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Figure 1: Images generated using our 3DIS. Based on the user-provided layout, 3DIS generates
a scene depth map that precisely positions each instance and renders their fine-grained attributes

without the need for additional training, using a variety of foundational models.

ABSTRACT

The increasing demand for controllable outputs in text-to-image generation has
spurred advancements in multi-instance generation (MIG), allowing users to de-
fine both instance layouts and attributes. However, unlike image-conditional
generation methods such as ControlNet, MIG techniques have not been widely
adopted in state-of-the-art models like SD2 and SDXL, primarily due to the chal-
lenge of building robust renderers that simultaneously handle instance position-
ing and attribute rendering. In this paper, we introduce Depth-Driven Decoupled
Instance Synthesis (3DIS), a novel framework that decouples the MIG process
into two stages: (i) generating a coarse scene depth map for accurate instance po-
sitioning and scene composition, and (ii) rendering fine-grained attributes using
pre-trained ControlNet on any foundational model, without additional training.
Our 3DIS framework integrates a custom adapter into LDM3D for precise depth-
based layouts and employs a finetuning-free method for enhanced instance-level
attribute rendering. Extensive experiments on COCO-Position and COCO-MIG
benchmarks demonstrate that 3DIS significantly outperforms existing methods in
both layout precision and attribute rendering. Notably, 3DIS offers seamless com-
patibility with diverse foundational models, providing a robust, adaptable solution
for advanced multi-instance generation.
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1 INTRODUCTION

With the rapid advancement of text-to-image generation technologies, there is a growing interest
in achieving more controllable outputs, which are now widely utilized in artistic creation (Wang
et al.| 20245 L1 et al., [2024a): (i) Image-conditional generation techniques, e.g., ControlNet (Zhang
et al.,[2023)), allow users to generate images based on inputs like depth maps or sketches. (ii) Multi-
instance generation (MIG) methods, e.g., GLIGEN (Li et al., 2023b) and MIGC (Zhou et al.,|[2024),
enable users to define layouts and detailed attributes for each instance within the generated images.

However, despite the importance of MIG in controllable generation, these methods have not
been widely adopted across popular foundational models like SD2 (Rombach et al) 2023) and
SDXL (Podell et al.l 2023)), unlike the more widely integrated ControlNet. Current state-of-the-
art MIG methods mainly rely on the less capable SD1.5 (Rombach et al.,2022) model.

We argue that the limited adoption of MIG methods is not merely due to resource constraints
but also stems from a more fundamental challenge, i.e., unified adapter challenge. Current MIG
approaches train a single adapter to handle both instance positioning and attribute rendering. This
unified structure complicates the development of robust renderers for fine-grained attribute details, as
it requires large amounts of high-quality instance-level annotations. These detailed annotations are
more challenging to collect compared to the types of controls used in image-conditional generation,
such as depth maps or sketches.

To address the unified adapter challenge and enable the use of a broader range of foundational
models for MIG, we propose a novel framework called Depth-Driven Decoupled Instance Synthesis
(3DIS). 3DIS tackles this challenge by decoupling the image generation process into two distinct
stages, as shown in Fig. 2| (i) Generating a coarse scene depth map: During this stage, the MIG
adapter ensures accurate instance positioning, coarse attribute alignment, and overall scene harmony
without the complexity of fine attribute rendering. (ii) Rendering a fine-grained RGB image: Based
on the generated scene depth map, we design a finetuning-free method that leverages any popular
foundational model with pretrained ControlNet to guide the overall image generation, focusing on
detailed instance rendering. This approach requires only a single training process for the adapter
at stage (i), enabling seamless integration with different foundational models without needing
retraining for each new model.

The 3DIS architecture comprises three key components: (i) Scene Depth Map Generation: We de-
veloped the first layout-controllable text-to-depth generation model by integrating a well-designed
adapter into LDM3D (Stan et al., 2023)). This integration facilitates the generation of precise, depth-
informed layouts based on instance conditions. (ii) Layout Control: We introduce a method to
leverage pretrained ControlNet for seamless integration of the generated scene depth map into the
generative process. By filtering out high-frequency information from ControlNet’s feature maps,
we enhance the integration of low-frequency global scene semantics, thereby improving the co-
herence and visual appeal of the generated images. (iii) Detail Rendering: Our method performs
Cross-Attention operations separately for each instance to achieve precise rendering of specific at-
tributes (e.g., category, color, texture) while avoiding attribute leakage. Additionally, we use SAM
for semantic segmentation on the scene depth map, optimizing instance localization and resolving
conflicts from overlapping bounding boxes. This advanced approach significantly improves the ren-
dering of detailed and accurate multi-instance images.

We conducted extensive experiments on two benchmarks to evaluate the performance of 3DIS: (i)
COCO-Position (Lin et al 2015} |Zhou et all [2024): Evaluated the layout accuracy and coarse-
grained category attributes of the scene depth maps. (ii) COCO-MIG (Zhou et al., 2024): Assessed
the fine-grained rendering capabilities. The results indicate that 3DIS excels in creating superior
scenes while preserving the accuracy of fine-grained attributes during detailed rendering. On the
COCO-Position benchmark, 3DIS achieved a 16.3% improvement in AP75 compared to the previ-
ous state-of-the-art method, MIGC. On the COCO-MIG benchmark, our training-free detail render-
ing approach improved the Instance Attribute Success Ratio by 35% over the training-free method
Multi-Diffusion (Bar-Tal et al., 2023) and by 5.5% over the adapter-based method InstanceDif-
fusion (Wang et al.l 2024). Furthermore, the 3DIS framework can be seamlessly integrated with
off-the-shelf adapters like GLIGEN and MIGC, thereby enhancing their rendering capabilities.

In summary, the key contributions of this paper are as follows:
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Figure 2: The overview of 3DIS. 3DIS decouples image generation into two stages: creating a scene
depth map and rendering high-quality RGB images with various generative models. It first trains
a Layout-to-Depth model to generate a scene depth map. Then, it uses a pre-trained ControlNet to
inject depth information into various generative models, controlling scene representation. Finally, a
training-free detail renderer renders the fine-grained attributes of each instance.

