
2016). In these methods, each mini-batch consists of sam-
ples from Cw out of C classes (called “way”) split into
two parts: a “support set” Ds of s samples/class (called
“shot”), and a “query set” Dq of q samples/class. Typ-
ical methods, say prototypical networks of Snell et al.
(2017b), implement a clustering loss on features of the query
samples using averaged features of the support samples
φc = s−1∑

{x∈Ds,y∗(x)=c} φ(x;w1) for all c = 1, . . . , Cw

as the cluster centroids. If features φ lie on an ℓ2 ball of

6

A Picture of the Space of Typical Learnable Tasks 7

Supervised

Episodic 2-way

Episodic 5-way

P0

P*

2-way task
5-way task
7-way task
CIFAR10

P0

P*

(a) (b)

Figure 4. (a) Training trajectories for supervised learning
(black), 2-way (pink) and 5-way episodic meta-learning (purple).
Trajectories of 5-way meta-learning are very similar to those of
supervised learning and eventually reach very similar models and
high test accuracy. In contrast, 2-way meta-learning has a much
longer trajectory (about 40× longer in Riemann length than black)
and does not reach a good test accuracy (on all 10 CIFAR-10
classes). Representations are similar during early parts of training
even if these are quite different learning mechanisms.
(b) Trajectories of 2-way (blue), 5-way (green), 7-way (yellow)
tasks trained using cross-entropy loss compared to supervised
learning (red). For large “way”, trajectories are similar to
supervised learning but they quickly deviate from the red
trajectories for small ways.

radius 1, then doing so is akin to maximizing the cosine
similarity between cluster centroids and features of query
samples. The same clustering loss with the learned back-
bone w1 is used to predict on unseen classes (using “few”
support samples to compute centroids) at test time.

To understand the representations learned by episodic
meta-learning methods, we compared trajectories of
episodic meta-learning to the trajectory taken by supervised
learning in Figure 4. Supervised learning uses the cross-
entropy loss over all the C classes while episodic meta-
learning optimizes a loss that considers all k-way classifica-
tion tasks (where k is typically smaller than C), its objective
differs from that used for supervised learning. Since the
two objectives are different, it comes as a surprise that both
arrive at the same solution; see Figure 4a,b and Figure A2
for distances between trajectories. But the Riemann trajec-
tory length of episodic training is about 40× longer than
that of supervised learning. It is worth noting that the ex-
plained stress is only 40.96% in Figure 4a because of larger
fluctuations for episodic learning in other directions. There-
fore, episodic meta-learning has a qualitatively different
training trajectory in the prediction space than supervised
learning. The implications of this are consistent with recent
literature which has noticed that the performance of few-
shot learning methods using supervised learning (followed
by fine-tuning) is comparable to, or better than, episodic
meta-learning (Dhillon et al., 2020; Kolesnikov et al., 2020;
Fakoor et al., 2020). Indeed, a supervised learned represen-
tation also minimizes the clustering loss.

(a) (b)

Figure 5. (a) Average distance between two k-way meta-learning
trajectories decreases with k, this is a geometric evidence of the
variance of predictions of learned representations.
(b) Training with a small way leads to models that predict poorly
on test data (large distances from truth). These embeddings were
calculated using the training dataset. The rationale being that
we wanted to show how different meta-learning and supervised
learning are during training.

In order to understand why few-shot accuracy of episodic
training is better with a large way (Gidaris & Komodakis,
2018), we trained models on different 2-way 5-way and 7-
way tasks using the cross-entropy loss (Figure 4b). We find
that the radius of the tube that encapsulates the models of 2-
way tasks around their mean trajectory is very large, almost
as large as the total length of the trajectory, i.e., different
models trained with a small way tasks traverse very differ-
ent trajectories. Tube radius decreases as the way increases
(Figure 5a). Further, the distance of models from the truth
P∗ (which is close to the end point of the supervised learning
model) is higher for a small way (Figure 5b). This is geomet-
ric evidence of the widely used empirical practice of using
a large way in episodic meta-learning. Observe in Figure 5b
that as the way increases, the trajectory becomes more and
more similar to that of supervised learning. See Figure A3
for a quantitative analysis of these trajectories.

Result 5: Contrastive and semi-supervised learning
methods traverse trajectories similar to those of super-
vised learning. Contrastive learning (Becker & Hinton,
1992) learns representations without using ground-truth la-
bels (Gutmann & Hyvärinen, 2010; Chen et al., 2020a).
It has been extremely effective for self-supervised learn-
ing (Doersch & Zisserman, 2017; Kolesnikov et al., 2019),
e.g., prediction accuracy with 1–10% labeled data is close
to that of supervised learning using all data (Chen et al.,
2020b). Semi-supervised methods (Berthelot et al., 2019;
Sohn et al., 2020) learn representations when ground-truth
labels are available for only a small fraction of the data (0.1–
1%). These methods achieve a prediction accuracy within
5% of the accuracy achieved through supervised learning.
We compared representations learned using contrastive and
semi-supervised learning with those from supervised learn-
ing to understand why these methods are so effective.

Consider a task P and a set of augmentations G (e.g.,
cropping, resizing, blurring, color/contrast/brightness dis-

7

A Picture of the Space of Typical Learnable Tasks 8

0.0 0.2 0.4 0.6
Progress (tw)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
m

ea
n

tra
je

ct
or

ie
s

Distance from Supervised

SimCLR
Barlow-Twins
FixMatch

Figure 6. We consider 4 methods for training on CIFAR10:
supervised learning, SimCLR (Chen et al., 2020a), Barlow-
twins (Zbontar et al., 2021) and Fixmatch (Sohn et al., 2020).
Fixmatch has access to 2500 labeled samples and 47500 unlabeled
samples. SimCLR and Barlow-twins use 50,000 unlabeled
samples for training.
(a) We plot the trajectories for supervised, semi-supervised
and contrastive learning. The trajectory of semi-supervised
learning (Fixmatch) eventually resembles supervised learning in
comparison to contrastive learning methods. All methods result in
remarkably similar trajectories although some of these methods
are trained using only unlabeled data.
(b) Normalized distance of trajectories corresponding to
contrastive and semi-supervised learning to the trajectory of
supervised learning. Semi-supervised learning (Fixmatch)
deviates considerably from the other methods at the beginning.
We speculate that this is because the trajectory of Fixmatch is
influenced by the 2500 labeled samples. As, training progresses,
Fixmatch becomes increasingly similar to supervised learning as
evidenced by the dip in the blue line for larger values of progress
(tw).

tortion etc.). Given inputs (say images) x from P , con-
trastive learning forces the representation φ(g(x);w1) and
φ(g′(x);w1) (shortened to φ(g(x)) below) of the same input
for two different augmentations g, g′ to be similar. And
forces it to be different from representations of other aug-
mented inputs x′ (Zbontar et al., 2021; Bachman et al., 2019;
Dosovitskiy et al., 2014). Semi-supervised learning meth-
ods have access to both labeled inputs xl and unlabeled
inputs xu. More recent methods are usually trained to fit the
labeled inputs using the cross-entropy loss while enforcing
consistent predictions across all augmentations (Tarvainen
& Valpola, 2017; Berthelot et al., 2019) for any unlabeled
input.

