
On the selection of neural architectures from a supernet

Gabriel Meyer-Lee1 Nick Cheney1

1
University of Vermont, Computer Science Department

Abstract After DARTS provided a method utilizing a supernet to search for neural network architec-

tures entirely through gradient descent, differentiable supernet-based methods emerged as

a powerful and popular approach to efficient neural architecture search (NAS). Following

works improved upon many aspects of the DARTS algorithm but generally kept the origi-

nal method of selecting the final architecture, pruning the lowest magnitude architecture

weights, though critiques of this approach have led to alternative architecture selection

mechanisms, such as a perturbation-based method. Here we perform a broad comparative

evaluation of architecture selection methods in combination with different techniques for

training the supernet, and highlight the interdependence between various methods for su-

pernet training and architecture selection mechanisms. We show the potential for improved

results for many NAS supernet training methods via alternate architecture selection mecha-

nisms relative to the pruning-based architecture selection they were introduced, and are

typically evaluated, with. In evaluating architecture selection methods, we also demonstrate

how zero-shot NAS methods may be effectively integrated into supernet NAS training as

new architecture selection mechanisms.

1 Introduction
Neural architecture search (NAS) names the problem of automatically selecting an effective neural

network architecture for given data. NAS is a subset of automated machine learning (AutoML) that

is focused on the topology and operations of deep learning models. In their survey of work on NAS,

Elsken et al. (2019) establish a general model of three components constituting the NAS process: a

search space to define the set of possible architectures, a search strategy to traverse over potential

solutions, and a performance estimation strategy to rate the quality of solutions considered by the

search strategy.

Early NAS algorithms required thousands of GPU hours to learn weights for each candidate

network in order to obtain an estimate of that candidate’s performance. Researchers soon developed

techniques to obtain performance estimates more rapidly, including weight inheritance (Real et al.,

2017), predictive models (Liu et al., 2018), shortened training (Zoph et al., 2018), and weight-sharing

(Pham et al., 2018). The weight sharing technique, originally part of ENAS, allowed performance

estimates for any candidate network to be obtained after training a single neural network. This

technique was based on training a supernet, which represented a superposition of all candidate

networks. DARTS then demonstrated a gradient-based method to learn architecture weights

attached to the supernet, which collapsed the process of performance estimation and search into

the training of a single neural network (Liu et al., 2019). Thus, these new efficient NAS methods no

longer fit neatly into the existing general theoretical framework, making it difficult to interpret how

new innovations affect the performance estimation and searching capabilities of the algorithm.

A more recent survey by Ren et al. (2021) of NAS discusses the range of methods that have been

developed from the concepts in DARTS. In this work, we perform our own analysis of the supernet

methods reviewed in Ren et al. (2021) and two diverging lines of research, represented by the

DARTS-like and “true one-shot” approaches to supernet NAS. Our review reveals the DARTS-like

algorithms to be more popular in the literature, made clear by the widespread use of the architecture

selection method utilized by DARTS, magnitude-based pruning of the architecture weights.
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This architecture selection method has been previously criticized as ineffective for the algorithm

(Li and Talwalkar, 2019; Yu et al., 2020; Yang et al., 2020). Some studies suggest the architecture

weight learning process overvalues specific operations, such as skip connections (Wang et al.,

2021), while others attribute the issue to the fact that DARTS does not evaluate actual candidate

architectures during training, only continuous combinations of them (Xie et al., 2019). Most of these

works propose techniques to train the architecture weights in order to overcome these issues. But,

DARTS-PT (Wang et al., 2021) instead rejects pruning in favor of a perturbation-based architecture

selection method and goes so far as to question the utility of the rest of the DARTS algorithm.

We perform a case study to examine these findings, showing that minimal variation in how the

supernet is trained will affect the trends observed and the conclusions drawn by the original study.

We then expand this approach to a holistic evaluation of architecture selection in supernet NAS.

A recent line of NAS research, the “zero-shot” methods, obtain even faster runtimes than the

supernet methods by not training even a single model. Rather, they obtain performance estimates

based on metrics computed from the structure of candidate networks (Abdelfattah et al., 2021).

Typically these metrics are used on an untrained supernet but we provide a new reframing as a

method of selecting architectures from a trained supernet and evidence in their effectiveness.

Here, we contribute a holistic and systematic analysis that evaluates combinations of supernet

training and architecture selection techniques across a range of training contexts. This allows us

to address the question of when and why magnitude-based pruning fails, as well as to analyze

how different components of the training context affect the evaluation of NAS algorithms. For

example, both operation bias and the discretization loss (White et al., 2023; Xie et al., 2020) have

been suggested to factor in the the failure modes of magnitude pruning. On NAS-Bench-201,

operation bias has a dominant negative impact on the results of DARTS, however, the DARTS- (Chu

et al., 2021a) results reveal that correcting for this alone without addressing the discretization error

will still leave magnitude pruning suboptimal. In contrast, the success of DirichletNAS is explained

by it’s small discretization gap and lack of bias toward skip connections.

We do not demonstrate any single alternative architecture selection technique to be clearly

superior to magnitude-based pruning but instead show that perturbation, sampling, and zero-

shot methods can all be highly effective in different training contexts. While being able to point

out a single optimal approach would be helpful for advancing NAS, we believe that that simply

highlighting this complexity is important given the current tendency of papers introducing novel

supernet training methods to benchmark their approach using just a single architecture selection

methods (and often magnitude-based pruning; Appendix Figure 5). While we don’t believe it

necessary for every use-case of supernet NAS to take on the expense of evaluating every supernet

training method with every architecture selection mechanism, our findings here suggest that

increasing the use of this approach when benchmarking new, or existing, algorithms would better

contextualize (and perhaps more fairly evaluate) different approaches – while also being able to

improve the stated performance metrics for new proposed supernet training algorithms.

The primary contributions of this work are thus to demonstrate and highlight that:

• Supernet NAS methods are often published with architecture selection methods that are in many

contexts sub-optimal (Sec. 5.1)

• Zero-shot NAS approaches can be highly successful for architecture selection using trained

supernets, though this is not how they are typically used (Sec. 4.1 and 5)

• Operation bias and discretization loss together can explain the failure modes of supernet NAS

methods but either alone can be misleading (Sec. 5.3)

• A systematic comparison of combinations suggests that there are not necessarily clear takeaways

and easy predictions for which arch selection mechanism will be best, but the best supernet

training algorithms are successful with multiple selection methods (Sec. 5)
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2 Related Work

2.1 Differentiable supernet NAS

DARTS was among the first differentiable NAS algorithm, utilizing a “continuous relaxation”

method to parametrize the set of possible architectures, by placing trainable weights on each

possible operation (Liu et al., 2019). The final model is selected from these trained architecture

weights by simply keeping only the operations with the largest weight (“magnitude-based pruning”).

