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Abstract: We study how vision-language models trained on Internet-scale data can be
incorporated directly into end-to-end robotic control to boost generalization and enable
emergent semantic reasoning. Our goal is to enable a single end-to-end trained model to
both learn to map robot observations to actions and enjoy the benefits of large-scale pre-
training on language and vision-language data from the web. To this end, we propose to
co-fine-tune state-of-the-art vision-language models on both robotic trajectory data and
Internet-scale vision-language tasks, such as visual question answering. In contrast to
other approaches, we propose a simple, general recipe to achieve this goal: in order to fit
both natural language responses and robotic actions into the same format, we express the
actions as text tokens and incorporate them directly into the training set of the model in
the same way as natural language tokens. We refer to such category of models as vision-
language-action models (VLA) and instantiate an example of such a model, which we
call RT-2. Our extensive evaluation (6k evaluation trials) shows that our approach leads
to performant robotic policies and enables RT-2 to obtain a range of emergent capabil-
ities from Internet-scale training. This includes significantly improved generalization
to novel objects, the ability to interpret commands not present in the robot training data
(such as placing an object onto a particular number or icon), and the ability to perform
rudimentary reasoning in response to user commands (such as picking up the smallest or
largest object, or the one closest to another object). We further show that incorporating
chain of thought reasoning allows RT-2 to perform multi-stage semantic reasoning, for
example figuring out which object to pick up for use as an improvised hammer (a rock),
or which type of drink is best suited for someone who is tired (an energy drink).

1 Introduction

High-capacity models pretrained on broad web-scale datasets provide an effective and powerful
platform for a wide range of downstream tasks: large language models can enable not only fluent text
generation [1, 2, 3] but emergent problem-solving [4, 5, 6] and creative generation of prose [7, 2] and
code [8], while vision-language models enable open-vocabulary visual recognition [9, 10, 11] and can
even make complex inferences about object-agent interactions in images [12, 13, 14, 15, 16, 17, 18]. Such
semantic reasoning, problem solving, and visual interpretation capabilities would be tremendously useful
for generalist robots that must perform a variety of tasks in real-world environments. However, it is unclear
how robots should acquire such capabilities. While a brute force approach might entail collecting millions
of robotic interaction trials, the most capable language and vision-language models are trained on billions
of tokens and images from the web [12, 15, 16, 18] — an amount unlikely to be matched with robot data
in the near future. On the other hand, directly applying such models to robotic tasks is also difficult: such
models reason about semantics, labels, and textual prompts, whereas robots require grounded low-level
actions, such as Cartesian end-effector commands. While a number of recent works have sought to
incorporate language models (LLMs) and vision-language models (VLM:s) into robotics [19, 17, 20], such
methods generally address only the “higher level” aspects of robotic planning, essentially taking the role
of a state machine that interprets commands and parses them into individual primitives (such as picking
and placing objects), which are then executed by separate low-level controllers that themselves do not
benefit from the rich semantic knowledge of Internet-scale models during training. Therefore, in this paper
we ask: can large pretrained vision-language models be integrated directly into low-level robotic control
to boost generalization and enable emergent semantic reasoning?
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Figure 1: RT-2 overview: we represent robot actions as another language, which can be cast into text tokens and trained
together with Internet-scale vision-language datasets. During inference, the text tokens are de-tokenized into robot
actions, enabling closed loop control. This allows us to leverage the backbone and pretraining of vision-language models
in learning robotic policies, transferring some of their generalization, semantic understanding, and reasoning to robotic
control. We demonstrate examples of RT-2 execution on the project website: robotics-transformer2.github.io.

To this end, we explore an approach that is both simple and surprisingly effective: we directly train
vision-language models designed for open-vocabulary visual question answering and visual dialogue to
output low-level robot actions, along with solving other Internet-scale vision-language tasks. Although such
models are typically trained to produce natural language tokens, we can train them on robotic trajectories
by tokenizing the actions into text tokens and creating “multimodal sentences” [17] that “respond” to
robotic instructions paired with camera observations by producing corresponding actions. In this way,
vision-language models can be directly trained to act as instruction following robotic policies. This simple
approach is in contrast with prior alternatives for incorporating VLMs into robot policies [21] or designing
new vision-language-action architectures from scratch [22]: instead, pre-existing vision-language models,
with already-amortized significant compute investment, are trained without any new parameters to output
text-encoded actions. We refer to this category of models as vision-language-action (VLA) models. We
instantiate VLA models by building on the protocol proposed for RT-1 [1], using a similar dataset, but
expanding the model to use a large vision-language backbone. Hence we refer to our model as RT-2
(Robotics Transformer 2). We provide an overview in Figure 1.

We observe that robotic policies derived from such vision-language models exhibit a range of remarkable
capabilities, combining the physical motions learned from the robot data with the ability to interpret images
and text learned from web data into a single model. Besides the expected benefit of dramatically improving
generalization to novel objects and semantically varied instructions, we observe a number of emergent
capabilities. While the model’s physical skills are still limited to the distribution of skills seen in the robot
data, the model acquires the ability to deploy those skills in new ways by interpreting images and language
commands using knowledge gleaned from the web. Some example highlights are shown in Figure 2. The
model is able to re-purpose pick and place skills learned from robot data to place objects near semantically
indicated locations, such as specific numbers or icons, despite those cues not being present in the robot data.
The model can also interpret relations between objects to determine which object to pick and where to
place it, despite no such relations being provided in the robot demonstrations. Furthermore, if we augment
the command with chain of thought prompting, the model is able to make even more complex semantic
inferences, such as figuring out which object to pick up for use as an improvised hammer (a rock), or
which type of drink is best suited for someone who is tired (an energy drink).

Our main contribution is RT-2, a family of models derived from fine-tuning large vision-language
models trained on web-scale data to directly act as generalizable and semantically aware robotic
policies. Our experiments investigate models with up to 55B parameters trained on Internet data and
instruction-annotated robotic trajectories from previous work [1]. Over the course of 6k robotic evaluations,
we show that RT-2 enable significant improvements to generalization over objects, scenes, and instructions,
and exhibit a breadth of emergent capabilities inherited from web-scale vision-language pretraining.