We compare the representations of semi-supervised (Fix-
match (Sohn et al., 2020)), contrastive (SimCLR (Chen et al.,
2020a), Barlow-twins (Zbontar et al., 2021)) and supervised
learning in Figure 6. All three trajectories are similar to the
trajectory of supervised learning. We find that the trajectory
of semi-supervised learning deviates from the supervised
learning trajectory initially, but the two are very similar
for larger values of progress (tw). This points to a remark-
able ability of semi and self-supervised learning methods to
learn representations that are similar to those of supervised
learning; it is not just that the accuracy of these methods is

similar, they also learn similar probabilistic models.

Result 6: Fine-tuning a pre-trained model on a sub-task
does not change the representation much. To under-
stand how models train on multiple tasks, we selected two
binary classification sub-tasks of CIFAR-10 (Airplane vs.
Automobile, and Bird vs. Cat).

We selected models at different stages of standard super-
vised learning on CIFAR-10 (i.e., using 10-way output and
softmax cross-entropy loss) and fine-tuned each of these
models on two sub-tasks (the entire network is fine-tuned
without freezing the backbone). As Figure 7 shows, mod-
els that were fine-tuned from earlier parts of the trajectory
travel a large distance and move away from trajectories of
the supervised learned CIFAR-10 models. As we fine-tune
later and later models, the distance traveled away from the
trajectory is smaller and smaller, i.e., changes in the repre-
sentation are smaller. For a fully-trained CIFAR-10 model
which interpolates the training data, the distance traveled
by fine-tuning is very small (the points are almost indistin-
guishable in the picture); this is because both P 1 and P 2 are
subsets of CIFAR-10.

Algorithms for transfer learning train on a source task
before fine-tuning the model on the target task. If two
tasks share a large part of their training trajectory, then we
may start the fine-tuning from many shared intermediate
points—there are many such points. If the chosen point
is farther along in terms of progress then the efficiency re-
sulting from using the source task is higher because the
trajectory required to fit the target task is shorter; such tra-
jectories were used in (Gao & Chaudhari, 2021) to define a
distance between tasks. As we saw in Result 2, trajectories
of different tasks bifurcate after a shared part. The resultant
deviation less for related tasks and more for dissimilar tasks
(Figure 7a, Figure 1a,c). Therefore it is difficult to know
a priori from which point one should start the fine-tuning
from without knowing the manifold of the target task. In
particular, our geometric picture indicates that fine-tuning
from a fully-trained model can be detrimental to the accu-
racy on the target task. This has been noticed in a number of
places in the transfer learning literature, e.g., Li et al. (2020),
and has also been studied theoretically (Gao & Chaudhari,
2020).

4. Related Work and Discussion
Understanding the space of learnable tasks A large
body of work has sought to characterize relationships be-
tween tasks, e.g., domain specific methods (Zamir et al.,
2018; Cui et al., 2018; Pennington et al., 2014), learning
theoretic work (Baxter, 2000; Maurer, 2006; Ben-David
et al., 2010; Ramesh & Chaudhari, 2022; Tripuraneni et al.,
2020; Hanneke & Kpotufe, 2020; Caruana, 1997), random
matrix models (Wei et al., 2022), neural tangent kernel mod-
els (Malladi et al., 2022) and information-theoretic analy-

8

A Picture of the Space of Typical Learnable Tasks 9

Supervised Learning

Fine-tune task0 - epoch 0

Fine-tune task0 - epoch 2

Fine-tune task0 - epoch 5

Fine-tune task0 - epoch 100

Fine-tune task1 - epoch 0

Fine-tune task1 - epoch 2

Fine-tune task1 - epoch 5

Fine-tune task1 - epoch 100

P0

P*

P1
*(ta)

P1
*(tc)

P2
*(tb)

(a) (b)

Figure 7. (a) Fine-tuning trajectories on Airplane vs. Automobile,
and Bird vs. Cat sub-tasks of CIFAR-10 (warm and cold hues)
pre-trained from different points along the trajectory of supervised
learning. If the pretrained model has progressed further towards
the truth P∗, then fine-tuning it on a sub-task does not change the
representation much. The final trajectory (fine-tuning from epoch
100) is indistinguishable from P∗. (b) Bhattacharyya distance
between the mean trajectories normalized by the average of the
tube radii (like Figure 3b). models (say, fine-tuned after epoch 5
on task 1) go backwards in terms of progress, i.e., they unlearn
the pre-trained representation in order to fit the new task. This
occurs as early as epoch 1 here. It suggests that learning occurs
extremely rapidly at the beginning and determines the efficiency
of fine-tuning. Some curves here are not visible because they are
overlapping heavily.

ses (Jaakkola & Haussler, 1999; Achille et al., 2019a;b).
Broadly speaking, this work has focused on understanding
the accuracy of a model on a new task when it is trained
upon a related task, e.g., relationships between tasks are
characterized using the excess risk of a hypothesis. Our
methods also allow us to say things like “task P 1 is far from
P 2 as compared to P 3”. But they can go further. We can
glean a global picture of the geometric structure in the space
of tasks and quantify statements such as “the divergence
between P 1 and P 2 eventually is more than that of P 1 and
P 3, but representations learned on these tasks are similar
for 30% of the way”.

There is strong structure in typical inputs, e.g., recent
work on understanding generalization (Yang et al., 2022;
Bartlett et al., 2020) as well as older work such as Simoncelli
& Olshausen (2001); Field (1994); Marr (2010) has argued
that visual data is effectively low-dimensional. Our works
suggests that tasks also share a low-dimensional structure.
Just like the effective low-dimensionality of inputs enables
generalization on one task, effective low-dimensionality
of the manifold of models trained on different tasks could
perhaps explain generalization to new tasks.

Relationships between tasks in neuroscience Our results
are conceptually close to those on organization and repre-
sentation of semantic knowledge (Mandler & McDonough,
1993). Such work has primarily used simple theoretical mod-
els, e.g., linear dynamics of Saxe et al. (2019) (who also use
MDS). Our tools are very general and paint a similar picture
of ontologies of complex tasks. Concept formalization and
specialization over age (Vosniadou & Brewer, 1992) also
resembles our experiment in how fine-tuning models trained

for longer periods changes the representation marginally.
Our broad goals are similar to those of Sorscher et al. (2021)
but our techniques are very different.

Information Geometry has a rich body of sophisticated
ideas (Amari, 2016), but it has been difficult to wield it
computationally, especially for high-dimensional models
like deep networks. Our model in (1) is a finite-dimensional
probability distribution, in contrast to the standard object
in information geometry which is an infinite-dimensional
probability distribution defined over the entire domain. This
enables us to compute embeddings of manifolds, geodesics,
projections etc. We are not aware of similar constructions
in the literature.

