
A Theory of Non-Linear Feature Learning with One
Gradient Step in Two-Layer Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Feature learning is thought to be one of the fundamental reasons for the success1

of deep neural networks. It is rigorously known that in two-layer fully-connected2

neural networks under certain conditions, one step of gradient descent on the first3

layer followed by ridge regression on the second layer can lead to feature learning;4

characterized by the appearance of a separated rank-one component—spike—in5

the spectrum of the feature matrix. However, with a constant gradient descent step6

size, this spike only carries information from the linear component of the target7

function and therefore learning non-linear components is impossible. We show that8

with a learning rate that grows with the sample size, such training in fact introduces9

multiple rank-one components, each corresponding to a specific polynomial feature.10

We further prove that the limiting large-dimensional and large sample training and11

test errors of the updated neural networks are fully characterized by these spikes.12

By precisely analyzing the improvement in the loss, we demonstrate that these13

non-linear features can enhance learning.14

1 Introduction15

Learning non-linear features—or representations—from data is thought to be one of the fundamental16

reasons for the success of deep neural networks (e.g., Bengio et al., 2013; Donahue et al., 2016;17

Yang & Hu, 2021; Shi et al., 2022; Radhakrishnan et al., 2022, etc.). At the same time, the current18

theoretical understanding of feature learning is incomplete. In particular, among many theoretical19

approaches to study neural nets, much work has focused on two-layer fully-connected neural networks20

with a randomly generated, untrained first layer and a trained second layer—or random features21

models (Rahimi & Recht, 2007). Despite their simplicity, random features models can capture various22

empirical properties of deep neural networks. Nevertheless, feature learning is absent in random23

features models, because the first layer weights are assumed to be randomly generated, and then fixed.24

Thus, random features models fall short of providing a comprehensive explanation for the success of25

deep learning. While other models such as the neural tangent kernel (Jacot et al., 2018; Du et al.,26

2019) can be more expressive, they also lack feature learning.27

To bridge the gap between random features models and feature learning, several recent approaches28

have shown provable feature learning for neural nets under certain conditions. In particular, the recent29

pioneering work of Ba et al. (2022) analyzed two-layer neural networks, trained with one gradient30

step on the first layer. They showed that when the step size is small, after one gradient step, the31

resulting two-layer neural network can learn linear features. However, it still behaves as a noisy linear32

model and does not capture non-linear components of a teacher function. Moreover, they showed33

that for a sufficiently large step size, under certain conditions, the one-step updated random features34

model can outperform linear and kernel predictors. However, the effects of a large gradient step35

size on the features is unknown. What happens in the intermediate step size regime also remains36
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unexplored. In this paper, we focus on the following key questions in this area: What nonlinear37

features are learned by a two-layer neural network after one gradient update? How are these features38

reflected in the singular values and vectors of the feature matrix, and how does this depend on the39

scaling of the step size? What exactly is the improvement in the loss due to the nonlinear features40

learned?41

2 Preliminaries42

In this paper, we study a supervised learning problem with training data (xi, yi) ∈ Rd × R, for43

i ∈ [2n], where d is the feature dimension and n ≥ 2 is the sample size. We assume that the data is44

generated according to45

xi
i.i.d.∼ N(0, Id), and yi = f⋆(xi) + εi, (1)

in which f⋆ is the ground truth or teacher function, and εi
i.i.d.∼ N(0, σ2

ε) is additive noise.46

We fit a model to the data in order to predict outcomes for unlabeled examples at test time; using47

a two-layer neural network. We let the width of the internal layer be N ∈ N. For a weight matrix48

W ∈ RN×d, an activation function σ : R → R applied element-wise, and the weights a ∈ RN of a49

linear layer, we define the two-layer neural network as fW,a(x) = a⊤σ (Wx).50

Following Ba et al. (2022), for the convenience of the theoretical analysis, we split the train-51

ing data into two parts: X = [x1, . . . ,xn]
⊤ ∈ Rn×d,y = (y1, . . . , yn)