In motivating SNAS, Xie et al. (2019) comment on the performance estimation aspect of DARTS,

demonstrating the disparity in the validation accuracy obtained from the full shared-weight model

and the pruned final architecture. SNAS addresses this limitation by sampling individual (“softened”)

architectures, while GDAS samples discrete architectures (Dong and Yang, 2019c) without softening.

DrNAS substitutes a dirichlet distribution over the architecture weights (Chen et al., 2021b). These

stochastic methods preserve the gradient-based approach of DARTS, while proposing a specific

(and increasingly discrete) architecture at each step.

While all of the algorithms described above would be considered DARTS-like methods, Bender

et al. (2018) demonstrated an alternative approach, implementing a shared-weight supernet trained

via path dropout and demonstrating a strong correlation between performance estimates from

shortened training and the shared-weight model. The “true one-shot” methods follow this approach,

training a supernet without even the implicit search over candidate architectures obtained via

architecture weights (for example, by sampling subnetworks uniformly to train).

2.2 Zero-shot NAS

Recently, methods have been proposed to select an architecture without training even a single

architecture model. Much of these methods are based on proxies, like EcoNAS (Zhou et al., 2020),

while TE-NAS (Chen et al., 2021a) demonstrated a zero-shot search based on measures emerging

from deep learning theory. Abdelfattah et al. (2021) suggest as potentially useful in NAS a range of

measures that have been used to compute saliency in other deep learning problems.

In our project we propose a new unification of zero- and one-shot NAS methods, which we

demonstrate by modifying the adapted synflow (Tanaka et al., 2020) measure utilized by Abdelfattah

et al. (2021) as well as their implementation of the Jacobian covariance measure developed by

Mellor et al. (2021) to function as architecture selection techniques on a supernet. The initialized

architectures that these metrics are computed on can be viewed as subnetworks drawn from an

untrained supernet. We generalize this to include trained supernets as well.

2.3 Supernet NAS meta-analysis

The literature review of Ren et al. (2021) expands on, and reframes, the general model of NAS

proposed by Elsken et al. (2019), adding the selection and evaluation of the final architecture to

the theoretical model. This parallels the conceptual model advanced in our project, however our

framework is adjusted to suit the specific form of supernet NAS algorithms.

Li and Talwalkar (2019), in a key early paper demonstrating meta-analysis of NAS algorithms,

show that the selection of search space can have a greater effect on the final performance than the

selection of NAS algorithm. Our paper continues in this line of meta-analysis, exemplified by our

contextualization of algorithm performance in Sec. 5.

Yu et al. (2020) initiated the critical inquiry into the use of weight-sharing for performance

estimation by evaluating popular weight-sharing NAS algorithms in a reduced search space of

32 architectures. They demonstrated a lack of correlation in ranking between the performance

estimates obtained from the shared-weight model and the train-from-scratch test accuracy. Further

research evaluating the rankings of small samples (Yang et al., 2020) or small search spaces (Zhang

et al., 2020) showed high variance in rankings across random seeds after training the shared weight

model through random sampling. Like these prior studies, we also suggest the accuracy of the top
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Search Space DARTS DARTS-

Max 𝛼 PT PT w/ fix 𝛼 Max 𝛼 PT PT w/ fix 𝛼

NB-201 45.7 11.89 6.20 6.75 ± 0.35 6.56 ± 0.33 7.22 ± 0.95

S1 3.84 3.50 2.86 2.84 ± 0.26 2.83 ± 0.15 2.89 ± 0.15

S2 4.85 2.79 2.59 2.74 ± 0.15 2.46 ± 0.08 2.73 ± 0.13

S3 3.34 2.49 2.52 2.62 ± 0.08 2.62 ± 0.10 2.60 ± 0.13
S4 7.2 2.64 2.58 3.54 ± 0.33 2.63 ± 0.04 2.53 ± 0.09

Table 1: A case study showing the importance of separately evaluating supernet training and architec-

ture selection. The DARTS-PT architecture selection method run on a supernet trained on

standard DARTS (left) tends to perform best when not training architecture weights (“Perturb

w/ fix 𝛼” is best in 4 of 5 search spaces). But when the same perturbation method is applied to

a supernet trained via DARTS- (right), performance improves when including architecture

weights (as “Perturb w/ fix 𝛼” is best in just 1 of 5 search spaces). This reversal demonstrates

that the perturbation method of selecting architectures is reliant on the particular training of

the supernet. The top architecture selection technique for the version of DARTS is indicated

in bold while the overall top method for each search space is underlined. Search spaces are

explained in Appendix C.

model alone can be a misleading evaluation technique for NAS algorithms. However, our focus is

not on design issues with specific components of the NAS process, but on the (perhaps unintended)

interactions between the proposed innovation and the other NAS components. The closest prior

work to our study is that of Ning et al. (2021), as they also use comparative evaluation experiments

to study the behavior of supernet NAS algorithms. In this study, however, we focus on architecture

selection rather than performance prediction.

In this work, we build on these prior works of meta-analysis of NAS to clarify the conceptual

structure of supernet NAS algorithms and use this framework to understand their performance.

We use a literature review and an experimental case study to highlight the need for architecture

selection and supernet training to be studied as interdependent processes. We perform independent

and broad comparative evaluations of these algorithms, in order to shed light on competing theories

of issues with architecture selection and performance estimation of supernet NAS. In the process

of this evaluation, we synthesize a novel NAS algorithm (combining DARTS-like training with

evaluations from zero-shot methods), not to propose the algorithm but as a proof of concept of the

design space supported through our general model of supernet NAS.

3 Case Study: two modifications to DARTS

Two recent papers demonstrated non-overlapping modifications to DARTS named DARTS- (Chu

et al., 2021a) and DARTS-PT (Wang et al., 2021). Each paper aimed to overcome the problem of

unstable architecture weights in DARTS. DARTS- addressed this issue by adding an auxiliary skip

connection to each mixed operation in DARTS, aiming to stabilize the training of architecture

weights. DARTS-PT instead dismissed the architecture weights entirely, using a perturbation

based method of selecting operations after training the supernet. The authors conclude that the

perturbation technique may work better if DARTS is trained without architecture weights at all as

they were able to demonstrate a smaller error using their method on a supernet trained with fixed

architecture weights in comparison with one trained by DARTS. This result would suggest that

the core innovation of DARTS—the continuous relaxation technique for approximating gradient

updates to the architecture of the model—may not be of significant use
1
.

1
A surprising and provocative implication, highlighted as an ICLR 2021 Outstanding Paper Award
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By implementing DARTS- within the provided codebase for DARTS-PT and replicating their

tests on CIFAR10, we observe a near reversal of this result (Table 1). Once training of the architecture

weights is stabilized via the auxiliary skip connection, perturbation-based selection with a supernet

trained without architecture weights is no longer the dominant method.

