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ABSTRACT

Diffusion models have attained state-of-the-art performance in generating realistic
objects, including when conditioning generation on class labels. Current class-
conditional diffusion models, however, implicitly model the diffusion process on
all classes in a flat fashion, ignoring any known relationships between classes.
Class-labeled datasets, including those common in scientific domains, are rife with
internal structure. To take advantage of this structure, we propose hierarchically
branched diffusion models as a novel framework for class-conditional generation.
Branched diffusion models explicitly leverage the inherent relationships between
distinct classes in the dataset to learn the underlying diffusion process in a hier-
archical manner. We highlight several advantages of branched diffusion models
over the current state-of-the-art methods for class-conditional diffusion. Firstly,
they can be easily extended to novel classes in a continual-learning setting at scale.
Secondly, they enable more sophisticated forms of conditional generation, such
as analogy-based conditional generation (i.e. transmutation). Finally, they offer a
novel interpretability into the class-conditional generation process. We extensively
evaluate branched diffusion models on several benchmark and large real-world
scientific datasets, spanning different data modalities (images, tabular data, and
graphs). We particularly highlight the advantages of branched diffusion models on
a single-cell RNA-seq dataset, where our branched model leverages the intrinsic
hierarchical structure between human cell types.

1 INTRODUCTION

Diffusion models have gained major popularity as a method for generating data from complex data
distributions (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021). Furthermore, they have
also been successful in performing conditional generation, where we wish to sample some object
x conditioned on a label y. Recent works in conditional diffusion have arguably received the most
popular attention (Song et al., 2021; Dhariwal & Nichol, 2021; Rombach et al., 2022; Ho et al., 2022),
and have rapidly become a staple in generative AI.

Current diffusion models, however, are limited in their treatment of class-labeled datasets. Con-
ventional diffusion models learn the diffusion process flatly for each class, disregarding any known
relationships or structure between them. In reality, class-labeled datasets in many domains, such as
those characterizing scientific applications, have an inherent structure between classes which can be
thought of as hierarchical. For example, human cell types are organized hierarchically by nature:
keratinocytes are very distinct from neurons, but the latter subdivide into excitatory and inhibitory
neurons. Additionally, even when a dataset has no pre-defined hierarchical label set (e.g. an explicit
ontology), hierarchical structure can often be found, because some subsets of classes are invariably
more similar than others.

In order to leverage this intrinsic structure within these datasets, we propose restructuring diffusion
models to be hierarchically branched, where the branching structure reflects the inherent relationships
between classes in the dataset (the underlying diffusion process remains unchanged). By modeling
the diffusion process in a hierarchical fashion, branched diffusion models enjoy several advantages
which make them much more suitable in many applications, particularly in scientific settings. We
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apply branched diffusion to four different datasets, including two large real-world scientific datasets,
spanning different data modalities (images, tabular data, and graphs) and showcase the following
advantages over the current state-of-the-art method for conditional diffusion:

• Branched models offer a novel way to perform class-conditional generation via diffusion by
organizing labels hierarchically.

• They are easily extended to generate new, never-before-seen data classes in a continual-
learning setting.

• They can be used to perform more sophisticated forms of conditional generation, such as
analogy-based conditional generation (or “transmutation”).

• Diffusing across their branched structure offers interpretability into the relationship between
classes from a generative perspective, such as elucidating shared high-level features.

2 RELATED WORK

The current state-of-the-art method for class-conditional diffusion was proposed in Ho et al. (2021),
termed “classifier-free conditional generation”. In this method, the reverse-diffusion neural network
is given the class label y as an auxiliary input, which guides the generation of objects to specific
classes. This method of conditional generation has achieved state-of-the-art performance in sample
quality (Rombach et al., 2022; Ho et al., 2022), and in contrast to the previous method of classifier
guidance (Song et al., 2021), it can be applied to both continuous- and discrete-time diffusion models.

Note that the term “hierarchical diffusion” is somewhat overloaded, as there exist other works which
use this term, but describe vastly different methods than the one proposed here. For example, Qiang
et al. (2023) describes applying distinct diffusion processes iteratively to generate coarse-grained
features before fine-grained features. Lu et al. (2023) proposes latent-space diffusion where latent
embeddings of various granularities and sizes are passed to the diffusion denoising model. In contrast,
the “hierarchy” in our work refers to a hierarchy of similarity between classes in the original dataset.

3 HIERARCHICALLY BRANCHED DIFFUSION MODELS

Suppose our dataset consists of a set of classes C. For example, let us consider MNIST handwritten
digits, where C = {0, 1, ..., 9}. We wish to leverage the fact that some classes are inherently more
similar than others (e.g. the 4s and 9s in MNIST are visually more similar to each other than they are
to 0s). As noise is progressively added to data, there is some point in diffusion time at which any
two samples from two different classes are so noisy that their original class effectively cannot be
determined; we call this point in time a branch point. A branch point is a property of two classes (and
the forward diffusion process) and—importantly—the more similar the two classes are, the earlier
the branch point will be.

Formally, we compute the branch point between two classes by first sampling objects from each class,
then applying forward diffusion to the sample at regularly spaced diffusion times. We then find the
earliest diffusion time at which the average similarity (measured by Euclidean distance) between
noisy objects of different classes is comparable to the average similarity between noisy objects of the
same class (Equation 1). This defines the branch point as the earliest time at which objects of the two
classes are effectively “relatively indistinguishable”. Mathematical justification and more details can
be found in Appendix A. Note that branch-point discovery is performed once for the dataset at the
beginning, and this proposed procedure’s runtime is orders-of-magnitude smaller than the time taken
to train the model. Alternatively, since branch points reflect the inherent similarity between classes
of the dataset, they may also be entirely defined by domain knowledge (e.g. an ontology describing
known similarities between cell types, or chemical classes of drug-like molecules).

Together, the branch points between all classes in C naturally encode a hierarchy of class similarities
(Figure 1a). This hierarchy separates diffusion time from a single linear track into a branched
structure, where each branch represents the diffusion of a subset of classes, and a subset of diffusion
times. For |C| classes, there are 2|C| − 1 branches. Each branch bi = (si, ti, Ci) is defined by a
particular diffusion time interval [si, ti) (where 0 ≤ si < ti < T ) and a subset of classes Ci ⊆ C
(where Ci ̸= ∅). The branches are constrained such that every class and time (c, t) ∈ C × [0, T ) can
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Figure 1: Schematic of a branched diffusion model. a) Some classes are more similar than others from a
diffusion perspective: after adding sufficient noise, similar classes become indistinguishable from each other
after branch points. Together, the branch points (purple dots) between all classes define a hierarchical structure.
Although there is still only a single underlying diffusion process, the hierarchy separates diffusion time into
branches, where each branch represents diffusion for a subset of classes and a subset of diffusion times. An
example of one diffusion intermediate is highlighted in blue; this example is an MNIST digit that is a 4 or 9, and is
at an intermediate diffusion time. b) A branched diffusion model is realized as a multi-task neural network (NN)
that predicts reverse diffusion (one output task for each branch). The prediction path for the blue-highlighted
MNIST digit in panel a) is also in blue. c) We show a progression of methods from traditional linear diffusion
models to hierarchically branched models. Left: A traditional linear class-conditional diffusion model trains
a single NN for all classes and diffusion times. Both class label and time are NN inputs. Middle: Consider a
modification, where each class has its own NN, each which is trained to reverse diffuse the full diffusion timeline
for only its associated class. To generate an object of a specific class, we take reverse-diffusion predictions from
the associated NN. Right: At late diffusion times, different classes diffuse very similarly. A branched diffusion
model shares as much diffusion time as possible, thereby leading to a hierarchy of times, where each branch is
learned by an output task of a multi-task NN. To generate a specific class, we take reverse-diffusion predictions
from the appropriate subset of branches which cover the full diffusion timeline from t = T to t = 0.

be assigned to exactly one branch bi such that c ∈ Ci and t ∈ [si, ti). The branches form a rooted
tree starting from t = T to t = 0. Late branches (large t) are shared across many different classes, as
these classes diffuse nearly identically at later times. Early branches (small t) are unique to smaller
subsets of classes. The earliest branches are responsible for generating only a single class.

