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ABSTRACT
The performance of offline reinforcement learning (RL) is sensitive to the propor-
tion of high-return trajectories in the offline dataset. However, in many simulation
environments and real-world scenarios, there are large ratios of low-return trajec-
tories rather than high-return trajectories, which makes learning an efficient policy
challenging. In this paper, we propose a method called Contrastive Diffuser (Con-
traDiff) to make full use of low-return trajectories and improve the performance
of offline RL algorithms. Specifically, ContraDiff groups the states of trajectories
in the offline dataset into high-return states and low-return states and treats them
as positive and negative samples correspondingly. Then, it designs a contrastive
mechanism to pull the planned trajectory of an agent toward high-return states and
push them away from low-return states. Through the contrast mechanism, trajec-
tories with low returns can serve as negative examples for policy learning, guiding
the agent to avoid areas associated with low returns and achieve better perfor-
mance. Through the contrast mechanism, trajectories with low returns provide a
“counteracting force” guides the agent to avoid areas associated with low returns
and achieve better performance. Experiments on 27 sub-optimal datasets demon-
strate the effectiveness of our proposed method. Our code is publicly available at
https://github.com/Looomo/contradiff.

1 INTRODUCTION

Offline reinforcement learning (offline RL) (Levine et al., 2020; Prudencio et al., 2023) is a signifi-
cant branch of reinforcement learning, where an agent is trained on pre-collected offline datasets and
is evaluated online. Since offline RL avoids potential risks from interacting with the environment
during policy learning, it has broad applications in numerous real-world scenarios, like commercial
recommendation (Xiao & Wang, 2021), health care (Fatemi et al., 2022), dialog systems (Jaques
et al., 2020), and autonomous driving (Shi et al., 2021).

However, the performance of offline RL methods highly depends on the proportion of the high-return
trajectories in the offline dataset. When the dataset contains a large proportion of high-return trajec-
tories, as is presented in Figure 1(b), offline RL methods can easily learn the pattern of high-return
trajectories such that they can achieve excellent performance when interacting with the environ-
ment. In contrast, when the dataset has a limited number of high-return trajectories, as is presented
in Figure 1 (c), offline RL methods struggle to learn a good pattern from the dataset to achieve high
returns(Hong et al., 2023b). Unfortunately, the issue of limited high-return trajectories commonly
exists in both simulation environments (e.g., Maze2d) and real-world scenarios (e.g., robotics con-
trol and medical diagnosis). As it is illustrated in Figure 1(a), we visualize the probability density of
trajectories’ returns in Maze2d. We can observe that the number of high-return trajectories is much
limited.

To address this issue, previous works (Hong et al., 2023b;a) typically reweight the importance of
samples, assigning higher weights to high-return trajectories (as shown in Figure 1(d)). However,
these methods essentially focus on learning the patterns of high-return trajectories, encouraging
the agent to replicate actions that lead to higher rewards during interactions with the environment.
Nevertheless, if the agent starts in a low-return region or unexpectedly falls into a low-return region
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Figure 1: (a) The probability density of trajectories’ returns in Maze2d; (b) The learned trajectory
when high-return trajectories are abundant; (c) The learned trajectory when the number of high-
return trajectories is limited; (d) Previous address high-return trajectories limited issue by increasing
the weight of high-return trajectories; (e) The example of our solution; (f) The contrastive learning
applied by previous RL models.

during the interaction, as illustrated by state st in Figure 1(d), ignoring low-return areas during
training makes it hard for these methods to escape from st, since there’s no existing path from st
to goal. Therefore, in the case of sparse high-return trajectories, focusing solely on learning from
high-return trajectories is insufficient.

In fact, states in high-return trajectories indicate potential areas where high returns can be obtained,
while states in low-return trajectories indicate the potential regions where agents might encounter
low returns. Therefore, one promising way to fully utilize both low-return and high-return trajec-
tories in an offline dataset, is using high-return trajectories as examples to attract the agent to stay
as close as possible, while using states from low-return trajectories to indicate potential low-return
regions, guiding the agent to stay away from, as shown in Figure 1(e).

However, there are no mature techniques to pull the states of a trajectory toward high-return states
and push them away from low-return states, to the best of our knowledge. Fortunately, there is an
analogous case: contrastive learning, which aims to bring a given sample close to positive (i.e.,
similar) samples and far from negative (i.e., dissimilar) samples (Xiao et al., 2020; Tian et al., 2020;
Wang & Qi, 2022; Khosla et al., 2020). Inspired by that, to better use the valuable insights implicated
in low-return trajectories, we propose to treat states with high return in trajectories of offline dataset
as positive samples and those with low return as negative samples, and leverage contrastive learning
to pull the states toward high-return states and push them away from low-return states, as Figure 1(e)
illustrates. It is worth noting that, unlike previous works (Qiu et al., 2022; Laskin et al., 2020;
Yuan & Lu, 2022; Agarwal et al., 2020), which apply contrastive learning to constrain the states
of the same trajectory to similar representations and the states of different trajectories to dissimilar
representations, as is illustrated in Figure 1(f), we aim to use contrastive learning to constrain
policy toward high-return states and away from low-return states, as is illustrated in Figure
1(d). Furthermore, the criteria for distinguishing positive and negative samples here are based on
the returns rather than the labels.

Through the contrast mechanism, trajectories with low returns can serve as counteracting force for
policy learning, guiding the agent to avoid areas associated with low returns. Additionally, with the
guidance of high-return states, the agent ultimately achieves high returns. However, ordinary states
are feedback from the environment rather than generated by the model, applying contrastive mech-
anisms to these states produces no gradient for policy optimization. Considering some diffusion-
based RL methods generate subsequent trajectories for planning (Janner et al., 2022; Ajay et al.,
2023), in which abundant states are generated by policy model, we build our constrastive mech-
anism on those diffusion-based RL methods and propose a method called Contrastive Diffuser
(ContraDiff). Specifically, we first group the states of the trajectories in the offline dataset into
high-return states and low-return states. Then, we learn a diffusion-based trajectory generation
model to generate the subsequent trajectories, and apply a contrastive mechanism to constrain the
states of the generated trajectories by pulling them toward the high-return states and pushing them
away from the low-return states in the offline dataset. With the contrastive mechanism constrained
states for planning, the agent makes decisions towards the high-return states. Experiment results on
27 sub-optimal datasets demonstrate the superior performance of ContraDiff.

In summary, our contributions are: (i) We propose a method called ContraDiff, which takes the
advantage of low-return trajectories by pulling the states in trajectories toward to high-return states
and pushing them away from low-return states. (ii) We perform contrastive learning to constrain the
states in the agent’s planned trajectory and enhance the policy learning. To the best of our knowl-
edge, our work is the first which apply contrastive learning to directly improve the policy learning.
(iii) Experimental comparison with SOTA methods on 27 sub-optimal datasets and thorough further
investigations demonstrate the effectiveness of ContraDiff.
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2 PRELIMINARIES
2.1 DENOISING PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (Diffusion Models) (Sohl-Dickstein et al., 2015; Song
et al.; Ho et al., 2020) are a group of generative models, which generate samples by denoising from
Gaussian noise. A diffusion model is composed of a forward process and a backward process. Given
the original data x ∼ q(x), the forward process transfers x into Gaussian noise by gradually adding
noise, i.e., q(xi|xi−1) = N (xi;

√
1− βixi−1, βiI), in which I is an identity matrix, βi is the

noise schedule measuring the proportion of noise added at each step, x0 := x is a sample from the
offline dataset, x1,x2, ... are the latents of diffusion. The backward process recovers x by gradually
removing the noise at each step, which is formulated with a Gaussian distribution (Feller, 1949)
parameterized by θ, i.e., pθ(xi−1|xi) = N (µθ(x

i, i),Σθ(x
i, i)), where µθ(x

i, i) =
√
αi(1−ᾱi)
1−ᾱi−1 xi+

√
ᾱi−1βi

1−ᾱi ψθ(x
i, i), ᾱi =

∏i
j=1(1 − βi) and ψθ(·, ·) is a model to reconstruct x. The objective

function can be formulated as follows if we fix Σθ(x
i, t) = βiI (Ho et al., 2020):

L = Ex0, i∼[1,N ]

[
∥x0 − ψθ(x

i, i)∥2
]
. (1)

2.2 CONTRASTIVE LEARNING

Contrastive learning (Schroff et al., 2015; Sohn, 2016; Khosla et al., 2020; Yeh et al., 2022; Oord
et al., 2018) is a class of self-supervised learning methods which aim at pulling similar samples
together and pushing dissimilar samples away from each other. Specifically, given a sample x and
a similarity measure, the positive set S+ is defined as the collection of samples similar to x, while
the negative set S− is defined as the collection of samples dissimilar to x. Contrastive learning
minimizes the distance of between x and S+, and maximizes the distance of x and S−. That is, for
each sample x, select a positive sample x+ ∈ S+ and negative samples x− ∈ S−, the learning loss
is:

L = − log

[
exp(sim(f(x), f(x+)))

exp(sim(f(x), f(x+))) +
∑

x−∈S− exp(sim(f(x), f(x−)))

]
, (2)

where f(·) is the function to map samples to a latent space and sim(·, ·) is the similarity measure.

