
Looking into Black Box Code Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Language Models (LMs) have shown their application for tasks pertinent to code1

and several code LMs have been proposed recently. The majority of the studies2

in this direction only focus on the improvements in performance of the LMs on3

different benchmarks, whereas LMs are considered black boxes. Besides this, a4

handful of works attempt to understand the role of attention layers in the code LMs.5

Nonetheless, feed-forward layers remain under-explored which consist of two-6

thirds of a typical transformer model’s parameters. In this work, we attempt to7

gain insights into the inner workings of code language models by examining the8

feed-forward layers. To conduct our investigations, we use two state-of-the-art9

code LMs, Codegen-Mono and Ploycoder, and three widely used programming10

languages, Java, Go, and Python. We focus on examining the organization of stored11

concepts, the editability of these concepts, and the roles of different layers and input12

context size variations for output generation. Our empirical findings demonstrate13

that lower layers capture syntactic patterns while higher layers encode abstract14

concepts and semantics. We show concepts of interest can be edited within feed-15

forward layers without compromising code LM performance. We anticipate these16

findings will facilitate better understanding, debugging, and testing of code LMs.17

1 Introduction18

Code language models (code LMs), leveraging the transformers architecture Vaswani et al. [2017],19

have emerged as powerful productivity tools in software development. Inspired by the success of20

natural language processing (NLP) transformers (e.g., BERT Devlin et al. [2019], GPT Radford21

et al. [2018b]), these models have been trained on vast repositories of code from open-source22

projects. Through this training, code LMs have acquired the ability to capture complex patterns,23

syntax, and semantics of programming languages. Consequently, code LMs have demonstrated24

significant success across various coding tasks, including code generation, completion, editing, and25

documentation. Notably, many of them including GitHub Co-pilot GitHub [2021] and Amazon26

CodeWhisperer Amazon [2023] are getting incorporated into integrated development environments27

(IDEs) as assistants to improve developers’ productivity.28

Existing work on code LMs, such as CodeBERT Feng et al. [2020], GraphCodeBERT Guo et al.29

[2020], CodeGPT CodeGPT [2023], and CodeT5 Wang et al. [2021] primarily focus on the perfor-30

mance improvement of the code LMs on different benchmarks and treat code LMs as a black box.31

Specifically, 96% of studies focus on improving the predictive accuracy of code LMs Jiarpakdee32

et al. [2021]. These studies overlook a crucial aspect: understanding the underlying mechanisms by33

which these models make predictions or generate code. As a consequence, the inner workings of code34

LMs remain largely obscure, potentially resulting in the generation of vulnerable code Pearce et al.35

[2022], challenges in debugging Huang et al. [2023], Guo et al. [2024], and difficulties in updating36

the codebase Barke et al. [2023]. Moreover, the lack of interpretability undermines developers’ confi-37

dence in these models and their ability to effectively leverage them in practical software development38

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

scenarios. Enhancing the interpretability of code LMs is critical for enhancing transparency, trust,39

compliance, and accountability in software development.40

Recognizing the importance of interpretability in code LMs, Authors in Mohammadkhani et al.41

[2023] focused on understanding the role of attention layers in code LMs. Their study examined the42

distribution of attention weights across input sequences, shedding light on a crucial aspect of model43

behavior. Nonetheless, it is noteworthy that attention layers constitute only one-third of a typical44

code LM. The remaining two-thirds, primarily constituted by feed-forward (FF) layers, have largely45

remained unexplored in existing research. Moreover, in NLP literature, FF layers are considered the46

databases (i.e., memory) of the model, represented in the form of keys and values Geva et al. [2021].47

In this work, we aim to bridge this gap by concentrating on the FF layers of code LMs, aiming to48

explain their role and impact in code LMs.49

Specifically, for a given code prefix as input, we compute the activation coefficient for a selected key50

in a certain layer. Then, we obtain the top code prefixes whose representation produced the highest51

inner product with the given key. Upon analyzing these prefixes, we discover interesting syntactic52

and semantic patterns associated with each key. Likewise, when we mask keys related to a specific53

concept of interest (e.g., numpy), we observe a notable decrease in the performance of the code LMs54

concerning that particular concept. However, other programming constructs do not exhibit significant55

performance deterioration following the masking of the same keys. Additionally, we transform each56

value vector into a probability distribution by multiplying it with the output embedding matrix. Then,57

we assess how the predictions at each layer align with the final output of the model. Furthermore, we58

manipulate the context size to investigate the impact of varying context lengths on this alignment.59

In our investigation, we employ two well-known autoregressive code LMs: Codegen-Mono-2.7B Ni-60

jkamp et al. [2022] and Polycoder-2.7B Xu et al. [2022]. Codegen specializes in the Python program-61

ming language, while Polycoder encompasses multiple languages, where our focus is on three diverse62

programming languages: Java, Go, and Python. To conduct our exploration, we collected 5,000 code63

files from active GitHub repositories with more than 50 stars for each programming language.64

Specifically, our study focuses on the following research questions (RQs).65

RQ1: What information is stored in the feed-forward layers of code LMs?66

Considering the unexplored role of FF layers in code LMs, our inquiry aims to uncover what67

information is stored in FF layers. We examine the top 50 input sequences against each key in the FF68

layers, which exhibit the highest activation in that key relative to all other sequences in the dataset. We69

then qualitatively and quantitatively explored these keys to see how the model is storing information70

to uncover insights into the nature of information representation in the FF layers, particularly in71

relation to code generation tasks. Our investigation revealed that the FF layers of code LMs are72

responsible for capturing a wide range of information, spanning from fundamental syntactic patterns73

such as keywords and n-grams to more abstract concepts and semantics. Notably, the initial layers74

predominantly capture low-level syntactic elements (e.g., keywords, n-grams), while the higher layers75

capture more abstract and higher-level semantics, such as iterators and other complex programming76

constructs.77

RQ2: Can we precisely edit a concept of interest in code LMs, and how does such editing affect the78

general performance of code LMs?79

If we truly understand how information is stored in the FF layers, then we must be able to edit80

it. We aim to find out the feasibility of accurately editing the concept of interest in code LMs and81

to evaluate the subsequent impact on the model’s overall performance. This inquiry is motivated82

by the need to quantify the adaptability of code LMs to new information, particularly concerning83

deprecated methods or application programming interfaces (APIs). To address this question, adopt84

a systematic approach. Initially, we identify and filter keys associated with APIs of interest, such85

as numpy in Python, across various programming languages using regular expressions, focusing on86

those keys where our concept of interest ranks among the top 50 triggers. Subsequently, we apply87

masking techniques to these keys and observe the effect on the model’s performance concerning the88

concept of interest. Conversely, we evaluate the impact of masking the same keys on the model’s89

performance on everything except the concept of interest, aiming to quantify any potential side effects90

on general performance. Our findings indicate a significant decrease in accuracy concerning the91

concept of interest, implying that the model’s knowledge is highly localized. Additionally, we did not92

2

observe a noteworthy decline in the model’s performance regarding all other aspects except for the93

concept of interest. This empirical evidence demonstrates the viability of editing operations without94

detrimentally affecting its general performance.95

Summary of findings. We explore how FF layers encode syntactic and semantic information of96

programming languages and their role in generating output tokens in code LMs. Our empirical97

findings demonstrate that lower layers capture syntactic patterns, while higher layers encode abstract98

concepts and semantics. We also show that concepts of interest can be edited within FF layers without99

compromising the performance of code LMs. Additionally, we observe that initial layers serve as100