Additionally, as opposed to a conventional (“linear”, or “non-hierarchical”) diffusion model which
learns to reverse diffuse all classes and times using a single-task neural network, a branched diffusion
model is implemented as a multi-task neural network. Specifically, each output task predicts reverse
diffusion for a single branch (e.g. in an SDE-based diffusion framework (Song et al., 2021), each
prediction head learns the Stein score for a specific branch) (Figure 1b). The multi-task architecture
allows the model to learn the reverse-diffusion process distinctly for each branch, while the shared
parameters allow the network to learn shared representations across tasks without an explosion in
model complexity. Training a branched diffusion model follows nearly the same procedure as with
a standard linear model, except for each input, we only perform gradient descent on the associated
branch (i.e. model output task) (Algorithm S1). To sample an object of class c, we perform reverse
diffusion starting from time T and follow the appropriate branch down (Algorithm S2).

To better understand branched diffusion models and how they are different from traditional linear
models, consider the following progression of methods (Figure 1c): 1) A traditional class-conditional
diffusion model, where all classes are treated in a flat fashion. A single neural network learns reverse
diffusion for all classes and diffusion times; both the time and class label are inputs to the model. 2)
Instead of a single neural network, train a separate network for each data class (the diffusion process
is still the same for each class). In contrast with method 1), we reverse diffuse a particular class by
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choosing the appropriate network. This would allow for benefits like class extension (Section 4), but
at the cost of inefficient parameterization and training time. Furthermore, fully separating diffusion
timelines for each class into distinct neural networks ignores inherent class similarities, and as a
result, this approach does not allow for benefits like transmutation (Section 5) or interpretability of
diffusion intermediates (Section 6). 3) Owing to the inherent structure of the dataset, we can leverage
the fact that noisy objects of different classes are indistinguishable after a certain diffusion time (i.e.
branch points). Thus, we maximize sharing of diffusion time between classes via a hierarchy, and we
train a multi-task neural network where each task predicts reverse diffusion for a single branch. We
now generate a particular class by choosing the appropriate set of branches (output tasks). This allows
us to retain benefits like class extension, and gain benefits like transmutation and interpretability, and
with a much more efficient parameterization and reduced training time compared to method 2).

Importantly, the underlying diffusion process and subsequent mathematical properties in a branched
diffusion model are directly inherited from and identical to that of a conventional linear model.
A branched model is characterized by the explicit definition of branch points which separate the
responsibility of reverse diffusing different subsets of classes and times into separate branches, where
each branch is predicted by a different head of a multi-task neural network.

3.1 A NOVEL WAY TO PERFORM CLASS-CONDITIONAL GENERATION

Branched diffusion models are a completely novel way to perform class-conditional diffusion. Instead
of relying on external classifiers or labels as auxiliary neural-network inputs, a branched diffusion
model generates data of a specific class simply by reverse diffusing down the appropriate branches.

We demonstrate branched diffusion models on several datasets of different data modalities: 1) MNIST
handwritten-digit images (LeCun et al.); 2) a tabular dataset of several features for the 26 English
letters in various fonts (Frey & Slate, 1991); 3) a real-world, large scientific dataset of single-cell
RNA-seq, measuring the gene expression levels of many blood cell types in COVID-19 patients,
influenza patients, and healthy donors (Lee et al., 2020); and 4) ZINC250K, a large dataset of 250K
real drug-like molecules (Irwin et al., 2012). We trained continuous-time (i.e. SDE-based (Song
et al., 2021)) branched diffusion models for all datasets. The branching structure was inferred by
our branch-point discovery algorithm (Supplementary Tables S1–S8, Appendix A). We verified that
our MNIST model generated high-quality digits (Supplementary Figure S1). For our tabular-letter
dataset, we followed the procedure in Kotelnikov et al. (2022) to verify that the branched model
generated realistic letters that are true to the training data (Supplementary Figure S2).

We compared the generative performance of our branched diffusion models to the current state-of-
the-art methods for conditional generation via diffusion, which are label-guided (linear) diffusion
models (Ho et al., 2021). Note that although Ho et al. (2021) called these “classifier-free” conditional
diffusion models, we will refer to them as “label-guided” in this work, since branched diffusion
models also allow for conditional generation without the use of any external classifier. We trained
label-guided diffusion models on the same data using the analogous architecture. We computed
the Fréchet inception distance (FID) for each class, comparing branched diffusion models and their
linear label-guided counterparts (Supplementary Figure S3). In general, the branched diffusion
models achieved similar or better generative performance compared to the current state-of-the-art
label-guided strategy. In many cases, the branched models outperformed the label-guided models,
likely due to the multi-tasking architecture which can help limit inappropriate crosstalk between
distinct classes. This establishes that branched diffusion models offer competitive performance in
sample quality compared to the state-of-the-art methods for conditional diffusion.

Although we will focus our later analyses on continuous-time (i.e. SDE-based (Song et al., 2021))
diffusion models, we also trained a discrete-time branched model (i.e. based on DDPM (Ho et al.,
2020)) to generate MNIST classes (Supplementary Figure S1). This illustrates the flexibility of
branched diffusion models: as they are generally orthogonal to the underlying diffusion process, they
perform equally well in both continuous- and discrete-time diffusion settings.

4 EXTENDING BRANCHED DIFFUSION MODELS TO NOVEL CLASSES

The problem of incorporating new data into an existing model is a major challenge in the area
of continual learning, as the emergence of new classes (which were not available during training)
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typically requires the whole model to be retrained (van de Ven & Tolias, 2019). Conventional
(linear) diffusion models are no exception, and there is a critical need to improve the extendability of
these models in a continual-learning setting. This requirement is typical of models trained on large-
scale, integrated scientific datasets, which grow steadily as data of new, never-before-seen classes
is experimentally produced (Han et al., 2020; Almanzar et al., 2020; Lotfollahi et al., 2021). For
example, large single-cell reference atlases comprising hundreds of millions of cells across organs,
developmental stages, and conditions—such as the Human Cell Atlas (Regev et al., 2017)—are
continuously updated as new research is published.

By separating the diffusion of different classes into distinct branches which are learned by a multi-task
neural network, a branched diffusion model easily accommodates the addition of new training data
(e.g. from a recent experiment). Suppose a branched model has been trained on classes C, and now
a never-before-seen class c′ has been introduced. Instead of retraining the model from scratch on
C ∪ {c′}, a branched model can be easily extended by introducing a new branch while keeping the
other branches the same (assuming c′ is sufficiently similar to some existing class). For example,
leveraging the intrinsic structure of cell types (Han et al., 2020), a branched diffusion model can be
fine-tuned on a new study—potentially with new cell types—without retraining the entire model.

Figure 2: Extending a branched model to new classes. a) Schematic of the addition of a new digit class to an
existing branched diffusion model on MNIST. The introduction of the new class is accomplished by adding a
singular new branch (purple dotted line). b) Examples of MNIST digits generated from a branched diffusion
model (above) and a label-guided (linear) diffusion model (below), before and after fine-tuning on the new class.
For the label-guided model, we also show examples of digits after fine-tuning on the whole dataset. c) On the
MNIST dataset (left) and the single-cell RNA-seq dataset (right), we show the FID (i.e. generative performance)
of each class, before and after fine-tuning on the new class. For the label-guided models, we also show the FIDs
after fine-tuning on the whole dataset.

To illustrate this extendability, we trained branched diffusion models on MNIST and on our large
real-world RNA-seq dataset. For the MNIST experiment, we trained on three classes: 0s, 4s, and 9s.
We then introduced a new class: 7s. To accommodate this new class, we added a single new branch
to the diffusion model (Figure 2a). We then fine-tuned only the newly added branch, freezing all
shared parameters and parameters for other output tasks. That is, we only trained on 7s, and only on
times t ∈ [si, ti) for the newly added branch bi. After fine-tuning, our branched model was capable
of generating high-quality 7s without affecting the ability to generate other digits (Figure 2b).