Visualizing training trajectories of deep networks In-
PCA is a variant of multi-dimensional scaling (MDS,
see Cox & Cox (2008)), with the difference being that
InPCA retains the negative eigenvalues which preserves
pairwise distances (Quinn et al., 2019). A large number of
works have investigated trajectories of deep networks and
the energy landscape during or after training using dimen-
sionality reduction techniques (Horoi et al., 2021; Li et al.,
2018; Huang et al., 2020). Gur-Ari et al. (2018); Antognini
& Sohl-Dickstein (2018) studied the dimensionality of train-
ing trajectories. The key distinction here with respect to this
body of work is that we study the prediction space, not the
weight space. While the weight space has symmetries (Free-
man & Bruna, 2017; Garipov et al., 2018) and nontrivial
dynamics (Tanaka & Kunin, 2021; Chaudhari & Soatto,
2018), the prediction space, i.e,. [0, 1]N×C ∋ {pw(c | xi)},
completely characterizes the output of a probabilistic model.
In comparison, the loss or the error which are typically used
to reason about relationships between tasks, are coarse sum-
maries of the predictions. Any two models, irrespective of
their architecture, training methodology, or even the task
that they were trained on, can be studied rigorously using
our techniques.

Acknowledgments
RR, JM, RY and PC were supported by grants from

the National Science Foundation (IIS-2145164, CCF-
2212519), the Office of Naval Research (N00014-22-1-
2255), and cloud computing credits from Amazon Web
Services. IG was supported by the National Science
Foundation (DMREF-89228, EFRI-1935252) and Eric and
Wendy Schmidt AI in Science Postdoctoral Fellowship.
HKT was supported by the National Institutes of Health
(1R01NS116595-01). JPS was supported by the National
Science Foundation (DMR-1719490), MKT was supported
by the National Science Foundation (DMR-1753357). The
authors would like to acknowledge Jay Spendlove for help-
ful comments on this material.

9

A Picture of the Space of Typical Learnable Tasks 10

References
Achille, A., Lam, M., Tewari, R., Ravichandran, A., Maji,

S., Fowlkes, C. C., Soatto, S., and Perona, P. Task2vec:
Task embedding for meta-learning. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
6430–6439, 2019a.

Achille, A., Mbeng, G., and Soatto, S. Dynamics and
Reachability of Learning Tasks. arXiv:1810.02440 [cs,
stat], May 2019b.

Amari, S.-i. Information Geometry and Its Applications,
volume 194 of Applied Mathematical Sciences. Tokyo,
2016.

Antognini, J. and Sohl-Dickstein, J. Pca of high dimensional
random walks with comparison to neural network training.
Advances in Neural Information Processing Systems, 31,
2018.

Bachman, P., Hjelm, R. D., and Buchwalter, W. Learn-
ing representations by maximizing mutual information
across views. Advances in neural information processing
systems, 32, 2019.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 117(48):30063–30070,
2020.

Baxter, J. A model of inductive bias learning. Journal of
artificial intelligence research, 12:149–198, 2000.

Becker, S. and Hinton, G. E. Self-organizing neural net-
work that discovers surfaces in random-dot stereograms.
Nature, 355(6356):161–163, 1992.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning
from different domains. Machine learning, 79(1):151–
175, 2010.

Bengio, S., Bengio, Y., Cloutier, J., and Gecsei, J. On the
optimization of a synaptic learning rule. In Preprints Conf.
Optimality in Artificial and Biological Neural Networks,
pp. 6–8, 1992.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,
Oliver, A., and Raffel, C. A. MixMatch: A holistic ap-
proach to semi-supervised learning. Advances in Neural
Information Processing Systems, 32, 2019.

Bhattacharyya, A. On a measure of divergence between two
multinomial populations. Sankhyā: the indian journal of
statistics, pp. 401–406, 1946.

Bostock, M. Imagenet hierarchy. https:
//observablehq.com/@mbostock/
imagenet-hierarchy, 2018.

Brent, R. P. An algorithm with guaranteed convergence for
finding a zero of a function. The computer journal, 14(4):
422–425, 1971.

Caruana, R. Multitask learning. Machine learning, 28(1):
41–75, 1997.

Chaudhari, P. and Soatto, S. Stochastic gradient descent
performs variational inference, converges to limit cycles
for deep networks. In Proc. of International Conference
of Learning and Representations (ICLR), 2018.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International Conference on Machine
Learning, pp. 1597–1607, 2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. E. Big self-supervised models are strong semi-
supervised learners. Advances in Neural Information
Processing Systems, 33:22243–22255, 2020b.

Cox, M. A. and Cox, T. F. Multidimensional scaling. In
Handbook of Data Visualization, pp. 315–347. 2008.

Cui, Y., Song, Y., Sun, C., Howard, A., and Belongie,
S. Large scale fine-grained categorization and domain-
specific transfer learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 4109–4118, 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 248–255, 2009.

Dhillon, G. S., Chaudhari, P., Ravichandran, A., and Soatto,
S. A baseline for few-shot image classification. In Proc.
of International Conference of Learning and Representa-
tions (ICLR), 2020.

Doersch, C. and Zisserman, A. Multi-task self-supervised
visual learning. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2051–2060, 2017.

Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., and
Brox, T. Discriminative unsupervised feature learning
with convolutional neural networks. Advances in neural
information processing systems, 27, 2014.

Fakoor, R., Chaudhari, P., Soatto, S., and Smola, A. J. Meta-
Q-Learning. In Proc. of International Conference of
Learning and Representations (ICLR), 2020.

Field, D. J. What is the goal of sensory coding? Neural
computation, 6(4):559–601, 1994.

Freeman, C. D. and Bruna, J. Topology and geometry of
half-rectified network optimization. In ICLR, 2017.

10

https://observablehq.com/@mbostock/imagenet-hierarchy
https://observablehq.com/@mbostock/imagenet-hierarchy
https://observablehq.com/@mbostock/imagenet-hierarchy

A Picture of the Space of Typical Learnable Tasks 11

Gao, Y. and Chaudhari, P. A free-energy principle for repre-
sentation learning. In Proc. of International Conference
of Machine Learning (ICML), 2020.

Gao, Y. and Chaudhari, P. An information-geometric dis-
tance on the space of tasks. In Proc. of International
Conference of Machine Learning (ICML), 2021.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D., and
Wilson, A. G. Loss surfaces, mode connectivity, and fast
ensembling of dnns. In Proceedings of the 32nd Inter-
national Conference on Neural Information Processing
Systems, pp. 8803–8812, 2018.

Gidaris, S. and Komodakis, N. Dynamic few-shot visual
learning without forgetting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 4367–4375, 2018.

Gur-Ari, G., Roberts, D. A., and Dyer, E. Gradient
descent happens in a tiny subspace. arXiv preprint
arXiv:1812.04754, 2018.

Gutmann, M. and Hyvärinen, A. Noise-contrastive estima-
tion: A new estimation principle for unnormalized statisti-
cal models. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp.
297–304. JMLR Workshop and Conference Proceedings,
2010.

Hanneke, S. and Kpotufe, S. A no-free-lunch theorem for
multitask learning. arXiv preprint arXiv:2006.15785,
2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Horoi, S., Huang, J., Wolf, G., and Krishnaswamy, S. Visual-
izing high-dimensional trajectories on the loss-landscape
of ANNs. arXiv preprint arXiv:2102.00485, 2021.