2.3 OFFLINE RL PROBLEM DEFINITION

Considering a system composed of three parts: policy, agent, and environment. The environ-
ment in RL is usually formulated as a Markov Decision Process (MDP) (Sutton & Barto, 2018)
M = {S,A,P, r, γ}, where S is the state space, A is the action space, P(s′|s,a) is the transi-
tion function, γ represents the discount factor, r is the instant reward of each step. At each step
t, the agent responds to the state of environment st by action at according to policy πθ param-
eterized by θ, and gets an instant return rt. The interaction history is formulated as a trajectory
τ = {(st,at, rt)|t ≥ 0}. In this paper, we define the cumulative discounted reward from step t as
vt =

∑
i≥t γ

iri and call it the return of st.

We focus on the offline RL setting in this paper. Given an offline datasetD ≜ {(st,at, rt, st+1)|t ≥
0} consisting of transition tuples, and defining the return of trajectory τ as R(τ ) ≜

∑
t≥0 γ

trt, our
goal is learning πθ to maximize the expected return without directly interacting with the environ-
ment, i.e.,

πθ = argmax
θ

Eτ∼πθ
[R(τ )] . (3)

3 METHODOLOGY
As we discussed previously, the performance of offline RL methods is suppressed when the number
of high-return trajectories is limited. Previous methods of increasing the weights of high-return
samples fail to utilize the low-return samples and are ineffective in addressing situations where the
agent gets stuck in regions with low returns. To address this challenge, we propose a method called
Constrastive Diffuser (ContraDiff), which introduces a contrastive mechanism to make full use
of low-return trajectories and enhance the performance by constraining the states of the agent’s
trajectory towards high-return states and away from low-return states. As is illustrated in Figure 2,
Our ContraDiff is composed of two modules: (1) the Planning Module, which aims to generate
subsequent trajectories; (2) the Contrastive Module, which is designed to constrain the states in
generated trajectories within the high-return areas and away from low-return areas.

3



Published as a conference paper at ICLR 2025

Contrastive Module

MLPsampling contrast

offline dataset

noised trajectory generated trajectory 

states in  sampled states contrast states 

diffusion 

enlarg
e

reduce

pad
action(   )

trajectory in 

MSE

Planning Module

MSE

objectives

generated states 
high-return states 
low-return states 

original states 

: action

Figure 2: The overall framework of ContraDiff. ContraDiff is composed of two modules: the
Planning Module and the Contrastive Module. The Planning Module is designed to generate the
subsequent trajectories, and the Contrastive Module is designed to pull the states in the generated
trajectories toward the high-return states and push them away from the low-return states during the
training phase.

3.1 PLANNING MODULE

We designed the Planning Module as an N -step Denoising Diffusion Probabilistic Model (Sohl-
Dickstein et al., 2015; Song et al.; Ho et al., 2020). Given a state st at RL step t, the Planning Module
first generates a H-length subsequent trajectory τ̂ 0

t by alternately denoising generated trajectories
and estimating trajectory returns, and then extract the action to be executed from τ̂ 0

t , as is illustrated
in Figure 2. Specifically, we first sample τ̂N

t from N (0, I), and replace ŝNt in τ̂N
t with st as

condition on the current observation:

τ̂N
t = {(st, âN

t ), (ŝNt+1, â
N
t+1), ..., (ŝ

N
t+H , â

N
t+H)} , (4)

in which all the elements except st are pure Gaussian noise. We further feed τ̂N
t into the backward

process of diffusion to generate the subsequent trajectory:

pθ(τ̂
i−1
t |τ̂ i

t ) = N (µθ(τ̂
i
t , i) + ρ∇Jϕ(τ̂ i

t , i), βiI) , (5)

µθ(τ̂
i
t , i) =

√
αi(1− ᾱi−1)

1− ᾱi−1
τ̂ i
t +

√
ᾱi−1βi

1− ᾱi
τ̂ i,0
t . (6)

Here τ̂ i,0
t = ψθ(τ̂

i
t , i) represents the τ 0

t constructed from τ̂ i
t at diffusion step i, ψθ(·, ·) is a network

for trajectory generation, i ∼ [1, N ] is the diffusion step, ρ represents the guidance scale, Jϕ(·, ·) is
a learned function to predict the return given any noisy trajectory τ̂ i

t and the corresponding diffusion
step i. We abbreviate τ̂ 0

t to τ̂t for convenience, τ̂t = {(st, ât), (ŝt+1, ât+1), ..., (ŝt+H , ât+H)}.
τ̂t is considered as the subsequent trajectory following st. We take out the ât in τ̂t as the action
corresponding to the state st.
3.2 CONTRASTIVE MODULE

Although the Planning Module can independently generate the action responding to the environ-
ment, its performance is suppressed when the number of high-return trajectories is limited, as the
Planning Module alone fails in making full use of the valuable insights implicated in low-return
trajectories. As a solution, we propose a contrastive mechanism to improve the performance by
constraining the states in a subsequent trajectory toward the high-return states and away from the
low-return states. In the following parts, we first introduce the construction of contrastive sample
sets (i.e., sampling the positive and negative samples for contrasting), and then we explain how we
perform the contrastive mechanism.

3.2.1 SAMPLE POSITIVE AND NEGATIVE STATES

The positive samples and negative samples are necessary before applying contrastive mechanism.
For an arbitrary state si ∈ S in the offline dataset, we compute its return vi in advance, as is stated in
Section 2.3. Then, we propose two strategies to sample positive sets and negative sets of an arbitrary
state st:

Sampling according to return (SR). For an arbitrary state st in the trajectory τ̂t generated by
the Planning Module, we apply the theory of Thoma et al. (2020) to compute the possibility of an
arbitrary state si ∈ S in the offline dataset is sampled as the positive sample and negative sample of
state st:

p+st
(vi) =

1

1 + eσ(ξ−vi)
, (7)
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p−st
(vi) =

1

1 + eσ(vi−ζ)
, (8)

where vi denotes the return of si. p+st
(vi) and p−st

(vi) denotes the probability of si being grouped
into positive sample and negative sample of st, correspondingly. σ, ξ and ζ are the hyper-parameters
extended from Thoma et al. (2020).
Sampling according to return and dynamic consistency (SRD). Though sampling according to
return is easy to deploy, such a rough strategy neglects the transition probability between adjacent
states in trajectories. Hence, for the sake of dynamic consistency, we additionally conduct MiniBatch
K-Means clustering (Sculley, 2010) over states in the offline dataset. Given the cluster Ct to which
st belongs, we take the next state of all the states in Ct as the positive candidate set of st, U+

t . Note
that we use the entire state space S as the negative candidate set of st, U−

t . Formally, we have
U+
t = {s′|(s,a, s′) ∈ D, s ∈ Ct}, U−

t = S. Then, the positive and negative samples of st can be
sampled from U+

t by Equation (7) and sampled from U−
t by Equation (8), respectively.

3.2.2 CONSTRAIN THE TRAJECTORY WITH CONTRASTIVE LEARNING
To constrain the states in subsequent trajectories while avoiding the cost of running the whole back-
ward denoising process, we leverage the noised trajectory in the diffusion backward process to
reconstruct a neat trajectory, i.e., τ̂ i,0

t = {(ŝi,0t , âi,0
t ), (ŝi,0t+1, â

i,0
t+1), ..., (ŝ

i,0
t+H , â

i,0
t+H)} from τ i

t for
any arbitrary diffusion step i. Then, we extract states in τ̂ i,0

t as Sτ̂ i,0
t

= {ŝi,0t+1, ŝ
i,0
t+2, ..., ŝ

i,0
t+H}. For

each state ŝi,0h ∈ Sτ̂ i,0
t

, we sample κ states as positive sample set S+h and κ states as negative sample
set S−h from the offline dataset.

Inspired by Schroff et al. (2015) and Sohn (2016), to apply contrastive learning to the scenario of
multiple positive samples and impose aggressive constraints, we removed the positive sample term
from the denominator polynomial in Equation (2) and propose the following equation to pull the
states in the generated subsequent trajectory toward the high-return states and away from the low-
return states:

Li
h = − log

∑κ
k=0 exp(sim(f(ŝi,0h ), f(s+h ))/T )∑κ
k=0 exp(sim(f(ŝi,0h ), f(s−h ))/T )

, (9)

where s+h ∈ S
+
h , s−h ∈ S

−
h . f(·) represents the projection function, T represents the tempera-

ture (Wang & Liu, 2021), and sim(·, ·) denotes the cosine similarity, which is computed as

sim(a, b) =
a⊤b

∥a∥ · ∥b∥
. (10)

It is worth noting that Equation (9) is differs from the standard InfoNCE loss (Oord et al., 2018). In
practice, we found that removing positive samples from the denominator, as suggested by (Schroff
et al., 2015) and (Sohn, 2016), allows for better utilization of negative samples (i.e., low-return
trajectories) and leads to better performance.