In contrast, label-guided (linear) diffusion models cannot easily accommodate a new class. In our
MNIST experiment, we trained a linear model on 0s, 4s, and 9s. After fine-tuning the linear model
on 7s, the model suffered from catastrophic forgetting: it largely lost the ability to generate the other
digits (even though their labels were fed to the model at generation time), and generated almost all 7s
for any label (Figure 2b). For the linear model to retain its ability to generate pre-existing digits, it
must be retrained on the entire dataset, which is far more inefficient, especially when the number of
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classes is large. In our MNIST example, retraining the linear model on all data took approximately
seven times longer than training the singular new branch on a branched model. Notably, even after
retraining on all data, the linear model still experienced inappropriate influence from the new task.
We observed the same trend of extendability on the branched model (and inter-class interference on
the linear model) in our experiments on the large real-world RNA-seq dataset.

We then quantified this class-extension ability by computing the FID of branched and label-guided
models before and after fine-tuning (Figure 2c). On both MNIST and the RNA-seq dataset, we found
that the branched models achieved roughly the same FIDs on pre-existing classes after fine-tuning
on the new data class. In contrast, fine-tuning the label-guided models on the new data class caused
the FID of other classes to significantly worsen. The label-guided models needed to be trained on
the entire dataset to recover the FIDs of pre-existing classes, although the FIDs were still generally
worse than those of the branched models.

Notably, in our extension of branched models, we were able to generate high-quality samples of the
new class by only training a single branch. Although several upstream branches (i.e. at later diffusion
times) also diffuse over the newly added class c′ (along with pre-existing classes), we found that
fine-tuning can be performed on only the new branch which diffuses solely only c′, and the model
still achieved high generative performance across all classes C ∪ {c′}. This is a natural consequence
of our explicit branch points, which are defined so that reverse diffusion at upstream branches is
nearly identical between different classes. Note that even if fine-tuning were done on all classes for
all bi where c′ ∈ Ci, the branched diffusion model is still more efficient to extend than a linear model
because most branches diffuse over only a small subset of classes in C.

This highlights the advantage of branched diffusion models to accommodate new classes efficiently
(i.e. with little fine-tuning) and cleanly (i.e. without affecting the generation of other classes)
compared to the current state-of-the-art methods for conditional diffusion. Note that although we
showed the addition of a brand new class c′ /∈ C, branched models can also easily accommodate new
data of an existing class c ∈ C by fine-tuning only the appropriate branch(es).

5 ANALOGY-BASED CONDITIONAL GENERATION BETWEEN CLASSES

In a diffusion model, we can traverse the diffusion process both forward and in reverse. In a branched
diffusion model, this allows for a unique ability to perform analogy-based conditional generation
(or transmutation) between classes. That is, we start with an object of one class, and generate the
analogous, corresponding object of a different class. Formally, say we have an object x1 of class c1.
We wish to transmute this object into the analogous object of class c2. Let tb be the first branch point
(earliest in diffusion time) in which c1 and c2 are both in the same branch. Then, in order to perform
transmutation, we first forward diffuse x1 to xb ∼ qtb(x|x1). Then, we reverse diffuse to generate an
object of class c2 (Algorithm S2), as if we started at time tb with object xb.

Conditional generation via transmutation is a unique and novel way to harness branched diffusion
models for more sophisticated generation tasks which go beyond what is possible with current
diffusion models, which typically condition on a single class or property (Song et al., 2021; Ho et al.,
2021). In transmutation, we enable generation conditioned on both a class and a specific instance
(which may be of another class). That is, conventional conditional generation samples from q0(x|c2),
but transmutation samples from q0(x|c2, x1 ∈ c1). This feature can support discovery in scientific
settings. For example, given a model trained on many cell types C, with each cell type measured in
certain conditions h1, ..., hm, transmutation can answer the following question: “what would be the
expression of a specific cell xi of cell type ci and condition hk, if the cell type were cj instead?”. A
branched model thus is distinct from models which simply generate cells with cell type cj and/or
condition hk. For instance, to study how a novel cell type (such as a B-cell) reacts to a drug whose
effects are known for another cell type (such as a T-cell), one can conditionally generate a population
of B-cells starting from a population of T-cells under the particular drug effect.

On our MNIST branched diffusion model, we transmuted between 4s and 9s (Figure 3a). Intriguingly,
the model learned to transmute based on the slantedness of a digit. That is, slanted 4s tended to
transmute to slanted 9s, and vice versa. To quantify analogous conditional generation between classes,
we then transmuted between letters on our tabular branched diffusion model (Figure 3b). Transmuting
between V and Y (and vice versa), we found that for every feature, there was a positive correlation
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Figure 3: Transmutation between classes. a) From our branched diffusion model trained on MNIST, we show
examples of 4s transmuted to 9s (left), and 9s transmuted to 4s (right). We also show the diffusion intermediate
xb at the branch point. b) From our branched model trained on tabular letters, we show the scatterplots of some
feature values before and after transmutation from Vs to Ys (left), or Ys to Vs (right). For each of the 16 features,
we correlate the feature value before versus after transmutation and show a histogram of the correlations over all
16 features in either transmutation direction. c) From our branched model trained on the single-cell RNA-seq
dataset, we transmuted between CD16+ NK cells and classical monocytes, and show the distribution of several
marker genes before and after transmutation. The left column shows marker genes of classical monocytes, and
the right column shows marker genes of CD16+ NK cells. d) From our branched model trained on ZINC250K,
we transmuted between acyclic and cyclic molecules, and between non-halogenated and halogenated molecules.

of the feature values before versus after transmutation. That is to say, letters with a larger feature
value tended to transmute to letters also with a larger feature value, even if the range of the feature is
different between the two classes.

We then turned to our branched model trained on the large real-world RNA-seq dataset, and transmuted
a sample of CD16+ NK cells to classical monocytes, and vice versa. In both directions, transmutation
successfully increased critical marker genes of the target cell type, and zeroed the marker genes of the
source cell type (e.g. when transmuting NK cells to monocytes, the expression of NK marker genes
such as MS4A6A were zeroed, and the expression of monocyte marker genes such as SPON2 were
elevated) (Figure 3c). Additionally, we found a high correlation of expression in many genes before
and after transmutation, including CXCL10 (r = 0.20), HLA-DRA (r = 0.16), and HLA-DRB1
(r = 0.15). These genes are especially relevant, as they were explicitly featured in Lee et al. (2020)
as key inflammation genes that distinguish COVID-19-infected cells from healthy cells. Notably, we
recovered these strong correlations even though the original expression of these genes showed little
to no distinction between healthy and infected cells (Supplementary Figure S4). This illustrates how
our branched model successfully transmuted COVID-infected cells of one type into COVID-infected
cells of another type (and reflexively, healthy cells from one type into healthy cells of another type).

Finally, we trained branched diffusion models on ZINC250K (Supplementary Methods), another
large real-world dataset and an entirely different data modality: molecular graphs. We trained
branched diffusion models to conditionally generate acyclic and cyclic molecules, or halogenated
and non-halogenated molecules. We then transmuted molecules from one property class to another,
while largely retaining core functional groups (e.g. amines, esters, sulfonamides, etc.) (Figure
3d). Quantitatively, transmutation from acyclic to cyclic molecules was 96.5% effective (i.e. from
0% of molecules having a cycle, we transmuted to 96.5% of molecules having a cycle). We then
quantified the preservation of functional groups by computing the Jaccard index before and after
transmutation. A t-test (compared to the whole set of cyclic molecules) returned p = 7.57× 10−10.
On the transmutation of halogenated to non-halogenated molecules, our transmutation was 100%
effective, and a t-test on the preservation of functional groups returned p = 4.55× 10−11.