2 Related Work

Vision-language models. There are several categories of Vision-Language Models (VLMs) [23], with
perhaps two most relevant: (1) representation-learning models, e.g. CLIP [9], which learn common embed-
dings for both modalities, and (2) visual language models of the form {vision,text} — {text} which learn
to take vision and language as input and provide free-form text. Both categories have been used to provide
pretraining for a wide variety of applied to downstream applications such as object classification [9], detec-
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tion [24], and segmentation [25]. In this work, we focus on the latter category [12, 15, 16, 17, 26, 27, 13, 28].
These models are generally trained on many different tasks, such as image captioning, vision-question an-
swering (VQA), and general language tasks on multiple datasets at the same time. While prior works study
VLMs for a wide range of problems and settings including in robotics, our focus is on how the capabilities
of VLMs can be extended to robotics closed-loop control by endowing them with the ability to predict robot
actions, thus leveraging the knowledge already present in VLMs to enable new levels of generalization.

Generalization in robot learning. Developing robotic controllers that can broadly succeed in a variety
of scenarios is a long-standing goal in robotics research [29, 30]. A promising approach for enabling
generalization in robotic manipulation is by learning from large and diverse datasets [31, 32, 33]. By doing
so, prior methods have demonstrated how robots can generalize to novel object instances [31, 34, 32, 35, 36],
to tasks involving novel combinations of objects and skills [37, 38, 39, 40, 41], to new goals or language
instructions [42, 43,41, 44,45, 46, 47], to tasks with novel semantic object categories [48, 49], and to unseen
environments [50, 51, 52]. Unlike most of these prior works, we aim to develop and study a single model that
can generalize to unseen conditions along all of these axes. A key ingredient of our approach is to leverage
pre-trained models that have been exposed to data that is much broader than the data seen by the robot.

Pre-training for robotic manipulation. Pre-training has a long history in robotic learning. Most works
focus on pre-trained visual representations that can be used to initialize the encoder of the robot’s camera
observations, either via supervised ImageNet classification [53], data augmentation [54, 55, 56, 57] or
objectives that are tailored towards robotic control [58, 59, 60, 61, 62]. Other works have incorporated pre-
trained language models, often either as an instruction encoder [63, 64, 43, 41, 44, 1, 65] or for high-level
planning [66, 19, 17, 67, 68, 69]. Rather than using pre-training vision models or pre-trained language
models, we specifically consider the use of pre-trained vision-language models (VLMs), which provide rich,
grounded knowledge about the world. Prior works have studied the use of VLLMs for robotics [48, 61, 49,
17,70, 71, 72], and form part of the inspiration for this work. These prior approaches use VLM:s for visual
state representations [61], for identifying objects [49, 70], for high-level planning [17], or for providing
supervision or success detection [73, 72, 74, 75, 76]. While CLIPort [48] and MOO [49] integrate pre-
trained VLMs into end-to-end visuomotor manipulation policies, both incorporate significant structure into
the policy that limits their applicability. Notably, our work does not rely on a restricted 2D action space and
does not require a calibrated camera. Moreover, a critical distinction is that, unlike these works, we leverage
VLMs that generate language, and the unified output space of our formulation enables model weights to be
entirely shared across language and action tasks, without introducing action-only model layer components.

3 Vision-Language-Action Models

In this section, we present our model family and the design choices for enabling training VLMs to directly
perform closed-loop robot control. First, we describe the general architecture of our models and how they
can be derived from models that are commonly used for vision-language tasks. Then, we introduce the
recipe and challenges of fine-tuning large VLMs that are pre-trained on web-scale data to directly output
robot actions, becoming VLA models. Finally, we describe how to make these models practical for robot
tasks, addressing challenges with model size and inference speed to enable real-time control.

3.1 Pre-Trained Vision-Language Models

The vision-language models [16, 17] that we build on in this work take as input one or more images and
produce a sequence of tokens, which conventionally represents natural language text. Such models can
perform a wide range of visual interpretation and reasoning tasks, from inferring the composition of an
image to answering questions about individual objects and their relations to other objects [12, 16, 17, 18].
Representing the knowledge necessary to perform such a wide range of tasks requires large models and web-
scale datasets. In this work, we adapt two previously proposed VLMs to act as VLA models: PaLI-X [16]
and Pal. M-E [17]. We will refer to vision-language-action versions of these models as RT-2-Pal.I-X and
RT-2-PalLM-E. We leverage instantiations of these models that range in size from billions to tens of billions
of parameters. We provide a detailed description of the architecture of these two models in Appendix D.

3.2 Robot-Action Fine-tuning

To enable vision-language models to control a robot, they must be trained to output actions. We take a
direct approach to this problem, representing actions as tokens in the model’s output, which are treated in
the same way as language tokens. We base our action encoding on the discretization proposed by Brohan
et al. [1] for the RT-1 model. The action space consists of 6-DoF positional and rotational displacement
of the robot end-effector, as well as the level of extension of the robot gripper and a special discrete
command for terminating the episode, which should be triggered by the policy to signal successful
completion. The continuous dimensions (all dimensions except for the discrete termination command)
are discretized into 256 bins uniformly. Thus, the robot action can be represented using ordinals of the
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Figure 2: RT-2 is able to generalize to a variety of real-world situations that require reasoning, symbol understanding,
and human recognition. We study these challenging scenarios in detail in Section 4.

discrete bins as 8 integer numbers. In order to use these discretized actions to finetune a vision-language
into a vision-language-action model, we need to associate tokens from the model’s existing tokenization
with the discrete action bins. This requires reserving 256 tokens to serve as action tokens. Which tokens
to choose depends on the particular tokenization used by each VLM, which we discuss later in this section.
In order to define a target for VLM fine-tuning we convert the action vector into a single string by simply
concatenating action tokens for each dimension with a space character:

“terminate Apos, Apos, Apos, Arot, Arot, Arot, gripper-extension”.

A possible instantiation of such a target could be: “1 128 91 241 5 101 127”. The two VLMs that we
finetune in our experiments, PalLI-X [16] and PalLM-E [17], use different tokenizations. For PalI-X,
integers up to 1000 each have a unique token, so we simply associate the action bins to the token
representing the corresponding integer. For the PalLM-E model, which does not provide this convenient
representation of numbers, we simply overwrite the 256 least frequently used tokens to represent the action
vocabulary. It is worth noting that training VLMs to override existing tokens with action tokens is a form
of symbol tuning [77], which has been shown to work well for VLMs in prior work.