3.3 MODEL LEARNING
Recall that the action responding to state st is one of the elements in the generated trajectory, which
is influenced by the return predictor Jϕ(·, ·) and constrained by contrastive learning. Therefore, we
optimize our method from the perspective of trajectory generation, return prediction, and contrastive
learning constrain.

Specifically, we optimize the trajectory generation by minimizing the Mean Square Error between
the ground truth and neat trajectory predicted by ψθ(·, ·) given any intermediate noisy trajectories as
input:

Ld = Eτt∈D,t>0,i∼[1,N ]

[
∥τt − ψθ(τ

i
t , i)∥2

]
, (11)

where i denotes the step of diffusion, τ i
t is obtained in the i-th step of forward process.

We optimize the return predictor by minimizing the Mean Square Error between the predicted return
Jϕ(τ i

t , i) and the ground-truth return vt:

Lv = Eτt∈D,t>0,i∼[1,N ][∥vt − Jϕ(τ i
t , i)∥2] . (12)
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We constrain the trajectory generation with a weighted contrastive loss:

Lc = Et>0,i∼[1,N ]

[
t+H∑
h=t

1

h+ 1
Li
h

]
, (13)

in which the coefficient 1
h+1 decreases as h increases since the importance gradually diminishes as

it approaches the end of the planning horizon.

Hence, the overall objective function of ContraDiff can be written as a weighted sum of the afore-
mentioned loss terms:

L = Ld + Lv + λcLc , (14)

where λc is a hyper-parameter, which balances the importance of the contrastive module. Please note
that the return predictor Jϕ(·, ·) and ψθ(·, ·) are independent, thus optimizing Jϕ(·, ·) and ψθ(·, ·)
with L is identical to separately optimizing Jϕ(·, ·) with Lv and ψθ(·, ·) with Ld and Lc. Please
refer to the proof in Appendix A.8 for details.

The pseudo code of ContraDiff is presented in Appendix A.1, the details of hyper-parameters are
available in Appendix A.11.

4 EXPERIMENTS
In this section, we evaluate the performance of ContraDiff across a wide variety of tasks. We first
construct 27 sub-optimal datasets to evaluate the ability of ContraDiff and regular RL methods in
cases where high-return samples are insufficient. Next, we demonstrate the advantages of Con-
traDiff by comparing ContraDiff with resampling-based methods. Further, we delve into more com-
prehensive experiments to analyze the key designs of ContraDiff. Note that results in tables of this
section are reported over 50 random seeds. The best and the second-best results of each setting are
marked as bold and underline, respectively.

4.1 EXPERIMENT SETTINGS
Environments and datasets. We evaluate ContraDiff on the locomotion tasks. Specifically, we
evaluate the locomotion capability of ContraDiff on Halfcheetah, Hopper, Walker2d. For each en-
vironment, we train ContraDiff with various scales of offline datasets provided by D4RL (Fu et al.,
2020), and test the performance of ContraDiff on the corresponding environments.

Baselines. We compare ContraDiff with the resampling-based methods, which focus on address-
ing the limited high-return trajectory issue. These methods are advantage-weighting (AW) (Hong
et al., 2023a), return-weighting (RW) (Hong et al., 2023a), density-ratio weighting with advantage
(AW-DW) (Hong et al., 2023b) and density-ratio weighting with uniform (U-DW) (Hong et al.,
2023b). We also compare ContraDiff with other regular methods which focus on addressing the
general offline reinforcement learning issues. These methods include newly proposed SOTA meth-
ods Decision Transformer (DT) (Chen et al., 2021), CDE (Cen et al., 2024), Trajectory Transformer
(TT) (Janner et al., 2021), HD (Chen et al., 2024), Decision Stacks (Zhao & Grover, 2024), ReDif-
fuser (He et al., 2024), Diffuser (Janner et al., 2022), Decision Diffuser (DD) (Ajay et al., 2023).

Implementation details. We adopt U-Net (Ronneberger et al., 2015) as the denoise network
ψθ(·, ·) and the return predictor Jϕ(·, ·), and adopt a linear layer with Sigmoid as the activation
function as the projector f(·). Our model is trained on a device with 4 NVIDIA A40 GPUs, Intel
Gold 5220 CPU and 504G memory, optimized by Adam (Kingma & Ba, 2014) optimizer.

4.2 MAIN RESULTS
As we discussed previously, the proportion of high-return trajectories has a significant impact on the
performance of the model. To further demonstrate the impact of the proportion of high-return sam-
ples on model performance and to evaluate the performance of ContraDiff under varying proportions
of high-return samples, especially in scenarios with sparse high-return samples, we combine data
within the dataset and create three types of datasets:

• M-Exp: mix the the trajectories in Medium and Expert.

• MR-Exp: mix the the trajectories in Med-Replay and Expert.

• Rand-Exp mix the trajectories in Expert and the trajectories sampled by random policy interact-
ing with environment.
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Table 1: Comparison of average normalized score between ContraDiff and regular offline RL meth-
ods on sub-optimal datasets, with ± denoting the standard deviation. The ratio denotes the ratio of
trajectories from the Expert dataset.
Environment Dataset Mix Ratio CDE HD Decision Stacks ReDiffuser DT TT Diffuser DD ContraDiff-SR ContraDiff-SRD

Halfcheetah

M-Exp
0.1 42.4 ± 0.9 52.4 ± 3.2 11.4 ± 0.3 61.0 ± 3.3 58.6 ± 2.1 46.7 ± 1.1 71.5 ± 1.8 43.2 ± 0.9 72.1 ± 0.9 73.6 ± 1.2
0.2 41.9 ± 1.1 55.0 ± 1.5 25.7 ± 1.7 63.7 ± 0.9 46.8 ± 0.5 46.9 ± 1.8 80.3 ± 0.8 41.6 ± 2.2 81.3 ± 1.3 77.5 ± 0.9
0.3 44.0 ± 1.9 79.7 ± 1.2 35.0 ± 1.4 71.3 ± 2.7 70.9 ± 1.2 47.4 ± 1.1 81.7 ± 2.9 43.6 ± 3.3 82.8 ± 1.2 68.3 ± 1.1

MR-Exp
0.1 32.5 ± 1.6 39.6 ± 0.8 29.1 ± 1.3 43.9 ± 0.6 7.5 ± 2.1 42.9 ± 2.5 38.1 ± 1.1 33.8 ± 1.6 37.8 ± 0.1 39.0 ± 0.5
0.2 34.1 ± 1.7 43.3 ± 2.9 36.2 ± 0.9 55.8 ± 3.1 6.7 ± 4.5 43.7 ± 1.7 46.2 ± 0.2 32.8 ± 0.6 50.6 ± 1.2 58.4 ± 0.9
0.3 35.2 ± 0.9 59.7 ± 2.1 41.0 ± 1.0 59.3 ± 1.6 6.1 ± 0.1 49.3 ± 2.2 57.1 ± 1.8 36.2 ± 1.1 60.3 ± 2.7 55.9 ± 1.5

Rand-Exp
0.1 44.9 ± 4.0 1.9 ± 0.2 6.7 ± 0.9 42.8 ± 0.5 5.1 ± 0.0 7.7 ± 0.1 33.8 ± 1.8 13.8 ± 0.8 18.1 ± 1.1 48.0 ± 2.9
0.2 69.9 ± 1.6 5.5 ± 1.1 8.9 ± 0.2 50.1 ± 0.7 10.3 ± 4.2 16.8 ± 1.8 74.4 ± 1.5 8.5 ±0.2 72.3 ± 0.7 65.0 ± 1.3
0.3 64.9 ± 4.2 5.9 ± 0.9 5.1 ± 0.1 59.9 ± 0.9 27.5 ± 6.8 5.9 ± 0.2 75.8 ± 2.3 13.9 ± 1.1 86.6 ± 1.8 88.7 ± 0.9

Hopper

M-Exp
0.1 52.8 ± 3.2 91.4 ± 2.1 93.2 ± 2.1 84.3 ± 1.4 27.0 ± 4.3 45.2 ± 1.2 82.3 ± 1.7 85.8 ± 0.7 87.1 ± 1.2 93.3 ± 1.1
0.2 57.5 ± 6.5 97.9 ± 4.2 73.1 ± 1.5 86.2 ± 2.5 24.9 ± 2.0 45.7 ± 0.8 89.4 ± 1.5 90.1 ± 0.1 97.9 ± 0.9 100.1 ± 0.9
0.3 60.1 ± 1.7 105.1 ± 0.3 43.9 ± 1.3 104.3 ± 2.7 20.6 ± 3.1 51.3 ± 1.3 104.8 ± 0.4 96.3 ± 0.6 106.0 ± 2.9 106.0 ± 1.4

MR-Exp
0.1 51.3 ± 0.3 77.3 ± 2.2 77.5 ± 2.0 79.1 ± 2.3 48.2 ± 0.9 29.7 ± 0.9 63.2 ± 0.9 78.8 ± 1.2 80.3 ± 2.6 54.8 ± 1.9
0.2 72.3 ± 2.9 92.1 ± 1.5 71.1 ± 2.7 67.1 ± 1.2 46.6 ± 1.5 31.5 ± 4.3 69.5 ± 3.2 69.4 ± 4.3 73.9 ± 0.1 51.7 ± 0.8
0.3 86.1 ± 2.1 102.3 ± 3.2 99.4 ± 1.8 82.4 ± 0.9 55.2 ± 0.5 28.1 ± 1.9 69.7 ± 1.4 105.4 ± 3.2 65.4 ± 1.1 67.8 ± 1.9