Across our many datasets, these results together qualitatively and quantitatively show that transmu-
tation in branched diffusion models is both: 1) effective—defining features of the source class are
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removed and defining features of the target class are generated; and 2) analogous—features which
characterize the original object/instance (but do not directly define its class) are preserved.

6 INTERPRETABILITY OF BRANCH-POINT INTERMEDIATES

Interpretability is a particularly useful tool for understanding data, and is a cornerstone of AI for
science. Unfortunately, there is limited work (if any) that attempts to improve or leverage diffusion-
model interpretability. By explicitly encoding branch points, a branched diffusion model offers unique
insight into the relationship between classes and individual objects from a generative perspective.

In the forward-diffusion process of a branched diffusion model, two branches meet at a branch point
when the classes become sufficiently noisy such that they cannot be distinguished from each other.
Symmetrically, in the reverse-diffusion process, branch points are where distinct classes split off
and begin reverse diffusing along different trajectories. Thus, for two similar classes (or two sets of
classes), the reverse-diffusion intermediate at a branch point naturally encodes features which are
shared (or otherwise intermediate or interpolated) between the two classes (or sets of classes).

In particular, hybrid intermediates represent partially reverse-diffused objects right before a branch
splits into two distinct classes. Formally, for two classes c1 and c2, let tb be the first branch point
(earliest in diffusion time) in which c1 and c2 are both in the same branch. We define a hybrid object
between classes c1 and c2 as the generated object from reverse diffusion following Algorithm S2
from time T until time tb for either c1 or c2 (it does not matter which, since we stop at tb).

For example, on our MNIST branched diffusion model, hybrids tend to show shared characteristics
that underpin both digit distributions (Figure 4a–b). On our branched model trained on tabular letters,
we see that hybrids tend to interpolate between distinct feature distributions underpinning the two
classes, acting as a smooth transition state between the two endpoints (Figure 4c).

Figure 4: Interpretable hybrids at branch points. a) From our branched model trained on MNIST, we show
examples of hybrids between the digits classes 4 and 9 (left), and between the digit classes 1 and 7 (right). Each
hybrid in the middle row is the reverse-diffusion starting point for both images above and below it. We applied a
small amount of Gaussian smoothing to the hybrids for ease of viewing. b) Averaging over many samples, the
aggregate hybrids at branch points show the collective characteristics that are shared between MNIST classes. c)
From our branched model trained on tabular letters, we show the distribution of some features between two pairs
of classes—O and X (left), and E and F (right)—and the distribution of that feature in the generated hybrids
from the corresponding branch point.

Note that although a branched diffusion model can successfully generate distinct classes even with
very conservative branch points (i.e. late in diffusion time), the interpretability of the hybrid interme-
diates is best when the branch points are minimal (earliest in diffusion) times of indistinguishability.
Taken to the extreme, branch points close to t = T encode no shared information between classes
whatsoever, as the distribution of objects at time T is independent of class.

7 EFFICIENT MULTI-CLASS SAMPLING FROM BRANCHED DIFFUSION MODELS

In addition to advantages in continual learning, transmutation, and interpretability, branched models
also offer a minor benefit in generative efficiency, because partially reverse-diffused intermediates at
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branch points can be cached and reused. Note that branched models and standard linear models take
the same amount of computation to generate a single class, but branched models enjoy significant
savings in computational efficiency when sampling multiple classes (Supplementary Table S9).

8 DISCUSSION

In this section, we explore some of the trade-offs and caveats of branched diffusion models.

Firstly, the multi-task neural network behind a branched diffusion model is crucial to its efficient
parameterization. As previously discussed, the number of branches scales linearly with the number of
classes, so the multi-task architecture is relatively efficient even for datasets with a large number of
classes. Still, we recognize that an extremely large number of classes could become a bottleneck. In
those cases, the branched diffusion architecture could benefit from recent advancements in efficient
multi-task parameterizations (Vandenhende et al., 2022).

Additionally, the advantages and performance of branched diffusion models rely on appropriately
defined branch points. We performed a robustness analysis and found that although the underlying
branch points are important, the performance of branched diffusion models is robust to moderate
variations in these branch points (Figure S5). Our branch-point discovery algorithm (Appendix A) is
also agnostic to the diffusion process, and although it relies on Euclidean distance between noisy
objects (which may be hard to compute for data types like graphs), the algorithm (and subsequent
diffusion) can always be applied in latent space to guarantee well-defined Euclidean distances.

Finally, branched diffusion models may have difficulties learning on certain image datasets where
the class-defining subject of the image can be in different parts of the image, particularly when data
may be sparse. For datasets like MNIST, the digits are all roughly in the center of the image, thus
obviating this problem. Of course, images and image-like data are the only modalities that suffer
from this issue. Additionally, this limitation on images may be avoided by diffusing in latent space.

9 CONCLUSION

In this work, we proposed a novel form of diffusion models which introduces branch points which
explicitly encode the hierarchical relationship between distinct data classes. Branched diffusion
models are an alternative method of conditional generation for discrete classes. Compared to the
current state-of-the-art conditional diffusion models, we showed numerous advantages of branched
models in conditional generation. We showcased these advantages across many different datasets,
including several standard benchmark datasets and two large real-world scientific datasets.

Firstly, we showed that branched models are easily extendable to new, never-before-seen classes
through an efficient fine-tuning step which does not lead to catastrophic forgetting of pre-existing
classes. This can enhance diffusion-model training in online-learning settings and in scientific
applications where new data is constantly being produced experimentally. Additionally, branched
models are capable of more sophisticated forms of conditional generation, such as the transmutation
of objects from one class into the analogous object of another class. Using transmutation, we
demonstrated the ability of branched diffusion models to discover relevant biology and chemistry.
Furthermore, we showed that branched models can offer some insights into interpretability. Namely,
reverse-diffusion intermediates at branch points are hybrids which encode shared or interpolated
characteristics of multiple data classes.

Finally, because branched diffusion models operate on the same underlying diffusion process as
a conventional linear model, they are flexibly applied to virtually any diffusion-model paradigm
(e.g. continuous or discrete time, SDE based or Markov-chain based, different noise schedules and
definitions of the noising process, etc.). Branched models are also easily combined with existing
methods which aim to improve training/sampling efficiency or generative performance (Kong &
Ping, 2021; Watson et al., 2021; Dockhorn et al., 2021; Song et al., 2021; Xiao et al., 2022), or other
methods which condition based on external properties (Song et al., 2021; Ho et al., 2021).

Branched diffusion models have many direct applications, and we highlighted their usefulness in
scientific settings. Further exploration in the structure of diffusion models (e.g. branched vs linear)
may continue to have resounding impacts in how these models are used across many areas.

9
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A BRANCH-POINT DISCOVERY

As objects from two different classes are forward diffused, their distributions become more and more
similar to each other. At the extreme, it is expected that all objects (regardless of class) reach the same
prior distribution at the time horizon T . Our goal is quantify the earliest time point when objects of
two different classes are sufficiently similar in distribution, such that the reverse diffusion can be
predicted by the same model between the two classes (without specifying class identity).

More formally, we define a branch point between two classes c1 and c2 as the diffusion time tb where
the objects sampled from these two classes are “relatively indistinguishable” from each other. Because
the data distribution is typically complex and high dimensional, we quantify indistinguishability
as the confidence of a hypothetical linear classifier to separate points from these different classes.
We measure this as the expected margin of such a classifier. Additionally, because of the high
dimensionality, a linear classifier may attain an appreciable margin even on an arbitrary partition
within a single class ci. As such, we will quantify indistinguishability as the expected log-fold change
of the margin, comparing data drawn between the two different classes, and data within the same
class. That is, the branch point tb between classes c1 and c2 is defined as the minimum time t such
that:

Ea∈D1,b∈D2,c∈D2

[
Exa∼qt(x|a),xb∼qt(x|b),xc∼qt(x|c)

[
log(
∥xa − xb∥2
∥xc − xb∥2

)

]]
< ϵ (1)

where Di is the distribution of data with class label ci.

