
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COPILOT EVALUATION HARNESS: BUILDING USER
TRUST IN LLMS AND LM AGENTS FOR IDE ENVI-
RONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The addition of Large Language Models (LLMs) into Integrated Code Develop-
ment Environments (IDEs) has become a focal point in modern software devel-
opment. LLMs offer the potential to significantly augment developer productiv-
ity by serving as intelligent, chat-driven programming assistants, especially with
the increase in LLM-driven coding agents. With these tools comes the need for
safeguards and metrics for quality assurance for consumers. In this paper, we
introduce the Copilot Evaluation Harness: a set of data and tools for evaluating
LLM-guided coding, covering various programming scenarios and languages. We
propose a more robust system for measuring and understanding model behavior
when leveraged as chat coding assistants or coding agents than previous state of
the art evaluation metrics. We design and compute both static and execution-based
success metrics on a wide range of developer tasks, including documentation gen-
eration from code (doc), test case generation (test), and bug-fixing (fix). In the
chat scenario, we see that GPT4o has much lower prompt sensitivity than the
other models. In the agentic scenario, we find that reasoning models are more in-
clined to generate one-shot solutions, even when given multiple turns and access
to tool calling. We show how results from our metrics can be used to increase the
interpretability and explainability of LLMs in the real-world IDE-chat scenario.

1 INTRODUCTION

The continuous evolution of software development practices has led to a growing interest in the
integration of cutting-edge technology to enhance developer productivity Chen et al. (2021). One
such technology that has garnered considerable attention is the utilization of Large Language Models
(LLMs) within Integrated Development Environments (IDEs) Nam et al. (2023); Chen et al. (2023),
such as VSCode Copilot Chat or Cursor AI. Large language models, exemplified by models like
OpenAI’s GPT-4o and Anthropic’s Sonnet 3.5, as well as open-source models such as DeepSeek
V3, offer the promise of acting as intelligent programming assistants and agents OpenAI (2023)
OpenAI (2024) Anthropic (2024) DeepSeek-AI & et al (2024). In this paper, we introduce the
Copilot Evaluation Harness for comprehensive exploration of the behaviors of LLMs as both coding
assistants and coding agents, with a particular focus on verifying their trustworthiness across diverse
programming scenarios and languages. Figure 1 shows a high-level overview of the phases of our
evaluation.

Our harness evaluates four major software development scenarios: bug fixing, documentation gener-
ation, method generation, and test generation. These scenarios encompass a spectrum of developer
tasks, each addressing specific challenges and opportunities.

Previous evaluation harnesses leave gaps we seek to cover with the Copilot Evaluation Harness.
In the HumanEval dataset Chen et al. (2021), for example, models are evaluated on their ability
to generate functions from docstrings for straightforward, single-file algorithmic questions. While
benchmarks such as SWE-Bench Jimenez et al. (2024) work with real world code in complex sce-
narios, they focus on batch-oriented Pull Request workflows rather than interactive IDE scenarios
where agents can leverage real-time diagnostic tools and context discovery features. With Copilot
Evaluation Harness, we take these principles and expand upon them: like SWE-Bench, our evalua-
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Figure 1: Overview of the Copilot Evaluation Harness architecture. The user interaction component
is brought by the harness users. This diagram shows a sample user interaction, but the user inter-
action can be as simple as a single model call. The evaluation harness supports data collection and
metric evaluation.

tion expects the model to interact with real-world repositories which involve dozens of methods and
files to complete a given task. Unlike SWE-Bench, we do not evaluate a model or an agent’s ability
in a Pull Request workflow. Instead, we evaluate IDE-integrated coding assistants and agents, with
full access to user’s workspace and more chat-driven instructions. Therefore, we fill the current lack
of robust evaluations for this real-world setting in IDE.

We apply our evaluation framework within the LLM-powered chat extension in Visual Studio Code
(VS Code), an IDE used by 15 million programmers across the world. Our evaluation spans a spec-
trum of language models, ranging from proprietary models like OpenAI’s GPT-4o and Anthropic’s
Sonnet 3.5 to openly available alternatives such as DeepSeek v3.