Rand-Exp
0.1 40.6 ± 3.2 3.2 ± 0.2 2.1 ± 0.9 40.2 ± 2.2 51.2 ± 1.9 2.1 ± 0.1 33.4 ± 1.4 0.9 ± 1.1 52.0 ± 0.7 46.9 ± 3.3
0.2 66.5 ± 5.2 17.2 ± 2.4 15.1 ± 0.3 49.2 ± 0.8 48.9 ± 2.1 2.0 ± 0.0 63.0 ± 0.4 1.1 ± 0.4 67.0 ± 2.2 75.3 ± 1.0
0.3 85.5 ± 1.1 28.9 ± 1.1 22.7 ± 2.1 36.1 ± 2.1 70.9 ± 1.5 2.1 ± 0.0 70.5 ± 1.2 1.8 ± 0.1 86.4 ± 1.5 83.3 ± 1.2

Walker2d

M-Exp
0.1 76.8 ± 1.6 88.1 ± 2.1 85.2 ± 0.4 105.8 ± 2.1 91.0 ± 1.0 82.1 ± 2.1 93.3 ± 0.6 49.9 ± 0.3 81.4 ± 0.4 107.1 ± 1.6
0.2 81.7 ± 2.6 101.6 ± 1.9 85.5 ± 0.6 99.5 ± 0.4 108.9 ± 0.2 82.0 ± 1.7 102.9 ± 1.7 56.2 ± 2.9 103.1 ± 1.2 82.0 ± 0.2
0.3 79.9 ± 1.6 101.9 ± 0.8 97.0 ± 1.2 96.8 ± 1.1 37.2 ± 0.5 81.5 ± 1.2 95.21 ± 0.3 31.7 ± 3.1 102.3 ± 1.5 97.0 ± 2.2

MR-Exp
0.1 44.0 ± 2.3 79.8 ± 3.2 63.4 ± 2.0 84.9 ± 3.3 64.3 ± 1.9 45.2 ± 1.1 84.0 ± 1.0 66.8 ± 2.2 90.5 ± 2.2 61.4 ± 1.2
0.2 54.9 ± 1.9 88.4 ± 0.7 75.5 ± 0.4 89.7 ± 2.8 21.8 ± 4.4 41.1 ± 2.0 83.3 ± 0.7 84.6 ± 1.4 90.8 ± 0.6 75.9 ± 0.7
0.3 43.5 ± 4.5 87.2 ± 1.1 80.0 ± 1.1 80.6 ± 3.2 37.2 ± 2.5 17.1 ± 1.2 86.9 ± 2.2 70.6 ± 1.2 93.2 ± 0.3 80.4 ± 1.1

Rand-Exp
0.1 14.0 ± 2.3 0.2 ± 0.0 10.2 ± 0.1 3.2 ± 0.2 10.5 ± 0.1 5.1 ± 0.1 14.6 ± 0.8 0 20.2 ± 1.3 14.7 ± 1.9
0.2 54.9 ± 1.9 23.4 ± 0.4 3.2 ± 0.3 49.7 ± 3.1 89.1 ± 0.9 5.6 ± 0.7 48.8 ± 3.2 55.2 ± 1.9 57.4 ± 0.7 51.0 ± 0.9
0.3 73.5 ± 2.1 42.2 ± 0.1 15.3 ± 0.1 77.4 ± 1.1 85.3 ± 3.2 3.9 ± 5.4 48.9 ± 2.9 60.1 ± 3.1 78.4 ± 1.2 48.3 ± 2.2

We select the ratio of trajectories from the Expert dataset from {0.1, 0.2, 0.3}, resulting in 27 mixed
sub-optimal datasets in total. Returns of sub-optimal Halfcheetah datasets are illustrated in Fig-
ure 7. From the dataset level, for Medium and Med-Replay, mixing with Expert data effectively
increases the proportion of high-return samples. Additionally, since Medium and Med-Replay are
both collected based on trained policy, whereas Random is collected based on a randomly initialized
policy (Wu et al., 2021), after mixing with Expert data, Rand-Exp exhibits an overall lower propor-
tion of high-return samples compared to M-Exp and MR-Exp. Furthermore, within the datasets, a
higher proportion of mixed Expert data corresponds to a higher proportion of high-return samples.
Using these datasets, we compared ContraDiff with resampling-based methods and regular methods.

4.2.1 COMPARISON WITH REGULAR METHODS
Results of ContraDiff and baselines on the datasets are illustrated in Table 1, in which ContraDiff-
SR denotes the states used for contrasting are sampled with SR strategy and ContraDiff-SRD de-
notes the states used for contrasting are sampled with SRD strategy. From Table 1, we can observe
that our method ContraDiff achieves the optimal and sub-optimal results on 25 out of 27 datasets,
showing the advantage of ContraDiff in situations with sub-optimal datasets. More specifically,
(1) In most cases, the performance of offline RL methods declines as the ratio decreases, where a
smaller ratio indicates fewer high-return trajectories. Moreover, compared with the performance in
M-Exp, most baselines have a performance decline when trained with Rand-Exp, which has fewer
high-return trajectories than Med-Expert. These results validate that the performance of offline RL
methods is influenced by the proportion of high-return trajectories in the dataset; (2) ContraDiff
demonstrates more significant improvement in Rand-Exp than M-Exp and MR-Exp, for instance, it
outperforms the best baseline by 2.2 on Hopper-M-Exp-0.2, but it outperforms the best baseline by
8.8 on Hopper-Rand-Exp-0.2. As a brief recap, ContraDiff makes better use of low-quality samples
than the baseline method, and demonstrates significant superiority in the case with limited number
of high-return trajectories.
4.2.2 COMPARISON WITH RESAMPLING METHODS

Some previous studies proposed to address the issue of limited high-return trajectories have proven
effective. To further evaluate the effectiveness of ContraDiff, we compare it with these methods in
more challenging scenarios where the agent is trapped in low-return states. Our main objective here
is to investigate the ability of ContraDiff to handle such situations. For fairness in comparison, we
use Diffuser, which is also the backbone of ContraDiff, as the backbone for all methods. Specifically,
we combined Diffuser with AW (Hong et al., 2023a), RW (Hong et al., 2023a), AW-DW (Hong et al.,
2023b) and U-DW (Hong et al., 2023b) as our baselines.

Comparison results are summarized in Table 2. As can be observed, all resampling method aids in
enhancing the effectiveness of Diffuser. Even though, the performance of ContraDiff exceeds all of
the resampling methods in most cases, demonstrating its effectiveness under sub-optimal conditions.
Moreover, similar to Table 1, as the proportion of high-return samples increases, ContraDiff shows
a more significant performance improvement compared to the baseline methods, indicating that
utilizing low-return samples can effectively help the model escape from low-return areas.
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Table 2: Comparison of average normalized score between ContraDiff and resampling-based base-
line methods on various sub-optimal datasets, with± denoting the standard deviation. Ratio denotes
the the ratio of trajectories from the Expert dataset.

Environment Dataset Mix Ratio Diffuser AW+Diffuser RW+Diffuser AW-DW+Diffuser U-DW+Diffuser ContraDiff-SR ContraDiff-SRD

Halfcheetah

M-Exp
0.1 53.2 ± 2.1 63.8 ± 0.4 66.6 ± 1.7 25.9 ± 2.9 35.8 ± 2.1 63.2 ± 2.9 69.6 ± 3.1
0.2 66.3 ± 0.4 77.5 ± 2.2 77.1 ± 1.3 39.7 ± 1.9 32.9 ± 0.7 80.3 ± 1.3 67.5 ± 0.9
0.3 72.9 ± 1.9 80.3 ± 1.2 82.3 ± 1.3 49.4 ± 0.6 44.2 ± 3.2 72.8 ± 1.2 62.3 ± 1.1

MR-Exp
0.1 30.1 ± 1.1 40.1 ± 3.2 38.2 ± 1.1 27.2 ± 2.7 4.9 ± 1.9 40.8 ± 1.3 33.0 ± 2.9
0.2 39.9 ± 3.2 41.1 ± 1.7 47.6 ± 1.7 25.9 ± 1.6 15.4 ± 2.3 40.3 ± 1.2 48.4 ± 1.9
0.3 44.6 ± 2.8 52.7 ± 1.1 59.9 ± 1.7 46.3 ± 2.2 20.1 ± 2.1 51.9 ± 1.6 50.2 ± 0.9

Rand-Exp
0.1 23.8 ± 1.6 43.4 ± 0.9 32.2 ± 1.1 2.9 ± 0.7 3.8 ± 0.9 19.5 ± 1.7 35.8 ± 1.9
0.2 55.7 ± 0.5 60.6 ± 2.3 40.1 ± 3.9 23.7 ± 0.2 11.3 ± 0.8 55.3 ± 0.7 61.5 ± 1.7
0.3 66.3 ± 1.3 53.4 ± 1.1 78.2 ± 2.1 37.4 ± 2.1 24.1 ± 3.9 67.7 ± 1.2 79.1 ± 0.5