The outer expectations are taken over points in the dataset, and the inner expectations are over the
forward noising process. When this log-fold change is a small number ϵ, then we consider the classes
relatively indistinguishable (i.e. the average distance between noisy objects of different classes is
comparable to the average distance between noisy objects of the same class).

Of course, these expectations are extremely intractable to compute in closed-form because of the
large dataset and dimensionality, so instead we approximate these quantities by using Monte Carlo
sampling. That is, we take a sample of objects from each class, apply forward diffusion at many
times t spaced regularly between 0 and T , and identify the smallest t such that log-fold change of the
distance is sufficiently small.

This procedure gives a branch point tb for every pair of classes ci, cj (i ̸= j).

In a branched diffusion model, each branch bi = (si, ti, Ci) learns to reverse diffuse between times
[si, ti) for classes in Ci. The branches form a tree structure (i.e. hierarchy) with the root at time T
and a branch for each individual class at time 0. In order to convert the branch points between all
pairs of classes into a hierarchy, we simply perform a greedy aggregation starting from individual
classes and iteratively merge classes together by their branch points (from early to late diffusion time)
until all classes have been merged together.

To summarize, the full branch-point discovery algorithm is as follows:

1. Start with a dataset of objects to generate, consisting of classes C.

2. For each class, sample n objects randomly and without replacement.

3. Forward diffuse each object over 1000 time points in the forward-diffusion process (we
used 1000 steps, as this matched the number of reverse-diffusion steps we used for sample
generation). The branched diffusion model which will be trained using these branch
definitions employs an identical forward-diffusion process.

4. At each time point t, compute the average Euclidean distance of each pair of classes,
resulting in a |C| × |C| matrix at each of the 1000 time points. For distinct classes ci, cj
(i ̸= j), the distance s(t, ci, cj) is computed over the average of n pairs, where the pairs
are randomly assigned between the two classes; for self-distance of class ci, the distance
s(t, ci, ci) is computed over the average of n pairs within the class, randomly assigned such
that the same object is not compared with itself.
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5. For each pair of classes ci, cj (i may be equal to j), smooth the trajectory of s(t, ci, cj) over
time by applying a Gaussian smoothing kernel of standard deviation equal to 3 and truncated
to 4 standard deviations on each side.

6. For each pair of distinct classes ci, cj (i ̸= j), compute the earliest time in the forward-
diffusion process such that the log-fold change of the average distance between ci and cj
over the self-distance of ci and cj (averaged between the two) is at most a tolerance of ϵ.
That is, for each pair of distinct classes ci, cj (i ̸= j), compute the minimum t such that
log(

s(t,ci,cj)
1
2 (s(t,ci,ci)+s(t,cj ,cj))

) < ϵ. This gives each pair of distinct classes a “minimal time of
indistinguishability”, τci,cj .

7. Order the
(|C|

2

)
minimal times of indistinguishability τ by ascending order, and greedily

build a hierarchical tree by merging classes together if they have not already been merged.
This can be implemented by a set of |C| disjoint sets, where each set contains one class;
iterating through the times τ in order, two branches merge into a new branch by merging
together the sets containing the two classes, unless they are already in the same set.

14



Under review as a conference paper at ICLR 2024

B SUPPLEMENTARY ALGORITHMS, FIGURES, AND TABLES

Algorithm S1 Training a branched diffusion model

Input: training set {(x(k), c(k))}, branches {bi}
repeat

Sample (x0, c) from training data {(x(k), c(k))}
Sample t ∼ Unif(0, T )
Forward diffuse xt ∼ qt(x|x0)
Find branch bi = (si, ti, Ci) s.t. si ≤ t < ti, c ∈ Ci

Gradient descent on p(θs,θi)(xt, t)[i] (on output task i)
until convergence

Algorithm S2 Sampling a branched diffusion model
Input: class c, trained pθ, branches {bi}
Sample x̂← xT from π(x)
for t = T to 0 do

Find branch bi = (si, ti, Ci) s.t. si ≤ t < ti, c ∈ Ci

x̂← pθ(x̂, t)[i] (take output task i)
end for
Return x̂

Figure S1: Examples of generated MNIST images. We show (uncurated) images of MNIST digits generated by
branched diffusion models. Since branched diffusion models naturally output each class separately, generation
of individual classes does not require supplying labels or pretrained classifiers. We show a sample of digits
generated from a continuous-time (score-matching) diffusion model (Song et al., 2021), and a discrete-time
diffusion model (denoising diffusion probabilistic model) (Ho et al., 2020). Branched diffusion models for
multi-class generation fit neatly into practically any diffusion-model framework.
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Figure S2: Examples of generated letters. We show some examples of distributions generated from a branched
diffusion model trained on tabular data: English letters of various fonts, featurized by a hand-engineered set of
16 features (Frey & Slate, 1991). a) For each letter class and each of the 16 numerical features, we computed
the Wasserstein distance (i.e. earthmover’s distance) between the true data distribution and the generated data
distribution. We compare this distribution of Wasserstein distances to the distribution of Wasserstein distances
between different true features as a baseline. On average, the branched diffusion model learned to generate
features which are similar in distribution to the true data. b) We show an example of the true and generated
feature distributions for a particular feature, comparing two letter classes: P and Q. Although the two classes
show a very distinct distribution for this feature, the branched diffusion model captured this distinction well and
correctly generated the feature distribution for each class. c) Over all 16 numerical features, we computed the
Pearson correlation between the features, and compared the correlation heatmaps between the true data and the
generated examples. In each of these three classes, the branched diffusion model learned to capture not only the
overarching correlational structure shared by all three classes, but also the subtle secondary correlations unique
to each class.
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Figure S3: Sample quality of branched diffusion vs label-guided (linear) diffusion. We compare the quality of
generated data from branched diffusion models to label-guided (linear) diffusion models of similar capacity and
architecture. For each class, we computed the Fréchet inception distance (FID) between the generated examples
and a sample of the true data. A lower FID is better. We show the FID for generated a) MNIST digits; b) tabular
letters; and c) single-cell RNA-seq. We find that our branched diffusion model achieved comparable sample
quality compared to the current state-of-the-art method of label-guided diffusion. In some cases, the branched
model even consistently generated better examples.
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Table S1: MNIST branch definitions
Branch start (si) Branch end (ti) Branch classes (Ci)

0.4855 1 0,1,2,3,4,5,6,7,8,9
0.4474 0.4855 1,2,3,4,5,6,7,8,9
0.4334 0.4474 2,3,4,5,6,7,8,9
0.4164 0.4334 2,3,4,5,7,8,9
0.3744 0.4164 3,4,5,7,8,9
0.3684 0.3744 3,4,5,8,9
0.3524 0.3684 3,4,5,9
0.3483 0.3524 3,4,5
0.2713 0.3483 3,5

0 0.4855 0
0 0.4474 1
0 0.4334 6
0 0.4164 2
0 0.3744 7
0 0.3684 8
0 0.3524 9
0 0.3483 4
0 0.2713 5
0 0.2713 3

Branch definitions for model on all MNIST digits.

Table S2: MNIST (discrete) branch definitions
Branch start (si) Branch end (ti) Branch classes (Ci)

761 1000 0,1,2,3,4,5,6,7,8,9
760 761 0,2,3,4,5,6,7,8,9
712 760 2,3,4,5,6,7,8,9
709 712 3,4,5,6,7,8,9
700 709 3,5,6,8
685 709 4,7,9
659 700 3,5,8
656 659 3,5
527 685 4,9

0 761 1
0 760 0
0 712 2
0 700 6
0 685 7
0 659 8
0 656 5
0 656 3
0 527 4
0 527 9

Branch definitions for discrete-time model on all MNIST digits.
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Table S3: MNIST branch definitions for 0, 4, 9
Branch start (si) Branch end (ti) Branch classes (Ci)

0.5 1 0,4,9
0 0.5 0

0.35 0.5 4,9
0 0.35 4
0 0.35 9

Branch definitions for model on MNIST digits 0, 4, and 9.