“thinking” layers, while later layers are crucial for predicting the next tokens of code.101

Contributions. In summary, this work makes the following contributions:102

• We explore and describe the role of feed-forward layers in code language models, which103

consist of two-thirds of a typical transformer model’s parameters.104

• We demonstrate the viability of editing a concept of interest in code language models and105

empirically show the impact of editing concepts on model performance.106

We present our investigations and findings on information storage and editing in Sec. 2 We discuss107

related work in Sec. 3 and provide conclusions of this work in Sec. 4. Additionally, we explore two108

additional research questions along with the background in the Appendix.109

2 Information storage and editing110

The following section describes our methods and experiments to find out how information is stored111

in FF layers (RQ1), how can we edit stored concepts, and the impact of editing on code LMs (RQ2).112

2.1 Information Storage113

2.1.1 Capturing Top Trigger Examples.114

Let us denote our dataset as D, which consists of n code prefixes represented as {x1,x2, · · · ,xn}.115

A code prefix xi is passed through the model and an activation coefficient ai = max(xl
i · kli) is116

computed for every key kl
i in layer l, where xl

i denotes the representation of xi at layer l, and kli is117

the key vector corresponding to the i-th hidden dimension at layer l. This process is repeated for all118

the prefixes in D. Then a ranking of x ∈ D is established for each key kl
i based on the activation119

coefficient a. For each key kl
i in layer l, we then identify t trigger examples {x1,x2, · · · ,xt} ⊂ D,120

which produce activation coefficients that rank in the top 50 of a particular key kl
i.121

Authors in Geva et al. [2021] suggest that these keys act as detectors for specific patterns from the122

input data. By examining top-t triggers for a key, we can deduce what patterns that key is responsive123

to. This method of probing allows us to uncover the encoded patterns in a given code LM’s keys. That124

is, we can discover how the model encodes and interprets information and the model’s operational125

logic.126

2.1.2 Pattern Analysis using Regular Expression Filtering127

Once we have successfully gathered top-k triggers for all the keys, we face the challenge of dealing128

with an extensive search space, which makes obtaining meaningful quantitative results a daunting129

task. For example, both the models under investigation in this work (i.e., Codegen-Mono, and130

Polycoder) are autoregressive models with 32 layers and 2560 hidden dimensions containing a total131

of 2, 560× 4× 32 = 327, 680 keys. Navigating through this vast expanse is no small feat.132

To tackle this issue, we employ a strategic approach. We implement regular expression (regex)133

filtering, targeting various application programming interfaces (APIs) such as numpy and torch, as134

well as fundamental programming concepts like loops and conditionals. This process helps us narrow135

down the search space, focusing on keys related to our areas of interest within the expansive search136

space.137

For all of the explorations on keys, we extensively use regex filtering, along with other heuristics that138

are based on the frequency of occurrence of our concept of interest amongst the top triggers of each139

3

Key Pattern Triggers

k1
1 Keyword frame

frame_ab.shape[2]
start_frame_num = start_frame
os.path.join(pred_frame_path,

k7
1 Keyword assert

self.assertEqual(self.buffer.read(), original)
self.assertIsNone(ret.exception)
self.assertIsNotNone(getattr(ctx.obj, name))

k11
4 Slicing in python

weights = weights[:, 1:1 + P - 2]
lrs[:, -5:-4, :, :]
priors[:, 2:])

k14
3187 math

np.sin(pi * x / 2) + np.finfo(np.float32).eps)
#|B −A ∗W |2
m = np.max(np.abs(covmean.imag))

k26
18 Image related concepts

rgb = color.lab2rgb(lab.astype(np.float64))
elif isinstance(pic, np.ndarray):
low resolution photo of the {}.

k32
2 Loss concepts

g_vggloss *= self.lambda_vgg
= math.ceil(math.log(sr_factor,1 / self.scale_factor))
(l_d_real + l_d_fake).backward()

Table 1: Sample trigger examples for Python from Codegen model.

key (e.g., in key 5 out of all 50 triggers, 40 are related to numpy), accordingly, to handle the wast140

search space, and get meaningful insights.141

2.1.3 Qualitative Analysis of keys142

We conduct a qualitative analysis across all layers to examine the patterns of information triggered by143

the keys using a subset of chosen keys from each layer.144

To get a better representation of chosen keys than random, we filter the keys for a particular API, for145

example numpy. We then divide the filtered keys into five different ranges based on the frequency of146

occurrences of the concept of interest and select five randomly selected keys from each range. In147

theory, it should give us 25 keys per layer for each concept of interest, which is not always the case148

because frequencies of occurrence of the concept of interest are not uniformly distributed across all149

ranges. Nonetheless, we manually go through approximately 15-25 keys per layer for each concept150

of interest. Doing this gives us a heuristic to get a better representation of the vast search space.151

We present results from some of these selected keys in Tables 1, 2, 3, and 4. We showcase a few152

examples from each key, specifically, we highlight three instances that exemplify the main pattern153

observed among the 50 triggers for that key. We have also included the original text files associated154

with the keys’ triggers to ensure completeness.155

The quantitative analysis reveals that the initial layers, or lower layers, of the model, predominantly156

focus on identifying keywords and n-grams, such as the example frame in key 1 layer 1 (i.e., k11)157

of Codegen-Mono on python in Table 1. Progressing deeper into the model, the layers exhibit an158

enhanced semantic understanding. A notable example is key 3187 in layer 14 (i.e., k143187) of Codegen-159

Mono on python in Table 1, which demonstrates the model’s capability not only to cluster similar160

mathematical functions like np.math and np.sin but also to recognize a comment that contains a161

mathematical equation, despite it not being code. This progression underscores a significant increase162

in the model’s semantic understanding. As we move further into the higher layers, the model’s ability163

to grasp and interpret complex semantic concepts, including but not only limited to loss, image, math,164

and slicing, becomes increasingly apparent. Through these select examples, it is clear that the model165

evolves to understand higher-level semantic concepts with greater depth as we ascend through its166

layers.167

Analysis of Python in Codegen-Mono. Table 1 provides triggers for Python the Codegen-Mono168

model, in the first two examples it is shown that the keys are capturing keywords: frame in key 1 layer169

1 (i.e., k11) and keyword assert in key 1 layer 7 (i.e.;k71), after these initial layers it is predominantly170

higher level semantics, key 4 layer 11 (i.e., k114) is about slicing of arrays in python, though it very171

well might be just capturing the sign :, key 3187 layer 14 (i.e., k143187) as mentioned above is an172

interesting one because the model seems to group concepts of maths in this key, even equation173

4

Key Pattern Triggers

k1
4 Keyword runtime

runtime, _ := getTestModuleInstance(t)
return r.runtime.regExpExec(execFn, r, s)
if runtime.GOOS ==

k8
24 Keyword func

func (*AnyValue_StringValue) isAnyValue_Value()
func PrintToPDF() *PrintToPDFParams {}
func newBaseGoCollector() baseGoCollector

k15
7142

Longer then token
length string

func (t *Transport) time.Duration (original)
NativeHistogramMinResetDuration time.Duration
Timeout time.Duration

k22
24 Setting Flag Values

SYS_PPOLL = 336
DLT_LINUX_LAPD = 0xb1
TCP_BBR_PACE_PER_SEC = 0x43e

k26
2

Checks and errors
on internet services

conn, err := net.DialUDP("udp", nil, udpAddr)
expectedFilenameURL: &url.URL{Scheme: "file", Path: ""},
ConnectionTimeout: s.opts.connectionTimeout,

k30
22 Comments

/* For block sizes below 64 kB, we never need
// Invariant: we have a 4-byte match at s, and
// before the CAS operation. So, we need to check

Table 2: Sample trigger examples for Go from Polycoder model.