Hu, J., Lu, J., and Tan, Y.-P. Deep transfer metric learning.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 325–333, 2015.

Huang, W., Yi, M., and Zhao, X. Towards the generalization
of contrastive self-supervised learning. arXiv preprint
arXiv:2111.00743, 2021.

Huang, W. R., Emam, Z., Goldblum, M., Fowl, L., Terry,
J. K., Huang, F., and Goldstein, T. Understanding gener-
alization through visualizations. 2020.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting predictions from training data.
arXiv preprint arXiv:2202.00622, 2022.

Ito, S. and Dechant, A. Stochastic time evolution, infor-
mation geometry, and the Cramér-Rao bound. Physical
Review X, 10(2):021056, 2020.

Jaakkola, T. and Haussler, D. Exploiting generative mod-
els in discriminative classifiers. In Advances in Neural
Information Processing Systems, pp. 487–493, 1999.

Kaplun, G., Ghosh, N., Garg, S., Barak, B., and Nakkiran,
P. Deconstructing distributions: A pointwise framework
of learning. arXiv preprint arXiv:2202.09931, 2022.

Kolesnikov, A., Zhai, X., and Beyer, L. Revisiting self-
supervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 1920–1929, 2019.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J.,
Gelly, S., and Houlsby, N. Big Transfer (BiT): General
Visual Representation Learning. arXiv:1912.11370 [cs],
May 2020.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. PhD thesis, Computer Science, University
of Toronto, 2009.

Leclerc, G., Ilyas, A., Engstrom, L., Park, S. M., Salman,
H., and Madry, A. ffcv. https://github.com/
libffcv/ffcv/, 2022. commit xxxxxxx.

Li, H., Xu, Z., Taylor, G., and Goldstein, T. Visualizing the
loss landscape of neural nets. In ICLR, 2018.

Li, H., Chaudhari, P., Yang, H., Lam, M., Ravichandran,
A., Bhotika, R., and Soatto, S. Rethinking the hyper-
parameters for fine-tuning. In Proc. of International Con-
ference of Learning and Representations (ICLR), 2020.

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S. A
kernel-based view of language model fine-tuning. arXiv
preprint arXiv:2210.05643, 2022.

Mandler, J. M. and McDonough, L. Concept formation in
infancy. Cognitive development, 8(3):291–318, 1993.

Marr, D. Vision: A Computational Investigation into the
Human Representation and Processing of Visual Informa-
tion. 2010.

Maurer, A. Bounds for linear multi-task learning. The
Journal of Machine Learning Research, 7:117–139, 2006.

Miller, G. A. WordNet: An Electronic Lexical Database.
1998.

Nielsen, F. and Boltz, S. The burbea-rao and bhattacharyya
centroids. IEEE Transactions on Information Theory, 57
(8):5455–5466, 2011.

11

https://github.com/libffcv/ffcv/
https://github.com/libffcv/ffcv/

A Picture of the Space of Typical Learnable Tasks 12

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543, 2014.

Qi, H., Brown, M., and Lowe, D. G. Low-shot learning
with imprinted weights. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 5822–5830, 2018.

Quinn, K. N. Patterns of Structural Hierarchies in Complex
Systems. PhD thesis, Cornell University, 2019.

Quinn, K. N., Clement, C. B., De Bernardis, F., Niemack,
M. D., and Sethna, J. P. Visualizing probabilistic models
and data with intensive principal component analysis.
Proceedings of the National Academy of Sciences, 116
(28):13762–13767, 2019.

Ramesh, R. and Chaudhari, P. Model Zoo: A Growing
”Brain” That Learns Continually. In Proc. of International
Conference of Learning and Representations (ICLR),
2022.

Ruan, Y., Dubois, Y., and Maddison, C. J. Optimal
representations for covariate shift. arXiv preprint
arXiv:2201.00057, 2021.

Saxe, A. M., McClelland, J. L., and Ganguli, S. A mathe-
matical theory of semantic development in deep neural
networks. Proceedings of the National Academy of Sci-
ences, 116(23):11537–11546, 2019.

Shen, Z., Liu, Z., Liu, Z., Savvides, M., Darrell, T., and
Xing, E. Un-mix: Rethinking image mixtures for unsu-
pervised visual representation learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 2216–2224, 2022.

Shi, X., Padhi, I., and Knight, K. Does string-based neural
MT learn source syntax? In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pp. 1526–1534, 2016.

Simoncelli, E. P. and Olshausen, B. A. Natural image statis-
tics and neural representation. Annual review of neuro-
science, 24(1):1193–1216, 2001.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems, pp. 4080–4090, 2017a.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Advances in Neural Information
Processing Systems, pp. 4077–4087, 2017b.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
FixMatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

Sorscher, B., Ganguli, S., and Sompolinsky, H. The geome-
try of concept learning. bioRxiv : the preprint server for
biology, 2021.

Tanaka, H. and Kunin, D. Noether’s learning dynamics:
The role of kinetic symmetry breaking in deep learning.
arXiv preprint arXiv:2105.02716, 2021.

Tarvainen, A. and Valpola, H. Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results. arXiv preprint
arXiv:1703.01780, 2017.

Teoh, H. K., Quinn, K. N., Kent-Dobias, J., Clement,
C. B., Xu, Q., and Sethna, J. P. Visualizing probabilistic
models in Minkowski space with intensive symmetrized
Kullback-Leibler embedding. Physical Review Research,
2(3):033221, August 2020. ISSN 2643-1564.

Thrun, S. and Pratt, L. Learning to Learn. 2012.

Tripuraneni, N., Jin, C., and Jordan, M. I. Provable
meta-learning of linear representations. arXiv preprint
arXiv:2002.11684, 2020.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
Matching networks for one shot learning. In Advances in
Neural Information Processing Systems, pp. 3630–3638,
2016.

Vosniadou, S. and Brewer, W. F. Mental models of the earth:
A study of conceptual change in childhood. Cognitive
psychology, 24(4):535–585, 1992.

Wei, A., Hu, W., and Steinhardt, J. More than a toy: Ran-
dom matrix models predict how real-world neural repre-
sentations generalize. arXiv preprint arXiv:2203.06176,
2022.

Yang, R., Mao, J., and Chaudhari, P. Does the data induce
capacity control in deep learning? In Proc. of Interna-
tional Conference of Machine Learning (ICML), 2022.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In British Machine Vision Conference 2016, 2016.

Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J.,
and Savarese, S. Taskonomy: Disentangling task trans-
fer learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3712–
3722, 2018.

12

A Picture of the Space of Typical Learnable Tasks 13

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. Bar-
low twins: Self-supervised learning via redundancy reduc-
tion. In International Conference on Machine Learning,
pp. 12310–12320, 2021.

Zhang, R. Making convolutional networks shift-invariant
again. In International conference on machine learning,
pp. 7324–7334. PMLR, 2019.

Zhong, Y., Tang, H., Chen, J., Peng, J., and Wang, Y.-X.
Is self-supervised learning more robust than supervised
learning? arXiv preprint arXiv:2206.05259, 2022.