* We propose a novel 3DIS framework that decouples multi-instance generation into two stages:
adapter-controlled scene depth map generation and training-free fine-grained attribute rendering,
enabling integration with various foundational models.

* We introduce the first layout-to-depth model for multi-instance generation, which improves scene
composition and instance positioning compared to traditional layout-to-RGB methods.

* Our training-free detail renderer enhances fine-grained instance rendering without additional
training, significantly outperforming state-of-the-art methods while maintaining compatibility
with pretrained models and adapters.

2 RELATED WORK

Controllable Text-to-Image Generation. With the rapid advancements in text-to-image gener-

ation technology, current models are capable of producing high-quality images (Rombach et al.|

[2022}, 2023} [Podell et al.l [2023)). Researchers are now increasingly focused on enhancing their con-
trol over the generated content. Numerous approaches have been developed to improve this control.

ControlNet (Zhang et al.,[2023)) incorporates user inputs such as depth maps and edge maps by train-
ing an additional side network, allowing for precise layout control in image generation. Methods like
IPAdapter and PhotoMaker (Li et al} 2024b) generate corresponding images based
on user-provided portraits. Techniques such as ELITE (Wei et al., and SSR-Encoder (Zhang|
2024) enable networks to accept specific conceptual image inputs for better customization.
Additionally, MIGC and InstanceDiffusion (Wang et al, 2024) allow networks
to generate images based on user-specified layouts and instance attribute descriptions, defining this
task as Multi-Instance Generation (MIG), which is the focal point of this paper.

Multi-Instance Generation (MIG). MIG involves generating each instance based on a given layout
and detailed attribute descriptions, while maintaining overall image harmony. Current MIG methods
primarily use Stable Diffusion (SD) architectures, classified into three categories: 1) Training-free

methods: Techniques like BoxDiffusion (Xie et al.l 2023) and RB (Xiao et al.,[2023)) apply energy
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functions to attention maps, enabling zero-shot layout control by converting spatial guidance into
gradient inputs. Similarly, Multi-Diffusion (Bar-Tal et al.,|2023)) generates instances separately and
then combines them according to user-defined spatial cues, enhancing control over orientation and
arrangement. 2) Adapter methods: Approaches like GLIGEN (Li et al.l 2023b) and InstanceDiffu-
sion (Wang et al., [2024)) integrate trainable gated self-attention layers into the U-Net (Ronneberger
et all 2015)), improving layout assimilation and instance fidelity. MIGC (Zhou et al., [2024) fur-
ther divides the task, using an enhanced attention mechanism to generate each instance precisely
before integration. 3) SD-tuning methods: Reco (Yang et al., 2023) and Ranni (Feng et al.| [2024)
add instance position data to text inputs and fine-tune both CLIP and U-Net, allowing the network
to utilize positional cues for more precise image synthesis. Previous methods entangled instance
positioning with attribute rendering, complicating the training of a robust instance renderer. Our ap-
proach decouples this process into adapter-controlled scene depth map generation and training-free
detail rendering. This separation allows the adapter to only handle instance positioning and coarse
attributes, while leveraging the generative priors of pre-trained models, enhancing both flexibility
and performance.

3 METHOD

3.1 PRELIMINARIES

Latent Diffusion Models (LDMs) are among the most widely used text-to-image models today. They
significantly enhance generation speed by placing the diffusion process for image synthesis within a
compressed variational autoencoder (VAE) latent space. To ensure that the generated images align
with user-provided text descriptions, LDMs typically employ a Cross Attention mechanism, which
integrates textual information into the image features of the network. In mathematical terms, the
Cross Attention operation can be expressed as follows:

Attention(Q, K, V) = Softmax (LKT) A\ (1)
7 ) \/@ b
where Q, K, and V represent the query, key, and value matrices derived from the image and text
features, respectively, while dj, denotes the dimension of the key vectors.

3.2 OVERVIEW

Fig. [2illustrates the overview framework of the proposed 3DIS, which decouples image generation
into coarse-grained scene construction and fine-grained detail rendering. The specific implementa-
tion of 3DIS consists of three steps: 1) Scene Depth Map Generation (§ [3;3]), which produces a
corresponding scene depth map based on the user-provided layout; 2) Global Scene Control (§3.4),
which ensures that the generated images align with the scene maps, guaranteeing that each instance
is represented; 3) Detail Rendering (, which ensures that each generated instance adheres to
the fine-grained attributes described by the user.

3.3 SCENE DEPTH MAP GENERATION

In this section, we discuss how to generate a corresponding depth map based on the user-provided
layout, creating a coherent and well-structured scene while accurately placing each instance.

Choosing the text-to-depth model. Upon investigation, we identified RichDreamer (Qiu et al.,
2024) and LDM3D (Stan et al., 2023) as the primary models for text-to-depth generation. Rich-
Dreamer fine-tunes the pretrained RGB Stable Diffusion (SD) model to generate 3D information,
specifically depth and normal maps, while LDM3D enables SD to produce both RGB images and
depth maps simultaneously. Experimental comparisons show LDM3D outperforms RichDreamer in
complex scenes, likely due to its concurrent RGB and depth map generation. This dual capability
preserves RGB image quality while enhancing depth map generation, making LDM3D our preferred
model for text-to-depth generation.