Key Pattern Triggers

k1
3 Keyword has

hasRouterField = true;
hasLeadership = false;
hasFields = writeIfNotEmpty(out,

k8
35

errors and
exceptions

log.error("Trying to reap: " + holder.path, e);
System.err.println("syntax error "": " + command);
Assert.fail("Expected auth exception was not thrown");

k15
30 Time

long start = System.nanoTime();
put("nano", System.nanoTime());
Assert.assertTrue(listener.await(10, TimeUnit.SECONDS)

k21
3 Internet Protocols

URL url = new URL(tcpUrl.replaceFirst("tcp", "http"));
return localInetAddress.getHostAddress();
ftpFtpConnection.ftp.changeWorkingDirectory(..);

k26
4347 Logs and errors

LOG.info(String.format("-----", count));
throw new IOException(String.format("Incorrect version
log.error(String.format("Connection timed out,

k31
3 Loops

for (Element mb : members) {
i < constructorBean.parameterTypes.size(); i++) {
while (mc.find()) {

Table 3: Sample trigger examples for Java from Polycoder model.

comments are in that key. Key 18 in layer 26 (i.e., k2618) captures concepts of image, from RGB to174

resolution to checking if the instance is an image, the understanding of the model is so profound about175

concepts related to images that in a key, which we have not showcased here, it even captured an array176

initialization of [0,255], without any mention of the image at all. Key 2 layer 32 (i.e., k322) captures177

concepts of loss in deep learning in Python. In the given triggers it captures from loss weightage to178

backpropagating loss to a manual equation of a loss function with no mention of loss keyword.179

Analysis of Go in Polycoder. In Table 2, we present triggers for the Go on the Polycoder model. In180

the first two rows are examples of model capturing keywords: runtime in key 4 layer 1 (i.e., k14)181

and func in key 24 in layer 8 (i.e., k824). In the next row, we show a key 7142 layer 14 (i.e., k147142)182

that is not necessarily capturing semantics but is capturing a longer string time.Duration which183

is not just a single keyword. In the next row, the key 24 layer 22 (i.e., k2224) captures the setting of184

different flags with hex values. The next key 2 layer 26 (i.e., k262) is interesting as it captures checks185

and errors specifically on internet services, from exceptions on file name URL to connection error186

and timeout, it is interesting that this key not only knows about checks and errors but also checks and187

errors specifically on internet services. Lastly, the key 22 layer 30 (i.e., k3022) is capturing different188

comments, even with different styles of commenting too (i.e., // or /*), from this key, it is evident189

that the model knows the difference between comments and code.190

5

Key Pattern Triggers

k14 Keyword add
add_tokens=True
add(values)
add_image_summaries=True

k8246 Keyword randn
np.random.randn(10,) * 0.1
= self.rng.randn(
rnn[’Bin’] = rng.randn(N)/np.sqrt(1.0)

k15131 Load and Save
plt.savefig(f)
test_labels = np.load(file_obj)
pickle.dump(data, f)

k2217 Datasets
datasets.random_mlp(5, 1000), 100)
dset.CIFAR10(args.data_path,transform=train_transform)
dataset = datasets.EMPTY_DATASET

k262788 Labels
labels = np.array([], dtype=bool)
groundtruth = np.array([], dtype=bool)
targets = np.zeros([batch_size, num_steps], np.int32)

k315533
Declarations
with arrays

expected_y_min = np.array([3.0, 14.0], dtype=float)
Pixels = np.zeros((2 * d, 2 * d, 2), dtype=np.int32)
labels = tf.constant([1, 2], dtype=tf.int32)

Table 4: Sample trigger examples for Python from Polycoder model.

Analysis of Java in Polycoder. Table 3 presents triggers for Java on the Polycoder model. The first191

row is a key 2 layer 1 (i.e., k13) that captures the keyword has, and is not different from the other192

experiment tables, but the next key 35 layer 8 (i.e., k835) is different from the previously discussed193

tables as it seems to have a higher level of semantic understanding of errors and exceptions in Java,194

from logging the error to asserting and printing errors. Given this key is not in the first few layers, it195

is not unexpected to capture semantics, but considering other examples where keys in this range of196

layers were mostly capturing keywords, it is an interesting result, showcasing that the boundary of197

where semantic understanding of the model starts is not super clear. Next key 30 layer 15 (i.e., k1530) is198

capturing instances of time. Next key 3 layer 21 (i.e., k213) captures concepts of network connections199

and network protocols specifically from FTP to TCP to the local host (i.e., connections), in contrast to200

key 2 layer 26 (i.e., k262) in Table 2 which was also capturing network services, but it was specifically201

capturing errors and logs. This shows the understanding of the model in different semantics. Next is a202

key 4347 layer 26 (i.e., k264347) with logs and errors from throw to logging of info and errors. Next key203

3 layer 32 (i.e., k313) is unique in the sense that it captures an actual programming concept of loops.204

Analysis of Python in Polycoder. The triggers for Python on the Polycoder model are presented in205

Table 4. First, two rows are examples of the model capturing keywords: key 4 layer 1 (i.e., k14) for206

add and key 246 layer 8 (i.e., k8246) for randn which is in line with the findings in other settings.207

Next key 131 layer 15 (i.e., k15131) captures codes for saving and loading different types of objects.208

Next key 17 layer 22 (i.e., k2217) captures codes for dataset initializations of different types. Next is209

a key 2788 layer 26 (i.e., k262788) which captures labels for training. In the next row, we show a key210

5533 layer 31 (i.e., k315533) that captures different types of array declarations. In all of the higher-level211

semantic keys, keywords are rarely repeated among different triggers, which proves that these keys212

are actually capturing the said higher-level concepts and are not just capturing keywords.213

Polysemantic Keys. In NLP interpretability literature, the concept of polysemous keys is recog-214

nized Fan et al. [2024]. Polysemantic keys are unique in their ability to engage in the representation215

of multiple, often unrelated, concepts or functions. Unlike their counterparts that encode singular,216

straightforward functions, these neurons showcase a multifaceted nature, showing a more complex217

and interconnected representation within the model.218

Interpreting what individual neurons/keys in a neural network are doing is a daunting task, exacerbated219

by the complexity of polysemantic neurons. Interpretability methods aim to map these neurons’220

functions, striving to demystify the model’s internal mechanisms. However, the polysemantic nature221

of some neurons adds a significant layer of complexity, as these neurons do not adhere to the simplicity222

of encoding a single function or concept.223

6

Key Triggers

k181187

labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int32)
euler_angles = np.asarray(euler_angles,dtype=np.float32)
array_frombytes(buffer, data)

k291265

data = np.frombuffer(buf, dtype=np.uint8)
uint8image: a [height, width, depth]
class EditProfileViewTest(TestCase):

k30770

+= 1 - np.array(self.env.dones)
x = np.round(xyt[:,[0]]).astype(np.int32)
logvar.set_shape(size__xz)

Table 5: Polysemantic Keys with trigger examples in Codegen (Python).