⊤ ∈ Rn and X̃ =52

[xn+1, . . . ,x2n]
⊤ ∈ Rn×d, ỹ = (yn+1, . . . , y2n)

⊤ ∈ Rn. We train the two layer neural network53

as follows. First, we initialize a = (a1, . . . , aN )⊤ with ai
i.i.d.∼ N (0, 1/N) and initialize W with54

W0 = [w0,1, . . . ,w0,N ]
⊤ ∈ RN×d, w0,i

i.i.d.∼ Unif(Sd−1),where Sd−1 is the unit sphere in Rd55

and Unif(Sd−1) is the uniform measure over it. Fixing a at initialization, we perform one step of56

gradient descent on W with respect to the squared loss computed on (X,y). Recalling that ◦ denotes57

element-wise multiplication, the negative gradient can be written as58

G := − ∂

∂W

[
1

2n

∥∥y − σ(XW⊤)a
∥∥2
2

]
W=W0

=
1

n

[
(ay⊤ − aa⊤σ(W0X

⊤)) ◦ σ′(W0X
⊤)

]
X,

and the one-step update is W = W0 + ηG for a learning rate or step size η.59

After the update on W, we perform ridge regression on a using (X̃, ỹ). Let F = σ(X̃W⊤) ∈ Rn×N60

be the feature matrix after the one-step update. For a regularization parameter λ > 0, we set61

â = â(F) = argmin
a∈RN

1

n
∥ỹ − Fa∥22 + λ∥a∥22 =

(
F⊤F+ λnIN

)−1
F⊤ỹ. (2)

Then, for a test datapoint with features x, we predict the outcome ŷ = fW,â(x) = â⊤σ (Wx).62

2.1 Conditions63

Our theoretical analysis applies under the following conditions:64

Condition 2.1 (Asymptotic setting) We assume that the sample size n, dimension d, and width of65

hidden layer N all tend to infinity with d/n→ ϕ > 0 and d/N → ψ > 0.66

Condition 2.2 We let f⋆ : Rd → R be a single-neuron model f⋆(x) = σ⋆(x
⊤β⋆), where β⋆ ∈ Rd67

is an unknown parameter with β⋆ ∼ N(0, 1dId) and σ⋆ : R → R is a teacher activation function. We68

further assume that σ⋆ : R → R is Θ(1)-Lipschitz.69

We let Hk, k ≥ 1 be the (probabilist’s) Hermite polynomials on R.70

Condition 2.3 The activation function σ : R → R has the following Hermite expansion in L2:71

σ(z) =
∑∞

k=1 ckHk(z), ck = 1
k!EZ∼N(0,1)[σ(Z)Hk(Z)], where c1 ̸= 0. Moreover, the first three72

derivatives of σ exist and are bounded.73

Condition 2.4 The teacher activation σ⋆ : R → R has the following Hermite expansion in L2:74

σ⋆(z) =
∑M

k=0 c⋆,kHk(z), c⋆,k = 1
k!EZ∼N(0,1)[σ⋆(Z)Hk(Z)] for some M ∈ N. Also, we define75

c⋆ = (
∑M

k=0 k!c
2
⋆,k)

1
2 .76
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Figure 1: Spectrum of the updated feature matrix for different regimes of the gradient step size η.
Spikes corresponding to monomial features are added to the spectrum of the initial matrix. The
number of spikes depends on the range α. See Theorems 3.2 and 3.3 for more details.

