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Abstract

Priority-based admission policies are widely used to determine who can access
scarce resources. Such policies assign scores to arriving individuals and prioritize
those with higher scores for admission. Ideally, the resources yield greater benefits
for individuals with higher scores, while the scores also provide a mechanism for
ensuring fairness in resource access, according to some agreed-upon metric. The
core problem is that scores must be estimated from historical data, and so are prone
to estimation error. As a result, well-intentioned interventions to promote fairness
can backfire. Our contribution is to provide a framework for analytically adjusting
these estimated scores, ensuring that fairness interventions are implemented with a
high degree of confidence.

1 Introduction

Priority-based policies are widely used to manage resource-constrained admission decisions in many
high-stakes programs, from hospital ICUs to criminal justice diversion programs [Chan et al., 2012,
Zhang et al., 2025]. The core challenge in these programs is balancing the competing costs of
admission and denial. Admitting an individual who subsequently fails incurs a significant cost, such
as a patient’s death in an ICU or re-offense during a diversion program. Denial also carries a distinct
outsourcing cost, such as rerouting a patient to another hospital or resorting to incarceration. Since
an individual’s likelihood of failure is not known a priori, machine learning (ML) algorithms are
typically used to estimate this risk and generate priority scores. To best utilize limited resources, it is
therefore natural to use priority policies guided by these ML-generated scores. Yet, such prioritization
can lead to unfair outcomes across demographic groups [Obermeyer et al., 2019, Angwin et al., 2016],
necessitating a careful study of fairness in these priority-based admissions.

This challenge of ensuring fairness is compounded by the inevitable error in ML-generated scores.
ML error not only leads to the risk of misprioritizing individuals, but more importantly, to the
risk of misidentifying the disadvantaged group. A well-intentioned fairness policy might adjust
priority scores to allocate more resources to a group it identifies as disadvantaged; however, this can
backfire and exacerbate unfairness if that group is misidentified. This raises two critical research
questions: When can we be confident that fairness-aware adjustments truly mitigate unfairness in the
presence of ML error? Furthermore, if we are confident in the overall adjustment, which individual
post-adjustment decisions can be trusted?

To address these questions, we first formulate a fairness-aware optimization model and characterize
its solution (Section 2). We then present our core contribution: a two-fold uncertainty quantification
framework (Section 3). The first fold quantifies the confidence in the overall fairness adjustment itself,
while the second, building on Zhang et al. [2025], quantifies confidence in each post-adjustment
individual decision.
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2 Fairness-Aware Priority Policies

2.1 Model Formulation

We consider an admission decision process for a program with limited resources, specifically N
available slots. Individuals arrive at a rate λ and are described by a vector of covariates X (e.g.,
gender, race, age, etc). An individual with covariate x requests a stay of length m(x). By Little’s Law,
the expected resource requirement for each covariate x is λP(X = x)m(x). For fairness analysis,
we consider two protected groups (e.g., i = 1 for male, i = 2 for female), where the arrival rate
for group i is denoted by λi (with λ = λ1 + λ2). We use E[·] and Ei[·] to denote expectations over
the covariate distribution across all groups and within group i, respectively. Individuals belong to
one of two classes (e.g., j = 1 for low-risk, j = 2 for high-risk), which determines their probability
of program failure qj .1 The probability that an individual with covariates x belongs to the low-risk
class is p1(x), which is unknown and must be estimated from historical data. Let p̂1(x) denote the
estimated probability, implying an estimated failure probability of q̂(x) :=

∑
j p̂j(x)qj .

Admission decisions have associated costs. Admitting an individual from class j incurs a total
expected cost of cTj , incorporating program maintenance and potential failure costs. Denying them
results in a cost of cDj , accounting for outsourcing expenses. We assume admitting always has a
lower cost (cTj ≤ cDj ), but resources are insufficient for everyone (λE[m(X)] > N ), making the
admission control necessary. Our decision variable is a(x), the fraction of individuals with covariate
x to admit. The optimization problem (1) is to minimize total costs while incorporating a penalty on
the unfairness F̂(a) (will be defined in Section 2.2), weighted by a parameter η ≥ 0 that captures the
fairness-efficiency trade-off:

min
a∈A

Ĉ(a) + ηF̂(a), (1)

where A := {a : a(x) ∈ [0, 1] and λE[a(X)m(X)] ≤ N} is the feasible region, and Ĉ(a) :=∑
j c

D
j λE[(1− a(X))p̂j(X)] + cTj λE[a(X)p̂j(x)] is the total estimated cost.