The perturbation method still appears quite effective overall, although it now benefits from

training the architecture weights (𝛼). Interestingly, the perturbation method does not utilize the

architecture weights for architecture selection itself, so this result indicates that properly trained

architecture weights influence the training of the shared weights in a way that can assist the

perturbation process. This hints at the dependence of shared weights on architecture weights, while

the overall reversal of the effectiveness of DARTS-PT suggests a dependence of an architecture

selection method on the training of the supernet model to which it is applied.

DARTS-PT demonstrated an innovative solution to the instability in DARTS by intervening at

the time of architecture selection rather than during training. In Sections 4.1 and 5 below, we extend

this approach to study architecture selection more broadly. The above case study demonstrates both

that some architecture selection algorithms (e.g. pruning) can make up for limitations of specific

supernet training algorithms (e.g. instability in DARTS), and also that this relationship between

supernet training and architecture selection means that using a single approach to either may

not reliably assess the other’s potential effectiveness. For these reasons, we evaluate a variety of

supernet training and architecture selection algorithms in isolation and combination to understand

the effectiveness of each algorithm and the interactions between them.

4 Architecture selection in supernets

Prior work outlines several explanations for the failure of magnitude-based pruning in supernets,

we highlight two distinct explanations particularly tied to architecture selection: operation bias and

discretization loss (White et al., 2023). The operation bias describes the tendency of the supernet

training process to assign disproportionate weight to a specific operation, in this case the skip-

connection, compared the the actual utility of the operation. This is explained as byproduct of

the greater utility of the skip connection in avoiding vanishing gradients during supernet training

compared to the utility in training the smaller candidate architectures (Chu et al., 2021a; Wang

et al., 2021). The discretization loss describes the drop in accuracy observed when using supernet

shared-weights optimized for continuous architectural weights with discrete architectures. This

has been shown to be a source of instability in DARTS, where the disconnect between the supernet

training process and the final “hard prune” means that the performance of the supernet has little

relation to the that of the final architecture selected and the interdependence between candidate

operations is ignored during selection (Xie et al., 2019; Li and Talwalkar, 2019).

The supernet training methods we select for experimentation align with distinct modifications

to DARTS designed to address these sources of failure. DARTS- is a variationwhich directly attempts

to address operation bias. SNAS, GDAS, and DrNAS all attempt to mitigate discretization loss

through the use of sampling during training, with GDAS actually sampling discrete architectures

and SNAS and DrNAS sampling softened architectures, which approach discrete samples over

the course of supernet training by decaying a temperature parameter. The stochasticity of these

algorithms may also provide some regularization capable of decreasing operation bias. While prior

studies have shown both of these phenomena to be significant issues for supernet NAS methods,

we study how they interact.

In order to do so, we focus on the process of architecture selection, emphasizing that it is not

merely a trivial discretization step at the end of supernet training, but an architecture search itself

which takes in the supernet model and associated weighted distribution over the architecture space

and selects the single top architecture for that search space. We utilize the original names of the

algorithms to denote only methods for shared-weight model training (e.g. DARTS, SNAS), while
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we separate out architecture selection methods and name them based on the criterion used (e.g.

prune, perturb).

We review the architecture selection methods demonstrated in literature in detail in Appendix D.

From these, in addition to the commonly used magnitude-based pruning, we test the basic method

utilized for one-shot supernet NAS of sampling a set of candidate architectures (in our case, using

the architecture weights) and ranking the candidates by validation accuracy as estimated using

the supernet’s shared-weights, referring to this method as valid (Bender et al., 2018). Taking

an open-ended view of architecture selection, we also implement methods used to rank sample

architectures not generally applied to trained supernets, the zero-shot NAS metrics of synflow and

Jacobian covariance (jacob or jacob cov) (Tanaka et al., 2020; Mellor et al., 2021). Lastly, we test the

perturbation-based technique developed by Wang et al. (2021) specifically to overcome the issue of

operation bias in DARTS (perturb).

4.1 Evaluating architecture selection

As we have framed architecture selection as search algorithms that take a supernet as input and

output a single selected architecture, we can compare these algorithms in isolation from the process

of supernet training via their final architectures if we can produce a supernet trained in a sufficiently

neutral manner to suffice as a baseline.

We consider two training (or lack thereof) approaches for developing synthetic supernets: one

randomly initialized and untrained (“untrained”) and one trained via sampled discrete architectures

as with Li and Talwalkar (2019), except with biased oversampling of the top architectures (inversely

proportional to their train-from-scratch test performance) rather than their uniform sampling of

architectures (“informed”). Then, we consider two approaches to obtaining samples of candidate

architectures, using a uniform distribution over the architecture space (“uniform”) and using the

same biased sampler used to train the supernet detailed above (“informed”). We combine these to

create a total of four synthetic supernets, as described in further detail in Appendix E.

valid synflow jacob_cov perturb
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Figure 1: Comparison of architecture selection performance on CIFAR-10 with given baseline models.

Baseline models are constructed by combining two components: a supernet, with shared

weightswhich are either randomly initialized and untrained or have been training by sampling

individual candidate networks using an informed sampler, and an architecture sampler, which

uses either a uniform distribution or the informed sampler.
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Comparing the results using the untrained vs trained supernets both with samples drawn from

the informed sampler, we note that both methods originally proposed for use in NAS as zero-shot

algorithms seem to benefit slightly from having effectively trained weights – suggesting their

potential use as architecture selection mechanisms – despite their use-cases in the past being solely

for zero-shot NAS. Synaptic flow improves in test accuracy from 93.35 ± 0.42 to 93.88 ± 0.36, and

Jacobian covariance improves from 92.50 ± 0.52 to 93.05 ± 0.43 on CIFAR-10.

For the perturbation method of architecture selection, training the shared-weight model actually

decreases performance, dropping from 93.00 ± 0.73 with randomly initialed weights to 90.50 ± 0.22

with trained shared-weights

This mirrors the results of the case study shown in Table 1, but in this case we present a more

extreme (though similarly narrow) result: the perturbation method isn’t just doing better without

architecture weights than with them, but, in comparison to our baseline method of shared weight

training, perturbation-based architecture selection shows an improvement from not training the

supernet at all.

The results for selecting architectures based on validation accuracy are clear: this method is

only effective with the trained supernet and the informed sampler. It is fairly straightforward that

using the same distribution of architectures used to train the supernet to draw a sample will lead to

the most reliable validation accuracies across the sample. Without a trained supernet, validation

accuracy measurement is largely uninformative and when the architectures validated are drawn

from a different distribution, so they do not match the architectures the weights are trained for, the

resulting validation accuracy measurements may be quite noisy.

These trends are fairly consistent when tested on CIFAR-100 as well, shown in Appendix E.

5 Combined Evaluation

As our case study suggested, the conditions for failure of architecture selection from a supernet

are highly dependent on the specifics of the training process of the supernet. By exhaustively

analyzing each of the selected supernet training algorithms in combination with each architecture

selection technique, we can observe both the failure modes of individual supernet training algo-

rithms and broad trends in the performance of supernet NAS algorithms based on their design.