3 Analysis of the Feature Matrix77

As the following proposition suggests, β = 1
nX

⊤y can be viewed as a noisy estimate of β⋆.78

Proposition 3.1 If Conditions 2.1-2.4 hold, then |β⊤
⋆ β|

∥β⋆∥2∥β∥2
→P

|c⋆,1|√
c2⋆,1+ϕ(c2⋆+σ2

ε)
.79

Next, we will show that after the gradient step, the spectrum of the feature matrix F will consist of a80

bulk of singular values that stick close together—given by the spectrum of the initial feature matrix81

F0 = σ(X̃W⊤
0 )—and ℓ separated spikes1, where ℓ is an integer that depends on the step size used in82

the gradient update. Specifically, when the step size is η ≍ nα with ℓ−1
2ℓ < α < ℓ

2ℓ+2 for some ℓ ∈ N,83

the feature matrix F can be approximated in operator norm by the untrained features F0 = σ(X̃W⊤
0 )84

plus ℓ rank-one terms, where the left singular vectors of the rank-one terms are aligned with the85

non-linear features X̃ 7→ (X̃β)◦k, for k ∈ [ℓ]. Recall that the shifted ReLU activation σ : R → R is86

defined for all x ∈ R by σ(x) = max(x, 0)− 1√
2π

.87

Theorem 3.2 (Spectrum of feature matrix) Let σ : R → R be a polynomial or the shifted ReLU88

activation. Let η ≍ nα with ℓ−1
2ℓ < α < ℓ

2ℓ+2 for some ℓ ∈ N. If Conditions 2.1-2.4 hold, then for ck89

from Condition 2.3 and F0 = σ(X̃W⊤
0 ),90

F = Fℓ +∆, with Fℓ := F0 +

ℓ∑
k=1

ck1ckη
k(X̃β)◦k(a◦k)⊤, (3)

where ∥∆∥op = o(
√
n) with probability 1− o(1).91

To understand (X̃β)◦k(a◦k)⊤, notice that for a datapoint with features x̃i, the activation of each92

neuron is proportional to the polynomial feature (x̃⊤
i β)

k, with coefficients given by a◦k for the93

neurons. The spectrum of the initial feature matrix F0 is fully characterized in Pennington & Worah94

(2017); Benigni & Péché (2021, 2022), and its operator norm is known to be ΘP(
√
n). Moreover, it95

follows from the proof that the operator norm of each of the terms ck1ckη
k(X̃β)◦k(a◦k)⊤, k ∈ [l] is96

with high probability of order larger than
√
n. Thus, Theorem 3.2 identifies the spikes in the spectrum97

of the feature matrix.98

In the following theorem, we argue that the subspace spanned by the non-linear features99

{σ(X̃wi)}i∈[N ] can be approximated by the subspace spanned by the monomials {(X̃β)◦k}k∈[ℓ].100

Theorem 3.3 Let Fℓ be the ℓ-dimensional subspace of Rn spanned by top-ℓ left singu-101

lar vectors (principal components) of F. Under the conditions of Theorem 3.2, we have102

d(Fℓ, span{(X̃β)◦k}k∈[ℓ]) →P 0, where d is the principal angular distance.103

This result shows that after one step of gradient descent with step size η ≍ nα with ℓ−1
2ℓ < α <104

ℓ
2ℓ+2 , the subspace of the top-ℓ left singular vectors carries information from the polynomials105

1Using terminology from random matrix theory (Bai & Silverstein, 2010; Yao et al., 2015).

3



{(X̃β)◦k}k∈[ℓ]. Also, recall that by Proposition 3.1, the vector β is aligned with β⋆. Hence, it is106

shown that Fℓ carries information from the first ℓ polynomial components of the teacher function.107

4 Learning Higher-Degree Polynomials108

4.1 Equivalence Theorems109

Given a regularization parameter λ > 0, recalling the ridge estimator â(F) from equation 2, we110

define the training loss Ltr(F) =
1
n∥ỹ − Fâ(F)∥22 + λ∥â(F)∥22. In the next theorem, we show that111

when η ≍ nα with ℓ−1
2ℓ < α < ℓ

2ℓ+2 , the training loss Ltr(F) can be approximated with negligible112

error by Ltr(Fℓ). In other words, the approximation of the feature matrix in Theorem 3.2 can be used113

to derive the asymptotics of the training loss.114

Theorem 4.1 (Training loss equivalence) Let η ≍ nα with ℓ−1
2ℓ < α < ℓ

2ℓ+2 for some ℓ ∈ N115

and recall Fℓ from equation 3. If Conditions 2.1-2.4 hold, then for any fixed λ > 0, we have116