13

A Picture of the Space of Typical Learnable Tasks 14

A. Details of the experimental setup
Data
We performed experiments using two datasets.

1. CIFAR10 (Krizhevsky, 2009) has 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck) with
RGB images of size 32×32, and

2. ImageNet (Deng et al., 2009) has 1000 classes each with about 1000 RGB images of size 224×224.
ImageNet classes are derived from the leaves of the Wordnet hierarchy (Miller, 1998) which is visualized by Bostock

(2018). We use this hierarchy to create tasks using different subsets of ImageNet; We use all classes under a node to create a
task. The tasks that we consider are: Dogs, Vertebrates, Invertebrates, Instrumentality, Reptile and Birds. We also consider a
task with 333 randomly selected classes and unlike other tasks, it spans many different phyla of ImageNet.

Architectures We use a Wide-Resnet (Zagoruyko & Komodakis, 2016) architecture for supervised learning experiments
on CIFAR-10 (WRN-16-4 with depth 16 and widening factor of 4) and a Resnet-18 (He et al., 2016) to train a model using
SimCLR. All experiments on ImageNet use the Resnet-50 architecture.

All convolutional layers are initialized using the Kaiming-Normal initialization. For the Wide-Resnet, the final pooling
layer is replaced with an adaptive pooling layer in order to handle input images of different sizes.

We make three modifications to these architectures.

1. We remove the bias from the final classification layer; this helps keep the logits of the different tasks on a similar scale.

2. In the experiments for Result 3 (episodic meta-learning) and Result 6 (fine-tuning), we replace batch normalization
with layer norm in the Wide-Resnet. This is because we found in preliminary experiments that batch-normalization
parameters make training meta-learning models very sensitive to choices of hyper-parameters (e.g., the support or
query shot), and that the learned representations of new tasks were quite different in terms of their predictions (and
thereby the Bhattacharyya distance) but all the difference was coming from modifications to the BN parameters.

3. In the Resnet-50, we replace the pooling layers with BlurPool (Zhang, 2019). The bias parameter in batch normalization
is set to zero with the affine scaling term set to one.

Training procedure All models are trained in mixed-precision (32-bit weights, 16-bit gradients) using stochastic gradient
descent (SGD) with Nesterov’s acceleration with momentum coefficient set to 0.9 and cosine annealing of the learning rate
schedule. Batch-normalization parameters are excluded from weight decay.

CIFAR10 datasets use padding (4 pixels) with random cropping to an image of size 28×28 or 32×32 respectively for
data augmentation. CIFAR10 images additionally have random left/right flips for data augmentation. Images are finally
normalized to have mean 0.5 and standard deviation 0.25.

Supervised learning models (including fine-tuning) for CIFAR10 are trained for 100 epochs with a batch-size of 64 and
weight decay of 10−5 using the Wide-Resnet.

Episodic meta-learners are trained using a Wide-Resnet and with the prototypical loss (Snell et al., 2017a). For the
2-way meta-learner, each episode contains 20 query samples and 10 support samples. For the 5-way meta-learner, each
episode contains 50 query samples and 10 support samples. We found (Result 4) to hold across different choices of these
hyper-parameters in small-scale experiments. Models are trained for around 750 epochs and the episodic learner is about 5
times slower to train with respect to wall-clock time.

We train models using SimCLR on CIFAR10 and on tasks created from CIFAR10. For the augmentations, we use
random horizontal flips, random grayscale, random resized crop and color jitter. Models are trained for 200 epochs for
2-way classification problems and for 500 epochs when trained on the entirety of CIFAR10 with the Adam optimizer and an
initial learning rate of 0.001.

A.1. Experiments on ImageNet
We make use of FFCV (Leclerc et al., 2022). which is a data-loading library that replaces the pytorch Dataloader. FFCV

reduces the training time on ImageNet to a few hours, which allows us to train 100s of models on ImageNet, or on tasks
created from it. Our implementation of ImageNet training builds on the FFCV repository 1.

ImageNet models are trained for 40 epochs with progressive resizing – the image size is increased from 160 to 224
between the epochs 29 and 34. Models are trained on 4 GPUs with a batch-size of 512. The training uses two types of

1https://github.com/libffcv/ffcv-imagenet/tree/main

14

https://github.com/libffcv/ffcv-imagenet/tree/main

A Picture of the Space of Typical Learnable Tasks 15

augmentations – random-resized crop and random horizontal flips. Additionally, we use label smoothing with the smoothing
parameter set to 0.1.

A.2. Implementing InPCA in very high dimensions
We calculate an InPCA embedding of models along multiple trajectories, e.g., a typical experiment has about 25

trajectories (multiple random seeds, tasks, or representation learning methods) and about 50 models (checkpoints)
along each trajectory. Each model is a very high-dimensional object (with dimensionality NC where N ∼ 105 and
C ∼ 10-103). Even if the matrix D in (9) is relatively manageable with n ∼ 1250, each entry of D is dB(Pu, Pv)

and therefore requires ∼ 108 operations to compute. Implementing InPCA—or even PCA—for such large matrices
requires a large amount of RAM. We reduced the severity of this issue to an extent using Numpy’s memmap functional-
ity https://numpy.org/doc/stable/reference/generated/numpy.memmap.html. Also note that calculating only the top few
eigenvectors of (9) suffices to visualize the models, we do not need to calculate all.

The formula (2) is an effective summary of the discrepancies between how the predictions made by two probabilistic
models differ; even small differences in two models, e.g., even if both Pu and Pv make mistakes on exactly the same input
samples, if pnu(c) is slightly different than pnv (c) for even one of n or c, the divergence is non-zero. InPCA is capable of
capturing the differences between two such models (9). However, when the number of classes is extremely large, the number
of terms in the summation is prohibitively large and analyzing the discrepancies or calculating the embedding becomes
rather difficult.

We also developed a method to work around this issue. We can use a random stochastic matrix (whose columns sum up
to 1) to project the outputs for each sample {pnu(c)}c=1,...,C into a smaller space before calculating (2). This amounts to
pretending as if the model predicts not the actual classes but a random linear combination of the classes (even if the model is
trained on the actual classes). This is a practical trick that is necessary only when we are embedding a very large number of
very high-dimensional probabilistic models. We checked in our Imagenet experiments that using this trick gives the same
embeddings.

In this paper, we did not need to use this projection trick. However, we found that this tricks makes it computationally
faster to compute the embeddings and we have seen it to work well in practice. We have shared the code for this procedure,
since it allows other people to reproduce the results using fewer computational resources.

B. Additional Result
Result 7: Contrastive learning methods trained on different datasets learn similar representations We compared
representations learned using contrastive learning with those from supervised learning to understand some aspects of why
the former are so effective.

We used SimCLR (Chen et al., 2020a) to perform contrastive learning on images from four sets of classes (airplane-
automobile, bird-cat, ship-truck and all of CIFAR-10). We compared the learned representation to that from supervised
learning on two tasks (airplane-automobile and all of CIFAR-10) in Figure A1. Models trained using contrastive learning on
two-class datasets learn very different representations from models trained on the same task but using supervised learning.
Models trained using contrastive learning on different datasets learning similar representations (trajectories of all three
two-class datasets are very close to each other). This is reasonable because contrastive learning does not use any information
from the labels. It is surprising however that the trajectory of models from contrastive learning on these two-class datasets is
similar to trajectories of models from contrastive learning on the entire CIFAR-10.