Fine-tuning the text-to-depth model. In contrast to RGB images, depth maps typically priori-
tize the restoration of low-frequency components over high-frequency details. For instance, while
a texture-rich skirt requires intricate details for RGB image generation, its corresponding depth
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map remains relatively smooth. Therefore, we aim to enhance the model’s ability to recover low-
frequency content. Low-frequency components often indicate significant redundancy among ad-
jacent pixels. To simulate this characteristic, we implemented an augmented pyramid noise strat-
egy (Kasiopyl 2023)), which involves downsampling and then upsampling randomly sampled noise
€ to create patterns with high redundancy between adjacent pixels. We used the original SD training
loss (Rombach et al.l[2022)) to fine-tune our text-to-depth model 6, but adjusted the model to predict
this patterned noise €pyramia With the text prompt c:

. 2
min Liext = E conr(o,1),¢ [”%yramid — folze,t, C)”Q] : (2)

Training the Layout-to-depth adapter. Similar to previous methodologies (Zhou et al., 2024; |L1
et al.,2023b;|Wang et al.| [2024), we incorporated an adapter into our fine-tuned text-to-depth model,
enabling layout-to-depth generation, specifically leveraging the state-of-the-art MIGC (Zhou et al.,
2024) model. Unlike earlier approaches, our method for generating depth maps does not rely on
detailed descriptions of specific instance attributes, such as material or color. Consequently, we
have augmented the dataset used for MIGC by eliminating fine-grained attribute descriptions from
the instance data, thus focusing more on the structural properties of individual instances and the
overall scene composition. The training process for the adapter 6’ can be expressed as:

. 2
ngl/n L"layout =E; cnn(0,1)t [Hepyramid - fg’g/(zt,t, &) l)”Q} , 3)

where the base text-to-depth model 6 is frozen, and the [ is the input layout.

3.4 GLOBAL SCENE CONTROL

In this section, we will describe how to control the generated images to align with the layout of the
generated scene depth map, ensuring that each instance appears in its designated position.

Injecting depth maps with ControlNet. After generating scene depth maps with our layout-to-
depth models, we employed the widely adopted ControlNet (Zhang et al.,[2023)) model to incorporate
global scene information. Scene depth maps focus on overall scene structure, without requiring
fine-grained detail. Thus, although the base model produces 512x512 resolution maps, they can be
upsampled to 768x768, 1024x1024, or higher (see Fig. 3] and Fig. @ e.g., SD2 and SDXL). Since
most generative models have depth ControlNet versions, these maps can be applied across various
models, ensuring accurate instance placement and mitigating omission issues.

Removing high-frequency noise in depth maps. In our framework, the injected depth maps are
designed to manage the low-frequency components of the constructed scene, while the generation
of high-frequency details is handled by advanced grounded text-to-image models. To enhance the
integration of these components, we implement a filtering process to remove high-frequency noise
from the feature maps generated by ControlNet before injecting them into the image generation
network. Specifically, the scene condition feature output from ControlNet, denoted as F', is added
to the generation network. Prior to this addition, we transform F' into the frequency domain via the
Fast Fourier Transform (FFT) and apply a filter to attenuate the high-frequency components:

Fﬁllered = -7:71 (Hlow : f(F))7 4)

where F and F~! denote the FFT and inverse FFT, respectively, and Hy,, represents a low-pass
filter applied in the frequency domain. This approach has been shown to reduce the occurrence of
artifacts and improve the overall quality of the generated images without reducing performance.

3.5 DETAILS RENDERING

Through the control provided by ControlNet, we can ensure that the output images align with our
generated scene depth maps, thus guaranteeing that each instance appears at its designated location.
However, we still lack assurance regarding the accuracy of attributes such as category, color, and
material for each instance. To render each instance with correct attributes, we propose a training-
free detail renderer to replace the original Cross-Attention Layers for this purpose. The process of
rendering an entire scene using a detail renderer can be broken down into the following three steps.
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Table 1: Quantitative results on COCO-Position (§4.3). We only utilize complex layouts that
contain at least five instances, resulting in significant overlap.

Layout Accuracy Instance Accuracy Image Quality
Method AP1T APrist APsot SRinse T MIoU CLIPYT SRimgt FIDJ
BoxDiff iccvas; 3.15 2.12 10.92 22.74 27.28 18.82 0.53 25.15
MultiDiff evios 6.37 4.24 13.22 28.75 34.17 20.12 0.80 33.20
GLIGEN (cveros) 3849  40.75 63.79 83.31 70.14 19.61 40.13 26.80

MIGC cvrr24)  45.03 46.15 80.09 83.37 71.92 20.07 43.25 24.52

3DIS (sp15) 56.83  62.40 82.29 84.71 73.32 20.84 46.50 23.24
vs. prev. SoTA +11.8  +16.3 +2.2 +1.3 +1.4 +0.8 +3.3 +1.3

Rendering each instance separately. For an instance ¢, ControlNet ensures that a shape satisfying
its descriptive criteria is positioned within the designated bounding box b;. By applying Cross
Attention using the text description of the instance ¢, we can ensure that the attention maps generate
significant response values within the b; region, accurately rendering the attributes aligned with
the instance’s textual description. For each Cross-Attention layer in the foundation models, we
independently render each instance ¢ with their text descriptions to obtain the rendered result r;,
while similarly applying the global image description to yield rendering background r.. Our next
step is to merge the obtained feature maps {ry,--- ,r,,r.} into a single feature map, aligning with
the forward pass of the original Cross-Attention layers.

SAM-Enhancing Instance Location. While mering rendering results, acquiring precise instance
locations helps prevent attribute leakage between overlapping bounding boxes and maintains struc-
tural consistency with the instances in the scene depth maps. Consequently, we employ the
SAM (Kirillov et al.,|2023)) model to ascertain the exact position of each instance. For an instance ¢,
by utilizing our generated scene depth map m.,. alongside its corresponding bounding box b;, we
can segment the specific shape mask m; of this instance, thereby facilitating subsequent merging:

m; = SAM(mscene»bi) (5)

Merging rendering results. We employ the precise mask m; obtained from SAM to constrain the
rendering results of instance ¢ to its own region, ensuring no influence on other instances. Specifi-
cally, we construct a new mask m/ by assigning a value of « to the areas where m; equals 1, while
setting all other regions to —oo. Simultaneously, we assign a background value of § to the global ren-
dering r, through a mask m/. By applying the softmax function to the set {m}, mj,...,m/ m/},
we derive the spatial weights {m/, m}, ..., m//, m/} for each rendering instance. At each Cross
Attention layer, the output can be expressed as follows to render the whole scene:

1" " " "
r=m; ri+ms -ro+...+m, -r,+m, - -r. (6)

4 EXPERIMENT

4.1 IMPLEMENT DETAILS

Tuning of text-to-depth models. We utilized a training set comprising 5,878 images from the
LAION-art dataset (Schuhmann et al.l 2021), selecting only those with a resolution exceeding
512x512 pixels and an aesthetic score of > 8.0. Depth maps for each image were generated using
Depth Anything V2 (Yang et al., [2024). Given the substantial noise present in the text descriptions
associated with the images in LAION-art, we chose to produce corresponding image captions using
BLIP2 (L1 et al) 2023a). We employed pyramid noise (Kasiopy, |2023) to fine-tune the LDM3D
model for 2,000 steps, utilizing the AdamW (Kingma & Ba, [2017) optimizer with a constant learn-
ing rate of 1le~4, a weight decay of 1e~2, and a batch size of 320.