Table S4: MNIST branch definitions for 0, 4, 7, and 9
Branch start (si) Branch end (ti) Branch classes (Ci)

0.5 1 0,4,7,9
0 0.5 0

0.38 0.5 4,7,9
0 0.38 7

0.35 0.38 4,9
0 0.35 4
0 0.35 9

Branch definitions for model on MNIST digits 0, 4, 7, and 9.
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Table S5: Letters branch definitions
Branch start (si) Branch end (ti) Branch classes (Ci)

0.5235 1 A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z
0.5165 0.5235 A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,X,Y,Z
0.5115 0.5165 B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,X,Y,Z
0.4945 0.5115 B,C,D,E,F,G,H,I,J,K,M,N,O,P,Q,R,S,T,U,V,X,Y,Z
0.4795 0.4945 I,J
0.4725 0.4945 B,C,D,E,F,G,H,K,M,N,O,P,Q,R,S,T,U,V,X,Y,Z
0.4565 0.4725 B,C,D,E,G,H,K,M,N,O,Q,R,S,U,X,Z
0.4364 0.4725 F,P,T,V,Y
0.4174 0.4565 B,C,D,E,G,H,K,N,O,Q,R,S,U,X,Z
0.4134 0.4174 B,C,D,E,G,H,K,N,O,Q,R,S,X,Z
0.4094 0.4134 B,D,G,H,K,N,O,Q,R,S,X,Z
0.4024 0.4364 F,T,V,Y
0.3864 0.4094 B,D,G,H,K,O,Q,R,S,X,Z
0.3814 0.3864 B,G,H,K,O,Q,R,S,X,Z
0.3734 0.3814 B,G,H,O,Q,R,S,X,Z
0.3604 0.4024 F,T,Y
0.3564 0.4134 C,E
0.3534 0.3604 T,Y
0.3514 0.3734 B,R,S,X,Z
0.3413 0.3734 G,H,O,Q
0.3223 0.3514 B,S,X,Z
0.2763 0.3223 B,S,X
0.2643 0.3413 G,H,O
0.2573 0.2643 G,O
0.1562 0.2763 S,X

0 0.5235 W
0 0.5165 A
0 0.5115 L
0 0.4795 J
0 0.4795 I
0 0.4565 M
0 0.4364 P
0 0.4174 U
0 0.4094 N
0 0.4024 V
0 0.3864 D
0 0.3814 K
0 0.3604 F
0 0.3564 E
0 0.3564 C
0 0.3534 Y
0 0.3534 T
0 0.3514 R
0 0.3413 Q
0 0.3223 Z
0 0.2763 B
0 0.2643 H
0 0.2573 G
0 0.2573 O
0 0.1562 S
0 0.1562 X

Branch definitions for model on all letters.
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Table S6: Single-cell RNA-seq branch definitions
Branch start (si) Branch end (ti) Branch classes (Ci)

0.6436 1 CD16+ NK, Cl. Mono., Late Eryth., Macroph.,
Megakar., Mem. B, NK, Plasmabl., Tem/Eff. H. T

0.5405 0.6436 CD16+ NK, Cl. Mono., Late Eryth., Macroph.,
Megakar., NK, Plasmabl., Tem/Eff. H. T

0.5085 0.5405 Cl. Mono., Late Eryth., Macroph., Megakar., NK,
Tem/Eff. H. T

0.4505 0.5405 CD16+ NK, Plasmabl.
0.3724 0.5085 Cl. Mono., Late Eryth., Megakar., NK, Tem/Eff. H. T
0.3644 0.3724 Megakar., NK, Tem/Eff. H. T
0.2292 0.3724 Cl. Mono., Late Eryth.
0.1842 0.3644 Megakar., NK

0 0.6436 Mem. B
0 0.5085 Macroph.
0 0.4505 CD16+ NK
0 0.4505 Plasmabl.
0 0.3644 Tem/Eff. H. T
0 0.2292 Cl. Mono.
0 0.2292 Late Eryth.
0 0.1842 NK
0 0.1842 Megakar.

Branch definitions for model on all single-cell RNA-seq cell types.

Table S7: Single-cell RNA-seq branch definitions for CD16+ NK and Classical Monocytes
Branch start (si) Branch end (ti) Branch classes (Ci)

0.5796 1 CD16+ NK, Cl. Mono.
0 0.5796 CD16+ NK
0 0.5796 Cl. Mono.

Branch definitions for model on all single-cell RNA-seq cell types CD16+ NK and Classical
Monocytes

Table S8: Single-cell RNA-seq branch definitions for CD16+ NK, Classical Monocytes, and Memory
B

Branch start (si) Branch end (ti) Branch classes (Ci)

0.6787 1 CD16+ NK, Cl. Mono., Mem. B
0.5796 0.6787 CD16+ NK, Cl. Mono.

0 0.6787 Mem. B
0 0.5796 CD16+ NK
0 0.5796 Cl. Mono.

Branch definitions for model on all single-cell RNA-seq cell types CD16+ NK, Classical Monocytes,
and Memory B
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Figure S4: True expression of genes by cell population. We show the distribution of true (normalized)
expression of CXCL10, HLA-DRA, and HLA-DRB1 across different cell populations (i.e. healthy/normal,
COVID-19, etc.). The average expression in each population is denoted by a black line. Due to complex
interactions between genes and the highly noisy measurements that are characteristic of single-cell RNA-seq,
the distribution of the expression of these genes generally shows no trivial differences in cell populations
infected with COVID-19 relative to healthy cells. However, important differences in the distribution of these
genes between COVID-19 and healthy cell populations can be recovered through more advanced computational
methods, as detailed in (Lee et al., 2020).
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Table S9: Efficiency of multi-class conditional generation

Dataset Linear model Branched model

MNIST 78.73 ± 0.11 37.30 ± 0.03
Letters 110.42 ± 0.14 67.54 ± 0.04
Single-cell RNA-seq 275.81 ± 0.02 132.37 ± 0.01