Let us elaborate upon this a bit more. We have color-matched the lines in Figure A1b with those in Figure A1a. The
black curve is the trajectory of supervised learning on the entire CIFAR-10; red is the trajectory of SimCLR trained on the
entire CIFAR-10. Figure A1b compares the distances of trajectories in Figure A1a from the red one “contrastive”; this is
why there is no red trajectory in Figure A1b.

• The first thing to note here is that the black and red trajectories are quite close to each other; the black line in Figure A1b
is only about 20 times far away from red as compared to their corresponding tube radii.

• Next observe that the trajectory of SimCLR on Task 1 (light blue), SimCLR on Task 2 (green) and SimCLR on Task 3
(yellow) are very similar to each other; this is seen in both Figure A1a and in Figure A1b.

• Third, they are closer to SimCLR on all of CIFAR-10 than any supervised learning trajectories (this is seen in Figure A1b
because their curves are below everyone else). Thus, contrastive learning on datasets with different classes learns
similar representations.

• The learned representation of two-class SimCLR models is similar to the one obtained using data from all classes (red)
(in this experiment this occurs up to about tw = 0.4 progress) but they do not go all the way to the truth (i.e., the end

15

https://numpy.org/doc/stable/reference/generated/numpy.memmap.html

A Picture of the Space of Typical Learnable Tasks 16

Supervised - CIFAR10

Supervised - Task 1

SimCLR - Task 1

SimCLR - Task 2

SimCLR - Task 3

SimCLR - CIFAR10

P0

P*

(a) (b)

Figure A1. (a) Trajectories of contrastive learning (SimCLR) on 3 datasets (two classes each) and entire CIFAR-10 compared to those of
supervised learning. SimCLR on entire CIFAR-10 learns a similar representation as that of the supervised learned model P∗ (which fits
the training data perfectly). SimCLR trajectories are close to each other even if different datasets were used to train them. It may seem
from the embedding that SimCLR trajectories are similar to that supervised learning, which would be very surprising because the former
does not use any labels, but see below.
(b) Bhattacharyya distance between the mean trajectories of all models and the mean trajectory of SimCLR on all CIFAR-10. This
distance is normalized by the average of the tube radii (like Figure 7b). SimCLR trajectories of two-class datasets are indeed very close to
each other (mean distance is ∼ 5× more than their tube radii for about 45% of the way (tw ≈ 0.2)). This plot indicates that two-class
SimCLR trajectory (light blue) is close to SimCLR on all of CIFAR-10. But two-class supervised learning trajectory (darker blue) is
much farther away from SimCLR on all of CIFAR-10.

point of black line). This shows the benefit of having data from many classes during contrastive learning.
Also see Figure A3 for distances computed with respect to other trajectories which can be used to further investigate these
claims.

0.0 0.5 1.0

0

20

40

60
Supervised Learning

0.0 0.5 1.0

0

20

40

Meta-learning 5-way

0.0 0.5 1.0

0

20

40

60
Meta-learning 2-way

Supervised Learning
Meta-learning 5-way
Meta-learning 2-way

Progress (tw)

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
tra

je
ct

or
ie

s

Figure A2. Distance between trajectories of supervised and meta-learning at different values of progress. Distances between the
average trajectories of different algorithms (e.g., 2-way episodic learning and supervised learning, and 5-way episodic learning and
supervised learning in the leftmost panel) are normalized by the average of the radii of the tubes corresponding to each trajectory. We find
that trajectories of 2-way meta-learning deviate significantly from those of supervised learning for a large fraction of the trajectory. On the
other hand, 5-way meta-learning is similar to the supervised learning trajectory for almost the entirety of the trajectory.

C. Bhattacharyya Distance
We provide additional details regarding (2). Let ȳ = (y1, · · · yN), denote the labels assigned to each of the N samples.

Since there are C classes in total, y⃗ can take a total of CN different values denoted by the set Y N . Given, two models Pu

16

A Picture of the Space of Typical Learnable Tasks 17

0.00 0.25 0.50 0.75

10

20
Task 0+1

0.0 0.2 0.4
0

50

100

Task 0 - Epoch 0

0.45 0.50

0

2

4

1e7 Task 0 - Epoch 1

0.50 0.55

0

1

2

3
1e7 Task 0 - Epoch 2

0.60 0.65

0

1

2

3
1e7 Task 0 - Epoch 5

0.68 0.70 0.72
0

10

20

Task 0 - Epoch 10

0.05 0.00 0.05

0.05

0.00

0.05
Task 0 - Epoch 100

0.0 0.1 0.2 0.3

0

50

100

150

Task 1 - Epoch 0

0.3 0.4 0.5

0

2

4

1e7 Task 1 - Epoch 1

0.4 0.5

0

1

2

3
1e7 Task 1 - Epoch 2

0.50 0.55 0.60 0.65

0

2

4

1e7 Task 1 - Epoch 5

0.65 0.70

0

1

2
1e7 Task 1 - Epoch 10

Task 0+1
Task 0 - Epoch 0
Task 0 - Epoch 1
Task 0 - Epoch 2
Task 0 - Epoch 5
Task 0 - Epoch 10
Task 0 - Epoch 100
Task 1 - Epoch 0
Task 1 - Epoch 1
Task 1 - Epoch 2
Task 1 - Epoch 5
Task 1 - Epoch 10
Task 1 - Epoch 100

Progress (tw)

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
m

ea
n

tra
je

ct
or

ie
s

(a)

0.0 0.2 0.4
0

5

10

15 Distance from Bird

0.0 0.2 0.4
0

5

10

15 Distance from Conveyance

0.0 0.2 0.4
0

5

10

15 Distance from Dog

0.0 0.2 0.4
0

5

10

15 Distance from Instrumentality

0.0 0.2 0.4
0

5

10

15 Distance from Invertebrate

0.0 0.2 0.4
0

5

10

15 Distance from Imagenet

0.0 0.2 0.4
0

5

10

15 Distance from Reptile

0.0 0.2 0.4
0

5

10

15 Distance from Vertebrates Bird
Conveyance
Dog
Instrumentality
Invertebrate
Imagenet
Reptile
Vertebrates

Progress (tw)

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
m

ea
n

tra
je

ct
or

ie
s

(b)

0.0 0.2 0.4 0.6
0

5

10

15

20

25
Supervised - CIFAR10

0.0 0.1 0.2
0

5

10

15

20

25
Supervised - Task 1

0.0 0.1 0.2
0

5

10

15

20

25
Supervised - Task 2

0.0 0.1 0.2
0

5

10

15

20

25
Supervised - Task 3

0.0 0.2 0.4 0.6
0

5

10

15

20

25
Contrastive - CIFAR 10

0.0 0.2 0.4
0

5

10

15

20

25
Contrastive - Task 1

0.0 0.2 0.4
0

5

10

15

20

25
Contrastive - Task 2

0.0 0.2 0.4
0

5

10

15

20

25
Contrastive - Task 3

Supervised - CIFAR10
Supervised - Task 3
Supervised - Task 1
Supervised - Task 2
Contrastive - Task 3
Contrastive - Task 1
Contrastive - Task 2
Contrastive - CIFAR 10

Progress (tw)

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
m

ea
n

tra
je

ct
or

ie
s

(c)

Figure A3. This figure shows the extended version of the distances between trajectories of probabilistic models; two of them are identical
to the ones in Figure 7b and Figure A1b.