Training of the layout-to-depth adapter. We adopted the MIGC (Zhou et al.|[2024) architecture as
the adapter for layout control. In alignment with this approach, we utilized the COCO dataset (Lin
et al., 2015) for training. We employed Stanza (Q1 et al., [2020) to extract each instance description
from the corresponding text for every image and used Grounding-DINO (Liu et al.,|2023) to obtain
the image layout. Furthermore, we augmented each instance’s description by incorporating modified
versions that omitted adjectives, allowing our layout-to-depth adapter to focus more on global scene
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construction and the coarse-grained categories and structural properties of instances. We maintain
the same batch size, learning rate, and other parameters as the previous work.

4.2 EXPERIMENT SETUP

Baselines. We compared our proposed 3DIS method with state-of-the-art Multi-Instance Genera-
tion approaches. The methods involved in the comparison include training-free methods: BoxD-

iffusion 2023) and MultiDiffusion (Bar-Tal et al., 2023); and adapter-based methods:
GLIGEN 2023b), InstanceDiffusion (Wang et al.|2024), and MIGC 2024).
Evaluation Benchmarks. We conducted experiments using two widely adopted benchmarks,
COCO-position and COCO-MIG (Zhou et al/,[2024), to assess the performance of
models in different aspects of instance generation. The COCO-position benchmark emphasizes the
evaluation of a model’s capacity to control the spatial arrangement of instances, as well as their high-
level categorical attributes. In contrast, the COCO-MIG benchmark is designed to test a model’s
ability to precisely render fine-grained attributes for each generated instance. To rigorously compare
the models’ performance in handling complex scene layouts, we concentrated our analysis on the
COCO-position benchmark, specifically focusing on layouts containing five or more instances. For
a comprehensive evaluation, each model generated 750 images across both benchmarks.

Evaluation Metrics. We used the following metrics to evaluate the model: 1) Mean Intersection
over Union (MIoU), measuring the overlap between the generated instance positions and the target
positions; 2) Local CLIP score, assessing the visual consistency of the generated instances with their
corresponding textual descriptions; 3) Average Precision (AP), evaluating the overlap between the
generated image layout and the target layout; 4) Instance Attribute Success Ratio (IASR), calculating
the proportion of correctly generated instance attributes; 5) Image Success Ratio (ISR), measuring
the proportion of images in which all instances are correctly generated.

4.3 COMPARISON

Scene Construction. The results in Tab. [I] demonstrate the superior scene construction capabili-
ties of the proposed 3DIS method compared to previous state-of-the-art approaches. Notably, 3DIS
surpasses MIGC with an 11.8% improvement in AP and a 16.3% increase in AP;5, highlighting a
closer alignment between the generated layouts and the user input. As shown by the visualizations
in Fig. 3] 3DIS achieves marked improvements in scenarios with significant overlap, effectively
addressing challenges such as object merging and loss in complex layouts. This results in the gener-
ation of a more accurate scene depth map, capturing the global scene structure with greater fidelity.

Detail Rendering. The results presented in Tab. [2] demonstrate that the proposed 3DIS method
exhibits robust detail-rendering capabilities. Notably, the entire process of rendering instance at-
tributes is training-free for 3DIS. Compared to the previous state-of-the-art (SOTA) training-free
method, MultiDiffusion, 3DIS achieves a 30% improvement in the Instance Attribute Success Ratio
(IASR). Additionally, when compared with the SOTA adapter-based method, Instance Diffusion,
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Table 2: Quantitative results on proposed COCO-MIG-BOX (§4.3). £; means that the count of
instances needed to generate in the image is i.

Instance Attribute Success RatioT Mean Intersection over Uniont

Method L2 L3 L4 L5 L6 AVG L2 L3 L4 L5 L6 AVG

Adapter rendering methods
GLIGEN (cver23; 413 338 31.8 27.0 295 313 337 276 255 219 236 252
InstanceDiff (cvero4) 61.0 52.8 524 452 487 50.5 53.8 458 449 377 406 43.0
MIGC [cvero4) 74.8 662 674 653 66.1 67.1 63.0 547 553 524 532 547

training-free rendering

TFLCG (wacv24) 172 135 79 6.1 4.5 83 109 87 51 39 28 5.3
BoxDiff pccves 284 214 140 119 128 157 19.1 146 94 79 85 106
MultiDiff peviez 306 253 245 183 198 223 219 181 173 129 139 158
3DIS b5y 659 56.1 553 453 47.6 53.0 568 484 494 402 41.7 447
3DIS b2y 66.1 57.5 55.1 51.7 529 547 571 48.6 468 429 434 457
3DIS pxu) 66.1 593 562 51.7 541 560 57.0 50.0 47.8 43.1 446 470
vs. MultiDiff +35 +34 +31 +33 +34 +33 +35 +31 +30 +30 +30 +31

rendering w/ off-the-shelf adapters
3DIS+GLIGEN 494 397 345 29.6 299 341 430 33.8 292 246 245 288
vs. GLIGEN +8.1 +59 +2.7 +2.6 +04 +2.8 +93 +6.2 +3.7 +2.7 +0.9 +3.6
3DIS+MIGC 76.8 702 723 664 68.0 69.7 680 607 620 558 573 59.5
vs. MIGC +2.0 +4.0 +49 +1.1 +19 +2.6 +5.0 +6.0 +6.7 +3.4 +4.1 +4.8
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Figure 4: ualiative results on the COCO-MIG (.

which requires training for rendering, 3DIS shows a 5% increase in IASR, while also allowing the
use of higher-quality models, such as SD2 and SDXL, to generate more visually appealing results.
Importantly, the proposed 3DIS approach is not mutually exclusive with existing adapter methods.
For instance, combinations like 3DIS+GLIGEN and 3DIS+MIGC outperform the use of adapter
methods alone, delivering superior performance. Fig. ] offers a visual comparison between 3DIS
and other SOTA methods, where it is evident that 3DIS not only excels in scene construction but
also demonstrates strong capabilities in instance detail rendering. Furthermore, 3DIS is compatible
with a variety of base models, offering broader applicability compared to previous methods.