Taking the action representation described above, we convert our robot data to be suitable for VLM model
fine-tuning, where our inputs include robot camera image and textual task description (using standard
VQA format “Q: what action should the robot take to [task instruction]? A:”), and our output is formatted
as a string of numbers/least frequently used tokens representing a robot action.

Co-Fine-Tuning. As we will show in our experiments, a key technical detail of the training recipe that
improves robot performance is co-fine-tuning robotics data with the original web data instead of naive
finetuning on robot data only. We notice that co-fine-tuning leads to more generalizable policies since
the policies are exposed to both abstract visual concepts from web scale data and low level robot actions
during fine-tuning, instead of just robot actions. During co-fine-tuning we balance the ratios of robot and
web data in each training batch by increasing the sampling weight on the robot dataset.

Output Constraint. One important distinction between RT-2 and standard VLMs is that RT-2 is required
to output valid action tokens for execution on the real robot. Thus, to ensure that RT-2 outputs valid action
tokens during decoding, we constrain its output vocabulary via only sampling valid action tokens when
the model is prompted with a robot-action task, whereas the model is still allowed to output the full range
of natural language tokens on standard vision-language tasks.

3.3 Real-Time Inference

The size of modern VLMs can reach tens or hundreds of billions of parameters [16, 17]. The largest
model trained in this work uses 55B parameters. It is infeasible to directly run such models on the standard



desktop-style machines or on-robot GPUs commonly used for real-time robot control. To the best of
our knowledge, our model is the largest ever, by over an order of magnitude, used for direct closed-loop
robotic control, and therefore requires a new set of solutions to enable efficient real-time inference. We
develop a protocol that allows us to run RT-2 models on robots by deploying them in a multi-TPU cloud
service and querying this service over the network. With this solution, we can achieve a suitable frequency
of control and also serve multiple robots using the same cloud service. The largest model we evaluated,
the 55B parameter RT-2-PalLI-X-55B model, can run at a frequency of 1-3 Hz. The smaller version of
that model, consisting of 5B parameters, can run at a frequency of around 5 Hz.

4 Experiments

Our experiments focus on real-world generalization and emergent capabilities of RT-2 and aim to answer
the following questions:

1. How does RT-2 perform on seen tasks and more importantly, generalize over new objects,
backgrounds, and environments?

2. Can we observe and measure any emergent capabilities of RT-2?
3. How does the generalization vary with parameter count and other design decisions?
4. Can RT-2 exhibit signs of chain-of-thought reasoning similarly to vision-language models?

We evaluate our approach and several baselines with about 6,000 evaluation trajectories in a variety of
conditions, which we describe in the following sections. Unless specified otherwise, we use a 7DoF mobile
manipulator with the action space described in Sec. 3.2. We also demonstrate examples of RT-2 execution
on the project website: robotics-transformer2.github.io. We train two specific instantiations of
RT-2 that leverage pre-trained VLMs: (1) RT-2-PaLLI-X is built from 5B and 55B Pal.I-X [16], and (2)
RT-2-PaLM-E is built from 12B PaLM-E [17].

For training, we leverage the original web scale data from Chen et al. [16] and Driess et al. [17], which
consists of visual question answering, captioning, and unstructured interwoven image and text examples.
‘We combine it with the robot demonstration data from Brohan et al. [1], which was collected with 13
robots over 17 months in an office kitchen environment. Each robot demonstration trajectory is annotated
with a natural language instruction that describes the task performed, consisting of a verb describing
the skill (e.g., “pick”, “open”, “place into”’) and one or more nouns describing the objects manipulated
(e.g., ““Tup can”, “drawer”, “napkin”) (see Appendix B for more details on the used datasets). For all
RT-2 training runs we adopt the hyperparameters from the original PaLI-X [16] and PaLM-E [17] papers,

including learning rate schedules and regularizations. More training details can be found in Appendix E.

Baselines. We compare our method to multiple state-of-the-art baselines that challenge different aspects
of our method. All of the baselines use the exact same robotic data. To compare against a state-of-the-art
policy, we use RT-1 [1], a 35M parameter transformer-based model. To compare against state-of-the-art
pretrained representations, we use VC-1 [78] and R3M [58], with policies implemented by training an
RT-1 backbone to take their representations as input. To compare against other architectures for using
VLMs, we use MOO [49], which uses a VLM to create an additional image channel for a semantic map,
which is then fed into an RT-1 backbone. More information is provided in Appendix C.

4.1 How does RT-2 perform on seen
tasks and more importantly, generalize over new objects, backgrounds, and environments?

g )
T “ﬂ.
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Figure 3: Example generalization scenarios used for evaluation in Figures 4 and 6b and Tables 5 and 7.

To evaluate in-distribution performance as well as generalization capabilities, we compare the RT-2-PalLI-X
and RT-2-Pal. M-E models to the four baselines listed in the previous sections. For the seen tasks category,
we use the same suite of seen instructions as in RT-1 [1], which include over 200 tasks in this evaluation:
36 for picking objects, 35 for knocking objects, 35 for placing things upright, 48 for moving objects, 18
for opening and closing various drawers, and 36 for picking out of and placing objects into drawers. Note,
however, that these “in-distribution” evaluations still vary the placement of objects and factors such as
time of day and robot position, requiring the skills to generalize to realistic variability in the environment.

Figure 3 shows example generalization evaluations, which are split into unseen categories (objects, back-
grounds and environments), and are additionally split into easy and hard cases. For unseen objects, hard
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Figure 4: Overall performance of two instantiations of RT-2 and baselines across seen training tasks as well as unseen
evaluations measuring generalization to novel objects, novel backgrounds, and novel environments. Appendix Table 5
details the full results.

cases include harder-to-grasp and more unique objects (such as toys). For unseen backgrounds, hard cases
include more varied backgrounds and novel objects. Lastly, for unseen environments, hard cases correspond
to a more visually distinct office desk environment with monitors and accessories, while the easier environ-
ment is a kitchen sink. These evaluations consists of over 280 tasks that focus primarily on pick and placing
skills in many diverse scenarios. The list of instructions for unseen categories is specified in Appendix F.3.