2.2 Fairness Criteria

We define unfairness as the disparity of fairness metrics between the two groups, that is, F̂(a) :=

|F̂1(a) − F̂2(a)|. For the group-specific fairness metric F̂i(a), we incorporate various fairness
definitions from the ML literature. By framing the admission decision as analogous to a positive
prediction in classification, we can adapt common criteria such as Statistical Parity, False Positive
Rate (FPR) Parity, and True Positive Rate (TPR) Parity [Chouldechova, 2017, Corbett-Davies et al.,
2017, Verma and Rubin, 2018]. Specifically, we define a false positive as an admitted individual who
subsequently fails the program and a true positive as one who successfully completes it. Additionally,
we consider a resource-based criterion, f -Resource Parity, which aims to allocate a target fraction fi
of resources to each group i. These criteria are summarized in Table 1.2 Since outcomes for denied
applicants are unobserved, FPR and TPR Parity must be estimated using p̂1(x) and thus involve
uncertainty analyzed in Section 3.

Table 1: Fairness criteria and corresponding priority scores
Fairness Criterion Fairness Metric F̂i(a) Priority Score ŝfair(x)

Efficiency Only N/A ŝ(x) :=
∑

j p̂j(x)(c
D
j −cTj )

m(x)

Statistical Parity Ei[a(X)] ŝ(x)± η 1
λim(x)

FPR Parity Ei[a(X)q̂(x)]
Ei[q̂(x)]

ŝ(x)± η q̂(x)
λim(x)Ei[q̂(X)]

TPR Parity Ei[a(X)(1−q̂(x))]
Ei[1−q̂(x)] ŝ(x)± η 1−q̂(x)

λim(x)Ei[1−q̂(X)]

f -Resource Parity λiEi[a(X)m(X)]− fiN ŝ(x)± η

1The class-based dynamic is to reduce the dimension of model parameters from the number of covariates to
the number of classes, given the limited dataset. In this paper, we focus on binary classes, groups, and outcomes
for simplicity. All results derived in this paper can be generalized to multiple classes, groups, and outcomes.

2Some common criteria, such as Error Rate Balance and Predicted Parity, are not listed, where the former is
to combine FPR Parity and TPR Parity, and for the latter, we do not have a theoretical result yet since the penalty
is non-linear in decision variable a(x).
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2.3 Priority Policy Structure

Incorporating the penalty terms F̂(a) from Section 2.2, the optimal solution to the optimization
problem (1) is a priority score policy. With no fairness concerns, the efficiency-only policy prioritizes
individuals based on the score ŝ(x) in Table 1, which represents the expected cost reduction per
unit of resource. However, the efficiency-only policy may result in an imbalanced allocation of
resources based on the chosen fairness criterion. The fairness-aware score is adjusted to ensure that
the disadvantaged group receives a higher score, thereby allocating more resources to that group.

Definition 1 A priority score policy a, with score function s : X → R, admits the highest-scoring
covariates with total resource requirement λP(X = x)m(x) until the resource limit N is met. The
decision boundary covariate is partially admitted, denoted by x0(s).

Definition 2 A group is defined as advantaged if, under the efficiency-only policy, it has higher
fairness metric F̂i(a) under the chosen fairness criterion.3 The other group is disadvantaged.

Proposition 1 For sufficiently small η,4 a priority score policy âfair(x) with score function ŝfair(x)
as defined in Table 1 solves (1). A positive score adjustment is applied to the disadvantaged group,
and a negative adjustment is applied to the advantaged group.

The key to the proof is to rewrite (1) into a fractional knapsack problem. The solution to such
a problem is known to be a greedy policy based on a score function [Goodrich and Tamassia,
2001, chap. 5.1.1]. Each fairness criterion in Table 1 corresponds to a distinct adjustment to the
efficiency-only score, designed to allocate resources more equitably toward the disadvantaged group.
For example, f -Resource Parity uses a constant shift. Statistical Parity assigns a larger shift for
individuals with a shorter length of stay m(x), rapidly changing the admission fraction with minimal
impact on individual decisions. For similar reasons, FPR Parity and TPR Parity assign larger shifts to
individuals with a higher failure rate q̂(x) and a higher success rate 1− q̂(x), respectively.

However, the entire adjustment mechanism—from identifying the disadvantaged group to calculating
the score shifts—relies on the uncertain probability estimate p̂1(x). Is it possible that the adjustment
exacerbates true unfairness, due to the misguidance from this estimation?

3 Two-fold Uncertainty Quantification Framework

To investigate the uncertainty in adjusted priority decisions, our analysis is two-fold. First, we
characterize whether the fairness adjustment is truly mitigating unfairness (i.e., applied in the correct
direction). Second, if the direction is confident, we characterize the confidence of individual decisions.

3.1 Confidence in Adjustment Mechanism

Recall from Section 2.2 that FPR and TPR are subject to ML error in p̂1(x). Consequently, the true
advantaged group may differ from the estimated one. We must therefore determine if the same group
identification holds under the true probability p1(x). This verification is critical, as a misidentification
would cause the subsequent fairness adjustment to exacerbate, rather than mitigate, unfairness.