Polysemantic keys in Codegen-Mono for Python. In our exploration, we also come across these224

polysemantic keys in coding models. In Table 5, we present examples of some polysemantic keys for225

Python on the Codegen-Mono model. The first row shows a key 1187 layer 18 (i.e., k181187) which is226

capturing labels, array from bytes, and euler_angles, all of these do not belong to any one concept so227

it is evident that this key is not learning a singular function, instead it is a polysemantic key. The next228

row shows key 1265 layer 29 (i.e., k291265) which contains examples of data from the buffer, a class229

declaration, and comments about an image, these triggers also do not have any common theme so230

this key is also polysemantic. Next key 770 layer 30 (i.e., k30770) also tells a similar story of being231

polysemantic.232

Findings. This qualitative analysis aids in revealing the nature of the patterns and semantics captured233

by the code LMs. It enables us to observe the extent to which the model comprehends various234

high-level semantics, such as grouping a mathematical equation with math operations or capturing235

an array ranging from 0 to 255 within a key associated with image-related functions. This analysis236

answers our first research question of uncovering the underlying nature of the stored data in FF layers.237

We notice a consistent pattern in the information stored in FF layers. Specifically, the initial layers of238

the model tend to predominantly capture keywords, while higher layers tend to capture higher-level239

semantics.240

2.2 Editing Concept of Interest241

To answer our next research question about the possibility of editing a concept of interest from the242

model and how the editing will affect the performance of the model (RQ2), we perform the following243

experiments. In this work, we focus on a special case of editing: masking.244

2.2.1 Masking245

The first step to mask keys related to the concept of interest is to identify these keys across all layers.246

To do this, we filter through top-t triggers for each key kl
i in layer l using regex, and identify the keys247

that are related to the concept of interest, among all 327,680 keys in the model. We mark a key as a248

key kl
i as a key related to a concept of interest only if the concept of interest (e.g., numpy) is used249

amongst the top-t triggers of that key.250

After identifying the keys that are related to the concept of interest, we can mask them by zeroing out251

the weights of the key. That is, we set kli = 0 if the key has been identified as a key related to the252

concept of interest, in the previous step. Zeroing out weights is a known strategy to remove parts of253

the model, since zeroing out weights results in that key or part of the model not taking part in the254

model’s output formation Haider and Taj [2021].255

2.2.2 Performance on concepts of Interest256

To gauge the performance of the models on concepts of interest, we use 10,000 lines of code from257

our curated dataset for each language and model setting, containing concepts of interest, to perform258

this experiment. We first select two highly used APIs or functions from each language, and then we259

filter the keys with top triggers for these functions or APIs using regex.260

7

Model Name of
API of Interest

API of Interest Concepts of non-Interest
Baseline Masked Baseline Masked

CodeGen
Mono-2B Python np. 61.06 41.07 ↓ 19.99 61.53 58.10 ↓ 3.43

torch. 59.32 48.36 ↓ 10.96 61.74 60.70 ↓ 1.04

Polycoder
2.7B

Python np. 55.19 41.26 ↓ 13.93 80.18 76.18 ↓ 4.0
torch. 54.61 34.77 ↓ 19.84 79.92 77.38 ↓ 4.0

Go log. 69.23 62.13 ↓ 7.10 71.52 70.60 ↓ 0.92
time. 67.23 35.42 ↓ 31.81 71.52 64.56 ↓ 6.96

Java .equals(75.59 63.09 ↓ 12.5 79.91 77.87 ↓ 2.04
.get(47.67 23.52 ↓ 24.15 79.77 68.87 ↓ 10.9

Table 6: Making results indicate that masking keys associated with the API of interest notably
degrades the performance of models specifically for that API. However, the overall performance of
the models across all other constructs is not significantly affected.

In the case of Python and Go we see the model’s performance on generating the next token right261

after the API. call. An example for numpy in Python would be the performance of the model to262

produce the right method after the np. (e.g., context is val = np., ground truth is array). In the263

case of Java, there is no API. type of calls so we went with the prediction of actual method names.264

An example would be System.out.println(mystr as context and .equals(as the ground truth.265

Exact regexes used for all the APIs, and functions are shown in the Table 6 column “API of Interest”.266

We make sure that the selected filtered examples remain consistent between both, masked and267

unmasked, experiments.268

In Table 6, accuracies are reported for “API of Interest” in column Baseline, where we provide269

performance accuracies of the unmasked models (i.e., unchanged pre-trained model) on concepts270

of interest, while in column Masked we provide performance accuracies of the masked models (i.e.,271

model keys related to the concept of interest are masked by the masking technique discussed above)272

on concepts of interest, along with the drop in accuracy from baseline unmasked experiment.273

General Performance. To gauge the general performance of models, excluding selected concepts of274

interest, we check the model’s performance on the next token prediction on 10,000 lines of code in275

each setting. 10,000 lines of code are filtered from the dataset through regex to not have the concepts276

of interest used in any of them.277

Table 6 also reports results for “concepts of non-Interest”, in column Baseline, where we provide278

general performance accuracies of the unmasked models(i.e., unchanged pre-trained model), and in279

column Masked we provide general performance accuracies of the masked models(i.e., model keys280

related to the concept of interest are masked by the masking technique discussed above), along with281

the drop in accuracy from baseline unmasked experiment.282

Findings. The results in Table 6 help us answer RQ2, which is about the inquiry of the effects283

of precise editing in the network keys for a particular concept of interest. A notable drop in the284

model’s performance can be seen for the concept of interest when the keys related to that concept285

are masked. Moreover, there was no significant decrease in the model’s performance in areas other286

than the concept of interest. This provides empirical proof that it is possible to make editing changes287

without adversely impacting the overall performance of the model. This finding suggests that the288

model’s knowledge is localized, and the keys we are identifying to be related to a concept of interest289

are indeed related to that concept. This also proves that precise editing of the model’s knowledge290

is plausible. Nonetheless, one might wonder why the performance drops drastically but does not291

completely diminish. There are multiple factors contributing to this phenomenon. (i) We only select292

the top 50 triggers, which implies that we deactivate a small percentage of keys in total. Intuitively,293

the performance should not have dropped to zero for the API of interest. (ii) We did not mask294

polysemantic keys, which are capable of learning multiple functions. Masking these keys could295

potentially lead to unintended consequences on the model’s overall performance. Further exploration296

in this direction is left to future research. Previous studies have also underscored that polysemous297

keys present a considerable challenge for model editing Fan et al. [2023].298

8

3 Relater Work299

Understanding the mechanisms behind the predictions of models is crucial for their deployment300

in real-world applications. Interpretability focuses on uncovering the rationale of model decisions,301

providing insights into model behavior, and enhancing the trustworthiness of models. We organize302

related work into two categories: interpretability in machine learning and interpretability in code LMs.303

3.1 Interpretability in Machine Learning304

The methods for achieving interpretability in machine learning models can be broadly categorized305

into three main types: (i) counterfactual interventions, (ii) hyper-network structures, and (iii) probing-306

based methods. The counterfactual intervention methods investigate how the changes in input307

features influence model outputs by modifying inputs and observing resultant output variations.308

These methods include techniques like removing or replacing input words to determine their effect309

on model decisions, with examples being the extraction of key sentences from labeled documents.310

The works Li et al. [2016] and Ribeiro et al. [2018] are examples of counterfactual interventions.311

The hyper-network structure approaches involve creating a learnable mask over the neurons of a312

frozen pre-trained model, where an L1-norm or L2-norm is applied to the masks Haider and Taj313