The evaluation results are shown in Figure 4 and Appendix Table 5. The performance on seen tasks
is similar between the RT-2 models and RT-1, with other baselines attaining a lower success rate. The
difference between the RT-2 models and the baseline is most pronounced in the various generalization
experiments, suggesting that the strength of vision-language-action models lies in transferring more
generalizable visual and semantic concepts from their Internet-scale pretraining data. Here, on average,
both instantiations of RT-2 perform similarly, resulting in ~2x improvement over the next two baselines,
RT-1 and MOO, and ~6x better than the other baselines. The PaLM-E version of RT-2 seems to perform
better than the RT-2-Pal.I-X in harder versions of generalization scenarios while under-performing on
easier ones, resulting in a similar average performance.

Open Source Language Table Benchmark. To provide an additional point of comparison using
open-source baselines and environments, we leverage the open-source Language-Table simulation
environment from Lynch et al. [79]. We co-fine-tune a smaller PalLI 3B model on several prediction
tasks, including in-domain VQA tasks, for the Language-Table dataset, and evaluate the resulting policy
in simulation. For the action prediction task, we discretize and encode actions as text in the format “X
Y”, where X and Y range between{-10, -9, ..., +9, +10}, and represent delta 2D cartesian setpoints of
the end effector. Due to its reduced size, the resulting model can run inference at a similar rate (5 Hz)
as the other baselines. The results of this experiment are presented in Table 1. We observe a significant
performance boost when using our model compared to the baselines, indicating that the VLM-based
pre-training together with the expressiveness of the large Pal.LI model can be beneficial in other scenarios,
in this case, simulation with a different robot. We also show qualitative real-world out-of-distribution
behaviors behaviors in Figure 5, demonstrating novel pushing tasks and targeting objects not before seen in
this environment. More details about the Language Table experiments can be found in Appendix B and D.

{ Push the ketchup to the blue cube ‘ Push the blue cube to the tabasco l

Model Language-Table
BC-Zero [41] T2+3
b RT-1[1] 74 £13
LAVA [79] 77+ 4
RT-2-PaLI-3B (ours) 90 + 10

rrm— | T
Figure 5: Real-world out-of-distribution behaviors in the Language Table Table 1: Performance on the simulated
environment. Identical RT-2-PaLLI-3B model checkpoint is used as in Tab. 1. Language-Table tasks [64].

4.2 Can we observe and measure any emergent capabilities of RT-2?

In addition to evaluating the generalization capabilities of vision-language-action models, we also aim
to evaluate the degree to which such models can enable new capabilities beyond those demonstrated in
the robot data by transferring knowledge from the web. We refer to such capabilities as emergent, in the
sense that they emerge by transferring Internet-scale pretraining. We do not expect such transfer to enable
new robotic motions, but we do expect semantic and visual concepts, including relations and nouns, to
transfer effectively, even in cases where those concepts were not seen in the robot data.

Qualitative Evaluations. First, we experiment with our RT-2-Pal.I-X model to determine various emergent
capabilities transferred from vision-language concepts. We demonstrate some examples of such interactions
in Figure 2. We find through our explorations that RT-2 inherits novel capabilities in terms of semantic under-
standing and basic reasoning in the context of the scene. For example accomplishing the task “put strawberry
into the correct bow!” requires a nuanced understanding of not only what a strawberry and bowl are, but also
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Figure 6: Quantitative performance of RT-2 across (6a) emergent skills and (6b) size and training ablations. Appendix
Tables 6 and 7 detail the full numerical results.

reasoning in the context the scene to know the strawberry should go with the like fruits. For the task “pick up
the bag about to fall off the table,” RT-2 demonstrates physical understanding to disambiguate between two
bags and recognize the precariously placed object. All the interactions tested in these scenarios have never
been seen in the robot data, which points to the transfer of semantic knowledge from vision-language data.

Quantitative Evaluations. To quantify these emergent capabilities, we take the top two baselines from
the previous evaluations, RT-1 and VC-1, and compare them against our two models: RT-2-PalLI-X and
RT-2-Pal. M-E. To reduce the variance of these experiment, we evaluate all of the methods using the A/B
testing framework [80], where all four models are evaluated one after another in the exact same conditions.

We’ split the emergent capabilities of RT-2 into three categories covering axes of reasoning and
semantic understanding (with examples of each shown in Appendix Figure 8). The first we term
symbol understanding, which explicitly tests whether the RT-2 policy transfers semantic knowledge
from vision-language pretraining that was not present in any of the robot data. Example instructions in
this category are “move apple to 3” or “push coke can on top of heart”. The second category we term
reasoning, which demonstrates the ability to apply various aspects of reasoning of the underlying VLM
to control tasks. These tasks require visual reasoning (“move the apple to cup with same color”’), math
(“move X near the sum of two plus one””), and multilingual understanding (“mueve la manzana al vaso
verde”). We refer to the last category as human recognition tasks, which include tasks such as “move
the coke can to the person with glasses”, to demonstrate human-centric understanding and recognition.
The full list of instructions used for this evaluation is specified in Appendix F.3.

We present the results of this experiment in Figure 6a with all the numerical results in Appendix H.2. We
observe that our VLA models significantly outperform the baselines across all categories, with our best
RT-2-PaLI-X model achieving more than 3x average success rate over the next best baseline (RT-1). We also
note that while the larger PalLI-X-based model results in better symbol understanding, reasoning and person
recognition performance on average, the smaller PALM-E-based model has an edge on tasks that involve
math reasoning. We attribute this interesting result to the different pre-training mixture used in PaLM-E,
which results in a model that is more capable at math calculation than the mostly visually pre-trained PaLI-X.

4.3 How does the generalization vary with parameter count and other design decisions?

For this comparison, we use RT-2-Pal.I-X model because of its flexibility in terms of the model size
(due to the nature of PaLM-E, RT-2-PalLM-E is restricted to only certain sizes of PaLM and ViT models).
In particular, we compare two different model sizes, 5B and 55B, as well as three different training
routines: training a model from scratch, without using any weights from the VLM pre-training; fine-tuning
a pre-trained model using robot action data only; and co-fine-tuning (co-training with fine-tuning), the
primary method used in this work where we use both the original VLM training data as well as robotic
data for VLM fine-tuning. Since we are mostly interested in the generalization aspects of these models,
we remove the seen tasks evaluation from this set of experiments.