We find that the models perform comparably in the chat scenario, with test generation being the
most difficult task. More advanced models such as o3-mini are much more sensitive to the wording
and location of information in the prompt, whereas GPT4o often outright ignores many instructions.
Import statement generation proves to be a challenging component of test generation, especially for
Python cases.

In addition to the vanilla chat scenario, we evaluate an agentic flow with a basic agent setup. Here,
we see that o3-mini leverages its reasoning ability to turn the agentic process into a one-shot process,
attempting to complete the task in only one turn, even in cases where Sonnet 3.5 and GPT4o take
five to ten turns. While Sonnet 3.5 and GPT4o call tools to get errors in the current file or search
the given codebase, o3-mini will take the input file and query prompt and attempt a solution without
calling any tools besides file editing.

Use of the Copilot Evaluation Harness enables a new level of understanding of model behavior that
is beyond usual numeric values shared in public benchmarks. It allows engineers to update their
integrations for increased quality of model responses, leading to greater user trust and satisfaction.

2 COPILOT EVALUATION HARNESS

Copilot Evaluation Harness is a set of four benchmark metrics created from public Github projects
in six programming languages. The task for each metric is as follows:

• Documentation Generation from Code (doc): the model is given a file and the line range
of a function. It must insert a docstring for the function with correct syntax, and with all
the parameters and returned objects defined.

• Bug-Fixing (fix): given a static analyzer error and a line range, the model must output a
patch on the line range to fix the error.

• Code Generation from Natural Language (generate): given a file that contains a function
signature with its body missing, the model must fill in the function body correctly. Cor-
rectness is measured by running the repository’s test suite and confirming that the tests that
cover the function all pass.

• Test Case Generation for Code (test): the model must generate a test suite for a given
function. The test suite is run in the repository environment and scored based on whether
the generated tests pass.
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2.1 REPOSITORY COLLECTION

Our dataset is made up of methods from 300 public GitHub repositories across five languages:
JavaScript, Typescript, Python, Java, and C#. We filter repositories that are smaller than 1 MB and
larger than 100 MB. We also filter repositories for which it takes longer than 10 minutes to build
and run tests. Language-specific heuristics for collected repositories can be found in the appendix
section C.

As part of our evaluation harness, we have developed a build agent that utilizes various build
and test strategies on any arbitrary repository. In addition, we have the capability to run
static analysis tools on the repositories that we can build and test. This build agent is essen-
tial in collecting the test datasets and performing evaluations. The code for our build agent,
evaluation scripts and data can be found at https://anonymous.4open.science/r/
copilot-evaluation-harness-38E5/README.md.

2.2 METRIC CONSTRUCTIONS

After identifying suitable repositories for each language, we generate test cases for each evaluation
metric based on the code within the repositories. Most evaluations require identifying methods that
meet certain conditions, such as being covered by existing tests or containing a warning from a static
analysis tool. The criteria for generating evaluation test cases varies from metric to metric, and is
explained for each metric below. Additional details can be found in the Appendix section D.

Documentation Generation from Code (doc). We create test cases by identifying methods in
the repository that are longer than three lines and are not a result of minification or obfuscation.
We provide the method and ask the model to generate a docstring for the method. We consider a
docstring generation to be successful if the location, format, and coverage of the generated text is
correct.

Bug Fixing (fix). We create test cases based on static analysis tool warnings and errors flagged on
a given repository. We run the static analysis tools within the context of a repository’s built state
(i.e. the virtual environment for Python, after running npm install for Javascript and Typescript). We
consider a generated fix to be successful if it is syntactically correct and strictly reduces the numbers
of static analysis warnings on execution. We must consider a strict decrease rather than the presence
of the original warning or error, because it is possible for the coding assistant to fix the original issue
while introducing a new issue, which a developer would not look upon as a complete fix.