Hopper

M-Exp
0.1 79.1 ± 2.7 83.9 ± 2.1 85.5 ± 2.2 48.9 ± 1.3 39.2 ± 1.1 77.1 ± 1.5 91.3 ± 2.4
0.2 92.9 ± 0.7 80.1 ± 1.7 94.4 ± 0.2 37.8 ± 0.1 35.1 ± 1.0 103.9 ± 3.7 98.5 ± 2.8
0.3 97.2 ± 2.4 103.9 ± 2.2 100.8 ± 1.4 47.9 ± 0.2 45.7 ± 2.9 104.9 ± 1.8 102.6 ± 3.2

MR-Exp
0.1 61.4 ± 1.3 23.1 ± 1.0 63.3 ± 2.6 13.2 ± 2.1 1.5 ± 0.4 77.3 ± 2.4 58.8 ± 2.9
0.2 59.1 ± 1.2 25.7 ± 2.1 69.1 ± 0.3 31.9 ± 0.5 1.6 ± 0.1 70.3 ± 1.8 42.7 ± 2.8
0.3 62.5 ± 2.1 60.3 ± 3.1 72.0 ± 2.8 55.9 ± 0.7 7.9 ± 1.3 61.4 ± 1.3 65.8 ± 2.3

Rand-Exp
0.1 23.4 ± 1.4 12.3 ± 1.0 31.2 ± 2.8 10.6 ± 3.3 0.7 ± 0.6 45.1 ± 2.7 34.0 ± 1.7
0.2 45.2 ± 2.1 14.4 ± 0.3 41.9 ± 0.3 24.4 ± 0.2 1.9 ± 0.9 47.0 ± 2.2 50.2 ± 1.1
0.3 49.1 ± 1.7 12.3 ± 0.9 69.2 ± 2.1 32.3 ± 1.9 5.9 ± 0.7 76.9 ± 0.9 56.9 ± 2.2

Walker2d

M-Exp
0.1 79.1 ± 2.1 72.1 ± 2.8 69.7 ± 0.14 7.4 ± 0.4 9.4 ± 0.9 74.4 ± 1.4 101.1 ± 2.1
0.2 85.3 ± 0.7 90.3 ± 3.2 83.0 ± 2.3 21.3 ± 0.6 14.7 ± 1.5 92.8 ± 0.7 69.2 ± 1.2
0.3 88.7 ± 1.9 95.2 ± 1.9 87.6 ± 0.7 69.9 ± 0.4 10.0 ± 1.3 99.3 ± 1.5 91.0 ± 2.2

MR-Exp
0.1 68.3 ± 1.3 59.5 ± 1.2 66.7 ± 2.5 2.7 ± 1.1 2.9 ± 0.6 74.5 ± 2.7 65.1 ± 1.2
0.2 74.2 ± 1.9 80.3 ± 3.2 75.9 ± 2.5 11.4 ± 3.2 1.1 ± 0.2 82.8 ± 3.2 65.9 ± 1.6
0.3 80.2 ± 3.2 89.4 ± 0.9 83.4 ± 3.2 13.9 ± 0.7 0.8 ± 0.3 91.3 ± 0.3 71.4 ± 1.7

Rand-Exp
0.1 4.3 ± 0.3 11.6 ± 3.3 10.4 ± 4.1 4.9 ± 1.3 1.9 ± 0.2 12.2 ± 2.1 32.2 ± 1.6
0.2 19.3 ± 2.0 32.9 ± 1.9 29.6 ± 2.9 7.7 ± 0.8 2.3 ± 3.1 55.4 ± 1.7 30.4 ± 2.2
0.3 36.1 ± 1.9 53.9 ± 1.7 50.1 ± 0.7 35.5 ± 2.2 2.1 ± 2.2 61.6 ± 0.9 45.3 ± 1.2

0 5 10 15 20

0 15 30 45 60

0 10 20 30 40

Terminal

Terminal

Continue

(a) Diffuser

(c) ContraDiff

(b) AW

Figure 3: How different models escape from low-return regions on Walker2d-Rand-Exp-0.3.

Additionally, we visualized how Diffuser, AW and ContraDiff escape from low-return regions on
Walker2d-Rand-Exp-0.3. As shown in Figure 3, given a similar initial state which is on the verge
of falling backward, only ContraDiff successfully recovers from this posture and achieves long-
term, healthy interactions (lasting over 60 steps), indicating that the contrastive mechanism helps
ContraDiff in escaping from low-return states. Even though AW can interact with the environment
for a longer duration compared to Diffuser, it ultimately fails to achieve the more prolonged inter-
actions similar to ContraDiff. Recalling that AW only focuses on the high-return trajectories via
reweighing, the comparison between AW and ContraDiff more intuitively highlights the importance
of information in low-return samples.

4.3 FURTHER INVESTIGATION
To further investigate the performance of ContraDiff, we conduct ablation study, and analyze the
state-reward distribution as well as the reward distribution.

4.3.1 ABLATION STUDIES

We have the following variants to conduct ablation study:

• ContraDiff-N: only apply the samples with high-return to train the model.

• ContraDiff-C: remove contrastive mechanism from ContraDiff, i.e., remove Lc from Equa-
tion (14).

The results are summarized in Figure 4, from which we can conclude the following key findings:
(1) Applying only the high-return samples in training diminishes benefits in some cases. Com-
pared with ContraDiff, ContraDiff-N is trained solely with high-return samples. Surprisingly, it
achieves a lower performance than ContraDiff in all 9 tasks, indicating that low-return trajectories
offer beneficial information for model training.
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Figure 4: Results of the ablation experiments on different variants.

Figure 5: The distribution of state and reward. It is bet-
ter to view in color mode. ContraDiff achieves higher
rewards in out-of-distribution areas (circled with red).
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Figure 6: Distribution of rewards on
(a) Walker2d-Med-Replay and (b)
Halfcheetah-Med-Replay.

(2) The contrastive mechanism benefits the performance. ContraDiff-C, which eliminates the
contrastive mechanism from ContraDiff, exhibits poorer performance across all nine tasks than Con-
traDiff. This suggests that the contrastive mechanism indeed provides benefits.

4.3.2 STATE-REWARD DISTRIBUTION ANALYSIS
To illustrate the advantages of ContraDiff more intuitively, we randomly collect the (state, reward)
pairs from the offline dataset of Walker2d-Med-Replay and the (state, reward) pairs collected when
ContraDiff and ContraDiff-C interact with the environment. The results are shown in Figure 5,
in which each scatter represents a state mapped by UMAP (McInnes et al., 2018), and its color
denotes the reward gained in the corresponding state. From the results illustrated in Figure 5, we
can observe that: (1) there are more red and yellow dots in Figure 5(c) than (b). That indicates that
the model achieves better rewards by utilizing low-return samples more thoroughly with contrasting
mechanisms; (2) In out-of-distribution states (circled with red), ContraDiff gains higher rewards
than ContraDiff-C, which indicates that contrastive mechanism has potential in tackling out-of-
distribution issue.
4.3.3 REWARD DISTRIBUTION ANALYSIS
The contrast mechanism in ContraDiff plays a significant role in more efficiently utilizing low-
return samples. We believe that a deeper reason lies in the impact of the contrast mechanism in the
learning of the diffusion model. According to Section 3.3, three crucial components of ContraDiff
are the trajectory generation of the diffusion model, return prediction, and the contrast mechanism.
To validate our assumption, we remove the return prediction of ContraDiff and ContraDiff-C (i.e.,
remove Jϕ from Equation (5)), leverage them to generate subsequent trajectory. Then we apply
the actions in the generated trajectory to interact with the environment Walker2d-Med-Replay and
HalfCheetah-Med-Replay, and visualize the distribution of reward during the interaction, as shown
in Figure 6. It can be observed that the ContraDiff has a higher probability density on high rewards in
both cases. That indicates the effect of the contrast mechanism essentially increasing the proportion
of high-return trajectories generated by the diffusion model. As demonstrated in Equation (5), with
the support of both generated high-return trajectories and the return predictor, ContraDiff achieves
sound performance.

We have also conducted experiments to investigate the computational requirements of our method
(Appendix A.9), impact of the size of contrastive set (Appendix A.10), hyper-parameters analy-
sis (Appendix A.11), ablation study about the weighted contrastive loss (Appendix A.12) and the
analysis of averaged completed tasks (Appendix A.13), please refer to the Appendix for details.