Table 2 shows these combined NAS algorithms for various lengths of training, datasets, and search

spaces, reporting average train-from-scratch test accuracy across three independent trials. The top

performing supernet training algorithms for a variety of architecture selection methods were SNAS

and Dirichlet NAS. They made up the the winning combination (bold cells in table) in 10 of the 11

search space/dataset/training length contexts. The architecture selection method that best paired

with them was less consistent, although pruning was the most effective in 5 of those 10 contexts.

5.1 When should we not prune?

5.1.1 DARTS and DARTS- on NAS-Bench-201. DARTS with pruning is notably ineffective on NAS-

Bench-201. DARTS- with pruning performs significantly better in this search space across the

board, indicating that a substantial component of DARTS test error can be attributed to DARTS

overvaluing skip connections–as suggested in Chu et al. (2021a). In all but one training context of

NAS-Bench-201, pruning on DARTS is outperformed by every other architecture selection algorithm

studied. This is not the case for DARTS-. However, pruning on DARTS- is still outperformed in

every NAS-Bench-201 training context by at least one architecture selection algorithm. This shows

that adding the extra skip connection does not fully correct DARTS’ failure on NAS-Bench-201.

5.1.2 GDAS with shorter training durations. On NAS-Bench-201, pruning is the most effective architec-

ture selection algorithm for GDAS only when the supernet is trained for 250 epochs. On CIFAR10

and CIFAR100, when the supernet is trained for less than 250 epochs, almost all other architecture

selection algorithms are superior to pruning. One possible hypothesis for this is that the discrete
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Search space NASBench-201 DARTS-space

Data set CIFAR10 CIFAR100 IN16 CIFAR10 CIFAR100

Epochs 50 100 250 50 100 250 100 50 100 50 100

darts/prune 45.70 40.16 15.80 61.03 61.03 45.36 81.59 3.27 3.08 16.67 17.03

darts/valid 14.67 9.07 11.48 50.98 36.41 47.47 79.21 3.48 3.16 17.88 18.60

darts/synflow 6.79 9.48 9.35 30.12 33.24 42.80 57.41 3.66 3.52 17.64 19.43

darts/jacob 11.38 10.03 9.55 33.15 36.44 35.91 71.52 3.01 3.04 17.60 17.56

darts/perturb 11.77 14.34 14.31 40.43 44.13 42.92 65.04 3.25 3.01 17.50 16.87

darts-/prune 6.31 9.36 8.30 32.76 32.46 32.08 77.03 2.66 2.89 17.02 19.89

darts-/valid 7.48 11.90 8.75 38.15 44.68 33.95 77.49 2.98 2.80 17.09 19.04

darts-/synflow 6.81 6.29 6.31 29.15 28.51 31.18 54.68 3.22 3.03 17.48 19.81

darts-/jacob 8.01 8.16 6.00 28.99 32.18 31.12 61.61 3.11 3.08 16.98 19.08

darts-/perturb 6.23 10.17 8.12 28.10 35.11 30.18 64.65 2.72 2.93 16.92 17.36

snas/prune 5.71 5.92 6.10 27.23 28.37 30.40 53.66 3.10 3.16 16.24 18.22

snas/valid 14.84 8.31 7.51 41.31 36.95 36.49 53.44 3.19 3.21 16.79 18.48

snas/synflow 6.57 6.36 6.22 29.71 29.08 28.43 56.93 3.61 3.23 18.32 18.19

snas/jacob 7.87 7.71 7.68 30.11 32.47 32.69 54.64 3.13 3.20 16.41 17.29

snas/perturb 6.19 7.24 7.28 28.01 33.65 32.36 56.20 2.96 2.96 17.74 16.96

gdas/prune 34.76 12.55 6.60 73.33 83.58 29.54 58.98 3.04 2.66 16.49 16.69
gdas/valid 21.48 17.40 9.40 57.00 52.97 43.80 69.26 4.01 3.55 17.68 18.49

gdas/synflow 7.03 7.03 6.66 30.82 30.21 30.45 58.62 4.94 4.24 20.36 20.31

gdas/jacob 7.50 9.30 8.54 32.69 36.20 34.95 63.39 3.17 3.62 17.65 17.77

gdas/perturb 11.09 8.25 7.67 38.41 38.81 31.35 61.41 2.90 3.30 17.48 17.21

drnas/prune 5.84 5.64 17.54 28.03 28.62 45.36 53.66 2.65 2.60 16.73 17.96

drnas/valid 6.32 6.35 6.40 32.42 30.03 53.44 54.68 3.36 2.74 17.25 17.55

drnas/synflow 6.40 6.04 5.80 28.85 27.48 29.33 53.66 3.67 3.46 18.26 17.06

drnas/jacob 8.31 7.35 10.42 32.88 34.44 34.71 56.15 3.21 2.84 17.26 17.12

drnas/perturb 5.66 5.88 11.14 28.42 29.29 33.30 56.04 2.78 2.77 17.08 17.10

Table 2: Test error values for all supernet training and architecture selection algorithm combinations,

evaluated across different search spaces, datasets, and training lengths. The bolded values

represent the lowest error attained in each training context and the underlined values indicate

other combinations that outperformed pruning for a given supernet training algorithm in

that training context.

architectures sampled by GDAS provide sparser gradients than the updates on softened samples or

full shared-weight models from other algorithms. This results in the need for additional training

time to produce sufficiently informative architecture weight magnitudes.

5.2 DARTS-space

While many supernet training algorithms demonstrated alternative architecture selection methods

surpassing pruning in different training contexts within the DARTS-space, the very highest accuracy

architecture discovered in each training context was produced by magnitude-based pruning. One

key explanation for this is the decreased impact of operation bias in the larger, more complex

DARTS search space. This is empirically evident from the results using CIFAR 10, where the top

architectures discovered by DrNAS actually had more skip connections than the slightly lower

performing methods discovered by other supernet training algorithms.

8



0 20 40 60 80 100
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l s
ki

p 
we

ig
ht

 a
cr

os
s a

ll 
ed

ge
s

DARTS skip weight
DARTS- skip weight
SNAS skip weight
GDAS skip weight
DIRICHLET skip weight

0 20 40 60 80 100
8

9

10

11

12

13

14

En
tro

py
 (b

its
)

DARTS entropy
DARTS- entropy
SNAS entropy
GDAS entropy
DIRICHLET entropy

Figure 2: Left: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Right: The entropy (summed over

all edges) of the architecture weights for eah supernet training algorithm during training.

Both plots show results for training with CIFAR 10 in the NAS-Bench-201 search space.