4.4 ABLATION STUDY

Constructing scenes with depth maps. Tab. 8] demonstrates that generating scenes in the form of
depth maps, rather than directly producing RGB images, enables the model to focus more effectively
on coarse-grained categories, structural attributes, and the overall scene composition. This approach
leads to a 3.3% improvement in AP and a 4.1% increase in AP7s.

Tuning of the Text-to-depth model. Tab. 3] demonstrates that, compared to using LDM3D di-
rectly, fine-tuning LDM3D with pyramid diffusion as our base text-to-depth generation model
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results in a 1.3% improvement in AP and a 2.2% increase in AP;5. These improve-
ments stem from the fine-tuning process, which encourages the depth generation model to fo-
cus more on recovering low-frequency components, benefiting the global scene construction.

Table 3: Ablation study on scene generation (.

Augmenting instance descriptions by

. o . thod AP/AP50/AP MloU 1 FID
removing adjectives. The data presented ‘ m/e o. Tooth I =57 85{) 7 57; g 72 5 T o 1¢ |
in Tab. 3] indicate that during the training | > zzlgiatzp 107784 504 733 033
of layout-to-depth adapters, augmenting | (" oy pM3D || 555/81.9/602 728 252
instance descriptions by removing fine- | o/ 56.8/82.3/62.4 733 232

grained attribute descriptions allows the
model to focus more on the structural of the instances and the overall scene construction. This
approach ultimately results in a 2.8% improvement in AP and a 3.0% increase in AP75.

Low-Pass Filtering on the ControlNet. Fig. . . g
shows that filtering out high-frequency nfislgl Table 4: Ablation study on rendering (‘
from ControlNet’s feature maps improves the | method || IASR+T MIOU? FID| |
overall quality of the generated images, re- [w/o Low-Pass Filter || 55.87  46.93  24.50
sulting in more accurate scene representation. w/o SAM-Enhancing || 52.42 4517  23.67
Moreover, as indicated in Tab. ] this process | w/all 56.01 47.01 23.24
does not affect the Instance Attribute Success Ratio (IASR) and MIoU when rendering fine details.

SAM-Enhancing Instance Location. Fig.[f]illustrates that utilizing SAM for more precise instance
location effectively prevents rendering conflicts caused by layout overlaps, ensuring accurate ren-
dering of each instance’s fine-grained attributes. As shown in Tab.[4] enhancing instance localization
with SAM improves the Instance Attribute Success Ratio (IASR) by 3.19% during rendering.

4.5 UNIVERSAL RENDERING CAPABILITIES OF 3DIS

Rendering based on different-architecture models. Fig.[I] 3] and [ present the results of 3DIS
rendering details using SD2 and SDXL without additional training. The results demonstrate that
3DIS not only leverages the enhanced rendering capabilities of these more advanced base models,
compared to SD1.5, but also preserves the accuracy of fine-grained instance attributes.

Rendering based on different-style models. Fig.|7| presents the results of 3DIS rendering using
various stylistic model variants (based on the SDXL architecture). As shown, 3DIS can incorporate
scene depth maps to render images in diverse styles while preserving the overall structure and key
instance integrity. Furthermore, across different styles, 3DIS consistently enables precise control
over complex, fine-grained attributes, as illustrated by the third example in Fig. [/} where “Dotted
colorful wildflowers, some are red, some are purple” are accurately represented.

Rendering Specific Concepts. 3DIS renders details leveraging pre-trained large models, such as
SD2 and SDXL, which have been trained on extensive corpora. This capability allows users to render
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AutismMix Watercolor (LoRA) Pixel Art (LoRA)

A luxurious chair armrest crafted from , with a smooth and reflective surface. 2) Chair legs, carved from solid,
high-quality wood, with a natural, rich grain. 3) A chair seat, crafted from luxurious velvet, soft to the touch and with a
smooth, velvety finish that exudes elegance. 4) A chair backrest features an exquisite, tiger-like pattern of orange- stripes.

1) A cute girl, black hair, brown eyes, smiling sweetly, looking at viewer, soft expression. 2) Glossy black hair, smooth and
slightly wavy. 3) A shiny jewel earring, embedded with emerald stones. 4) A Santa-style hat, with a red body and fluffy
trim. 5) A star-shaped sticker on cheek, metallic shine.

1) A towering mountain with sprawling glacier. 2) A crystal-clear blue river, gently flowing with soft ripples. 3) A
dense forest of dark green tall trees with lush foliage. 4) Soft, warm-toned clouds illuminated by the colors of the sunset, blending
hues of orange, pink, and purple. 5) Dotted colorful wildflowers, some are red, some are purple.

Figure 7: Rendering results based on different-style models (§4.5).

5

Scene Depth map SDXL SDXL SDXL

Three man. 1) Albert Einstein. 2) John 1) Superman. 2) Green 1) Messi. 2) Cristiano

Biden, 3) Donald Trump. Lantern. 3) Hulk. Ronaldo. 3) Kobe Bryant.
Figure 8: Rendering results on specific concepts (§4.5).

specific concepts. As demonstrated in Fig.[8] 3DIS precisely renders human details associated with
specific concepts while preserving control over the overall scene.