Code Generation from Natural Language (generate). We select test cases by identifying methods
in a given repository that are covered by a passing test in the repository’s test suite. We formulate
the task by removing the body, but not the signature of a method, then passing the altered file to the
model. We consider a generated code snippet to be successful if the generated code is syntactically
correct and all test cases covering the generated code pass.

Test Generation from Code (test). We create test cases by identifying methods within a given
repository. We ask the model to provide a test suite for the given method. We consider the generation
to be successful if it invokes the given method, and if the generated suite passes upon execution.

3 EXPERIMENTATION AND ANALYSIS

We use the VSCode IDE to evaluate three metrics on myriad LLMs to gauge reliability and cor-
rectness of coding assistant-generated code in two scenarios: chat and agentic. Results for method
generation will be included once the data for all languages has been finalized.

3.1 CHAT SCENARIO

Problem Formulation. In the chat scenario, we provide the model the contents of the relevant file
for the task, as well as a one-line query specifying what the models needs to do for the metric. We
give the model one response to fulfill the needs of the given metric. Table 1 shows the results by
language for DeepSeek V3, GPT4o, o3-mini, and Sonnet 3.5.
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Suite Language DeepSeek v3 GPT-4o o3 mini Sonnet 3.5

DOC

C# 84% 86% 82% 82%
Java 99% 98% 98% 99%
Javascript 73% 69% 71% 71%
Python 88% 95% 88% 88%
Typescript 90% 95% 89% 86%

FIX

C# 78% 76% 79% 78%
Java 45% 43% 58% 59%
Javascript 63% 81% 74% 94%
Python 92% 94% 97% 94%
Typescript 95% 90% 93% 95%

TEST

C# 15% 15% 13% 23%
Java 44% 48% 43% 45%
Javascript 16% 22% 20% 26%
Python 9% 18% 23% 22%
Typescript 14% 12% 28% 13%

Table 1: Chat scenario comparison of DeepSeek V3, GPT4o, o3-mini, and Sonnet 3.5 models across
various programming languages and tasks. Each number is reported on the same random sample of
100 test cases per language per metric

Model Analysis. All four evaluated models show promising results on our metrics, with test gener-
ation proving to be the most difficult. Further analysis into the largest discrepancies between models
leads to a few key findings. First, we see that GPT4o’s decreased sensitivity to prompt instructions
also makes it more immune to over-fitting to code examples in the prompt. In the bug fixing sce-
nario, the prompt includes a small patch of sample code at the end of the prompt to help guide the
model’s eye. This code block does not appear verbatim in the code, but is a similar structure to the
code block the model must fix. Figure 9 in Appendix E shows the discrepancy between the two
code blocks. DeepSeek V3 and o3-mini were very negatively impacted due to this diagnostic code:
rather than applying a patch to the correct code block, they tried to apply the patch for the diagnostic
code block, which was only included as a potentially relevant example. GPT4o, with its decreased
prompt sensitivity, did not experience this issue. Sonnet 3.5 had the same issue as DeepSeek V3 and
o3-mini, but less frequently, allowing it to still outperform the other models.

In the Python test generation scenario, a large source of errors comes from model’s attempting to
generate import statements. The prompt specifies the location to which the generated test suite will
be written, and the models must write import statements accordingly. We see that o3-mini is much
more likely to generate correct import statements than GPT4o, with Sonnet 3.5 and DeepSeek V3
in between the two.

3.2 AGENTIC SCENARIO

Problem Formulation. In the agentic scenario, we evaluate the metrics using a basic agent flow with
the following tools: edit file, search file, get errors, read file, search codebase, and some additional
terminal commands. We give the models multiple turns to solve each case. Unlike the chat scenario,
we do not provide a code selection in the model input. We also do not include the details of the static
analyzer error for bug fixing. Rather, the agent must discover and solve the error autonomously.
Table 2 shows the performance of GPT4o, o3-mini and Sonnet 3.5 in the agentic flow.