[2021]. These masks serve as indicators of neuron importance in the targeted area, examples of hyper-314

network structure approaches are Radford et al. [2019] and Lakretz et al. [2019]. Lastly, there are315

probing-based methods, which involve aligning model neurons or components with specific concepts316

by identifying patterns of co-occurrence between neuron activations and the target concept Geva et al.317

[2021], Durrani et al. [2020]. Our method of probing the model keys falls under this general category318

of interpretability.319

3.2 Interpretability in Code LMs320

Interpretability within code generation models remains a relatively under-explored area of research,321

and most of the research in the field focuses on the attention part of the model. Authors in Mohammad-322

khani et al. [2023] examine CodeBERT and GraphCodeBERT in the context of software engineering323

tasks. By analyzing attention scores across different token types, the study reveals patterns in how324

these models allocate attention to various parts of the code. Authors in Liu et al. [2024] examine the325

effectiveness of pre-trained language models like CodeT5 and CodeGPT in generating, translating,326

and repairing code, They use attention interpretability specifically focusing on how these models pay327

attention to different parts of the code during the generation process. Authors inPaltenghi and Pradel328

[2021] compare the attention mechanisms of neural models analyzing code to the attention of skilled329

human developers. It introduces a method for capturing human attention on code and compares it330

with the attention weights of neural models. To understand what coding models capture about the331

source code’s structure and semantics, authors in Wan et al. [2022] use attention analysis along with332

probing on word embeddings, and syntax tree induction. All of these works focus on analyzing333

attention weights and activations to understand where the model directs its attention throughout the334

input sequence.335

4 Conclusions336

This work targets a key problem in code MLs – understanding the inner workings and interpretability337

of code language models. Our study focused on feed-forward layers of LMs, which consist of338

two-thirds of a typical transformer model’s parameters. In our investigations, we employ two state-339

of-the-art code language models, Codegen-Mono and Polycoder, and leverage three widely-used340

programming languages, Java, Go, and Python, as the basis for our analyses. Our empirical findings341

show lower layers capture syntax while higher layers encode abstract concepts and semantics. We342

demonstrate concepts can be edited in feed-forward layers without compromising the code language343

model’s performance. Initial layers serve as “thinking” layers, while later layers crucially predict344

subsequent tokens. Earlier layers can accurately predict smaller contexts, whereas the role of later345

layers becomes critical in facilitating better predictions. We anticipate that these findings will lay the346

groundwork for developing a more comprehensive understanding, enabling more effective debugging347

and testing methodologies for code language models348

9

References349

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training350

for program understanding and generation. arXiv preprint arXiv:2103.06333, 2021.351

Amazon. Amazon codewhisperer: Build applications faster and more securely with your ai coding352

companion. https://aws.amazon.com/codewhisperer/, 2023.353

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly354

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.355

Shraddha Barke, Michael B. James, and Nadia Polikarpova. Grounded copilot: How programmers356

interact with code-generating models. Proc. ACM Program. Lang., 7(OOPSLA1), apr 2023. doi:357

10.1145/3586030. URL https://doi.org/10.1145/3586030.358

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,359

Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive360

language model. arXiv preprint arXiv:2204.06745, 2022.361

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared362

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large363

language models trained on code. arXiv preprint arXiv:2107.03374, 2021.364

CodeGPT. Codegpt: Jetbrains extension providing access to state-of-the-art llms, such as gpt-4,365

claude 3, code llama, and others, all for free. https://github.com/carlrobertoh/CodeGPT,366

2023.367

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep368

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.369

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep370

bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of371

the North American Chapter of the Association for Computational Linguistics: Human Language372

Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.373

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and Yonatan Belinkov. Analyzing individual neurons374

in pre-trained language models. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu,375

editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-376

cessing (EMNLP), pages 4865–4880, Online, November 2020. Association for Computational377

Linguistics. doi: 10.18653/v1/2020.emnlp-main.395. URL https://aclanthology.org/2020.378

emnlp-main.395.379

Yimin Fan, Fahim Dalvi, Nadir Durrani, and Hassan Sajjad. Evaluating neuron interpretation methods380

of nlp models. In Thirty-seventh Conference on Neural Information Processing Systems, Dec 2023.381

URL https://openreview.net/forum?id=YiwMpyMdPX.382

Yimin Fan, Fahim Dalvi, Nadir Durrani, and Hassan Sajjad. Evaluating neuron interpretation methods383

of nlp models. Advances in Neural Information Processing Systems, 36, 2024.384

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing385

Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural386

languages. arXiv preprint arXiv:2002.08155, 2020.387

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,388

Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for389

language modeling. arXiv preprint arXiv:2101.00027, 2020.390

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are391

key-value memories. arXiv preprint arXiv:2012.14913, 2021.392

GitHub. Github copilot: Your ai pair programmer. https://copilot.github.com/, 2021.393

GitHub. The top programming languages. https://octoverse.github.com/2022/394

top-programming-languages, 2023.395

10

https://aws.amazon.com/codewhisperer/
https://doi.org/10.1145/3586030
https://github.com/carlrobertoh/CodeGPT
https://aclanthology.org/2020.emnlp-main.395
https://aclanthology.org/2020.emnlp-main.395
https://aclanthology.org/2020.emnlp-main.395
https://openreview.net/forum?id=YiwMpyMdPX
https://copilot.github.com/
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages

GitHub. Github. https://www.github.com/, 2024.396

Google. Bigquery public datasets. https://cloud.google.com/bigquery/public-data, 2023.397

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,398

Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with399

data flow. arXiv preprint arXiv:2009.08366, 2020.400

Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiaohong Li, Bihuan Chen, and Xin Peng.401

Exploring the potential of chatgpt in automated code refinement: An empirical study. In Pro-402

ceedings of the 46th IEEE/ACM International Conference on Software Engineering, ICSE ’24,403

New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400702174. doi:404

10.1145/3597503.3623306. URL https://doi.org/10.1145/3597503.3623306.405

Muhammad Umair Haider and Murtaza Taj. Comprehensive online network pruning via learnable406

scaling factors. In 2021 IEEE International Conference on Image Processing (ICIP), pages407

3557–3561. IEEE, 2021.408

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,409

and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint410

arXiv:2310.01798, 2023.411

Jirayus Jiarpakdee, Chakkrit Kla Tantithamthavorn, and John Grundy. Practitioners’ perceptions of the412

goals and visual explanations of defect prediction models. In 2021 IEEE/ACM 18th International413

Conference on Mining Software Repositories (MSR), pages 432–443. IEEE, 2021.414

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and evaluating415

contextual embedding of source code. In International conference on machine learning, pages416

5110–5121. PMLR, 2020.417

Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene, and Marco418

Baroni. The emergence of number and syntax units in lstm language models. arXiv preprint419

arXiv:1903.07435, 2019.420

Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding neural networks through representation421

erasure. arXiv preprint arXiv:1612.08220, 2016.422

Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, and Li Li. On the reliability and explainability423

of language models for program generation. ACM Transactions on Software Engineering and424

Methodology, 2024.425

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin426

Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark427

dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.428

Ahmad Haji Mohammadkhani, Chakkrit Tantithamthavorn, and Hadi Hemmatif. Explaining429

transformer-based code models: What do they learn? when they do not work? In 2023 IEEE 23rd430

International Working Conference on Source Code Analysis and Manipulation (SCAM), pages431