5 CONCLUSION

We propose a novel 3DIS method that decouples image generation into two distinct phases: coarse-
grained scene depth map generation and fine-grained detail rendering. In the scene depth map phase,
3DIS trains a Layout-to-Depth network that focuses solely on global scene construction and the
coarse-grained attributes of instances, thus simplifying the training process. In the detail rendering
phase, 3DIS leverages widely pre-trained ControlNet models to generate images based on the scene
depth map, controlling the scene and ensuring that each instance is positioned accurately. Finally,
our proposed detail renderer guarantees the correct rendering of each instance’s details. Due to the
training-free nature of the detail rendering phase, our 3DIS framework utilizes the generative priors
of various foundational models for precise rendering. Experiments on the COCO-Position bench-
mark demonstrate that the scene depth maps generated by 3DIS create superior scenes, accurately
placing each instance in its designated location. Additionally, results from the COCO-MIG bench-
mark show that 3DIS significantly outperforms previous training-free rendering methods and rivals
state-of-the-art adapter-based approaches. We envision that 3DIS will enable users to apply a wider
range of foundational models for multi-instance generation and be extended to more applications. In
the future, we will continue to explore the integration of 3DIS with DIT-based foundational models.
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Appendix

A INFERENCE EFFICIENCY ANALYSIS

Inference Efficiency Analysis of 3DIS. The 3DIS framework generates high-resolution images
in three sequential stages: 1) The Layout-to-Depth Model, which creates a coarse-grained scene
depth map; 2) The Segmentation Model, which extracts the precise shape of each instance from the
scene depth map; 3) The Detail Renderer, which uses various foundational models (SD2, SDXL,
etc.) to produce the final high-resolution image. We evaluated the inference efficiency of these
stages using an NVIDIA A100 GPU. Our test involved a layout with 10 instances, and we assessed
the inference time for each stage over 50 runs to calculate an average time:

* Layout-to-Depth Model: Given that the global scene depth map does not require high
granularity, the UniPCMultistepScheduler (Zhao et al.|2023) is employed for only 30 steps.
The average time to generate a depth map is 5.66 seconds.

* Segmentation Model: We utilize the SAM model to segment the generated scene depth
maps and get refined layouts. The refinement process by SAM takes 0.14 seconds.

* Detail Renderer: We use the EulerDiscreteScheduler (Karras et al., [2022) for 50 steps.
The time for the SD1.5 model to render a 512 x 512 image is 5.27 seconds, the time for
the SD2 model to render a 768 x 768 image is 11.28 seconds, and the time for the SDXL
model to render a 1024 x 1024 image is 22.75 seconds.

Table A: Average inference time of different layout-to-Image model.

GLIGEN | InstanceDiff | MIGC | 3DIS (sp1s) | 3DIS (sp2) | 3DIS (spxL)
Inference Time (s) 12.75 42.48 6.81 11.07 17.08 28.55
Resolution 512 512 512 512 768 1024

Inference Efficiency Comparison. We conducted comparative experiments to evaluate the perfor-
mance of various state-of-the-art (SOTA) methods, including GLIGEN (Li et al., 2023b)), Instance
Diffusion (Wang et al.||2024), and MIGC (Zhou et al.|[2024), using NVIDIA A100 GPU. All models
were tested using the default configurations in their GitHub repositories. We evaluated the inference
efficiency of these stages using an NVIDIA A100 GPU. Our test involved a layout with 10 instances,
and we assessed the inference time for each stage over 50 runs to calculate an average time. The
experimental results are shown in Tab. [A] The conclusions are as follows:

* 3DIS demonstrates faster inference speeds with SD1.5. Since the scene depth map gen-
erated by 3DIS does not require too high granularity, the speed of generating the scene
depth map is very fast. The average inference time of 3DIS + SD1.5 is 11.07s, even faster
than GLIGEN and Instance Diffusion, which are based on the same SD1.5 base model.

* 3DIS demonstrates acceptable inference speeds with SD2 and SDXL. As we increase
model capacity and image resolution, the inference time for 3DIS also rises. Rendering
times are 17.08 seconds for SD2 and 28.55 seconds for SDXL, which we consider to be
acceptable. Additionally, our experiments show that using 3DIS with SDXL even achieves
faster processing speeds than InstanceDiffusion. As discussed in Section 4.3, the per-
formance of 3DIS + SDXL on COCO-MIG slightly surpasses that of InstanceDiffusion,
demonstrating the practicality and efficiency of our 3DIS framework comprehensively.

B RESULTS OF OVERLAPPING LAYOUTS WITH DEPTH AMBIGUITY

3DIS allows for direct adjustment of the instance font-back according to user specifications
(see Fig. [A). Although our layout-to-depth model does not explicitly incorporate instance front-
back ordering during the training process or network design, we found that certain training-free
methods can still achieve control over instance front-back ordering. Specifically, our layout-to-depth
model integrates layout information via a layout adapter (i.e., MIGC). For N instances, this adapter

13
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Figure A: User-specified Front-Back Instance Ordering in Scene Depth Map Generation (@.
For layouts with depth ambiguity, 3DIS allows for direct adjustment of the instance ordering accord-
ing to user specifications, generating distinct scene depth maps and rendering them accordingly.

generated scene depth rendering w/ SDXL generated scene depth rendering w/ SDXL

rendering w/ SDXL
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Figure B: Automatic Front-Back Instance Ordering in Scene Depth Map Generation. (@). For
the same overlapping layout with depth ambiguity, 3DIS can generate different scene depth maps
with varying seeds, ensuring that the generated scenes adhere to the specified layout. Instances
overlapping in the layout may display varying front-back order across different generated outcomes.

encodes them into N tokens, which are then injected into image features through a newly trainable
Cross-Attention layer. For each specific pixel in the image features, the Cross-Attention layer uses a
softmax function to determine the scale score of each instance token. Notably, we discovered that by
adjusting the scale score (before the softmax function) of a token, we can control the relative depth
ordering of instances (e.g., larger scale scores bring instances to the foreground, while smaller scale
scores push them to the background). By adjusting the scale scores for each instance, we can thus
control the front-back ordering within overlapping regions of the scene.