5 RELATED WORKS
5.1 DIFFUSION FOR DECISION-MAKING
With diffusion models demonstrate their powerful generalization capabilities across different fields,
many works have introduced diffusion models into reinforcement learning for decision-making.
Some methods use diffusion models for generating actions directly (Ada et al., 2023; Wang et al.,
2022; Chen et al., 2022a; Chi et al., 2023). For instance, Diffusion Q-learning (Wang et al., 2022) de-
signs the policy as a diffusion model and improves it with double Q-learning architecture. Following
this, SRDPs (Ada et al., 2023) adopts diffusion policies for out-of-distribution problems. Some other
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methods predict the future trajectories with diffusion models for decision-making. Diffuser (Janner
et al., 2022) models trajectories as sequences of state-action pairs. Based on this, Decision Dif-
fuser (Ajay et al., 2023) proposes to predict state sequences with a diffusion model conditioned
on historical information, and adopts a reverse dynamic model to predict actions. Though these
methods have gain significant achievements, they neglect the differences between high-return and
low-return samples, and fails in making full use of low-return samples.

5.2 OFFLINE REINFORCEMENT LEARNING WITH IMBALANCED DATASETS

In many cases, offline RL datasets tend to have a limited number of high-return samples, while
low-return samples are much more abundant, which is generally considered as the data imbalance
issue (Choi et al., 2024; Yan et al., 2024). Many works have been proposed to tackle this problem,
often by sample reweighing. Some works reweight samples at the trajectory level. For instance,
Hong et al. (2023a) suggests that sampling can be reweighted to prioritize high-return trajectories,
and proposes return-weighted (RW) and advantage-weighted (AW) as solutions. Based on this,
Hong et al. (2023b) proposes Density-ratio Weighting (DW), which designs a learnable weight for
reinforcement learning objectives. Some other methods reweight samples at a more fine-grained
level, i.e., at action or state level. LAPO (Chen et al., 2022b) maps actions into a latent space, which
is further optimized through advantage-weighting; and more recently, A2PR (Liu et al., 2024) ob-
tains high-advantage actions from an augmented behavior policy. Differently, SAW (Lyu et al.,
2022) reweights the future expected states and uses them as the goal for the policy. Although
they focus on high-return samples through reweighing, they overlook the valuable information con-
tained in low-return samples. In contrast, our method ContraDiff, leveraging the contrastive learning
mechanism, fully exploits the information embedded in low-return samples.

5.3 CONTRASTIVE LEARNING IN REINFORCEMENT LEARNING

Most methods adopt contrastive learning (CL) to learn better representations, such as state represen-
tations (Laskin et al., 2020; Qiu et al., 2022) and task representations (Yuan & Lu, 2022; Agarwal
et al., 2020). For instance, Laskin et al. (2020) proposes to learn image representations via CL,
Qiu et al. (2022) propose to learn the transition with CL, Yuan & Lu (2022) and Agarwal et al.
(2020) applies CL to enhance the task representations to distinguish between different tasks. Some
works apply CL in other ways. For instance, Laskin et al. (2022) utilize CL to learn behavior rep-
resentations to encourage behavioral diversity, while QGPO (Lu et al., 2023) adopts CL for better
score function of Diffusion-based RL methods. In contrast, ContraDiff adopts CL for better usage
of low-return samples.

6 CONCLUSION AND DISCUSSION

In this paper, we introduce ContraDiff for offline RL, which combines contrastive mechanism to
make better uses low-return trajectories and addresses the challenge of limited high-return samples.
Different from the previous works which apply contrastive learning to enhance the representation,
we perform contrastive learning over the return of states. Specifically, we apply diffusion to gener-
ate the subsequent trajectory for planning, and constrain the states in the generated trajectory toward
the states with high returns and away from the states with low returns to improve the base distri-
bution. In that way, the actions taken by the agent are always toward the high-return states, which
makes the agent gain better performance in the online evaluation. We evaluate ContraDiff on 27
sub-optimal datasets, where the results demonstrate that our ContraDiff is able to make better uses
low-return samples and achieves outstanding performance. The ablation studies and investigations
further substantiated the rationality of ContraDiff.

Although ContraDiff has achieved outstanding performance, there are still many areas for improve-
ment and scalability. For instance, our current contrastive learning is applied to states, thus the
ContraDiff framework can only be extended to trajectory generation methods for now, such as ac-
tion or state-action pairs, or even at the latent of trajectories. We leave applying the contrastive
mechanism to other other methods in the future work.
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A APPENDIX

A.1 PSEUDO CODE OF CONTRADIFF.

Algorithm 1 Training
1: while not converged do
2: τt, vt ∼ D.
3: i ∼ [1, N ].
4: Generate τ i

t .
5: Reconstruct τt as τ̂ i,0

t = ψθ(τ
i
t , i).

6: Calculate loss Ld with Equation (11).
7: Calculate loss Lv with Equation (12).
8: Extract states in τ̂ i,0

t as Sτ̂ i,0
t

= {ŝi,0t+1, ŝ
i,0
t+2, ..., ŝ

i,0
t+H}.

9: for ŝi,0h in Sτ̂ i,0
t

do
10: Sample S+ and S− according to Section 3.2.1.
11: Calculate Li

h using Equation (8).
12: end for
13: Calculate Lc using Equation (13).
14: Calculate L using Equation (14).
15: Update model by taking gradient decent with L.
16: end while

Algorithm 2 Planning
Require: ContraDiff ψθ(·, ·), return-to-go predictor Jϕ(·, ·), guidance scale ρ, co-variances Σi.

1: t← 1.
2: while not done do
3: Observe state st; sample τN

t ∼ N (0, I)
4: for i = N,N − 1, ..., 1 do
5: Predict return-to-go with Jϕ(τ̂ i

t , i).
6: Sample τ̂ i−1

t using Equation (5).
7: end for
8: Extract ât form τ̂ 0.
9: Interact with environment using action ât.

10: t← t+ 1.
11: end while

A.2 ILLUSION OF EQUATION (7) AND EQUATION (8).

Example of Equation (7) and Equation (8) are visualized in Figure 8. As can be observed in Figure 8,
our modified influence functions are designed to leave a blank in the middle area deliberately, which
is different from (Thoma et al., 2020). The underlying reason is that not all states are supposed to be
contrastive samples. Nevertheless, our modified influence functions collapse into modified influence
functions in (Thoma et al., 2020) if we set ξ = ζ.

A.3 RESULTS ON REGULAR DATASETS

We have also compared ContraDiff with baseline methods on regular datasets. The results of Con-
traDiff and baseline methods are summarized in Table 3 and Table 4.

From Table 3 and Table 4, we can observe that: (1) Compared with all the baseline methods, Con-
traDiff achieves the best or the second-best performance on 5 out of 9 locomotion tasks (HalfChee-
tah, Hopper, and Walker2d) and achieves the best or the second-best performance on all the two
high-dimensional manipulation tasks (Kitchen), demonstrating the outstanding performance of Con-
traDiff under periodic settings. Moreover, ContraDiff achieves the best performance on 2 out of 3
navigation tasks, demonstrating the excellent ability of ContraDiff in long-term planning. (2) Com-
pared to the methods with similar backbones, Diffuser outperforms Diffuser in all 14 tasks, and
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Figure 7: Returns distribution of Medium, Med-Replay and Random datasets of Halfcheetah mixed
with different ratios of Expert data.
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Table 3: Comparison of average normalized score on Mujoco environments between ContraDiff and
baselines, with ± denoting the standard deviation.

Dataset Environment CQL IQL DT TT MOPO AW-IQL RW-IQL AW+DW-IQL U+DW-IQL AW-BC RW-BC CDE Decision Stack Diffuser DD ContraDiff-SR ContraDiff-SRD

Med-Expert Halfcheetah 91.6 86.7 86.8 95.0 63.3 94 93 93.9 93.7 92 92 75.6 ± 7.2 95.7 ± 0.3 88.9 ± 0.3 90.6 ± 1.3 92.0 ± 0.4 89.9 ± 0.6
Med-Expert Hopper 105.4 91.5 107.6 110.0 23.7 99 101 110.8 81.0 110 110 108.6 ± 4.8 107.0 ± 3.2 103.3 ± 1.3 111.8 ± 1.8 112.4 ± 1.2 106.4 ± 1.3
Med-Expert Walker2d 108.8 109.6 108.1 101.9 44.6 110 109 109.8 109.7 108 108 107.7 ± 10.4 108.0 ± 0.1 106.9 ± 0.2 108.8 ± 1.7 108.2 ± 0.4 108.7 ± 1.4

Medium Halfcheetah 44.0 47.4 42.6 46.9 42.3 47 47 47.9 47.7 42 42 43.3 ± 2.9 47.8 ± 0.4 42.8 ± 0.3 49.1 ± 1.0 43.9 ± 0.9 42.9 ± 0.2
Medium Hopper 58.5 66.3 67.6 61.1 28.0 57 57 61.7 62.5 56 54 51.2 ± 3.7 76.7 ± 4.2 74.3 ± 1.4 79.3 ± 3.6 92.3 ± 2.6 88.6 ± 0.5
Medium Walker2d 72.5 78.3 74.0 79.0 17.8 69 66 75.8 80.8 70 71 73.8 ± 4.8 83.6 ± 0.3 79.6 ± 0.5 82.5 ± 1.4 82.9 ± 0.5 82.2 ± 1.1

Med-Replay Halfcheetah 45.5 44.2 36.6 41.9 53.1 44 44 44.1 44.6 38 40 32.7 ± 0.8 41.1 ± 0.1 37.7 ± 0.5 39.3 ± 4.1 40.0 ± 1.1 36.6 ± 2.9
Med-Replay Hopper 95.0 94.7 82.7 91.5 67.5 84 86 99.9 79.7 72 67 73.9 ± 2.4 89.5 ± 4.2 93.6 ± 0.4 100.0 ± 0.7 96.4 ± 1.1 95.5 ± 0.9
Med-Replay Walker2d 77.2 73.9 66.6 82.6 39.0 47 37 62.6 65.1 56 56 77.1 ± 3.1 80.7 ± 1.5 70.6 ± 1.6 75.0 ± 4.3 84.2 ± 1.2 75.3 ± 1.7

Table 4: Comparison of average normalized score on Maze2d and Kitchen between ContraDiff and
baselines, with ± denoting the standard deviation.