96–106. IEEE, 2023.432

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,433

and Caiming Xiong. Codegen: An open large language model for code with multi-turn program434

synthesis. arXiv preprint arXiv:2203.13474, 2022.435

Matteo Paltenghi and Michael Pradel. Thinking like a developer? comparing the attention of humans436

with neural models of code. In 2021 36th IEEE/ACM International Conference on Automated437

Software Engineering (ASE), pages 867–879. IEEE, 2021.438

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep439

at the keyboard? assessing the security of github copilot’s code contributions. In 2022 IEEE440

Symposium on Security and Privacy (SP), pages 754–768, 2022. doi: 10.1109/SP46214.2022.441

9833571.442

11

https://www.github.com/
https://cloud.google.com/bigquery/public-data
https://doi.org/10.1145/3597503.3623306

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language443

understanding by generative pre-training. 2018a.444

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language445

understanding by generative pre-training. 2018b.446

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language447

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.448

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi449

Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text450

transformer. J. Mach. Learn. Res., 21(1), jan 2020a. ISSN 1532-4435.451

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi452

Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text453

transformer. J. Mach. Learn. Res., 21(140):1–67, 2020b.454

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic455

explanations. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.456

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. Advances in457

neural information processing systems, 28, 2015.458

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin. Aug-459

menting self-attention with persistent memory. arXiv preprint arXiv:1907.01470, 2019.460

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz461

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing462

systems, 30, 2017.463

Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. What do they capture?464

a structural analysis of pre-trained language models for source code. In Proceedings of the 44th465

international conference on software engineering, pages 2377–2388, 2022.466

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained467

encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859,468

2021.469

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of470

large language models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium471

on Machine Programming, pages 1–10, 2022.472

12

Encoder-Decoder (e.g., T5) Encoder (e.g., BERT) Decoder (e.g., GPT)

d�	���������������e

����������������[

������

���������°°�e[

���������������h

�������������������h��^h�

����e� ������������������������

������

����h� �IDFWRULDO

d�	����������������������������

������������

����������������[

������

���������°°�e[

���������������h

���������������������^h�

����� �IDFWRULDO

�����°°�e[

�������h

���������������������^h�

d�	����������������������������

������������

����������������[ccc

Table 7: Code LMs follow transformer architecture, which comes in three variations: encoder-decoder,
encoder-only, and decoder-only.

A Background473

In this section, we discuss the necessary background on transformer-based language models, code474

LMs, and neural memories.475

A.1 Transformer-based Language Models476

The Transformer architecture Vaswani et al. [2017] employs interconnected attention blocks and477

feed-forward layers. The attention block Bahdanau et al. [2014] facilitates the model’s ability to478

weigh the significance of individual tokens in a sequence, thus capturing long-range dependencies479

across the input sequence. Concurrently, the feed-forward layers enable the model to retain crucial480

information derived from the training data Geva et al. [2021]. The transformer-based LMs are481

trained using extensive text data in a self-supervised manner. Their substantial parameter space, often482

reaching billions or even trillions, gives them an impressive ability to absorb broad semantic and483

syntactic knowledge and strong memorization skills. These models have achieved state-of-the-art484

performance for various NLP tasks, and the utilization of transformer-based LMs has emerged as a485

highly promising research direction in NLP Vaswani et al. [2017], Radford et al. [2018b], Devlin486

et al. [2019], Radford et al. [2019], Raffel et al. [2020b].487

Transformer-based LMs have three variations in their architecture. Table 7 illustrates these architec-488

tures. Encoder-decoder models, such as T5 Raffel et al. [2020b], adhere to the original transformer489

architecture, with both encoder and decoder stacks. They formulate tasks by framing them as text-490

to-text problems, enabling unified training and inference. Encoder models, such as Bidirectional491

Encoder Representations from Transformers (BERT) Devlin et al. [2018], utilize the encoder stack492

and adopt a masked language modeling objective during training. They leverage bidirectional context493

understanding to comprehend text effectively. Decoder models, such as Generative Pre-trained494

Transformer (GPT) Radford et al. [2019], leverage the decoder stack. They are trained to predict the495

next tokens based on preceding ones, they excel in language generation tasks. Due to the simplicity496

of the decoder architecture and the prevalence of text generation tasks, decoder models have become497

a de facto standard for various language modeling tasks.498

A.2 Code Language Models499

Following the success of transformer architecture in NLP, code LMs have adopted this architecture.500

In code LMs, there are primarily three categories, mirroring the classifications of transformer models.501

These are Masked LMs, Encoder-Decoder, and Decoder-only autoregressive models.502

Masked LMs in the context of coding generate code for masked tokens by classifying them based503

on the adjacent tokens on either side Devlin et al. [2019]. The advantage of Masked LMs over504

autoregressive models lies in their ability to consider the context from both sides of a masked token,505

13

Figure 1: Feed Forward layers act as key-value memories of the model. Feed Forward layers
constitute two-thirds of a typical code LM.

providing a richer base of information for predicting the masked token. Examples of Masked LMs506

tailored for coding include CodeBert Feng et al. [2020] and CuBERT Kanade et al. [2020].507

The predominant category in code LMs is the auto-regressive models, which focus on predicting the508

subsequent token based on the preceding context. The GPT models Radford et al. [2018a] belong to509

of decoder-only category and the T5 models Raffel et al. [2020a] are encoder-decoder models. In510

Encoder-Decoder models an encoder encodes the input, which is then passed to a decoder akin to GPT511

for multiple mask prediction. The Code-specific Encoder-Decoder models include CodeT5 Wang512

et al. [2021] and PLBART Ahmad et al. [2021]. Lastly, Decoder-Only models (i.e., GPTs) estimate513

the likelihood of the next token based on previous ones. In the broader field of NLP, GPT-like models514

have achieved prominence, a trend that extends to code LMs as well. Decoder-Only models for code515

feature Lu et al. [2021], Xu et al. [2022], Nijkamp et al. [2022], Chen et al. [2021], Black et al. [2022],516

among others.517

The widespread adoption of auto-regressive models, including GPT variants, is primarily due to their518

sequential left-to-right token prediction capability. This trait enables their application in a variety519

of contexts, such as code completion, generating comments for code, or converting plain text into520

code Feng et al. [2020], Guo et al. [2020].521

A.3 Neural Memories522

Authors in Sukhbaatar et al. [2019] has shown that feed-forward layers act as key-value memories,523

emulating memory networks Sukhbaatar et al. [2015]. For a given input context x, we can compute524

the distribution over keys: p(ki | x) ∝ exp(x · ki) and memory of x can be expressed as M(x) =525 ∑dm

i=1 p(ki | x)vi. That is, we can represent FF layers as FF(x) = f(x ·K⊤) · V , where x ∈ Rd is526

the text input, K,V ∈ Rdm×d represent parameter matrices and f denotes a non-linearity Geva et al.527

[2021].528

Code LMs follow the transformer architecture Vaswani et al. [2017], which incorporates intercon-529

nected self-attention and FF layers. Each FF layer operates as a position-wise function, independently530

processing input vectors. The FF layers function using two matrices: one representing keys and the531

other values. The first matrix serves as a set of key vectors, while the second matrix serves as a set of532

corresponding values for these keys. Specifically, transformers employ ReLU non-linearity and the533

function of FF layers can be expressed as: FF(x) = ReLU(x ·K⊤) · V, where x represents the input534

vector, K represents the output of the first matrix acting as keys, and V represents the output of the535

second matrix acting as values. Figure 1 illustrates the zoomed-in view of FF layers, emphasizing the536

keys and values.537

14

Language
Number

of
Files

Number of
Repositories

Minimum
number of

stars
(GitHub)

Date Last
Active

(GitHub)

Python
5,000 50 50 01-01-2020Go

Java
Table 8: Criteria for dataset collection.