3DIS is capable of automatically adjusting the depth order of instances without explicit speci-
fications (see Fig.[B). As illustrated in Fig.[B] the overlap of instances can be categorized into two
types: 1) Complete overlap, as seen in the relationship between the ball and the books. As the ball’s
bounding box is fully enclosed within the books’ bounding boxes, 3DIS typically generates it in the
foreground to prevent it from disappearing. 2) Partial overlap, as in the case of the two books. In
this scenario, depending on the seed, the front-back ordering of the books may vary, resulting in
different depth placements across the generated scenes.

C COMPARISON OF LDM3D AND RICHDREAMER

Upon investigation, we identified RichDreamer 2024) and LDM3D 2023)

as the primary models employed for text-to-depth generation. To compare their performance, we
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Rich Dreamer LDM3D

Rich Dreamer LDM3D

cot and a few pillows.
Prompt: A man is sitting at a table and

Prompt: The hut is sparse, containing a
posing as President Barack Obama.

ConfrolNet on SD1.4 ControlNet on SD1.4
Figure C: Comparison of LDM3D and RichDreamer.

utilized prompts from the COCO2014 dataset as input for both models, with the corresponding
results illustrated in Fig. [C} Our analysis indicates that LDM3D demonstrates a superior ability
to preserve the original SD1.4 priors, resulting in enhanced text comprehension and more precise
control over scene generation. In contrast, RichDreamer exhibits certain shortcomings: (i) it often
misses semantic details or omits entire objects in the depth maps, as seen in cases where essential
elements like the cot and man are entirely absent; (ii) the depth maps produced by RichDreamer
frequently suffer from artifacts such as blotches or thread-like distortions, particularly when used in
conjunction with ControlNet. Therefore, after a thorough comparison, we selected LDM3D as the
base model for text-to-depth generation in our 3DIS system.

D VISUALIZATION ON THE IMPACT OF THE LDM3D FINE-TUNING

Although LDM3D is capable of generating relatively good depth maps, several issues remain: (i)
Since LDM3D was trained using depth maps extracted from the DPT-Large Model
[2021) , the resulting image quality is relatively poor. (ii) As a diffusion model trained by Gaussian
noise, LDM3D exhibits limited ability to recover low-frequency content 2023). This is
clearly illustrated in Fig.[D] where the generated depth maps struggle to produce large uniform color
blocks. Moreover, the average color value of the depth maps tends to converge towards the initial
noise, whose mean value is close to 0. This constraint places a harmful limitation on text-to-depth
generation.

To address (i), we fine-tuned the model using depth maps extracted from the latest Depth-Anything
V2 model. For (ii), we adopted pyramid noise instead of Gaussian noise, which helps mitigate
the constraints on text-to-depth generation. As shown in Fig. [D] the fine-tuned LDM3D model is
capable of generating depth maps with higher contrast and improved overall quality.

E EXAMPLES OF GENERATED ANNOTATION

Text-depth pair in LAION-art (see Fig. [E). The text-to-depth pair is essential for training our
text-to-depth model. To obtain high-quality RGB images, we selected images from LAION-art with
an aesthetic score greater than 8.0 and a resolution exceeding 512. Given that the text descrip-
tions in LATON-art are often noisy, we chose to use the BLIP2 model to generate
more accurate captions. As shown in Fig. [E| BLIP-generated captions can precisely capture the key
information of the image. While the model still has limitations in describing certain fine-grained
attributes—such as the color in the first example of the second row, where the description is inaccu-
rate—this is not crucial for depth map generation, where fine-grained details are less significant. We
use the Depth Anything V2 model to obtain high-quality depth maps corresponding to each image,
which, together with the generated captions, form the text-depth pairs for training.

Layouts in COCO dataset (see Fig.[F). The COCO (Lin et al, 2015) dataset contains images along
with corresponding human-annotated natural language descriptions. For example, in the first image
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of the first row of Fig. [F the annotated description is: “A white vase filled with a mix of white
and pink flowers on a porch railing.” To further extract descriptions for each instance, we use the
Stanza parser to analyze the noun phrases in the sentence, such as “A white vase,”
“A mix of white and pink flowers,” and “porch railing.” Based on these instance descriptions, we
employ Grounding-DINO to detect the bounding boxes of each instance, thereby
obtaining the layout of the entire image and detailed descriptions of the instances.

F USER STUDY

We conducted a user study to evaluate user preferences, selecting three methods for comparison:
3DIS, MIGC 2024), and InstanceDiffusion (Wang et al.| [2024). For each participant in
the user study, we randomly selected 30 images from the COCO-MIG benchmark and asked them to
rank the images based on their preference. A total of 30 participants were invited, and the aggregated
results are presented in Fig. |G| The results indicate that, compared to MIGC and InstanceDiffusion,
3DIS was generally preferred by users. This preference is attributed partly to 3DIS’s superior control
over spatial positioning and also to its ability to leverage stronger foundational models for rendering
in a training-free manner, resulting in higher-quality images.

G ADDITIONAL EXAMPLES OF 3DIS

Additional examples of controlling shape and pose (see Fig. [H). Under the same layout, 3DIS
can generate different scene depth maps and control coarse-grained attributes of different instances,
such as shape and pose. As shown in Fig.[H(a), we can freely change the shape of the cake and table
within the same layout. Similarly, in Fig.@b), we can adjust each person’s pose.

Additional examples of complicated layouts (see Fig. [[). For highly complex layouts, 3DIS re-
liably ensures accurate generation results. In Fig. [[{a), 3DIS successfully creates a counterfac-
tual scene where an ice mountain, volcano, mallard, swallow, and cherry coexist harmoniously. In
Fig.[(b), 3DIS precisely renders each part of an eagle according to the specified input.

Additional examples of COCO-position benchmark. Fig. [J| presents additional results of scene
depth map generation using our 3DIS system. The results demonstrate that, even with complex
layouts, 3DIS effectively understands and generates cohesive scenes, harmoniously placing all ob-
jects within them. Furthermore, even in cases of significant overlap, such as the five suitcases in
the fifth row, 3DIS handles the arrangement with precision, maintaining clear object separation and
preventing blending.