Dataset Environment CQL IQL DT TT MOPO Decision Stack Diffuser DD ContraDiff-SR ContraDiff-SRD

U-Maze Maze2d 5.7 47.4 9.2 25.4 13.6 111.3 ± 12.2 113.9 ± 3.1 0.0 142.9 ± 2.2 122.1 ± 1.4
Medium Maze2d 5.0 34.9 9.6 23.3 33.3 111.7 ± 2.4 121.5 ± 2.7 0.0 140 ± 0.7 115.7 ± 0.7
Large Maze2d 12.5 58.6 10.4 27.7 0.0 171.6 ± 13.4 123.0 ± 6.4 0.0 131.5 ± 3.2 129.9 ± 1.2

Mixed Kitchen 52.4 51.0 20.9 31.1 0.0 - 42.5 ± 1.9 65.0 ± 2.8 65.0 ± 1.3 32.5 ± 2.2
Partial Kitchen 51.2 46.3 35.2 32.9 0.0 - 40.0 ± 3.1 57.0 ± 2.5 58.0 ± 1.9 40.0 ± 3.1

outperforms DD in 11 tasks, which demonstrates the benefits of introducing the constrastive mech-
anism. (3) We can observe that ContraDiff exhibits more improvement in Medium and Med-Replay
datasets than the Med-Expert datasets. Since Med-Expert datasets have more high-return samples,
they offer abundant information for methods like Diffuser to learn, thus they can achieve better re-
sults. However, both Med and Med-Replay have more low-return samples than Med-Expert, which
increases the difficulty of learning a good policy. (4) Compared to the sub-optimal datasets in Ta-
ble 1, the improvement of ContraDiff-SRD in the regular scenarios is not as pronounced as that
of ContraDiff-SR. Even though, ContraDiff-SRD outperforms Diffuser in 11 out of 14 situations.
We believe this is because, in the regular dataset, it is easier for the model to learn the transitions
between different states, making the guarantee of dynamic consistency (i.e., ContraDiff-SRD) rela-
tively less important in this context. In other words, we recommend using ContraDiff-SR in regular
scenarios, and use ContraDiff-SRD in challenging scenarios. For more detailed discussions, please
refer to Appendix A.4.

A.4 WHICH STRATEGY TO SELECT FOR THE CONSTRUCTION OF CONTRASTIVE SAMPLE?

We provide two implementations to construct contrastiev samples, namely ContraDiff-SR and
ContraDiff-SRD. As described in Section 3.2.1, ContraDiff-SR pulls the generated trajectories to-
wards the globally high-return states, while ContraDiff-SRD pulls the generated trajectories towards
the transition-able high-return states. This may result in a slight decrease in comparative effective-
ness, but it ensures dynamic consistency among contrastive samples.

Although the results indicate that each method has its advantages, there are also patterns to follow
when making a choice. We first visualize the samples and then determine which implementation
to choose based on the visualization results. For example, let’s consider Halfcheetah-Rand-Exp-
0.1 and Walker2d-Rand-Exp-0.3. The states with their returns are visualized in Figure 9, where
crosses represent the expert data. From this visualization, we can obtain some prior information
about dynamic consistency.

As shown in Figure 9 (a), most of the high-return states are far away from the low-return states. From
this observation, we can infer that starting from any one of the original states from the Halfcheetah-
Random dataset, it is difficult to transition to the expert data, i.e., the high-return states marked with
a cross. Under this situation, pulling the generated trajectories with ContraDiff-SR will introduce
uncertainty, as the corresponding state transitions are unachievable. Therefore, we adopt ContraDiff-
SRD for Halfcheetah-Rand-Exp-0.1.

In contrast, as shown in Figure 9 (b), the mixed expert data of Walker2d-Rand-Exp-0.3 shares a sim-
ilar distribution pattern as the original states from the Walker2d-Random dataset. In this situation,
we adopt ContraDiff-SR for more direct constrain.

A.5 COMPATIBILITY STUDY
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Figure 9: States distribution of (a) Halfcheetah-Rand-Exp-0.1 and (b) Walker2d-Rand-Exp-0.3, with
cross representing the expert data.
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Figure 10: The similarities between the states in the generated trajectories and actual states. The
generated states of ContraDiff are more similar with the actual states, demonstrating the better long-
term dynamic consistency.

Table 5: The improvements of the normalized
score after transplanting the contrastive mecha-
nism of ContraDiff to Decision Diffuser (DD+)
and Diffuser (Diffuser+), with ± denoting the
variance.
Dataset Environment DD+ Diffuser+

Med-Expert Halfcheetah 0 3.1±0.4
Med-Expert Hopper 5.4±1.2 9.1±1.2
Med-Expert Walker2d 6.5±0.9 1.3±0.4

As we discussed in Section 3.1, our ContraD-
iff is build based on Diffuser. To validate the
compatibility of the contrastive mechanism of
ContraDiff, we transplant it to Decision Dif-
fuser (DD) (Ajay et al., 2023), and evaluate
and compare the improvement on three envi-
ronments. The improvements are summarized
in Table 5, in which DD+ and Diffuser+ denote
the improvement of introducing contrast mech-
anism in DD and Diffuser correspondingly. As
we can observe, DD+ achieves noticeable im-
provement in 2 out of 3 tasks and Diffuser+
gains improvement in 3 out of 3 tasks, which demonstrates the portability of the contrast mecha-
nism of ContraDiff. Interestingly, DD+ is unable to achieve any improvement in Halfcheetah-Med-
Expert. This could be attributed to the separated training (sampling) of states and actions in DD,
which results in a failure to effectively model their joint distribution.

A.6 PLAN-EXECUTION CONSISTENCY ANALYSIS.

We use the plan-execution consistency to denote the similarity between the states in the planned
trajectory and the states encountered by the agent during its interaction with the environment. It
reflects the models’ capability in modeling the environment. To investigate the plan-execution con-
sistency of ContraDiff, we randomly take 24 trajectories generated by Diffuser, Decision Diffuser,
and ContraDiff. For each generated trajectory, we take the states of consecutive 32 steps and com-
pute the similarity between each generated state and the actual state of the same step provided by
the environment. Thus, there are 24× 32 similarity returns for each model, which corresponds to a
similarity matrix as the subgraphs in Figure 10 illustrated. Each line in the subgraphs of Figure 10
represents a generated trajectory, and the grids of each line represent the similarity of the states in
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the generated trajectory and the states provided by the environment. From Figure 10, we can observe
that: (1) Most grids in Figure 10 (c) are blue, which denotes that most generated states are consistent
with the actual states; (2) Figure 10 (c) contains more blue grids than Figure 10 (a) and (b), which
denotes that ContraDiff has better plan-execution consistency than Diffuser and Decision Diffuser.
Since the difference between ContraDiff and Diffuser is the contrastive module, combining Figure
5 and Figure 10, we can conclude that the contrative module benefits the plan-execution consistency
of ContraDiff and makes ContraDiff gain high rewards in both in-distribution and out-of-distribution
situations.

A.7 VISUALIZATION OF POSITIVE AND NEGATIVE SAMPLES.

We randomly sample a subset of positive samples (states with high returns) and negative samples
(states with low returns), as is shown in Figure 11. It can be observed that an agent in a state
corresponding to a high return tends to be in a position more conducive to walking or running, such
as standing upright; correspondingly, an agent with a state corresponding to a low return will be in
a position that is hard to walk, such as having already fallen down or about to fall down. This is
reasonable, since poses such as standing upright are more conducive to walking or running, which
causes the agent to continue moving and results in a higher return, while poses such as having fallen
or about to fall cause the environment to give a stop signal, which results in a lower return.