5.3 Explaining performance

DARTS dramatic failure on NAS-Bench-201 can largely be explained as a result of operation

bias. Viewing the weight assigned to the skip connection operations by each supernet training

algorithm reveals that, in this search space, DARTS collapses on a model a largely composed of

skip connections, as exemplified in Figure 2. In one sense, this results in a small discretization

gap. As indicated by the entropy plots, due to this major overweighting of skip connections the

difference between the architecture weights and final selected architecture is significantly smaller

for DARTS than the other supernet training algorithms. However, this small discretization gap

actually results in a huge discretization loss as nearly all of the weighted operations which are

actually transforming the cell’s input are removed. The top performing supernet training method in

this context, DrNAS, for which pruning is the best architecture selection technique in the context,

demonstrates the second lowest entropy after DARTS without very high weight assigned to skip

connections, indicating success as the result of minimizing discretization loss.

The results for other training contexts within NAS-Bench-201 are similar, though DARTS

does not always actually attain the lowest entropy. However, the in DARTS-space operation bias

becomes more complex as the significance of skip connections changes in a larger architecture.

This is discussed further in Appendix F.

5.4 What aspects of the training context matter?

By comparing the overall ranking of algorithm combinations across each training context, we can

observe the functional similarity of the problems these training contexts represent, with respect to

our NAS algorithms. In order to do this, we group together the studied training contexts based on

whether or not they share each of the three studied aspects of the training context: the number of

epochs the supernet is trained for, the data set used to train the supernet and select and train the

final architectures, and the search space the architecture is selected from. One example of this is

that training contexts that differ only in their data set (while keeping the same search space and

training length) retain more consistent ranking of combined NAS algorithms (median Spearman

correlation of 0.68). Contexts that differ in their training length (and keep the same dataset and

search space) show less consistent rankings of NAS methods (median Spearman correlation of

0.42).

Overall, the search space seems to be the defining component of the training context. The

rankings of combined algorithms across training contexts with the same training epochs and data

set but different search spaces had a median correlation of 0.08 while training contexts with the

same search space and different training epochs and data sets produced a median correlation of 0.4.

This suggests that evaluating NAS algorithms across different search spaces should be a significantly

higher priority than evaluating across different data sets, and a fair comparison between algorithms
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requires appropriate training length. Additional contextual comparisons can be found in Appendix

F.

6 Conclusion
We address the lack of broad consideration of the problem of architecture selection for supernet

NAS methods. We utilized a case study of two variations of DARTS to demonstrate that drawing

generalizable insights about architecture selection requires more than proving the limits of an

existing technique and proposing an alternative for a specific supernet training algorithm. Instead,

we must begin by considering a wide range of supernet training methods in combination with

architecture selection techniques to understand how these components of the NAS algorithm

interact.

By measuring the performance of various supernet training and architecture selection methods

in combination, we confirmed that the default and widespread architecture selection method of

pruning is inferior to alternative algorithms in many training contexts. By comparing algorithms

meant to address two competing explanations for this phenomenon, DARTS’ overvaluing of skip

connections and the sharp jump from continuous weights to discrete architecture, we weighed their

relative contribution to DARTS’ failure, showing that correcting the weighting of skip connections

alone is not sufficient to surpass alternative architecture selection methods while sampling is.

Finally, we analyzed broad trends across our combined evaluations to understand the components

of the training context that determine the relative performance of NAS algorithms. Our results

show that the search space used is the most significant factor, with the amount of epochs the

supernet is trained for also playing a more major role in determining relative performance than

the data set used. These results stress the importance of systematic evaluations of NAS algorithms

using equivalent amounts of training for the compared algorithms, and show that evaluating across

multiple search spaces should take higher priority than evaluation across multiple (similar) data sets.

We hope these insights will help the research community evaluate and design the next generation

of NAS algorithms.

7 Limitations and Broader Impact Statement
While our framing architecture selection positions it as a process which occurs after supernet train-

ing, this does not reflect how every supernet NAS algorithm operates, with methods like SGAS (Li

et al., 2020b), which pruning or partitioning the search space during supernet training. Architecture

selection is still being performed in these methods, but as it occurs iteratively, alternating with

training, direct comparison to the methods reviewed here is not feasible. Extending the analysis of

this work to these iterative architecture selection algorithms is, however, a promising direction

for future work. A second limitation of this work is its focus on NAS-Bench-201. Although we

do include the DARTS search space in our combined evaluations, extending this study to include

additional and larger tabular benchmarks could help ensure robust and generalizable analyses. This

is another opportunity for future work to expand upon the presented results.

This work serves to highlight and evaluate an understudied component of the supernet NAS

process, with a core goal of advancing our scientific understanding of NAS. We intend to facilitate

broader understanding of supernet NAS algorithms and provide guidelines for contributing to a

general understanding of supernet NAS. Increased access to efficient NAS methods has the potential

to lead to more widespread and more effective use of specialized deep learning models in science

and industry. Of course, the proliferation of NAS methods does incur the general risks associated

with widespread access to deep learning, including malicious or biased models. Additionally, we

advance a unified understanding of zero-shot and one-shot NAS methods which we hope will

promote the cross-study and use of energy efficient NAS algorithms with supernet training. Due to

their efficiency of computation, zero-shot metrics can easily be used to provide a structural "sanity

check" for selected architectures.
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8 Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] No negative

societal impacts were anticipated. This paper advances the study of energy efficient NAS

techniques and does not propose a specific new NAS algorithm, so inequitable performance

of a proposed method is not a relevant concern.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical

results.

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] Repository with code is linked in Appendix A and also here:

https://anon-github.automl.cc/r/arch_selection-6E4C/

(b) Did you include the raw results of running the given instructions on the given code and

data? [No] Given code and instructions support the running of all described experiments.

The full outputs include a significant number of checkpointed neural networks, summing

to over 90 GB of data and so are impractical to distribute.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes]

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] Implementation details are

given in Appendix A

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes]

(g) Did you run ablation studies to assess the impact of different components of your approach?