Mathematically, assume that the efficiency-only policy with ŝ(x) identifies group 1 as the advantaged
group in estimation, that is, F̂1(a) > F̂2(a). We want to verify if F1(a) > F2(a) still holds
under true probability p1(x). We will focus on the FPR Parity for illustration, approaching this by
comparing confidence intervals (CIs) for the FPRs in the two groups.

Since the global resource limit constraint makes all admission decisions interdependent, our analysis
must control for estimation error across all covariates simultaneously. Therefore, our analysis requires
simultaneous CIs Ip(x), which provide a joint guarantee P(p1(x) ∈ Ip(x),∀x) ≥ 1 − ϵ ∈ (0, 1).
Such simultaneous CIs can be derived from bootstrapping methods [Mandel and Betensky, 2008] or
conformal predictors [Gazin et al., 2024]. From these, we apply the FPR formula from Table 1 to
construct CIs IFPR

i for the true FPR in both groups i = 1, 2.
3Advantaged group is assigned more resources—for the four criteria in Table 1, it means: higher admission

fraction, higher FPR, higher TPR, and more resources allocated compared to the target fiN .
4For large η, the solution becomes the perfectly fair policy that achieves F̂(a) = 0.
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Proposition 2 If IFPR
1 ∩ IFPR

2 = ∅, then group 1 is the true advantaged group under p1(x) with
probability at least 1− ϵ.

When the identification of disadvantaged group is confident (i.e., the CIs do not overlap), the fairness
adjustments proposed in Table 1 can proceed with confidence. However, when the identification lacks
confidence, the unreliable adjustment could potentially exacerbate the unfairness that the policy aims
to mitigate. In such cases, further study is needed before proceeding with any score adjustments.

3.2 Confidence in Individual Decisions

If we are confident that the adjustment mechanism is in the correct direction, we proceed to char-
acterize the confidence in individual decisions under the adjusted policy with score ŝ(x) ± ηt̂(x),
where the adjustment term t̂(x) depends on the selected fairness criterion in Table 1. Our goal is to
characterize which covariates have a correct decision guarantee within confidence level 1− ϵ and
which remain uncertain. Utilizing the priority structure, we can characterize confident or uncertain
covariates by comparing individual CIs with the decision boundary’s CI in the following three steps.

CI for Individual Scores. From the same simultaneous CIs in Section 3.1, applying the transforma-
tion of the adjusted score function ŝ(x)± ηt̂(x), we construct CIs Ĩ(x) = [L̃(x), Ũ(x)] for the true
fair score with negative adjustment in group 1 and with positive adjustment in group 2.

CI for Decision Boundary. The score of the decision boundary is monotonic with respect to each
individual score. This critical property, enabled by the priority structure, allows us to construct a CI
for the decision boundary [TL, TU ] := [L̃(x0(L̃)), Ũ(x0(Ũ))], where the bounds are the decision
boundaries when all individual scores are simultaneously set to their lower or upper confidence limits.

Decision Confidence Guarantee. We certify the individual admission decisions by comparing each
covariate’s individual CI Ĩ(x) with the decision boundary’s CI [TL, TU ], as shown in Figure 1.

Proposition 3 If covariate x ∈ X satisfies L̃(x) > TU (if admitted) or Ũ(x) < TL (if denied), then
the decision âfair(x) is correct with probability at least 1− ϵ.

The proof follows the idea in the indifference-zone selection from the R&S literature [Hong et al.,
2021]. Uncertain covariates that require additional human oversight fall into two categories: (1) those
with scores close to the decision boundary, where small estimation errors can flip the decision (e.g.,
x4 in Figure 1); and (2) those with high estimation uncertainty (e.g., due to small sample size or poor
predictive power), even if their score estimate is far from the boundary (e.g., x3 in Figure 1).

Figure 1: Confident (colored in black) and uncertain (colored in grey) admission decisions.

4 Conclusion

This paper integrates an operations research (OR) model for fair admission control with ML tools
for uncertainty quantification. By leveraging the priority structure inherent to the OR model, our
framework translates the uncertainty from ML estimation to the final admission decisions. Within
this analytical framework, we address the research questions posed in the introduction as follows.

The effect of ML error on fairness is nuanced—it can sometimes exacerbate unfairness and at other
times reduce it. We provide a diagnostic to determine when the adjustment direction for mitigating
unfairness is statistically reliable. Building on this, we characterize which individual post-adjustment
decisions can be trusted and flag those with insufficient confidence for targeted human review. Future
research could focus on approaches to ensure fairness even when the adjustment direction is uncertain,
as well as on developing more refined human-in-the-loop mechanisms.
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