Model Analysis. Figures 2, 3 and 4 display agentic model trajectories. The x-axes represent the
step number. Each color in the stacked bar represents a different function called by the given model
on the given step. These plots highlight an interesting phenomenon:
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Suite Language GPT-4o o3-mini Sonnet 3.5

DOC

C# 67% 79% 78%
Java 52% 56% 69%
Javascript 55% 56% 59%
Python 93% 90% 90%
Typescript 71% 66% 75%

FIX

C# 80% 31% 76%
Java 71% 15% 66%
Javascript 91% 82% 82%
Python 98% 95% 100%
Typescript 96% 97% 94%

TEST

C# 17% 21% 17%
Java 60% 62% 53%
Javascript 23% 20% 17%
Python 36% 56% 38%
Typescript 18% 20% 18%

Table 2: Agentic scenario comparison of GPT4o, o3-mini, and Sonnet 3.5 models across various
programming languages and tasks.

Figure 2: Sonnet 3.5 trajectory with basic agent for the bug fixing scenario.

O3-mini skips the error identification step, leading to faster but less accurate solutions. o3-
mini does not call the get errors function, while GPT4o and Sonnet 3.5 consistently call it in the
first few steps. Although none of the models are presented with the specifics of the error, o3-mini
assesses the given file to predict what the error might be, rather than explicitly calling the relevant
tool. This leads to fewer overall turns, but often worse results: it thinks it has solved the problem
without verifying what the problem is. This finding about the o3-mini model is not possible to
ascertain with a benchmark like SWE-bench, because SWE-bench always gives the model the issue
it needs to fix. In contrast, we expect the agentic flow to find the error with tool calling before fixing
it.

Reasoning-focused o3-mini favors immediate test generation versus an iterative approach. o3-
mini tends to treat the agentic, multi-turn process as a one-shot task for test generation as well.
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Figure 3: GPT4o trajectory with basic agent for the bug fixing scenario.

Figure 4: o3-mini trajectory with basic agent for the bug fixing scenario.

While GPT4o and Sonnet 3.5 generally take two to three turns to write the test, o3-mini almost
always writes the tests immediately without any additional tool calling. Figure 5 highlights this
difference.

Sonnet 3.5 exercises more cautiousness by iterative error checking after editing. In the docu-
mentation generation scenario, Figure 6 shows how Sonnet 3.5 always calls get errors after adding
the docstring to the file. It does this to confirm that it hasn’t introduced errors in the process of
adding the docstring. In comparison, GPT 4o and o3-mini respond quite similarly to each other:
edit the file in one turn and mark the task as complete. Similarly in bug fixing, Sonnet 3.5 is more
likely to call get errors again in subsequent steps after editing the file.

4 RELATED WORK

We explain how our work builds upon and extend the related work on LLMs, Evaluating LLMs, and
Evaluating LLMs for software engineering tasks.
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(a) GPT 4o

(b) o3-mini

Figure 5: GPT4o vs. o3-mini agentic trajectories for the test generation scenario.

LLMs. Building on the success of LLMs, researchers have started to explore the advantages of
scaling up LLMs. For example, Gropher Rae et al. (2022) has 280 billion parameters, Megatron-
turing NLG Smith et al. (2022) has 530 billion parameters and PaLM Chowdhery et al. (2022) has
540 billion parameters outperforming average humans on the BIGbench benchmark Srivastava et al.
(2023). Similarly, researchers also explored fine-tuning LLMs for specific tasks and/or with human
feedback Ouyang et al. (2022). In our comprehensive study, we examine the performance of four
prominent LLMs: OpenAI’s GPT-4o and o3-mini, Anthropic’s Sonnet 3.5 and DeepSeek V3 on
multiple software engineering scenarios.