The results of the ablations are presented in Figure 6b and Appendix Table 7. First, we observe that training
a very large model from scratch results in a very poor performance even for the 5B model. Given this
result, we decide to skip the evaluation of an even bigger 55B PalLI-X model when trained from scratch.
Second, we notice that co-fine-tuning a model (regardless of its size) results in a better generalization
performance than simply fine-tuning it with robotic data. We attribute this to the fact that keeping the
original data around the fine-tuning part of training, allows the model to not forget its previous concepts
learned during the VLM training. Lastly, somewhat unsurprisingly, we notice that the increased size of
the model results in a better generalization performance.



Given <img> Instruction: Given <img> Instruction: Given <img> Instruction: Given <img> Instruction:

Bring me a drink. Move all the objects Pick the object that is Move the green objects

Prediction: together. different from all other together.

Plan: pick 7up can. Predi : objects P :

Action: 1 143 129 123 145 Plan: move green can near Prediction: Plan: move green can near

114 115 127 green rice chip bag. Plan: pick rxbar green rice chip bag.
Action: 1 128 126 127 135 chocolate. Action: 1 128 Action: 1 130 129 121 131
123 119 127 129 125 131 125 128 127 127 128 127

Given <img> I need to
hammer a nail, what
object from the scene
might be useful?

reaict 1
Rocks. Action: 1 129 138
122 132 135 106 127

Figure 7: Rollouts of RT-2 with chain-of-thought reasoning, where RT-2 generates both a plan and an action.

44 Can RT-2 exhibit signs of chain-of-thought reasoning similarly to vision-language models?

Inspired by the chain-of-thought prompting method in LLMs [81], we fine-tune a variant of RT-2 with
PalLM-E for just a few hundred gradient steps to increase its capability of utilizing language and actions
jointly with the hope that it will elicit a more sophisticated reasoning behavior. We augment the data to
include an additional “Plan” step, which describes the purpose of the action that the robot is about to take
in natural language first, which is then followed by the actual action tokens, e.g. “Instruction: I'm hungry.
Plan: pick rxbar chocolate. Action: 1 128 124 136 121 158 111 255.” This data augmentation scheme
acts as a bridge between VQA datasets (visual reasoning) and manipulation datasets (generating actions).

We qualitatively observe that RT-2 with chain-of-thought reasoning is able to answer more sophisticated
commands due to the fact that it is given a place to plan its actions in natural language first. This is a
promising direction that provides some initial evidence that using LLMs or VLMs as planners [19, 17]
can be combined with low-level policies in a single VLA model. Rollouts of RT-2 with chain-of-thought
reasoning are shown in Figure 7 and in Appendix L.

S Limitations

Even though RT-2 exhibits promising generalization properties, there are multiple limitations of this
approach. First, although we show that including web-scale pretraining via VLMs boosts generalization
over semantic and visual concepts, the robot does not acquire any ability to perform new motions by virtue of
including this additional experience. The model’s physical skills are still limited to the distribution of skills
seen in the robot data (see Appendix G), but it learns to deploy those skills in new ways. We believe this is a

result of the dataset not being varied enough along the axes of skills. An exciting direction for future work is
to study how new skills could be acquired through new data collection paradigms such as videos of humans.

Second, although we showed we could run large VLA models in real time, the computation cost of
these models is high, and as these methods are applied to settings that demand high-frequency control,
real-time inference may become a major bottleneck. An exciting direction for future research is to
explore quantization and distillation techniques that might enable such models to run at higher rates
or on lower-cost hardware. This is also connected to another current limitation in that there are only a
small number of generally available VLM models that can be used to create RT-2. We hope that more
open-sourced models will become available (e.g. https://1lava-vl.github.io/) and the proprietary
ones will open up their fine-tuning APIs, which is a sufficient requirement to build VLA models.

6 Conclusions

In this paper, we described how vision-language-action (VLA) models could be trained by combining
vision-language model (VLM) pretraining with robotic data. We then presented two instantiations of
VLASs based on PaLM-E and PalLI-X, which we call RT-2-PalLM-E and RT-2-PalLI-X. These models are
co-fine-tuned with robotic trajectory data to output robot actions, which are represented as text tokens.
We showed that our approach results in very performant robotic policies and, more importantly, leads
to a significantly better generalization performance and emergent capabilities inherited from web-scale
vision-language pretraining. We believe that this simple and general approach shows a promise of robotics
directly benefiting from better vision-language models, which puts the field of robot learning in a strategic
position to further improve with advancements in other fields.


https://llava-vl.github.io/
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A Contributions

e Training and Evaluations (designing and executing procedures for training models,
evaluating models in simulation and the real world, running ablations for algorithm
design choices): Yevgen Chebotar, Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava
Dubey, Pete Florence, Chuyuan Fu, Montse Gonzalez Arenas, Keerthana Gopalakrishnan,
Kehang Han, Alexander Herzog, Brian Ichter, Alex Irpan, Isabel Leal, Lisa Lee, Yao Lu, Henryk
Michalewski, Igor Mordatch, Karl Pertsch, Michael Ryoo, Anikait Singh, Quan Vuong, Ayzaan
Wahid, Paul Wohlhart, Fei Xia, Ted Xiao, and Tianhe Yu.

e Network Architecture (designing and implementing model network modules, working on
tokenization of actions, enabling inference of the model networks during experiments):
Yevgen Chebotar, Xi Chen, Krzysztof Choromanski, Danny Driess, Pete Florence, Keerthana
Gopalakrishnan, Kehang Han, Karol Hausman, Brian Ichter, Alex Irpan, Isabel Leal, Lisa Lee,
Henryk Michalewski, Igor Mordatch, Kanishka Rao, Michael Ryoo, Anikait Singh, Quan Vuong,
Ayzaan Wahid, Jialin Wu, Fei Xia, Ted Xiao, and Tianhe Yu.

e Data Collection (collecting data on real robots, running real robot evaluations, executing
operations required for running real robots): Noah Brown, Justice Carbajal, Tianli Ding,
Krista Reymann, Grecia Salazar, Pierre Sermanet, Jaspiar Singh, Huong Tran, Stefan Welker,
and Sichun Xu.

o Leadership (leading the project efforts, managing the project staff, advising on project di-
rections): Yevgen Chebotar, Chelsea Finn, Karol Hausman, Brian Ichter, Sergey Levine, Yao Lu,
Igor Mordatch, Kanishka Rao, Pannag Sanketi, Radu Soricut, Vincent Vanhoucke, and Tianhe Yu.

e Paper (working on the paper manuscript, designing paper visualizations and figures):
Yevgen Chebotar, Danny Driess, Chelsea Finn, Pete Florence, Karol Hausman, Brian Ichter, Lisa
Lee, Sergey Levine, Igor Mordatch, Karl Pertsch, Quan Vuong, Fei Xia, Ted Xiao, and Tianhe Yu.

o Infrastructure (working on infrastructure and code base backbone needed for training
models, running experiments, storing and accessing data): Anthony Brohan, Yevgen
Chebotar, Danny Driess, Kehang Han, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan
Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Yao
Lu, Igor Mordatch, Quan Vuong, Ayzaan Wahid, Fei Xia, Ted Xiao, Peng Xu, and Tianhe Yu.