B Approach538

In this section, we discuss our approach to conducting our study, including selected code models,539

dataset, and research questions.540

B.1 Selected Models541

For our choice of models, we chose two state-of-the-art mid-sized models for our investigation. One542

is a mono-language model and the other is a multi-language model.543

Codegen-Mono-2.7B. CodegenNijkamp et al. [2022] a 2.7 billion parameter GPT model, with 32 lay-544

ers, it is trained sequentially on three datasets, called THEPILE Gao et al. [2020], BIGQUERY Google545

[2023], and BIGPYTHON. THEPILE is an 825.18 GB English text corpus for language modeling.546

The dataset is constructed from 22 diverse high-quality subsets, one of which is programming lan-547

guage data collected from GitHub repositories with more than 100 stars that constitute 7.6% of the548

dataset. The multi-lingual dataset BIGQUERY is a subset of Google’s publicly available BigQuery549

dataset, which consists of code in multiple programming languages. For the multi-lingual training,550

the following 6 programming languages are chosen: C, C++, Go, Java, JavaScript, and Python.551

The monolingual dataset BIGPYTHON contains a large amount of data in the Python programming552

language.553

Polycoder-2.7B. Polycoder Xu et al. [2022] is also a 2.7 billion parameter GPT model, with 32554

layers, it was trained on cloned repositories for 12 popular programming languages with at least 50555

stars (stopping at about 25K per language to avoid a too-heavy skew towards popular programming556

languages) from GitHub in October 2021. For each project, each file belonging to the majority557

language of that project was extracted, yielding the initial training set. This initial, unfiltered dataset558

spanned 631GB and 38.9M files.559

B.2 Dataset560

We leverage GitHub GitHub [2024] to access publicly available source code, which hosts a wide561

array of programming languages and diverse projects. To establish a comprehensive dataset, we562

systematically cloned the most prominent repositories associated with three popular programming563

languages; Java, Go, and Python GitHub [2023]. Our selected programming languages are repre-564

sentative of popular programming paradigms, imperative, dynamic, and object-oriented. Moreover,565

the open ecosystem in these programming languages allows us to be selective while collecting566

dataset to maintain high quality. To maintain the quality, we selected repositories with a minimum567

of 50 stars (similar to Polycoder Xu et al. [2022]). We curate 5,000 files for each of the selected568

programming languages, Table 8 presents the criteria we imposed while collecting the dataset from569

Github repositories.570

We use the GitHub API using GraphQL to retrieve and list repositories, based on the following571

criteria: ‘pushed:>2020-01-01 (i.e., active), fork:false(i.e., are repos and not forks), sort:stars‘. For572

any specified programming language, we sort the resulting repositories by their star count and select573

the top 50 repositories, at the time of the search.574

Table ?? provides a summary of the characteristics of our dataset. In terms of source lines of code,575

Python, Go, and Java each one has over 1.4M, 2.1M and 572K, respectively. Python files exhibit over576

38K classes and 93K functions, while Go files has 23K struct counts (Go does not have class) and577

101K functions defined, and in Java files, there are 15K classes containing 27K methods.578

15

B.3 Research Questions579

We consider the following research questions for our study on selected code LMs using our dataset580

described above.581

RQ1: What information is stored in the feed-forward layers of code LMs? Given the unexplored582

nature of the role of FF layers in code LMs, Our investigation aims to clarify the precise583

information stored within these layers. Considering the nature of programming languages,584

we want to explore how syntactic information and semantics are stored in different code LMs.585

RQ2: Can we precisely edit a concept of interest from code LMs, and how does such editing affect586

the general performance of code LMs? Often in programming languages and frameworks,587

certain methods or APIs are deprecated and code LMs would need to adapt to the changes.588

We explore the possibility of updating the learned concept by editing the concept of inter-589

est from code LMs. Along with the possibility of editing, we also want to measure the590

performance impact of the editing performed.591

RQ3: How does local information in each layer agree to the final output of code LMs? The592

capability to generate output stands as a fundamental strength of code LMs. Our objective is593

to investigate how this output is formulated and delineate the distinct roles of various layers594

in this process.595

RQ4: How does the context size impact the agreement between layers in code LMs? We want596

to understand the role of context size and its impact on producing output. This research597

question is driven by the desire to evaluate how the complexity of the model’s task evolves598

with changes in context size.599

The next two sections (Sec. 2 and C) explore FF layers in selected code LMs to answer these questions600

and discuss the findings of our study.601

C Information Aggregation602

This section elaborates on our approach and experiments to investigate the alignment between local603

information at different layer levels and the final output (RQ3) and study the effects of varying context604

sizes on these alignments (RQ4).605

C.1 Layer Agreements to Final Output606

To understand how different layers aggregate information to form the model’s final output and607

whether different layers agree with the model’s final output, we conduct the following experiment.608

We transform each value vector (i.e., hidden dimension output of the second feed-forward layer),609

denoted as vli in layer l, into a probability distribution over the vocabulary and select the token with610

the highest probability. That is, we perform multiplication of vli for each layer l with the output611

embedding matrix of the model E, and subsequently applying softmax function: pli = softmax(vli ·E).612

We then apply argmax function oli = argmax(pli) to get oli which is the top predicted token by layer l,613

when xi ∈ D is passed as input to the model.614

It is important to note that the resulting probability distribution pli is not calibrated. However, it is615

worth mentioning that the ranking established by pli remains unaffected, allowing for meaningful616

analysis. To compute agreement we compare the top token prediction oli from each layer l with the617

final output of the model oLi , where L represents the last layer. If oli = oLi , then layer l agrees with618

the model’s final output when xi ∈ D is passed as input to the model.619

To conduct the agreement experiment, we utilize our entire dataset. For each line of code, we generate620

multiple examples by considering all prefixes of the line, resulting in n examples, where n represents621

the number of tokens in the line of code. Figure 2 presents the results of this experiment, where it is622

evident that the agreement of initial layers in all the settings is quite low but as we move ahead into623

the model the agreement starts to increase, and in the last few layers it is exponentially high.624

Python on Codegen-Mono. In Figure 2 (a), we present agreement results for the Codegen-Mono625

model on Python language. From the graph of frequencies, it can be seen that the initial half layers of626

16

�H�

/D\HUV

$
J
UH
H
P
H
Q
W�
)
UH
T
X
H
Q
F
LH
V

(a) Python: Codegen-Mono model.

/D\HUV

$
J
UH
H
P
H
Q
W�
)
UH
T
X
H
Q
F
LH
V

(b) Python: Polycoder model.

/D\HUV

$
J
UH
H
P
H
Q
W�
)
UH
T
X
H
Q
F
LH
V

(c) Go: Polycoder model.

�H�

/D\HUV

$
J
UH
H
P
H
Q
W�
)
UH
T
X
H
Q
F
LH
V

(d) Java: Polycoder model.