Evaluating LLMs. Previous work has evaluated the effectiveness of LLMs including performance
in natural language tasks, reasoning, robustness, safety, etc Chang et al. (2023). For tasks like senti-
ment analysis, Liang et al. (2023) and Qin et al. (2023) showed that LLMs perform much better than
traditional ML models. Other works Laskar et al. (2023) have evaluated ChatGPT’s performance
on a range of tasks including answering questions, text summarization, code generation, reason-
ing, and addressing ethical issues. Unlike traditional machine learning models where k-fold cross
validation was a common evaluation process, LLMs are often evaluated using static data sets. Com-
mon datasets for evaluating LLMs include: GLUE Wang et al. (2019b), SuperGLUE Wang et al.
(2019a), BIGBench Srivastava et al. (2023), Massive Multitask Language Understanding (MMLU)
Hendrycks et al. (2021), Ethics Benchmark Hendrycks et al. (2023), and others.
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(a) GPT 4o

(b) Sonnet 3.5

Figure 6: GPT4o vs. Sonnet 3.5 agentic trajectories for the docstring generation scenario.

Evaluating LLMs for Software Engineering Tasks. One of the most comprehensive works is
the paper Hou et al. (2023), which provides a systematic literature review on the intersection of
LLMs and SE, covering various aspects such as data collection, pre-processing, application, opti-
mization, evaluation, and prompt engineering. The paper also identifies the current challenges and
future directions for LLMs for SE. One of the first works for evaluating LLMs for code considering
code execution and test cases is HumanEval Chen et al. (2021), a benchmark dataset and a chal-
lenge for measuring the functional correctness of LLMs trained on code. HumanEval consists of
164 hand-written programming problems in Python, each with a function signature, a docstring, a
body, and several unit tests. Since then, there have been many augmentations to HumanEval, cov-
ering language expansion Athiwaratkun et al. (2023), Cassano et al. (2022), novel completion tasks
Muennighoff et al. (2024), and more rigorous testing Liu et al. (2023).

SWE-bench Jimenez et al. (2024) is another standard benchmark for code generation. It uses real-
world PR data to create tasks that require LLMs to find files in a repository and apply patches to
resolve a given git issue.
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In our research, we build upon the foundation laid by prior works in the literature. Like HumanEval
and SWE-bench, we incorporate considerations of code execution and test cases, but extend in terms
of the breadth of SE tasks addressed and the refinement of evaluation metrics. Furthermore, our
emphasis is on developing a comprehensive evaluation framework for LLM-guided programming
within IDE interactions, with a particular focus on improving user experience and satisfaction with
chat-IDE products.

5 CONCLUSION AND FUTURE WORK

Future Work. Currently, we are in the process of updating the data for the method generation task.
Future work will include results for this task across all five languages. We also plan to continuously
add new evaluations to our benchmark, such as query resolution and multiple-file edits and bug fixes.

Conclusion. With the growing use of LLMs to aid developers in complex engineering tasks comes
the need for more robust evaluations of LLM-generated code. Especially as more companies and
products seek to integrate LLMs into their workflows, existing evaluation metrics are not sufficient to
confirm the quality and correctness of machine-generated code. In this paper, we propose a solution
to this problem via the Copilot Evaluation Harness. We define four key evaluation metrics for the
code generation problem space: method generation, test generation, docstring generation, and bug
fixing. We detail the methodology required to collect test cases and evaluation results for each of
those four metrics. We also provide results for three of the four metrics across myriad programming
languages.

Our goal in creating the evaluation harness is to validate the quality of LLM-generated code. Since
our benchmark relies on test cases created from hundreds of real-world repositories, it reflects the
reality of customer code, and allows engineers to optimize their IDE-LLM integration with that ex-
perience in mind. Although we have seen immense advancements in the code generation ML space,
we seek to highlight how much oversight and engineering effort is required to reliably integrate
LLMs into a code workflow. We aim to provide developers a comprehensive evaluation suite, with
which they can optimize LLM integrations. With the Copilot Evaluation Harness, programmers can
systematically and robustly evaluate the impact of parameters such as prompt wordings, changes in
the order of information provided and changes in the context provided to the model. This is enabled
by the interpretability and explainability of results from our metric. In using the Copilot Evaluation
Harness, engineers can increase user trust in the quality of code generations.
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A APPENDIX

B DATA VALIDITY

Although our dataset are pulled from real-world git repositories, this does not guarantee that our
test cases accurately reflect how users interact with LLMs through IDEs. To confirm the validity
of our dataset, we gather usage data that illustrates how hundreds of developers at a major software
company use the docstring generation and bug fixing functionalities of our target LLM powered chat
extension in VS Code. We then compare these instances to our test cases.