B Datasets

The vision-language datasets are based on the dataset mixtures from Chen et al. [15] and Driess et al. [17].
The bulk of this data consists of the WebLlI dataset, which is around 10B image-text pairs across 109
languages, filtered to the top 10% scoring cross-modal similarity examples to give 1B training examples.
Many other captioning and vision question answering datasets are included as well, and more info on the
dataset mixtures can be found in Chen et al. [15] for RT-2-PalLI-X, and Driess et al. [17] for RT-2-PalLM-E.
When co-fine-tuning RT-2-PaLLI-X, we do not use the Episodic WebLlI dataset described by Chen et al. [16].

The robotics dataset is based on the dataset from Brohan et al. [1]. This consists of demonstration
episodes collected with a mobile manipulation robot. Each demonstration is annotated with a natural
language instruction from one of seven skills: ”Pick Object”, "Move Object Near Object”, "Place
Object Upright”, "Knock Object Over”, "Open Drawer”, "Close Drawer”, "Place Object into
Receptacle”, and "Pick Object from Receptacle and place on the counter”’. Further details can
be found in Brohan et al. [1].

RT-2-PalLI-X weights the robotics dataset such that it makes up about 50% of the training mixture for
co-fine-tuning. RT-2-Pal.M-E weights the robotics dataset to be about 66% of the training mixture.

For the results on Language-Table in Table 1, our model is trained on the Language-Table datasets
from Lynch et al. [79]. Our model is co-fine-tuned on several prediction tasks: (1) predict the action, given
two consecutive image frames and a text instruction; (2) predict the instruction, given image frames; (3)
predict the robot arm position, given image frames; (4) predict the number of timesteps between given
image frames; and (5) predict whether the task was successful, given image frames and the instruction.
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C Baselines

We compare our method to multiple state-of-the-art baselines that challenge different aspects of our
method. All of the baselines use the exact same robotic data.

e RT-1: Robotics Transformer 1 [1] is a transformer-based model that achieved state-of-the-art
performance on a similar suite of tasks when it was published. The model does not use
VLM-based pre-training so it provides an important data point demonstrating whether
VLM-based pre-training matters.

e VC-1: VC-1 [78] is a visual foundation model that uses pre-trained visual representations specifi-
cally designed for robotics tasks. We use pre-trained representations from the VC-1 ViT-L. model.
Since VC-1 does not include language conditioning, we add this by separately embedding the
language command via Universal Sentence Encoder [82] to enable comparison to our method. In
particular, we concatenate the resulting language embedding tokens to the image tokens produced
by VC-1, and pass the concatenated token sequences through token learner [83]. The token
sequences produced by token learner are then consumed by an RT-1 decoder-only transformer
model to predict robot action tokens. We train the VC-1 baseline end-to-end and unfreeze the
VC-1 weights during training, since this led to far better results than using frozen VC-1 weights.

e R3M: R3M [58] is a similar method to VC-1 in that R3M uses pre-trained visual-language
representations to improve policy training. In this case the authors use Ego4D dataset [84] of
human activities to learn the representation that is used by the policy. Both VC-1 and R3M test
different state-of-the-art representation learning methods as an alternative to using a VLM. To
obtain a language-conditioned policy from the R3M pretrained representation, we follow the
same procedure as described above for VC-1, except we use the R3M ResNet50 model to obtain
the image tokens, and unfreeze it during training.

e MOO: MOO [49] is an object-centric approach, where a VLM is first used to specify the object
of interest in a form of a single, colored pixel in the original image. This pixel-modified image
is then trained with an end-to-end policy to accomplish a set of manipulation tasks. This baseline
corresponds to a situation where a VLM is used as a separate module that enhances perception
but its representations are not used for policy learning.

D VLMs for RT-2

The PalLI-X model architecture consists of a ViT-22B [85] to process images, which can accept sequences of
n images, leading to n x k tokens per image, where k is the number of patches per image. The image tokens
passing over a projection layer is then consumed by an encoder-decoder backbone of 32B parameters and 50
layers, similar to UL2 [86], which jointly processes text and images as embeddings to generate output tokens
in an auto-regressive manner. The text input usually consists of the type of task and any additional context
(e.g., "Generate caption in (lang)” for captioning tasks or ”Answer in (lang): question” for VQA tasks).

The PalLI-3B model trained on Language-Table (Table 1) uses a smaller ViT-G/14 [87] (2B parameters)
to process images, and UL2-3B [86] for the encoder-decoder network.

The PaLM-E model is based on a decoder-only LLM that projects robot data such as images and text into
the language token space and outputs text such as high-level plans. In the case of the used PaLM-E-12B, the
visual model used to project images to the language embedding space is a ViT-4B [15]. The concatenation
of continuous variables to textual input allows PaLM-E to be fully multimodal, accepting a wide variety of
inputs such as multiple sensor modalities, object-centric representations, scene representations and object
entity referrals.

E Training Details

We perform co-fine-tuning on pre-trained models from the PaLI-X [16] 5B & 55B model, PaL.I [15] 3B
model and the PaLM-E [17] 12B model. For RT-2-PalLI-X-55B, we use learning rate 1e-3 and batch size
2048 and co-fine-tune the model for 80K gradient steps whereas for RT-2-PalLI-X-5B, we use the same
learning rate and batch size and co-fine-tune the model for 270K gradient steps. For RT-2-PalLM-E-12B,
we use learning rate 4e-4 and batch size 512 to co-fine-tune the model for IM gradient steps. Both models
are trained with the next token prediction objective, which corresponds to the behavior cloning loss in
robot learning. For RT-2-PalLI-3B model used for Language-Table results in Table 1, we use learning
rate le-3 and batch size 128 to co-fine-tune the model for 300K gradient steps.
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F Evaluation Details

F.1 Evaluation Scenarios

For studying the emergent capabilities of RT-2 in a quantitative manner, we study various challenging
semantic evaluation scenarios that aim to measure capabilities such as reasoning, symbol understanding,
and human recognition. A visual overview of a subset of these scenes is provided in Figure 8, and the
full list of instructions used for quantiative evalution is shown in Table 4.