17

A Picture of the Space of Typical Learnable Tasks 18

and Pv , the Bhattacharyya distance averaged over the samples is

dB(Pu,Pv) := −N−1 log

 ∑
y⃗∈Y N

√
Pu(ȳ)Pv(ȳ)


= −N−1 log

 ∑
y⃗∈Y N

N∏
n=1

√
pu(yn) pv(yn)


= −N−1 log

 C∑
y1=1

C∑
y2=1

· · ·
C∑

yN=1

(
N∏

n=1

√
pu(yn) pv(yn)

)
= −N−1 log

 N∏
i=1

 C∑
yi=1

√
pu(yi) pv(yi)


= −N−1

N∑
i=1

log

 C∑
yi=1

√
pu(yi) pv(yi)

 .

Uncovering the structure of high-dimensional probabilistic models is difficult because most distances between probability
distributions saturate with the dimensionality, e.g., the Hellinger distance which is a metric, is essentially equal to 2 in high-
dimensions. Quinn et al. (2019, Figure 1) illustrates how a high-dimensional model benefits from using the Bhattacharyya
distance compared to using the Hellinger distance in uncovering the intrinsic structure of the manifold. We believe that the
logarithm in the Bhattacharyya distance keeps it well-behaved. We actually know of one other distance that gives meaningful
results and that is the symmetric KL-divergence (Teoh et al., 2020), for the same reason: due to the logarithm. All analysis
in our paper can therefore be done with the symmetric-KL divergence (which is also not a metric) and the results do look
similar.

There are a couple more reasons that motivated us to use the Bhattacharyya distance. First, the Bhattacharyya distance
to the truth P∗ is equal to one half of the cross-entropy loss. Second, it is reassuring that both the Bhattacharyya distance
locally gives the Fisher Information Matrix, which is positive semi-definite and therefore induces a local metric.

Bhattacharyya distance violates the triangle inequality and we speculate that this is necessary in order to uncover the
low-dimensional structure in high-dimensional data. Understanding why it is important to violate the triangle inequality is a
deep question and we do not know how to answer it yet. We do not use the Bhattacharyya distance itself to say things like
“task A is close to task B” and as a result, the conclusions do not suffer from the violation of the triangle inequality. We
only say things like “training on task A is equivalent to training for 80% progress on task B, or ”training using contrastive
learning is equivalent to training using supervised learning for 25% of the progress“.

D. Imprinting as an alternative to training the final layer
Consider a total of C classes. We would like to find weights {wc}Cc=1 that maximize the log-probability of the samples,

under the constraint that for all c ∈ C, the norm of the weights ||wc|| is 1. Let φ(x) denote a internal representation of sample
x. The log-probability

∑
x:yx=c

log p(y = c | x) =
∑

x:yx=c

wc · φ(x)−
∑

x:yx=c

log

 C∑
j=c

exp (wc · φ(x))

 , (12)

is proportional to the inner-product wc ·
∑

x:yx=c φ(x). Maximizing just this term under the norm constraint, we get the
imprinted weights

∑
i ϕ(x

c
i)/||

∑
i ϕ(x

c
i)|| as the solution. Deriving an analytical expression for the optimal value of {wc}nc

i=1

is difficult and hence we use the imprinted weights as an approximate solution. In our experiments, we found that the
imprinted weights achieve an accuracy close to the optimal weights while being significantly easier to compute.

E. Invariant transformations of the internal representation
The internal representations are invariant to orthogonal transformations provided that we use imprinting to define a

probabilistic model. This is because the internal representations define the same probabilistic model ever after an orthogonal
transformation. Consider two internal representation ϕ and U · ϕ where U is an orthogonal matrix. We note that the

18

A Picture of the Space of Typical Learnable Tasks 19

probabilistic model for U · ϕ after imprinting is

log p2(y = c | xi) =
U ·
∑

yx=c ϕ(x)

||U ·
∑

yx=c ϕ(x)||
· (U · ϕ(xi))− log

(
C∑

c=1

exp

(
U ·
∑

yx=c ϕ(x)

||U ·
∑

yx=c ϕ(x)||
· (U · ϕ(xi))

))

=

∑
yx=c ϕ(x)

||
∑

yx=c ϕ(x)||
· ϕ(xi)− log

(
C∑

c=1

exp

(∑
yx=c ϕ(x)

||
∑

yx=c ϕ(x)||
· ϕ(xi)

))
.

The probabilistic model for the representation U · ϕ is identical to the probabilistic model for representation ϕ since norms
and angles are preserved under orthogonal transformations. Hence the Bhattacharyya distance between ϕ and U · ϕ is zero.

The imprinting procedure can be thought of as removing information from the representation that is not relevant to
prediction on a task. While this is true for all datasets in general, there could exist some additional structure in the data that
results in more invariances (e.g., more than invariances to orthogonal transformations O(n)).

F. Measuring goodness-of-fit of an InPCA embedding using explained stress
We would like to measure if a k-dimensional sub-space accurately preserves the true distances. For this purpose, we

define a quantity called the “explained stress” that estimates the fraction of pairwise distances in the original space that are
preserved in the k-dimensional embedding. This is analogous to the explained variance in principal component analysis
(PCA); but explained variance is a measure of the how well the original points are preserved in the embedding whereas
explained stress approximates how well pairwise Bhattacharyya distances are preserved. If we consider the embedding to be
given by first k eigen-vectors, then the explained stress (χk) is

χk = 1−

∥∥∥W −
∑k

i=1 Σii UiU
⊤
i

∥∥∥
F

∥W∥F
= 1−

√∑m
i=k+1 Σ

2
ii∑m

i=1 Σ
2
ii

. (13)

Note that InPCA finds an embedding that exactly maximizes χk.

G. Calculating mean trajectories
We defined the distance between two trajectories to be dtraj(τ

1→U
u , τ2→U

v), i.e., the integral of the Bhattacharyya distance
between the trajectories after mapping them to the same task and re-indexing them using the geodesic. Say we wish to
compare a model trained on two tasks from CIFAR-10: Cats vs. Dogs and Airplane vs. Truck. We initialize multiple models
for each of these two supervised learning problems (and we do so for every experiment in this paper) and train these 10
models. We can now calculate the mean trajectory of models on a task

argmin
τ1
µ

1

K

K∑
k=1

dtraj(τ
1
uk

, τ1µ).