[N/A] This question does not apply directly as this work does not propose a single specific

approach, however ablation-like studies are performed as part of the evaluation portion of

this paper.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]
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(i) Did you compare performance over time? [No] This work focuses on evaluation at the time

of completion of supernet training.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] Error bars are given in plots, but ommitted from the main table due

to space. The standard deviation values for this table are provided in an additional table in

Appendix F

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] NAS-Bench-

201 is used extensively in this work.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] Yes, this is discussed in Appendix A.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [N/A] This paper did not utilize hyperparam-

eter tuning, it is focused on the evaluation of previously demonstrated methods and so

reused hyperparameters reported in the original works.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix B

(b) Did you mention the license of the assets? [Yes] See Appendix B

(c) Did you include any new assets either in the supplemental material or as a url? [Yes]

Baseline checkpoints included with source code above

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] No personal data used.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] The data used consists only of widely used bench-

marks.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] No crowdsourcing.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] No crowdsourcing.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] No crowdsourcing.
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Appendices
A Implementation Details

We trained each model on a single Tesla V100 GPU through an internal compute cluster. We utilized

the random seeds [1, 2, 3] in our case study and [10, 11, 12] in our main experiment. The broad

comparative experiments shown here required a total of 25400 GPU hours to compute and a trivial

amount of CPU hours (<5) required for plotting. The source code utilized in the course of this

experimentation is provided in full at: https://anon-github.automl.cc/r/arch_selection-6E4C/

Hyperparameters (other than the number of epochs the supernet is trained for) were fixed across

all training contexts within a search space, but differed between NAS-Bench-201 (Dong and Yang,

2020) and the DARTS search space (Liu et al., 2019). We did not perform hyperparameter tuning,

instead fixing the values at the defaults established for DrNAS (Chen et al., 2021b). This meant

the supernet’s shared weights were trained using SGD with a learning rate of 0.025, momentum

of 0.9, and weight decay of 0.0003. The architecture weights were optimized using Adam, with a

learning rate of 0.0003, weight decay of 0.001, and betas set at 0.5 and 0.999. The hyperparameters

used for the DARTS-space experiments are as above, but with a learning rate of 0.1 for the shared

weights and 0.0006 for the architecture weights. Also, in the DARTS search space we employ partial

channel training, as developed by Xu et al. (2020), with k=2 across all algorithms.

As the set of supernet training algorithms in our study all train the supernet the amounts of

computational time required for each all fall within the same scale, but GDAS is significantly faster

than the other algorithms. For an example, we provide the mean run times for each algorithm run

for 250 epochs on CIFAR in the NAS-Bench-201 search space in Table ??.

Algorithm Mean Run Time (GPU Hours)

DARTS 9.95

DARTS- 10.32

SNAS 10.34

GDAS 5.74

DrNAS 10.15

Perturb 3.45

All sampling 2.50

All zero-shot 0.36

Table 3: Mean Run Times for independent search stages on CIFAR10 in NAS-Bench-201

The bottom section of Table ?? shows the computational time required for our architecture

selection algorithms run on the “informed” baseline used for architecture selection evaluation.

Perturbation-based selection was by far the slowest. In our experiments we iterated through

the sampled architectures and computed both the validation accuracy via the supernet and the

zero-shot metrics for each architecture and so cannot easily distinguish the time spent computing

each measure from our records. In order to offer insight on the relative speed of these algorithms,
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we present the total time used to compute all sampling-based architecture selection algorithms

and then compute the zero-shot measures separately and present the total time used to compute

just the zero-shot measures. This reveals that selecting based on validation accuracy is the second

slowest studied architecture selection algorithm by a significant margin, taking roughly 2 hours for

this baseline on CIFAR10. Note that the run time for perturbation-based selection scales with both

the size of the search space and the size of the data set as it performs a number of additional epochs

of fine-tuning based on the number of architecture parameters in the search space. Computing the

validation accuracy does scale with both of these variables as well, but increases much less sharply

than perturbation as the search space grows because the number of forward passes through the

model is fixed with respect to the search space size. Therefore, in the larger DARTS search space,

the difference in run time between these methods is exacerbated. The zero-shot methods are by far

the fastest to compute, the recorded run time reflects the time necessary to compute not only the

“synflow” and “jacob” measures, but also 6 additional measures not used in this study.

B Asset Information

Asset License Link

DrNAS source code Not specified https://github.com/xiangning-chen/DrNAS

DARTS-PT source code Apache 2.0 https://github.com/ruocwang/darts-pt

Zero-Cost-NAS source code Apache 2.0 https://github.com/SamsungLabs/zero-cost-nas

Table 4: Code assets used & licenses

The source code used for the experiments in this work incorporated portions of code from

each of the above prior works whose algorithms are evaluated in the course of this study. In

addition to the assets utilized in the programming of the experiment, this project makes use of

the NAS-Bench-201 arhcitecture benchmark data and API, provided under an MIT license. All

neural networks used in this work are implemented in PyTorch, which is released via an open

source license in which each contributor retains the copyright for their contributions. Lastly, our

neural architectures were trained using benchmark image data sets, CIFAR-10, CIFAR-100, and a

downsampled version of ImageNet distributed with NASBench-201. The images in these data sets

were obtained from the web and their copyright is unknown and not held by the researches who

synthesized the data sets.

C Search space details

This work primarily focuses on two search spaces, that of NAS-Bench-201 and that of DARTS.

NAS-Bench-201 The cells in the NAS-Bench-201 search space contain 4 nodes, including an

input node, resulting in a total of 6 possible edges. One operation is selected for each of these edges

out of 5 possible operations, consisting of a zero operation, a skip connection, 1-by-1 convolution,

3-by-3 convolution, and 3-by-3 average pooling. These cells are joined in 3 stacks of 5, separated

by downsampling residual blocks, to form the full architecture as detailed in Dong and Yang (2020).

DARTS The search space used in DARTS is a variant of that proposed for NASNet (Zoph et al.,

2018). The convolutional cells in this search space consist of seven nodes, including two input nodes,

resulting in 14 edges with possible operations. In this search space, the outputs of the previous two

layers are passed to the two input nodes and the output node concatenates the output of the other 4

non-input nodes without performing any additional operations. Each intermediate node is required

to have two incoming edges, so exactly 8 out of the possible 14 edges with possible operations will

be selected for each candidate architecture. Each of these edges may represent a 3-by-3 or 5-by-5

separable convolution, a 3-by-3 or 5-by-5 dilated separable convolution, 3-by-3 max pooling, 3-by-3

average pooling, a skip connection, or the zero operation. Two separate architectures fitting this
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cell search space are learned for each model, a normal cell and a reduction cell, which is inserted

1/3 and 2/3 of the way through the stacked cells to perform spatial downsampling. The number of

normal cells stacked varies between search and evaluation as detailed in Liu et al. (2019).

Additionally, in our case study, we utilize 4 constrained variants of DARTS’ search space as

developed by Zela et al. (2020).

• S1 Each of the 14 possible edges in the DARTS search space has its own set of 2 possible operators,

determined to be the most important two operators for that edge in the original DARTS search

space.

• S2 Like DARTS, but the set of candidate operations is restricted to 3-by-3 separable convolutions

and skip connections.

• S3 Like DARTS, but the set of candidate operations is restricted to 3-by-3 separable convolutions,

skip connections, and the zero operation.

• S4 Like DARTS, but the set of candidate operations is only 3-by-3 separable convolutions or

“noise,” where “noise” outputs a random feature map sampled from a standard normal distribution.

Note that the search space S4 is the only one which does not include skip connections. In Section

3, S4 was the only search space for which perturbation on a supernet trained without architecture

weights was the clear best architecture selection technique for both DARTS and DARTS-. As

DARTS- differs from DARTS only through adding an auxiliary skip connection to mitigate the

overweighting of the skip connection in DARTS, it is unlikely that DARTS- would have been a

helpful modification for a search space without skip connections.