(a) Reasoning

“move banna near the

“déplacer les frites verts
sum of two plus one”

same color” dans la tasse rouge”

[ “move apple to cup with

“pick a healthy drink” }

“move coke can to
person with glasses”

“move coke can “put coke can close “move banana to “move apple to tree”
near Y” to dog” android”

(c) Human
(b) Symbol Understanding Recognition

Figure 8: An overview of some of the evaluation scenarios used to study the emergent capabilities of RT-2. They
focus on three broad categories, which are (a) reasoning, (b) symbol understanding, and (c) human recognition. The
visualized instructions are a subset of the full instructions, which are listed in Appendix E.3.

F.2 Seen Evaluation Instructions

Table 2 lists the seen robot evaluation instructions, used during model training and seen tasks evaluations.

Skill Count Description Example Instruction

Pick Object 130  Lift the object off the surface pick iced tea can

Move Object Near Object 337 Move the first object near the second move pepsi can near rxbar blue-
berry

Place Object Upright 8 Place an elongated object upright place water bottle upright

Knock Object Over 8 Knock an elongated object over knock redbull can over

Open Drawer 3 Open any of the cabinet drawers open the top drawer

Close Drawer 3 Close any of the cabinet drawers close the middle drawer

Place Object into Recepta- 84 Place an object into a receptacle place brown chip bag into white

cle bowl

Pick Object from Recepta- 162  Pick an object up from a location and pick green jalapeno chip bag from

cle and Place on the Counter then place it on the counter paper bowl and place on counter

Total 735

Table 2: The list of skills collected and used during training and seen tasks evaluations, along with their descriptions
and example instructions.

E.3 Unseen Evaluation Instructions

Table 3 lists natural language instructions used in model evaluations for unseen objects, backgrounds, and
environments. Each instruction was run between 1-5 times, depending on the number of total instructions
in that evaluation set. Table 4 lists natural language instructions used to evaluate quantitative emergent
evals. Each instruction was run 5 times.
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Task Group

Tasks

Unseen Objects (Easy)

pick banana, move banana near coke can, move orange can near banana, pick oreo, move oreo near apple,
move redbull can near oreo, pick pear, pick coconut water, move pear near coconut water, move pepsi can
near pear

Unseen Objects (Hard)

pick cold brew can, pick large orange plate, pick chew toy, pick large tennis ball, pick bird ornament, pick
fish toy, pick ginger lemon kombucha, pick egg separator, pick wrist watch, pick green sprite can, pick blue
microfiber cloth, pick yellow pear, pick pretzel chip bag, pick disinfectant wipes, pick pineapple hint water,
pick green cup, pick pickle snack, pick small blue plate, pick small orange rolling pin, pick octopus toy, pick
catnip toy

Unseen Backgrounds
(Easy)

pick green jalapeno chip bag, pick orange can, pick pepsi can, pick 7up can, pick apple, pick blue chip bag,
pick orange, pick 7up can, move orange near sink, pick coke can, pick sponge, pick rxbar blueberry

Unseen Backgrounds
(Hard)

pick wrist watch, pick egg separator, pick green sprite can, pick blue microfiber cloth, pick yellow pear, pick
pretzel chip bag, pick disinfectant wipes, pick pineapple hint water, pick green cup, pick pickle snack, pick
small blue plate, pick small orange rolling pin, pick octopus toy, pick catnip toy, pick swedish fish bag, pick
large green rolling pin, pick black sunglasses

Unseen Environments
(Easy)

pick coke can, pick apple, pick rxbar blueberry, move apple near coke can, move rxbar blueberry near apple,
move coke can near rxbar blueberry, pick blue plastic bottle, pick sponge, pick blue chip bag, move sponge
near blue plastic bottle, move blue chip bag near sponge, move blue plastic bottle near blue chip bag, move
coke can near white mug, move sponge near white mug, move coke can near yellow bowl, move sponge
near yellow bowl, move coke can near green cloth, move sponge near green cloth, move coke can near plate,
move sponge near plate, move coke can near spoon, move sponge near spoon, move coke can near orange
cup, move sponge near orange cup, pick white mug, pick yellow bowl, pick green cloth, move white mug
near sponge, move yellow bowl near sponge, move green cloth near sponge, pick plate, pick spoon, pick
orange cup, move plate near sponge, move spoon near sponge, move orange cup near sponge, put coke can
into sink, drop coke can into sink, push coke can into sink, put sponge into sink, drop sponge into sink, push
sponge into sink, put green cloth into sink, drop green cloth into sink, push green cloth into sink

Unseen Environments
(Hard)

pick coke can, pick apple, pick rxbar blueberry, move apple near coke can, move rxbar blueberry near apple,
move coke can near rxbar blueberry, move coke can near stapler, move apple near stapler, move coke can
near keyboard, move apple near keyboard, move coke can near tissue box, move apple near tissue box, move
coke can near papers, move apple near papers, move coke can near mouse, move apple near mouse, move
coke can near book, move apple near book, pick marker, pick stapler, pick mouse, move marker near apple,
move stapler near apple, move mouse near apple, push coke can to the left, push coke can to the right, push
sponge to the left, push sponge to the right, push tissue box to the left, push tissue box to the right, point at
coke can, point at sponge, point at tissue box

Table 3: Natural language instructions used for evaluations testing controlled distribution shifts along the dimension of
novel objects, novel environments, and novel backgrounds. For each category, we introduce evaluation settings with
smaller distribution shifts as well as larger distribution shifts. A visualization of these scenarios if shown in Figure 3.