Ltr(F)− Ltr(Fℓ) = o(1), with probability 1− o(1).117

Similar equivalence results can also be proved for the test risk, i.e., the average test loss. For any118

a ∈ RN , we define the test risk of a as Lte(a) = Ef ,y(y − f⊤a)2, in which the expectation is taken119

over (x, y) where f = σ(Wx) with x ∼ N(0, Id) and y = f⋆(x) + ε with ε ∼ N(0, σ2
ε). The next120

theorem shows that one can also use the approximation of the feature matrix from Theorem 3.2 to121

derive the asymptotics of the test risk.122

Theorem 4.2 (Test risk equivalence) Let η ≍ nα with ℓ−1
2ℓ < α < ℓ

2ℓ+2 for some ℓ ∈ N and Fℓ be123

defined as in equation 3. If Conditions 2.1-2.4 hold, then for any λ > 0, if Lte(â(F)) →P LF and124

Lte(â(Fℓ)) →P LFℓ
, we have LF = LFℓ

.125

4.2 Analysis of Training Loss126

The following results depend on the limits of traces of the matrices (F0F
⊤
0 + λnIn)

−1 and127

X̃⊤(F0F
⊤
0 + λnIn)

−1X̃. These limits have been determined in Adlam et al. (2022); Ad-128

lam & Pennington (2020), see also Pennington & Worah (2017); Péché (2019). We leverage129

that limd,n,N→∞ tr(X̃⊤(F0F
⊤
0 + λnIn)

−1)̃/d = ψm2/ϕ > 0 and limd,n,N→∞ tr((F0F
⊤
0 +130

λnIn)
−1) = ψm1/ϕ > 0.131

Theorem 4.3 If Conditions 2.1-2.4 hold, and if η ≍ nα with 0 < α < 1
4 so that ℓ = 1, then for the132

learned feature map F and the untrained feature map F0 we have Ltr(F0)−Ltr(F) →P ∆1, where133

∆1 =
ψλc4⋆,1m2

ϕ[c2⋆,1 + ϕ(c2⋆ + σ2
ε)]

> 0. (4)

The above theorem confirms our intuition that training the first-layer parameters improves the134

performance of the trained model. From this theorem, it can be seen that when ℓ = 1, the improvement135

in the loss is increasing in the strength of the linear component c⋆,1 keeping the signal strength c⋆136

fixed; and not so for the strength of the non-linear component c2⋆,>1 = c2⋆ − c2⋆,1. Our next theorem137

shows that when we further increase the step size to the ℓ = 2 regime, the loss of the trained model138

will drop by an additional positive value ∆2 depending on the strength c⋆,2 of the quadratic signal,139

which supports our claim that the quadratic component of the target function is also being learned.140

Theorem 4.4 If Conditions 2.1-2.4 hold, while we also have c2 ̸= 0, and η ≍ nα with 1
4 < α < 1

3141

so that ℓ = 2, then for the learned feature map F and the untrained feature map F0, we have142

Ltr(F0)− Ltr(F) →P ∆1 +∆2, where ∆1 was defined in Theorem 4.3 and143

∆2 =
4ψλc4⋆,1c

2
⋆,2m1

3ϕ[ϕ(c2⋆ + σ2
ε) + c2⋆,1]

4
> 0. (5)

Given ℓ ∈ {1, 2}, the loss of the trained model is asymptotically constant for all η = cnα with144
ℓ−1
2ℓ < α < ℓ

2ℓ+2 and c ∈ R. There are sharp jumps at the edges between regimes of α, whose size is145

precisely characterized in the theorems above.146
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