C.1 Selection of search spaces

We based the core of our study around NAS-Bench-201 due to its widespread use in NAS literature

and its suitability for supernet NAS, as the definition of operations on edges, with up to one

operation allowed on every possible edge means that any architecture weighting over edges can

be simply discretized to a valid architecture. However, as this search space includes only 15625

possible architecture encodings, we decided to extend our evaluation to the DARTS search space.

This search space is much larger (at 10
8
architectures) and is the most common non-benchmark

search space used in the supernet NAS literature.

D Review of architecture selection methods in prior work

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Count

Arch prune
Random search

Population search
Evolutionary Algorithm

Perturb
Blockwise search

None

Figure 3: Architecture selection methods of published NAS algorithms

We review a set of 31 published supernet NAS algorithms to determine the nature of the

architecture selection method used (Fig. 3). 28 of these algorithms above the horizontal line in

Table 5 constitute every supernet-based NAS algorithm mentioned in Ren et al. (2021) (which is
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inclusive of the supernet algorithms mentioned by Elsken et al. (2019)). The additional 3 algorithms

are more recently published methods which we use as one of the supernet training methods in our

investigation. We find that existing techniques overwhelmingly utilize some form of pruning the

architecture weights or distribution to select a final architecture.

Algorithm S2 Search method Notes

CNF (Saxena and Verbeek, 2016) Arch prune No arch weights, prune on op weights

DAS (Shin et al., 2018) Arch prune No topo search, progr fixed thresh prune

ENAS (Pham et al., 2018) Random search Uses trained sampler

MaskCn (Ahmed and Torresani, 2018) Arch prune Only learn inter-module connections

NAOnet (Luo et al., 2018) Population search Gradient based updates to population

OSNAS (Bender et al., 2018) Random search

BayesNAS (Zhou et al., 2019) Arch prune Entropy-based prune

DARTS (Liu et al., 2019) Arch prune Suggests multiple trials for final arch

DATA (Chang et al., 2019) Arch prune Variable amount of pruning

FBnet (Wu et al., 2019) None Randomly samples a subnet

GDAS (Dong and Yang, 2019c) Arch prune

I-DARTS (Jiang et al., 2019) Arch prune

PARSEC (Casale et al., 2019) Arch prune Sample during training

P-DARTS (Chen et al., 2019) Arch prune Progressive prune, alter search space

ProxylessNAS (Cai et al., 2019) Arch prune Sample during training

RSPS (Li and Talwalkar, 2019) Random search

SETN (Dong and Yang, 2019b) Random search Uses trained sampler

SNAS (Xie et al., 2019) Arch prune Prune ops, no method for edge pruning

TAS (Dong and Yang, 2019a) Arch prune No topology search

XNAS (Nayman et al., 2019) Arch prune Progr prune based on loss gradient bound

DNA (Li et al., 2020a) Blockwise search

FNA (Fang et al., 2020) Arch prune

PC-DARTS (Xu et al., 2020) Arch prune Combined prune on op, edge weights

PC-NAS (Li et al., 2020c) Population search Gradually grow candidate pool

R-DARTS (Zela et al., 2020) Arch prune Final arch selected from multiple trials

SGAS (Li et al., 2020b) Arch prune Progressive prune on multiple metrics

SPOS (Guo et al., 2020) Evolutionary alg

FairNAS (Chu et al., 2021b) Evolutionary alg

DARTS- (Chu et al., 2021a) Arch prune

DrNAS (Chen et al., 2021b) Arch prune

DARTS-PT (Wang et al., 2021) Perturbation

Table 5: Detailed account of Architecture selection method review.

Table 5 provides greater detail on the distribution of Stage-2 search methods. As clarified in

the notes, there is significant variation among the architecture techniques labeled as "arch prune."

Many methods utilize more complex parameterizations of the architecture space than DARTS, but

largely still prune based on magnitude. BayesNAS (Zhou et al., 2019) instead utilizes the entropy of

the architecture parameterization as a pruning criterion, while SGAS (Li et al., 2020b) develops two

different criteria incorporating magnitude, entropy, as well as the histogram intersection of the

architecture parameterization over several updates.

This review of supernet NAS methods reveals two distinct strains of research. The dominant

line of work investigates DARTS-like methods, primarily focusing on developing better methods

of learning architecture weights and largely ignoring the possibility of alternative methods to
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pruning for architecture selection. The other strain of supernet NAS research is concerned with

"true" one-shot methods, those that, following the lead of Bender et al. (2018), do not evaluate

subnetworks at all during the process of training the supernet. These algorithms use a random

search, evolutionary algorithm, or, in the case of Li et al. (2020a), an iterative search algorithm

which partitions the search space by the stacked blocks of the model, for Stage-2 search. The

method of Wu et al. (2019) is unusual in that they learn architecture weights, and then simply

sample a final architecture instead of pruning or sampling a pool of candidate architectures and

estimating their performance (random search). In this work, we reconcile these two strains of

supernet NAS research by demonstrating the utility of non-pruning architecture selection for

DARTS-like supernet training algorithms and the value of biased supernet training for performance

estimation based selection algorithms, like random search or evolutionary algorithms.

Also note that when "sample during training" is included in the notes, this signifies that discrete

architectures are sampled during the training process, while the final architecture selection method

does not depend on sampling. This is technically not true for GDAS (Dong and Yang, 2019c), as

it samples a single operation on each edge in same search space utilized by DARTS which does

not allow an operation on every edge, resulting in sampling a subset of the supernet that is not

necessarily equivalent to any architecture within the search space. SNAS and DrNAS also utilize

sampling during training, but use relaxed samples, not discrete architectures.

SGAS does utilize magnitude-based pruning, but not only once at the end of supernet training

as originally performed by DARTS (Li et al., 2020b). ASAP combines this pruning-during-training

with architecture weight annealing as used by SNAS and DrNAS resulting in an algorithm with

PAC guarantees (Noy et al., 2020). These algorithms do not fit neatly into the simple sequential

two-stage model presented in the main text. However, these same two stages can be extended to

an iterative model of the NAS process in order to describe algorithms that prune during training..

E Further Evaluation of architecture selection

We seek to evaluate the ability of an algorithm to select the top discrete architectures from a given

supernet. In order to evaluate the architecture selection process, we define a standardized input for

the architecture selection search algorithms. We wish to provide a sufficiently broad baseline such

that it is suitable for evaluating any architecture selection method which can be implemented on top

of a supernet training algorithm. As we consider the supernet itself as the input to the architecture

selection algorithms, our baseline must consist of a standardized set of supernets, trained in a

manner such that evaluating architecture selection methods on them facilitates estimation of their

efficacy across a range of supernet training methods.