For test generation, we use OpenAI’s ada embedding model ada to embed the tests generated from
user requests, and compare those to snippets generated from our evaluation cases. Similarly, for the
bug fixing telemetry, we embed the code snippets that contain the bug. We use PCA dimensionality
reduction to plot the data in two dimensions. PCA dimensionality reduction is optimized to find a
plane that maximizes the distance between points and outliers. Figures 7 and 8 show the results of
this comparison. We see that each language forms a cluster, and the real usage and our data exist
within a similar space for each language cluster, for both test generation and bug fixing.

We do not aim to match the test cases in our dataset to the real usage point for point. Rather, we
are determining whether or not our test cases are outliers in the space of the real usage. If they are
not outliers, we can infer that our dataset is in line with the real-world usage of the chat extension.
This analysis suggests that our dataset for both the test generation and bug fixing evaluation is in
line with real world usage.

C LANGUAGE-SPECIFIC BENCHMARK CREATION DETAILS

For each language, we sample from Github public repositories whose code we are able to build and
whose test suites we are able to run using our build agent. The build agent supports Node 18+,
Python 3.8+, Java JDK 1.8 (requiring Maven), and .NET 6.0, 7.0 and 8.0.

C.0.1 JAVASCRIPT AND TYPESCRIPT

In Javascript and Typescript, we sub-select on repos that contain a package.json file at the root
directory. The package.json file works in concordance with npm (Node Package Manager) to
handle various tasks within the repo, such as specifying dependencies for installation and running
the test suite. We rely on npm for our evaluation of Javascript and Typescript code, so we only
consider repos whose infrastructure is built to be managed with npm.
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Figure 7: Comparing our dataset for Test Generation evaluation with real-world usage across lan-
guages. This diagram shows that the data is clustered by language, not our test cases vs. user cases.
This shows that model responses from our test generation test cases align with the model responses
from user queries.

C.0.2 JAVA

In Java, we consider repositories that leverage Maven for their build process. In addition, as of
writing, we only consider projects that use JDK 1.8.

C.0.3 PYTHON

In Python, we only consider repositories for which we are able to successfully install all dependen-
cies within a virtual environment.

D METRIC EVALUATION DETAILS

D.1 DOCUMENTATION GENERATION FROM CODE (DOC)

This task involves generating documentation for a method.

D.1.1 METRICS

In this scenario, we consider a docstring generation to be successful if the location, format, and
coverage of the generated text is correct. We report the following metrics for this scenario:

• Syntax Correctness: We check that the docstring has been inserted into the code in such a
way that it does not disrupt the syntax of the file with its addition.

• Format Correctness: If the documentation comment is placed in a syntactically acceptable
manner for the given language, we further check for the correctness of documenting the re-
turn statement, function arguments with their types, function name, and whether a function
description was written.
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Figure 8: Comparing our dataset for Bug Fixing evaluation with real-world usage across languages.
This diagram shows that the data is clustered by language, not our test cases vs. user cases. This di-
agram shows that the model responses from our bug fixing test cases align with the model responses
from user queries.

D.1.2 EVALUATION PROCEDURE

We begin with a set of methods. For each method, we provide the method’s signature and body to
the LLM as context. We then prompt the LLM with a request to generate documentation for the
method, and return the input function with the generated docstring inserted in the correct location
within the function.

After the LLM generates the documentation and the generated docstring is inserted into the code file,
we evaluate the syntax correctness of the file with the generated docstring, as well as the correctness
of the docstring itself.