This optimization problem is very challenging because the variable is a trajectory of probabilistic models in a high-
dimensional space. Even if we were to split this minimization and do it independently across time, this is still difficult
because the solution is the so-called Bhattacharyya centroid on the product manifold defined in (1) and cannot be computed
in closed form. See (Nielsen & Boltz, 2011) for an iterative formula. We therefore simply take the arithmetic mean of the
probability distributions, i.e., Pµ(t) =

1
K

∑K
k=1 Pwi(t). This is similar to ensembling. We use the radius of the tube around

the mean trajectory, i.e.,
ru = max

k
dtraj(τ

1
uk

, τ1µ)

to normalize distances (more precisely, we normalize using the average of the radii of the two trajectories being compared).
Note that this radius depends upon time (and is computed after mapping and reindexing the trajectories). If the distance
between the means of two sets of trajectories is smaller than their individual average radii, then the tubes around the means
intersect each other. In such cases, one can say that the representations learned (at that time point) are not distinguishable.
We next show all distances between reindexed points along the trajectories discussed in Figures 1, 7 and A1. Note that each
curve gives the integrands in (5), not the integral.

19

A Picture of the Space of Typical Learnable Tasks 20

H. Frequently Asked Questions
1. These results are all intuitive and inline with literature. It is intuitive that trajectories of trained networks

explore a small part of the prediction space; it is intuitive that training on one task makes progress on another
task; it is intuitive that episodic meta-learning reaches the same solution as that of supervised learning, etc.
Researchers working in the many sub-fields of machine learning discussed in this paper have various intuitions as to
why their algorithms work. There are also numerous empirical results and theoretical models in these fields that are
consistent with our findings. But this does not necessarily mean that we understand the underlying phenomena well.
We must precisely quantify these intuitions and folklore results.

For example, it may be intuitive that episodic learning is “similar” to supervised learning because while the former
uses a clustering loss over different sets of classes in each mini-batch, the latter uses a cross-entropy loss, which as
we discussed in the main paper, will also lead to a good clustering of the features. Such intuition has been borne out
in empirical results as well: fine-tuning-based few-shot learning methods have similar accuracy as that of episodic
meta-learning-based ones. One may even argue intuitively that since these methods give a similar accuracy, the
representations learned by these methods must be similar.

But intuition is a double-edged sword. For example, intuition also suggests that deep networks with millions of weights
fitted on a non-convex energy landscape on seemingly dissimilar tasks are unlikely to learn similar representations.
But since transfer learning is so remarkably effective, it is also intuitive that the representations of different tasks are
similar; after all the network trains on the target task quickly after being pre-trained on the source task. Since networks
are initialized randomly at different locations in the weight space, there is no reason to expect that the trajectory in
prediction space will be low-dimensional. And yet, one might reason that since all these networks are trained on the
same dataset, their training trajectories have to be similar to each other...

And this is why—to ground such intuition—we need precise quantitative studies. We have developed sophisticated
techniques using information geometry to bear upon this problem. In some cases, we find surprising results—this
opens up new avenues for theoretical and empirical investigation. In some cases our results may be consistent with the
intuition of the practitioners—this lends credence to these techniques.

We are not aware of existing results in the literature which point out the phenomena identified in our paper.

2. Do these findings translate to other tasks and other algorithms?
We have used nine different tasks from ImageNet with very dissimilar classes and many sub-tasks of CIFAR-10, and
five different representation learning methods (supervised learning, fine-tuning, episodic meta-learning, contrastive and
semi-supervised learning).

The technical tools developed in this paper can indeed be used to study many other problem domains, algorithms
and research questions. Each of these come with their own challenges, e.g., for tasks in natural language processing,
although the probabilistic model is well-defined, the output space and the number of “samples” (words, sentences etc)
is extremely large. As a rough estimate, for a typical book with N ≈ 105 words, the output space has C ≈ 1020 if the
model predicts the next 5 words. Therefore, although techniques developed here are well-defined, implementing and
using them to answer new questions will require new research ideas. We hope that the research community will use
these techniques to understand learned representations in the future. To aid this, we commit to releasing all code, data
(model checkpoints, model embeddings), and interactive visualizations with the final version of the paper.

3. How faithful are the visualizations of the trajectories in the prediction space?
We are using a dimensionality reduction technique (InPCA) which has the specific property that if one uses all the
eigenvalues (i.e., the dimensionality of the embedding space is equal to the number of probabilistic models being
embedded) then the pairwise Bhattacharyya distances between points are preserved exactly. When we visualize the
top three dimensions of the embedding, we only see a partial picture of the manifold and pairwise distances between
points are no longer preserved. We can use the expression for explained stress (11) and (13) to estimate how faithful
our visualizations are. In our experience, the explained stress of the top three dimensions is always extremely high and
this number is similar for all experiments in the paper. For example, the 2430 models of ImageNet in Figure 1 lie in a
107-dimensional embedding space and yet the top 3 dimensions have an explained stress of about 80%; the explained
stress of the top 2430 dimensions of the embedding would be 100%.

The visualizations in our paper are only used for providing intuition and interpretability; all findings in the paper are
made quantitatively on the basis of the integral of the Bhattacharyya distances between points along the trajectories.

20

A Picture of the Space of Typical Learnable Tasks 21

4. Can you explain the time re-parameterization using the geodesic? It may not be a good normalization in all
situations.
Different models train at very different speeds, in particular at the beginning of training models move rapidly after each
mini-batch update in the space of probability distributions (e.g., as measured by the Bhattacharyya distance). We can
only record the trajectory at specific checkpoints (e.g., after each epoch or, at best, after each mini-batch). Our time
re-parameterization technique allows us to interpolate two successive checkpoints using the geodesic that connects
them. We discretize “progress” tw into 100 equidistant intervals and interpolate the entire trajectory at these 100 points
by calculating the appropriate points on the geodesic between two successive checkpoints; this is described in the
narrative after (4). For initial parts of the trajectory, there are fewer checkpoints per unit progress because the network
trains quickly. But the time re-parameterization still allows us to discretize the entire trajectory evenly. When we do
the analysis using the distances between trajectories, this technique ensures equal importance to early and late times
of the training process irrespective of how fast the network learns in these phases. Our techniques also allow us to
quantitatively study the differences in how quickly different networks train, although this is not the focus of this paper.

5. CIFAR10 is a very small dataset to apply semi, self-supervised learning.
Self-supervised learning models have also been trained on CIFAR-10 by a number of papers (Huang et al., 2021;
Zhong et al., 2022; Shen et al., 2022). Contrastive learning has also been applied to smaller datasets in the context of
unsupervised domain-adaptation (Ruan et al., 2021). In our experiments, SimCLR trains to an accuracy of 87.36% on
CIFAR10 (after imprinting the final model), which is only about 7% worse than a typical run of supervised learning in
spite of not using any labels whatsoever.

For Result 5 on contrastive and semi-supervised learning, we chose CIFAR-10 for contrastive learning because it is
incredibly expensive to train on ImageNet. Zbontar et al. (2021) report that their method requires 32 V100 GPUs
over 124 hours. For all experiments in our paper, we train on 5 random seeds (to create trajectories from different
initializations, interpolate them using geodesics, compute averages etc.). Running SimCLR on ImageNet to perform an
analysis of its trajectories would be enormously expensive (about $60,000 on AWS for 5 trajectories of one algorithm...).

21