Additional examples of COCO-MIG benchmark. Fig. [[]presents additional results of 3DIS on
the COCO-MIG dataset, revealing several key advantages over the previous state-of-the-art model,
MIGC. 1) 3DIS demonstrates superior scene construction capabilities, as seen in the first and second
rows, where it constructs more coherent scenes that appropriately place all specified instances—such

Original Finetuned

Prompt: a white boat is out on the water.

Prompt: Two airplanes flying in the sky above a black bridge.

ControlNet on SD1.4 ControlNet on SD1.4

Figure D: Comparison of original LDM3D and finetuned LDM3D.
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dress.
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I3
Figure E: Examples of the generated annotation in the LAION-art dataset. By utilizing the
Depth Anything V2 model to extract depth maps and employing the BLIP2 model to generate cap-
tions corresponding to images, we can obtain high-quality text-depth pairs. These pairs will be used

to train our text-to-depth model.

Figure F: Examples of the generated layouts in the COCO dataset. We have omitted the adjec-
tives from each instance to better highlight the generated layout.

as rendering an indoor environment when prompted with “refrigerator.” 2) 3DIS exhibits enhanced
detail rendering, as shown in the fourth to sixth rows. By leveraging the more advanced SDXL
model in a training-free manner, 3DIS outperforms MIGC, which primarily relies on SD1.5, pro-
ducing more visually appealing and structurally refined results. 3) 3DIS handles smaller instances
better, as demonstrated in the third row with the “red bird” and “yellow dog.” Its ability to render
at higher resolutions using SDXL leads to clearer and more accurate depictions of these smaller
objects. Finally, 3DIS excels in managing overlapping objects, as illustrated in the seventh row,
where it avoids object merging while generating the scene’s depth map.
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Figure G: User Study. Compared with the previous state-of-the-art methods, 3DIS is more popular.
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Figure H: Additional Generated Examples. With the same layout, 3DIS can modify the shape and
pose of each instance automatically.

H MORE DETAILS OF THE INFERENCE PIPELINE

Scene Depth Maps Generation. Given that the scene depth map primarily focuses on coarse-
grained attributes for scene construction and instance placement, it is unnecessary to generate ex-
tensive detail at this stage. Therefore, unlike previous methods (Zhou et al.} [2024; [Li et al., [2023b),
which typically employ 50 steps for scene generation, we use only 30 steps, utilizing the UniPCMul-

tistepScheduler (Zhao et al/, [2023). Additionally, the Classifier-Free Guidance 2022) (CFG)

scale is set to 7.5.

Detail Rendering. In this phase, we utilize the EulerDiscreteScheduler (Karras et al., 2022)) for 50
steps to render details meticulously. To reduce high-frequency noise in the generated depth map
and to emphasize low-frequency scene information, we apply an FFT filter to the ControlNet sig-
nals. This filtering is specifically targeted at the mid and lower resolution upper layers. Initially,
we perform a Fast Fourier Transform (FFT) to centralize the zero-frequency component within the
spectrum. Subsequently, we design and implement a frequency mask that attenuates high frequen-
cies beyond the central region extending to H/4 and W/4 from the center, setting a scale of 0.5 to
predominantly preserve the central region, where H and W represent the height and width of the
residual features injected from the ControlNet. An inverse FFT is then conducted to transform the
data back to the spatial domain. The outcome is a refined version of the ControlNet feature, enriched
with primarily low-frequency scene information.
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1) Blue sky. 2) Ice mountain. 3) Erupting volcano. 4) Forest full of cherry blossom. 5) A 1) Dry leaf. 2) Branch. 3) Orange colored leg. 4) Grey colored eagle wing. 5) Black colored

wooden boat. 6) A crystal-clear lake surrounded by vibrant, colorful reflections. 7) A eagle body. 6) Yellow colored eagle beak. 7) White colored eagle head.
swallow. 8) A mallard. 9) Land.
Layout (c) Scene Depth Map SDXL Layout (d) Scene Depth Map SDXL

5

1) Brown wooden desk. 2) Beautiful silver bowl. 3) An apple. 4) An orange. 5) A pineapple. 1) Person. 2) Pigtail. 3) Beautiful Asian girl’s face, smiling, black colored hair. 4) Necklace.
6) A banana. 7) Red wooden cupboard. 8) Gold bowl. 5) A tree full of cherry blossom. 6) A building. 7) A Luxury necklace. 8) School Uniform. 9)

Walking street.
Figure I: Additional Generated Examples. 3DIS also demonstrates robust generation capabilities

for complex layouts.

Figure J: More results of the generated scene depth map.

I LIMITATION

Although 3DIS leverages various foundation models for rendering fine instance details, its scene
construction continues to rely on the less advanced SD1.5 model. This dependency limits 3DIS’s
capacity to accurately generate complex structures, particularly in tasks that SD1.5 struggles with,
such as text rendering, intricate shapes, or highly detailed spatial configurations. For example,
if we aim to generate a high-quality strawberry cake with the text “ICLR” written on it, 3DIS is
unlikely to generate scene depth maps correctly (e.g., the wrong “L” letter in Fig.[K). Addressing this
limitation in future work could involve the development of specialized datasets aimed at enhancing
the model’s proficiency in handling complex structures, such as MARIO-10M 2023),
thereby improving the overall robustness and versatility of 3DIS in a broader range of applications.

Layout Scene Depth Map SDXL

1

fffffffffffffffffffffffffffffffffffffffffffffff

1) Letter "I”. 2) Letter "C”. 3) Letter "L”. 4) Letter "R”. 5) A huge delicious cake. 6)
Many red strawberries.

Figure K: Failure case of the 3DIS.
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Layout 3DIS (depth)

ﬁ‘“‘ a yellow dog

a yfflow horse

e § ‘
a
5 L 1
2
a yollow fhe hyadyhite fire hydrant i?*‘

a black car

. -, . . .
Figure L: More qualitative results on the COCO-MIG.
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