D.2 BUG-FIXING (FIX)

This task involves using LLMs to fix bugs identified by static analysis tools, with an expectation that
the resulting fixed code will have fewer errors overall than the original code. We use the following
static analyzers:

• javascript: eslint esl;
• ts: eslint esl, tsc (typescript compiler);
• python: pylint pyl, pyright pyr;
• java: spotbugs spo;
• c#: roslyn ros;

If the original error is fixed but another error is introduced in its place, the test case will fail.

D.2.1 METRICS

In this scenario, we consider a bug fix to be successful if the resulting code is syntactically correct
and the corresponding static analysis warning or error has disappeared.
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• Syntax Correctness: we confirm that the code file with the bug fix remains syntactically
correct.

• Fix Rate: we check that an existing static analysis warning or error in the code has been
successfully resolved by the suggested changes, without introducing any other errors.

D.2.2 EVALUATION PROCEDURE

Given a set of bugs found by static analyzer tools, we provide the file contents and diagnostic infor-
mation to the LLM to generate a fix. We assess whether the model fixed the original error, whether
it created any new errors, and whether the model-modified code remained syntactically correct after
the fix was inserted.

D.3 CODE GENERATION FROM NATURAL LANGUAGE (GENERATE)

This task involves generating a code snippet from a natural language description.

D.3.1 METRICS

Similar to previous evaluations of code generations Chen et al. (2021), we consider a generated code
snippet to be successful if the generated code is syntactically correct and all test cases covering the
generated code pass. Therefore, we report the following metrics for this scenario:

• Syntax Correctness: We compute and report the percentage of generated code that is syn-
tactically correct. For this metric, we check the syntax correctness of the generated code
using a language-specific parser (e.g., tree-sitter for each language).

• Test Pass Rate: We check the number of passing and failing tests and compute the passing
test ratio. To compute this number, we execute the entire test suite of the user project and
track which tests fail that passed prior to the model’s code injection.

D.3.2 EVALUATION PROCEDURE

We begin with a set of repositories with test cases. From each repository, we select the methods that
are: 1) covered by the test cases in the given repository’s test suite, and 2) have a docstring. For
each method, we ask an LLM to generate the body of the method given the method’s signature and
docstring. We provide the contents of method’s file as context to the LLM, replacing the original
method body with a commented line reading ”Your Code Here.”

After the LLM generates the method body, we put the generated code back in place of the original
method body and evaluate the code by running the repository’s test suite against the new method
body. We then compute and report the syntax correctness and test pass rate, as explained above.

D.4 TEST CASE GENERATION FOR CODE (TEST)

This task involves using LLMs to generate test cases for code. Developers usually shortcut when
it comes to writing unit tests. Automating test generation can motivate more developers to include
unit tests.

D.4.1 METRICS

In this scenario, we consider a generated test to be successful if it can pass on execution. Note that,
for this evaluation, this means we assume the code for which the test was written is correct.

• Generated Test Pass Rate: We compute the pass rate of the generated test. We assume the
original method is correct, and execute the generated test on its focal method.

D.4.2 EVALUATION PROCEDURE

Given a set of methods, we provide the method signature, docstring, and body as context to the LLM
to generate a test for each focal method.
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Once the LLM generates a test for the method, we add the test to the repository containing the
method, and attempt to execute the test.

For Javascript and Typescript, we generate tests using either the Jest or Mocha library. The original
test suite of the repository does not need to be written with either library, but each method’s original
file must be able to pass without errors when a trivial test case (which essentially just asserts true) is
appended to the file. When evaluating the generated tests, we temporarily append them to the focal
method’s file to mitigate import errors, and run the entire file. If running the file with a trivial test
case appended (e.g. a test that should always be true) returns false or an error, we know the results
from the generated test on that file are not reliable.

For Python, we write the generated test to a file located in the same directory as the file containing
the focal function. We pre-process to only test methods we can successfully import into the test file,
so that we know tests are not failing because of import errors over which the model does not have
control.

E MODEL COMPARISON SUPPLEMENTARY FIGURES

(a) Code included at the end of fix prompt. (b) True code from the file.

Figure 9: Since the diagnostic does not include the name of the function, it does not align correctly
when the model attempts to apply its patch.
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