When generating data from multiple classes, intermediates at branch points can be cached in a
branched diffusion model. For three datasets, we measure the time taken to generate one batch of
each class from a branched diffusion model, and from a label-guided (linear) model of identical
capacity. Averages and standard errors are shown over 10 trials each. All values are reported as
seconds.
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Figure S5: Robustness of branch points. a) We computed branch points and hierarchies for the MNIST dataset
10 times, each time resulting in a slightly different branching structure. The variation results from randomness
in sampling from the dataset, and stochasticity in the forward-diffusion process. The 10 branching structures
vary not only in their branching times, but also in their topologies (above). To emphasize the variation in the
hierarchies, we also overlay all 10 hierarchies on the same axes (below). b) Compared to randomly generated
hierarchies, the branching structures generated by our algorithm (Appendix A) have a much lower branch-score
distance between themselves (p < 10−25 by Wilcoxon test). c) We trained a branched diffusion model on each
of the hierarchies, and quantified generative performance using Fréchet inception distance (FID). Over all 10
hierarchies, the FID from the branched models were relatively consistent with each other, and also generally
better than the label-guided (linear) model.
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Figure S6: Robustness of ϵ in branch-point discovery algorithm. The value ϵ is used in the branch-point
discovery algorithm (Appendix A) to determine when two classes are sufficiently similar to be combined in a
branch. Although ϵ is relatively easy to select by simply choosing a value where the branch points are not all too
close to t = 0 or t = T , here we explore the robustness of branched diffusion models to different choices of ϵ.
a) We sampled 10 values of ϵ between 10−5 and 10−1 (uniformly sampled in logarithmic space), and computed
branch points for each in our MNIST dataset. The two largest values of ϵ yielded hierarchies where the terminal
branches were all length 0, so they were removed from this analysis. We show an overlay of the hierarchies.
Note the similarity of the hierarchies here (which arise from different values of ϵ) compared to the distribution of
hierarchies in Supplementary Figure S5a (which arise from random variation in sampling and forward diffusion
from the same value of ϵ). b) We trained a branched diffusion model on each of the hierarchies, and quantified
generative performance using Fréchet inception distance (FID). Over all hierarchies, the FID from the branched
models were mostly consistent with each other, and also mostly better than the label-guided (linear) model.
The model which performed the worst arose from the largest value of ϵ in the analysis, which resulted in the
hierarchy with the shortest terminal branches (gray hierarchy in panel a).
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Figure S7: Multi-step continual learning. We continue the same analysis as shown in Figure 4, but show a
multi-step continual-learning scheme, in which 3 never-before-seen classes are iteratively introduced to a model.
We started with a branched diffusion model trained to generate 0s, 4s, and 9s. We then iteratively introduced
7s, 1s, and 2s. With the introduction of each new digit class, we added a single new terminal branch, using
the branch point computed using the branch-point discovery algorithm (Appendix A). We then fine-tuned only
that branch for only that class. For the label-guided model, we also began with a model trained to generate
0s, 4s, and 9s. We then iteratively introduced 7s, 1s, and 2s. With the introduction of each new digit class, we
fine-tuned the model on only that digit class. We also attempted fine-tuning the label-guided model by training
on all digits (old and new). a) We show examples of digits generated after each fine-tuning step. The branched
model was able to generate high-quality digits upon the addition of each new digit class, without affecting the
ability to generate pre-existing classes. The label-guided model, however, suffered from catastrophic forgetting
upon being fine-tuned at each step, and largely forgot how to generate all other digits. Upon fine-tuning on all
digit classes (which is a highly inefficient procedure), the label-guided model was able to generate all classes
once more, but still suffered from inappropriate crosstalk between the classes. b) We quantified the generative
performance of each model using Fréchet inception distance (FID). The branched models achieved roughly
the same FIDs upon fine-tuning on each new data class, whereas the FID of the label-guided models suffered
enormously as a result of catastrophic forgetting.
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Figure S8: Transmutation in a (label-guided) linear model. Transmutation is most naturally performed in a
branched diffusion model, where branch points have been explicitly defined and trained with. However, it is
possible to perform a transmutation-like procedure in a label-guided (linear) model by first forward diffusing to
some intermediate point (which we will call a “turn-back point”), and then reverse-diffusing from that point
while supplying a desired target label. a) We show a random sample of 4s and 9s from MNIST, and perform
transmutation using a branched diffusion model, with a well-defined branch point. The resulting digits show
that transmutation in the branched model was both efficacious (i.e. the digit was successfully transformed from
one class to the other) and analogous (i.e. non-class-specific features like slantedness were preserved). We
then attempted transmutation in a linear model, using various turn-back points. Notably, in a linear model, the
appropriate turn-back point is not known ahead of time (unlike in a branched model). As such, it is difficult to
select the optimal turn-back point. Turn-back points which are too early cause transmutation to fail at efficacy:
the target class is not generated at all. Turn-back points which are too late cause transmutation to fail at analogy:
non-class-specific features like slantedness are no longer preserved. Additionally, some turn-back points (e.g.
t = 0.25) cause some objects to be transmuted efficaciously, and others to fail to generate the target class entirely.
Furthermore, even by setting the turn-back point to be the branch point in the branched model (t = 0.35), the
transmuted results from the linear model are lower quality than in the branched model, likely because of crosstalk
between the classes which is not controlled for at all in the training of the linear model.

Figure S9: Interpreting hybrids of less-related classes. Branch points between less-related classes can still
be interpreted, but between very unrelated classes, the interpretations are naturally less meaningful, as only
very high-level (and relatively uninformative) features will be shared between these classes. a) We show the
distribution of feature values for highly distinct features between less similar letters. The hybrids show a
feature-value distribution which is intermediate and interpolated between the two classes, exhibiting properties
of both. b) We show the hybrid resulting from interpreting the branch point between 6s and 9s or between 1s
and 8s (dissimilar digits which were selected due to their late branch points) from our branched model trained on
MNIST. The resulting hybrids show the common features between each pair of digit classes, which are generally
fairly high-level, including: 1) the digits are in the center of the image; and 2) areas which are generally empty,
coinciding with the “holes” of how most people draw their 6s or 9s, or their 8s.
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C SUPPLEMENTARY METHODS

We trained all of our models and performed all analyses on a single Nvidia Quadro P6000.

C.1 TRAINING DATA

We downloaded the MNIST dataset and used all digits from
http://yann.lecun.com/exdb/mnist/ (LeCun et al.). We rescaled and recentered
the values from [0, 256) to [-1, 1). This rescaling and symmetrization about 0 were to assist in the
forward-diffusion process, which adds noise until the distribution approaches a standard (0-mean,
identity-covariance) Gaussian.

We downloaded the tabular letter-recognition dataset from the UCI repository:
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition (Frey
& Slate, 1991). We centered and scaled each of the 16 tabular features to zero mean and unit variance
(pooled over the entire dataset, not for each individual letter class).

We downloaded the single-cell RNA-seq dataset from GEO (GSE149689) (Lee et al., 2020). We
used Scanpy to pre-process the data, using a standard workflow which consisted of filtering out
low-cell-count genes and low-gene-count cells, filtering out cells with too many mitochondrial genes,
and retaining only the most variable genes and known marker genes (Wolf et al., 2018). We assigned
cell-type labels using CellTypist (Conde et al., 2022). Of the annotated cell types, we retained
9 non-redundant cell types for training: CD16+ NK cells, classical monocytes, late erythrocytes,
macrophages, megakaryocytes/platelets, memory B cells, NK cells, plasmablasts, and TEM/effector
helper T cells. After pre-processing, the dataset consisted of 37102 cells (i.e. data points) and 280
genes (i.e. features). To train our diffusion models, we projected the gene expressions down to a
latent space of 200 dimensions, using the linearly decoded variational autoencoder in scVI (Gayoso
et al., 2022). The autoencoder was trained for 500 epochs, with a learning rate of 0.005.

We downloaded the ZINC250K dataset and converted the SMILES strings into molecular graphs
using RDKit. We kekulized the graphs and featurized according to (Jo et al., 2022). We explored
two methods of labeling the molecules for branched diffusion. First, we labeled molecules based
on whether they were acyclic or had one cycle (molecules with multiple cycles were removed for
simplicity). Secondly, we labeled molecules based on whether or not they possessed a halogen
element (i.e. F, Cl, Br, I).

C.2 DIFFUSION PROCESSES

For all of our continuous-time diffusion models, we employed the “variance-preserving stochastic
differential equation” (VP-SDE) (Song et al., 2021). We used a variance schedule of β(t) = 0.9t+0.1.
We set our time horizon T = 1 (i.e. t ∈ [0, 1)). This amounts to adding Gaussian noise over
continuous time. Our ZINC250K models were an exception, and we used the same diffusion
processes (different for the node features and adjacency matrix) that were used in (Jo et al., 2022).

For our discrete-time diffusion model, we defined a discrete-time Gaussian noising process, following
Ho et al. (2020). We defined βt = (1× 10−4) + (1× 10−5)t. We set our time horizon T = 1000
(i.e. t ∈ [0, 1000]).

C.3 DEFINING BRANCHES

To discover branch points, we applied our branch-point discovery algorithm (Appendix A).

For our continuous-time branched model on MNIST, we used ϵ = 0.005. For our discrete-time
branched model on MNIST, we used ϵ = 0.001. For our continuous-time branched model on tabular
letters, we used ϵ = 0.01. For our single-cell RNA-seq dataset, we used ϵ = 0.005. These values
were selected such that the branch points were not all too close to 0 or T .

The final branch definitions can be found in the Supplementary Figures and Tables.

For our ZINC250K dataset, we always used a branch point of 0.15.