Figure 2: Agreement between different layers and model’s final output.

the model till layer 15 have no agreement with the final output of the model, at layer 16 there is some627

agreement, but it drops again till layer 20 after layer 20 it gradually increases till 28 to 29 layer, and628

then we see a sudden exponential increase in the agreement till the second last layer of the model.629

Python on Polycoder. We present agreement results for the Polycoder model on Python language630

in Figure 2 (b). In these results, we see a little different agreement pattern where there is a little631

agreement in the initial layers till layer 5 then it goes down but does not become completely zero.632

After layer 20 it starts to gradually increase and after layer 25 it increases exponentially and is quite633

high in the last few layers of the model. This behavior is different from the one we noticed in the634

previous results in Figure 2 (a), but is consistent with all the other results on the Polycoder model. We635

believe that this behavior is dependent on the model and is influenced by the nature of their respective636

training processes, with one being monolingual and the other multilingual.637

Go on Polycoder. Figure 2 (c) presents agreement results for the Polycoder model on Go Language.638

It shows a similar story to the agreement graph of the Polycoder model on Python language in639

Figure 2 (b), there is some agreement in the initial layers till layer 7, then it drops but never goes to640

zero, then after layer 20 it gradually increases and after layer 25 it exponentially increases, and the641

peak of last few layers is close to each other, unlike Codegen-Mono model on Python.642

Java on Polycoder. In Figure 2 (d) agreement results for the Polycoder model on Java language are643

presented. These results are similar to the other results of the Polycoder model on other languages.644

There is some agreement in the initial layers, then it drops till layer 20 and after layer 20 it gradually645

increases and in the last 4 layers it is exponentially high, and the peaks for the last layers are closer to646

each other.647

Findings. The results in Figure 2 help us to answer RQ3, how local information in each layer agrees648

with the final output of the code LMs. We observe that the early layers of the model show minimal649

17

/D\HUV

&
R
Q
WH
[
W�
6
L]
H

(a) Python: Codegen-Mono model.

/D\HUV

&
R
Q
WH
[
W�
6
L]
H

(b) Python: Poly-Coder model.

/D\HUV

&
R
Q
WH
[
W�
6
L]
H

(c) Go: Poly-Coder model.

/D\HUV

&
R
Q
WH
[
W�
6
L]
H

(d) Java: Poly-Coder model.

Figure 3: Layer agreements with the model’s final output, as we vary the length of the context.

agreement with the model’s final output, implying that their primary role is akin to processing or650

“thinking” rather than having a direct impact on the output. Conversely, as we move deeper into651

the model, there is a noticeable rise in agreement, implying that the later layers, with more refined652

information, are more important in forming the final output.653

We also observe a difference in behaviors between the two models where results for the Polycoder654

model have some agreement in the initial layers, which then drops and goes up again after layer 20,655

this is in contrast to the result for the Codegen-Mono model where initial half of the layers have no656

agreement with the final output of the model. We also observe that the peaks on high agreement in the657

last few layers in the Polycoder model are closer to each other, this is in contrast to the Codegen-Mono658

model where the peaks in the last layers are also exponential to each other. We posit that it is a659

model-dependent behavior and has to do with the nature of training of these two models, one being660

monolingual while the other being multilingual.661

C.2 Impact of Variance in Context Size to Layer Agreements662

To answer RQ4, how context size affects the output formulation and agreement of layers with the663

final output of the model, we repeat the same experiment as above with varying context sizes from664

1 to 188. We analyze the agreement among layers and token counts and present our results using665

2D heatmaps in Figure 3. We found that initial tokens are generally easier to predict, thus showing666

higher agreement between initial layers and the final output. This might be attributed to the model667

capturing more salient features in the early stages of processing. In contrast, later tokens, which are668

more challenging to predict, tend to have higher agreement with the upper layers and the final output.669

This suggests that the later stages of processing, possibly involving more abstract or contextual670

information, play a more significant role in predicting these complex tokens.671

18

Python on Codegen-Mono. In Figure 3 (a), we provide agreement results for the model Codegen-672

Mono on Python language of different layers with the final output of the model along with varying673

context sizes from 1 to 89. From the heatmap, we see that when the context size is small we see674

agreement even in the initial layers but as the context size increases only the later layers after layer675

18 have agreement with the final output of the model.676

Python on Polycoder. Figure 3 (b) presents agreement results for the model Polycoder on Python677

language of different layers with the final output of the model along with varying context sizes from678

1 to 184. We observe similar results about the agreement, wherein as the context size increases, only679

the later layers exhibit agreement with the model’s final output. However, there is a notable difference680

in the behavior of the agreement from Figure 3 (a). Across all results for the Polycoder model, we681

observe a peak in agreement across all context sizes in the initial few layers. After these first few682

layers, this behavior aligns with our observation of the agreement results for the Polycoder model683

(in Figure 2), where the agreement increases for a few layers and then decreases after the first few684

layers. We posit that this behavior stems from the inherent differences in the nature of both models.685

Nonetheless, our core assertion remains valid, as even the first layer can generate accurate predictions686

when the context size is relatively small.687

Go on Polycoder. In Figure 3 (c), we provide agreement results for the model Polycoder on the Go688

language of different layers with the final output of the model along with varying context sizes from689

1 to 184. We observe a similar trend to another finding in the Polycoder model, where the agreement690

across all context sizes initially increases around layer 5 before declining. However, after that, as the691

context size increases, only the last layers exhibit agreement with the final output of the model.692

Java on Polycoder. Figure 3 (d) presents the agreement results of different layers within the Polycoder693

model, trained on the Java programming language, with the final output of the model. These agreement694

measurements are provided across varying context sizes, ranging from 1 to 188 tokens. This result is695

also in line with the other results of the Polycoder model model where the agreement of all context696

sizes increases around layer 5 and then goes down, but then as the context size increases only the last697

layers agree to the final output of the model.698

Findings. The results in Figure 3 help us answer RQ4: understand the behavior of the models with699

varying context sizes. From these results, it is evident that the complexity of the task for the model700

changes with varying context sizes. Our findings reveal that even the earlier layers, as early as the701

very first layer, across all four settings, can predict some tokens correctly in the smaller context size.702

However, as the context size increases only the later layers can make the correct prediction except for703

model-dependent behavior in the results on the Polycoder model, where there was some agreement704

around layer 4 to layer 6 in both agreement experiments, across all settings. This signifies that as the705

context size becomes larger, the task of accurate prediction becomes difficult for the model. This706

behavior may look counter-intuitive at first because a larger context size has more information for the707

model to make predictions. But a larger context also requires the model to have a higher semantic708

understanding of the input, which our findings from the exploration of keys suggest that only higher709

layers possess (refer to RQ1). With a smaller context size, there is a possibility that even completing710

n-grams and keywords could result in the correct prediction. Our investigation into the keys has711

revealed that initial layers indeed demonstrate an aptitude for understanding keywords and n-grams,712

thereby enabling them to occasionally predict the correct output when the context size is sufficiently713

small.714

19

	Introduction
	Information storage and editing
	Information Storage
	Capturing Top Trigger Examples.
	Pattern Analysis using Regular Expression Filtering
	Qualitative Analysis of keys

	Editing Concept of Interest
	Masking
	Performance on concepts of Interest

	Relater Work
	Interpretability in Machine Learning
	Interpretability in Code LMs

	Conclusions
	Background
	Transformer-based Language Models
	Code Language Models
	Neural Memories

	Approach
	Selected Models
	Dataset
	Research Questions

	Information Aggregation
	Layer Agreements to Final Output
	Impact of Variance in Context Size to Layer Agreements