Task Group Tasks

Symbol Understanding: move coke can near X, move coke can near 3, move coke can near Y

Symbol 1

Symbol Understanding: move apple to tree, move apple to duck, move apple to apple, move apple to matching card
Symbol 2

Symbol Understanding: put coke can close to dog, push coke can on top of heart, place coke can above star
Symbol 3

Reasoning: Math

move banana to 2, move banna near the sum of two plus one, move banana near the answer of three times
two, move banana near the smallest number

Reasoning: Logos

move cup to google, move cup to android, move cup to youtube, move cup to a search engine, move cup to
a phone

Reasoning: Nutrition

get me a healthy snack, pick a healthy drink, pick up a sweet drink, move the healthy snack to the healthy
drink, pick up a salty snack

Reasoning: Color and
Multilingual

move apple to cup with same color, move apple to cup with different color, move green chips to matching
color cup, move apple to vaso verde, Bewegen Sie den Apfel in die rote Tasse, move green chips to vaso rojo,
mueve la manzana al vaso verde, déplacer les frites verts dans la tasse rouge

Person Recognition:
Celebrities

move coke can to taylor swift, move coke can to tom cruise, move coke can to snoop dog

Person Recognition:
CelebA

move coke can to person with glasses, move coke can to the man with white hair, move coke can to the
brunette lady

Table 4: Natural language instructions used for quantitative emergent evalutions.

G Example Failure Cases

In Fig. 9 we provide examples of a notable type of failure case in the Language Table setting, with the RT-2
model not generalizing to unseen object dynamics. In these cases, although the model is able to correctly
attend to the language instruction and move to the first correct object, it is not able to control the challenging
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\ Push the red marker to the video game controller ‘ Push the banana to the apple
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Figure 9: Qualitative example failure cases in the real-world failing to generalize to unseen object dynamics.

dynamics of these objects, which are significantly different than the small set of block objects that have been
seen in this environment [79]. Then pen simply rolls off the table (Fig. 9, left), while the banana’s center-of-
mass is far from where the robot makes contact (Fig. 9, right). We note that pushing dynamics are notori-
ously difficult to predict and control [88]. We hypothesize that greater generalization in robot-environment
interaction dynamics may be possible by further scaling the datasets across diverse environments and objects
— for example, in this case, datasets that include similar types of more diverse pushing dynamics [33].

In addition, despite RT-2’s promising performance on real world manipulation tasks in qualitative and
quantitative emergent evaluations, we still find numerous notable failure cases. For example, with the
current training dataset composition and training method, RT-2 seemed to perform poorly at:

e Grasping objects by specific parts, such as the handle

e Novel motions beyond what was seen in the robot data, such as wiping with a towel or tool use

e Dexterous or precise motions, such as folding a towel

o Extended reasoning requiring multiple layers of indirection

H Quantitative Experimental Results

H.1 Overall Performance, for Section 4.1

Table 5 lists our quantitative overall evaluation results. We find that RT-2 performs as well or better
than baselines on seen tasks and significantly outperforms baselines on generalization to unseen objects,
backgrounds, and environments.

Model Seen Tasks ~ Unseen Objects ~ Unseen Backgrounds ~ Unseen Environments ~ Unseen Average
Easy Hard Easy Hard Easy Hard
R3M [58] 45 32 14 13 9 0 2 12
VC-1[78] 63 34 10 13 3 0 0 10
RT-1[1] 92 31 43 71 9 26 14 32
MOO [49] 75 58 48 38 41 19 3 35
RT-2-PaLI-X-55B (ours) 91 70 62 96 48 63 35 62
RT-2-PaLM-E-12B? (ours) 93 84 76 75 71 36 33 62

Table 5: Overall performance of two instantiations of RT-2 and baselines across seen training tasks as well as unseen
evaluations measuring generalization to novel objects, novel backgrounds, and novel environments.

H.2 Emergent Evaluation, for Section 4.2

Table 6 lists all of our quantitative emergent evaluation results. We find that RT-2 performs 2x to 3x better
than RT-1 on these new instructions, without any additional robotic demonstrations. This showcases how
our method allows us to leverage capabilities from pretraining on web-scale vision-language datasets.

Model Symbol Understanding Reasoning Person Recognition Average
Symbol I~ Symbol2  Symbol 3  Average Math Logos Nutrition Color/Multilingual ~ Average Celebrities CelebA  Average

VC-1[78] 7 25 0 11 0 8 20 13 10 20 7 13 11

RT-1[1] 27 20 0 16 5 0 32 28 16 20 20 20 17

RT-2-PaLI-X-55B (ours) 93 60 93 82 25 52 48 58 46 53 53 53 60

RT-2-PaLM-E-12B (ours) 67 20 20 36 35 56 44 35 43 33 53 43 40

Table 6: Performance of RT-2 and baselines on quantitative emergent evaluations.

>The original pre-training data mixture used in PalLM-E-12B (as described in [17]) includes robot images for
high-level VQA planning tasks that can be similar to images encountered in generalization scenarios. However, none
of those training examples include low-level actions that are evaluated in this experiment.
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H.3 Size and Training Ablations, for Section 4.3

Table 7 details quantitative results for ablations across model size and training approach. Across each, we
see that model size plays an important role in performance and that co-fine-tuning outperforms fine-tuning,
which outperforms training from scratch.

Model Size Training Unseen Objects ~ Unseen Backgrounds ~ Unseen Environments ~ Average
Easy Hard Easy Hard Easy Hard

RT-2-PaLI-X 5B from scratch 0 10 46 0 0 0 9

RT-2-PaLI-X 5B fine-tuning 24 38 79 50 36 23 42

RT-2-PaLI-X 5B co-fine-tuning 60 38 67 29 44 24 44

RT-2-PaLI-X  55B fine-tuning 60 62 75 38 57 19 52

RT-2-PalLI-X  55B  co-fine-tuning 70 62 96 48 63 35 63

Table 7: Ablations of RT-2 showcasing the impact of parameter count and training strategy on generalization.

I Additional Chain-Of-Thought Reasoning Results

We present additional examples of chain-of-thought reasoning rollouts accomplished with RT-2-Pal. M-E,
as described in Sec. 4.4, in Figure 10.

User
@ Pick up the

object that is »

different from all

other objects

Plan: Pick rbar

chocolate

v &1

User

@ Move the green AP -

objects together L5

Plan: Move green
can near green
rice chip bag

N
[ )

User

@ Move the blue

objects together

Plan: Move blue
chip bag near
pepsi

User

@ 1'am sleepy, bring
me a drink to
help.

Plan: Pick redbull
can

Figure 10: Additional examples of RT-2 with chain-of-thought reasoning
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