28



Under review as a conference paper at ICLR 2024

C.4 MODEL ARCHITECTURES

Our model architectures are designed after the architectures presented in Song et al. (2021) and
Kotelnikov et al. (2022).

Our MNIST models were trained on a UNet architecture consisting of 4 downsampling and 4
upsampling layers. In our branched models, the upsampling layers were shared between output
tasks. We performed group normalization after every layer. The time embedding was computed
as [sin(2π t

T ), cos(2π
t
T )]. For each layer in the UNet, the time embedding was passed through a

separate dense layer (unique for every UNet layer) and concatenated with the input to the UNet
layer. For a label-guided model, we learned an embedding for each discrete label. As with the time
embedding, the label embedding was passed through a separate dense layer (unique for every UNet
layer) and concatenated to the input to each UNet layer.

Our letter models were trained on a dense architecture consisting of 5 dense layers. In our branched
models, the first two layers were shared between output tasks. The time embedding was computed as
[sin(2π t

T z), cos(2π
t
T z)], where z is a set of Gaussian parameters that are not trainable. The time

embeddings were passed through a dense layer, and the output was added to the input after the first
dense layer. For a label-guided model, we again learned an embedding for each discrete label. The
label embedding was passed through a dense layer, and the result was concatenated to the summation
of the time embedding and the input after the first layer, before being passed to the remaining 4
layers.

Our single-cell RNA-seq models were trained on a dense residual architecture consisting of 5 dense
layers. Each dense layer has 8192 hidden units. The input to each dense layer consisted of the sum of
all previous layers’ outputs. In our branched models, the first 3 layers were shared between output
tasks. The time embedding was computed as [sin(2π t

T z), cos(2π
t
T z)], where z is a set of Gaussian

parameters that are not trainable. At each layer (other than the last), the time embedding was passed
through a layer-specific dense mapping and added to the input to that layer. For a label-guided model,
we again learned an embedding for each discrete label. The label embedding was passed through a
dense layer and added to the very first layer’s input.

Our ZINC250K branched models were trained on an architecture almost identical to that presented in
Jo et al. (2022). In order to multi-task the model, we duplicate the last layers of the score networks
for the node features or the adjacency matrix. For the node-feature score network, we multi-tasked
only the final MLP layers. For the adjacency-matrix score network, we multi-tasked the final
AttentionLayer and the final MLP layers. To incorporate t, we computed a time embedding
as [sin(2π t

T z), cos(2π
t
T z)], where z is a set of Gaussian parameters that are not trainable. This

embedding was passed through a dense layer which projected this embedding down to a scalar, which
was directly multiplied onto the final output of the score networks.

C.5 TRAINING SCHEDULES

For all of our models, we trained with a batch size of 128 examples, drawing uniformly from the
entire dataset. This naturally ensures that branches which are longer (i.e. take up more diffusion time)
or are responsible for more classes are upweighted appropriately.

For all of our models, we used a learning rate of 0.001, and trained our models until the loss had
converged.

C.6 SAMPLING PROCEDURE

When generating samples from a continuous-time diffusion model, we used the predictor-corrector
algorithm defined in Song et al. (2021), using 1000 time steps from T to 0. For our discrete-time
diffusion model, we used the sampling algorithm defined in Ho et al. (2020). Note that we employed
Algorithm S2 for branched models.

C.7 ANALYSES

Sample quality
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We compared the quality of samples generated from our branched diffusion models to those generated
by our label-guided (linear) diffusion models using Fréchet Inception Distance (FID). For each class,
we generated 1000 samples of each class from the branched model, 1000 samples of each class
from the linear model, and randomly selected 1000 samples of each class from the true dataset. We
computed FID over these samples, comparing each set of generated classes against the true samples.
For the tabular letters dataset, there were not enough letters in the dataset to draw 1000 true samples
of each letter, so we drew 700 of each letter from the true dataset. For the single-cell RNA-seq dataset,
we generated 500 of each cell type from the diffusion models, and we sampled as many of each cell
as possible from the true dataset (up to a maximum of 500).

Class extension

For our MNIST dataset, we started with a branched diffusion model trained on 0s, 4s, and 9s. To
extend a new branch to reverse diffuse 7s, we simply created a new model with one extra output task
and copied over the corresponding weights. For the new branch, we initialized the weights to the
same as those on the corresponding 9 branch (with si = 0). We trained this new branch on only 7s,
only for the time interval of that new branch. On the corresponding label-guided (linear) model, we
fine-tuned on only 7s or on 0s, 4s, 7s, and 9s. In each experiment, we started with the linear model
trained on 0s, 4s, and 9s.

For our single-cell RNA-seq dataset, we repeated the same procedure, but started with a branched
diffusion model trained on CD16+ NK cells and classical monocytes, and introduced memory B cells
as a new task. We trained the new branch on only memory B cells, only for the time interval of the
new branch. On the corresponding label-guided (linear) model, we fine-tuned on only memory B
cells or on all three cell types. To fine-tune on only memory B cells, we started with the linear model
trained on CD16+ NK cells and classical monocytes only. To fine-tune on all three cell types, we
again started with the linear model trained only on the original two cell types.

As above, we always fine-tuned until the loss converged. We note that this took much longer for the
linear models compared to the branched model.

Hybrid intermediates and transmutation

For certain pairs of MNIST digits or letters, we found the earliest branch point for which they belong
to the same branch, and generated hybrids by reverse diffusing to that branch point. To generate the
average MNIST hybrids, we sampled 500 objects from the prior and reverse diffused to the branch
point, and averaged the result.

Transmuted objects were computed by forward diffusing from one class to this branch point, and
then reverse diffusing down the path to the other class from that intermediate.

To compute the preservation of functional groups in the transmutation of ZINC250k, we used the
following list of functional groups:

https://github.com/Sulstice/global-chem/blob/development/
global_chem/global_chem/miscellaneous/open_smiles.py

Multi-class sampling efficiency

We computed the amount of time taken to generate 64 examples of each class from our branched
diffusion models, with and without taking advantage of the branch points. We took the average time
over 10 trials each.

When leveraging the branching structure to generate samples, we ordered the branches by start time
si in descending order. For each branch bi in that order, we reverse diffused down the branch, starting
with a cached intermediate at ti for the branch that ended at ti. For the very first branch (the root),
we started reverse diffusion by sampling π(x). This guarantees that we will have a cached batch of
samples at every branch point before we encounter a branch that starts at that branch point. Eventually,
this algorithm generates a batch of samples for each class. For each branch, we performed reverse
diffusion such that the total number of steps for any one class from t = T to t = 0 was 1000.

To generate samples without leveraging the branching structure, we simply generated each class
separately from the branched model, without caching any intermediates. Note that this takes the
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same amount of time as a purely linear model (of identical capacity and architecture) without any
branching structure.

Robustness of branch points

To quantify the robustness of branched diffusion models to the underlying branch points, we computed
the branch points for MNIST (continuous-time, all 10 digits) 10 times, each time following the
procedure in Appendix A. Variation in the branch points resulted from variation in the randomly
sampled objects, and in the forward-diffusion process. For each set of branch definitions, we
trained a branched diffusion model using the procedure above. We then computed FID using the
same procedure as above for other MNIST models, and compared the values to the FIDs of the
corresponding label-guided MNIST model.

To quantify the similarity of the hierarchies, we computed the pairwise branch-score distance between
all

(
10
2

)
pairs of hierarchies discovered from our algorithm. We then generated 10 random hierarchies

in a greedy fashion: start with all classes, and uniformly pick a random partition; uniformly pick a
branch point bt between 0 and 1; recursively generate the two hierarchies below with a maximum
time of bt, until all class sets have been reduced to singletons. We used a Wilcoxon test to compare the
distribution of branch-score distances between the hierarchies discovered by our proposed algorithm,
and the distances between the random hierarchies. Branch-score distance was computed using
PHYLIP (Felsenstein).
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