A.8 OPTIMIZING Jϕ(·, ·) WITH EQUATION (14)

Suppose we have the diffuison model ψθ(·) parameterized by θ, and the return predictor Jϕ param-
eterized by ϕ. Following Equation (14), we have

L = Ld + Lv + λcLc. (15)

Further,

Ld = Eτt∈D,t>0,i∼[1,N ]

[
∥τt − ψθ(τ

i
t , i)∥2

]
, (16)

Lv = Eτt∈D,t>0,i∼[1,N ][∥Jϕ(τ i
t , i)− vt∥2]. (17)

The training process can be viewed as a procedure of calculating gradients of all the parameters and
updating them, specifically,

∇θ = ∂L
∂θ

(18)

=
∂Ld

∂θ
+
∂Lv

∂θ
+ λc

∂Lc

∂θ
(19)

=
∂Ld

∂θ
+ λc

∂Lc

∂θ
, (20)

∇ϕ =
∂L
∂ϕ

(21)

=
∂Ld

∂ϕ
+
∂Lv

∂ϕ
+ λc

∂Lc

∂ϕ
(22)

=
∂Lv

∂ϕ
. (23)

Thus, calculating the gradients of θ with L is equal to calculate θ with Ld and Lc, calculating the
gradients of ϕ with L is equal to calculate ϕ with Lv , i.e., optimizing the return predictor Jϕ(·, ·)
with Equation (14) is equal to optimizing it with Equation (12) only.
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(a) Agents with high-return states.

(b) Agents with low-return states.

Figure 11: Visualization of positive samples (states with high returns) and negative samples (states
with low returns) in Walker2d-Med-Replay.

Table 6: Comparison of computational requirements.
- Decision Diffuser Diffuser ContraDiff-SR ContraDiff-SRD

CPU (%) 107.6 106.4 107.7 112.4
Memory (GB) 6.9 6.9 7.0 13.9

Training time (Seconds every 1000 iterations) 92 98 112 122

A.9 COMPUTATIONAL REQUIREMENTS

We have quantified the impact of sample selection and the incorporation of contrastive learning on
computational requirements in our method, as shown in Table 6.

It can observed that even with the introduction of sampling and contrastive learning, ContraDiff-
SR requires a comparable amount of resources and training time to other methods with similar
backbone. For ContraDiff-SRD, sampling based on dynamic consistency requires more resources.
This is partly due to the dynamic consistency considerations, resulting in the requirement for more
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Figure 12: The impact of hyper-parameters.

CPU cores (5 more than other methods). Additionally, the introduction of cache matrices consumes
more memory (7GB, but actually we can cache them in CPU and conduct the sampling in CPU if it
is necessary).

Despite that, the resources and training time are still manageable. Moreover, additional resources
are only required during the training phase. During the inference phase, our resource requirements
are consistent with other methods (e.g., Diffuser).

A.10 IMPACT OF THE SIZE OF CONTRASTIVE SET

Table 7: Impact of the size of contrastive set.

Mix Ratio 8 16 32 64 128

0.1 35.4 ± 2.2 41.5 ± 2.6 48.0 ± 2.9 46.9 ± 1.1 48.9 ± 0.9
0.2 39.1 ± 2.9 69.6 ± 2.1 77.6 ± 0.9 73.9 ± 0.9 78.5 ± 0.6
0.3 73.9 ± 1.7 84.8 ± 1.1 88.7 ± 0.9 90.4 ± 1.7 88.3 ± 1.3

Generally, we set the size of contrastive set to 32. We illustrated the impact of the size of contrastive
set on our method using Halfheetah-Rand-Exp in Table 7. We can observe, the performance of
ContraDiff gradually increases when increasing the size within 32. However, as the size of the
contrastive samples increases further, the performance gradually stabilizes. Therefore, the size of
the contrastive set is easy to determine.

A.11 HYPER-PARAMETERS.

ContraDiff imports the following 4 additional hyper-parameters: positive bound (ξ), negative bound
(ζ), fuzzy coefficient (σ), loss weight of contrastive learning (λc). For locomotion tasks, we se-
lect ξ ∈ {0.55, 0.65, 0.85}, select ζ ∈ {0.05, 0.1, 0.2, 0.35, 0.4}, select λc ∈ {0.1, 0.01, 0.001}.
σ is select between [4, 16] × 102. For Maze2d tasks, we select ξ ∈ {0.1, 0.6, 5}, select ζ ∈
{0.01, 0.02, 0.2}. We set σ as 1 × 108 and set λc as 0.1 for Maze2d tasks. We use the other
hyper-parameters as in the paper of Diffuser (Janner et al., 2022).

Note that even there are 4 new hyper-parameters, searching for the optimal hyper-parameters is easy.
On the one hand, these hyper-parameters are not interdependent, so we can search for the optimal
value of each hyper-parameter separately. On the other hand, analysis of the hyper-parameters
indicates that their impact on model performance is moderate, as discussed below.

We have visualized the impact of hyper-parameters in Figure 12. As is summarized in Figure 12, (a)
The choice of hyper-parameters has a minimal impact on performance, with variations remaining
within 7%. (b) The performance changes smoothly around the peak region as illustrated in Figure 12,
indicating tuning the hyper-parameters towards the increasing performance will obtain optimal per-
formance. Therefore, tuning hyper-parameters of CDifffuser is relatively easy, costing little time.
(c) The performance of the model does indeed change with variations of hyper-parameters, as the
selection of positive and negative samples and the weight of the contrastive loss influence the perfor-
mance. However, as we discussed in (a), the hyper-parameters are relatively easy to tune. Therefore,
in most cases, hyper-parameters do not become a bottleneck limiting model performance. Still, fur-
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Figure 13: The averaged completed tasks of ContraDiff-C and ContraDiff.

ther optimizing the design of the hyper-parameters is one of the tasks we will focus on in our future
research.

A.12 ABLATION STUDY ABOUT EQUATION (13)

The weighted contrastive loss Equation (13) is designed to emphasize the initial part of the gener-
ation, as we use the initial action in generated trajectories to interact with the environment. Ad-
ditionally, we have conducted ablation studies on the weighted contrastive loss, where ContraDiff-
mean represents ContraDiff with an average-weighted contrastive loss. As is shown in Table 8, the
weighted contrastive loss brings better performance in all of the situations.

Table 8: Performance comparison of ContraDiff-mean and ContraDiff. ContraDiff-mean represents
ContraDiff with an average-weighted contrastive loss.

Mix Ratio ContraDiff-mean ContraDiff

0.1 34.2 ± 1.2 48.0 ± 2.9
0.2 71.1 ± 1.9 72.3 ± 0.7
0.3 82.9 ± 0.3 88.7 ± 0.9

A.13 ANALYSIS OF AVERAGED COMPLETED TASKS

We additionally compared the number of completed tasks of ContraDiff and ContraDiff-C on
Kitchen-Mixed and Kitchen-Partial to further demonstrate the advantages of ContraDiff. As is vi-
sualized in Figure 13, as the planning steps increase, ContraDiff shows more completed tasks than
ContraDiff-C, which intuitively demonstrates the advantages of the contrastive mechanism in sparse
reward environments.

A.14 ANALYSIS OF RL LOSS AND CONTRASTIVE LEARNING LOSS

Recall the the diffusion loss (RL loss, Equation (11)), the contrastive loss Equation (13) in Section 3.
Note that the diffusion loss (RL loss, Equation (11)) aims at modeling the dataset distribution. How-
ever, the closer the distance to high-return states and the farther the distance to low-return states, the
smaller the value of Equation (13).
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Figure 14: The (a) Diffusion loss (i.e., RL loss, Equation (11)), (b) value of Equation (13), and (c)
RL loss + value of Equation (13) on Walker2d-Rand-Exp-0.1.

As is shown in Figure 14(a), regardless of the use of contrastive learning, the RL loss shows a
downward trend and eventually stabilizes. However, for the value of Equation (13) shown in Fig-
ure 14(b), when contrastive learning is not used, the contrastive loss remains large and fluctuates
significantly. On the other hand, when contrastive learning is applied, the contrastive loss decreases.
Moreover, ContraDiff shows a lower value on RL Loss + Equation (13) than ContrasDiff w/o CL
in Figure 14(c). This demonstrates that (1) the RL loss and contrastive loss are independent, with
the contrastive loss serving as a meaningful regularization term; and (2) contrastive learning indeed
maximizes the distance from low-return trajectories while minimizing the distance to high-return
trajectories, as further corroborated by the analyses in Section 4.3.

22


	Introduction
	Preliminaries
	Denoising Probabilistic Models
	Contrastive Learning
	Offline RL Problem Definition

	Methodology
	Planning Module
	Contrastive Module
	Sample Positive and Negative States
	Constrain the trajectory with contrastive learning

	Model Learning

	Experiments
	Experiment Settings
	Main Results
	Comparison with regular methods
	Comparison with Resampling Methods

	Further Investigation
	Ablation studies
	State-reward distribution analysis
	Reward distribution analysis


	Related Works
	Diffusion for Decision-Making
	 Offline Reinforcement Learning with Imbalanced Datasets
	Contrastive Learning in Reinforcement Learning

	Conclusion and Discussion
	Acknowledgments
	Appendix
	Pseudo code of ContraDiff.
	Illusion of eq:posi:hard and eq:nega:hard.
	Results on regular datasets
	Which strategy to select for the construction of contrastive sample?
	Compatibility Study
	Plan-execution consistency analysis.
	Visualization of positive and negative samples.
	Optimizing J(, ) with eq:loss:all
	Computational Requirements
	Impact of the size of contrastive set
	Hyper-parameters.
	Ablation study about eq:loss:contrast:all
	Analysis of averaged completed tasks
	Analysis of RL Loss and Contrastive Learning Loss