By combining our training (or lack thereof) process with different methods of sampling candi-

date architectures, we synthesize four baselines from a single trained model. These baselines are as

follows:

• Untrained Supernet/Uniform Sampler A supernet whose shared weights have been randomly

initialized but not trained. For selection algorithms which require a sample of architectures, a

uniform distribution over the search space is used.

• Untrained Supernet/Informed Sampler A supernet whose shared weights have been randomly

initialized but not trained. For selection algorithms which require a sample of architectures, a

distribution biased toward higher performing architectures is used.

• Informed Supernet/Uniform Sampler A supernet whose shared weights have been trained through

sampling individual architectures. For selection algorithms which require a sample of architec-

tures, a uniform distribution over the search space is used.
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• Informed Supernet/Informed Sampler A supernet whose shared weights have been trained through

sampling individual architectures. For selection algorithms which require a sample of architec-

tures, a distribution biased toward higher performing architectures is used.

To be specific, the biased distribution described above as “informed” is a discrete probability

distribution defined over the search space of NAS-Bench-201 where the probability of sampling

an architecture is inversely proportional to its rank by test accuracy. This biased distribution is

also the sampler used to train the randomly trained models. This sampler is designed to simulate a

sampling based supernet training algorithm which is effective at identifying and sampling from

high performing architectures during supernet training.
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Figure 4: Comparison of Stage-2 search algorithm performance on CIFAR-100 with given baseline

models. Baseline models are constructed by combining two components: a supernet, with

shared weights which are either randomly initialized and untrained or have been training

by sampling individual candidate networks using an informed sampler, and an architecture

sampler, which uses either a uniform distribution or the informed sampler.

F Further Combined Evaluation
Tables 6 and 8 offer a summary of the trends discussed in our analysis of Stage-1 and Stage-2

combinations (Table 2). Viewing the algorithm combinations which produced the top architectures

in Table 6 clarifies the dominance of SNAS and GDAS across Stage-1 algorithms and the variety of

Stage-2 algorithms which offer effective alternatives to pruning in differing contexts. Viewing the

counts of Stage-2 algorithms which outperform pruning in each context in Table 8, simplifies the

trends in DARTS, DARTS-, and GDAS noted above. This display of the data also shows that SNAS is

generally the Stage-1 algorithm best suited to pruning. Additionally, DrNAS, for which the original

implementation was only trained for 50 epochs, like DARTS, seems to display the reverse of the

pattern noted for GDAS. Pruning is an inferior Stage-2 algorithm for DrNAS when the supernet is

trained too long, meaning 250 epochs on NASBench-201 or 100 epochs in the DARTS search space.

Fig. 5 offers a deeper look into the analysis of which aspects of the training context are most

influential in determining the relative performance of algorithm combinations. The results showed

more consistency in the combination rankings across different data sets with the supernets trained
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Search space Data set Epochs Test Err Stage 1 Stage 2

NASBench-201 CIFAR10 50 5.66 dirichlet perturb

100 5.64 dirichlet prune

250 5.80 dirichlet synflow

CIFAR100 50 27.23 snas prune

100 27.48 dirichlet synflow

250 28.43 snas synflow

ImageNet-16-120 100 53.44 snas valid

DARTS-space CIFAR10 50 2.65 dirichlet prune

100 2.60 dirichlet prune

CIFAR100 50 16.24 snas prune

100 16.69 gdas prune

Table 6: Top architectures in each training context studied.

Search space Data set Epochs DARTS DARTS- SNAS GDAS DrNAS

NASBench-201 CIFAR10 50 4 1 0 4 1

100 4 2 0 3 0

250 4 3 0 0 4

CIFAR100 50 4 3 0 4 0

100 4 2 0 4 1

250 3 3 1 0 3

ImageNet-16-120 100 4 3 1 1 1

DARTS-space CIFAR10 50 2 0 1 1 0

100 2 1 1 0 0

CIFAR100 50 0 2 0 0 0

100 1 4 3 0 4

Table 7: Number of Stage-2 algorithms (out of 4) which surpassed magnitude-based pruning for each

Stage-1 search algorithm in each context.

Search space Data set Epochs DARTS DARTS- SNAS GDAS DrNAS

NASBench-201 CIFAR10 50 4 0 0 4 0

100 4 1 0 0 0

250 3 0 0 0 2

CIFAR100 50 4 3 0 4 0

100 4 0 0 4 0

250 1 0 0 0 3

ImageNet-16-120 100 3 3 1 0 1

DARTS-space CIFAR10 50 0 0 0 0 0

100 0 0 1 0 0

CIFAR100 50 0 0 0 0 0

100 0 1 0 0 2

Table 8: Number of Stage-2 algorithms (out of 4) for which themean error minus one standard deviation

attained via magnitude based pruning exceeds the mean error plus one standard deviation

attained by the alternative Stage-2 algorithm.
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Figure 5: Distribution of Spearman correlation values for pairs of training contexts which satisfy

the described grouping. The grouping label are abbreviated as follows: E is the number of

epochs the supernet was trained for in Stage-1 Search, D is the image data set used during

supernet training and architecture evaluation, and S is the architecture search space used

(NASBench-210 or DARTS-space).

for the same number of epochs than when the supernets are trained for different numbers of epochs

within the same data set. This may suggest that supernet training is more sensitive to internal

dynamics of the training algorithm over time than it is to the specific image data used to train it.

However, cross evaluation with other key training hyperparameters, like learning rate, would be

necessary to explain precisely the relationship between epochs of supernet training and combined

algorithm ranking.

For both cases of the same data set and same epochs of training, it’s clear that there is little

correlation in the algorithm rankings between NASBench-201 and the DARTS search space. As

different encodings of different architecture spaces may result in vastly different gradient landscapes,

it is unsurprising that rankings of optimization algorithms would be inconsistent across these

differences. However, the result that varying everything but the search space leads to a median

correlation of 0.37 while varying only the search space results in a median correlation of 0.11

is somewhat striking, underscoring the crucial importance of evaluating newly proposed NAS

algorithms across multiple search spaces and cross evaluating competing NAS algorithms in the

same search spaces.

For completeness, Tables 9 and 10 reports the standard deviation across the three runs of

each Stage-1/Stage-2 combinations, as they were not able to be shown with the reported mean

values in Table 2 due to space constraints. Note that the top value in each training context in

general has relatively low standard deviation. This suggests that, despite the limited number of

trials, our general observations about the superiority of particular algorithms or combinations will

likely be consistent across additional trials. The high standard deviation values for GDAS with
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Data set CIFAR10 CIFAR100 ImNet16

Epochs 50 100 250 50 100 250 100

darts/prune 45.7 ± 0.0 40.2 ± 7.8 15.8 ± 0.1 61.0 ± 0.0 61.0 ± 0.0 45.4 ± 0.0 81.6 ± 0.0

darts/valid 14.7 ± 8.1 9.1 ± 1.7 11.5 ± 3.2 51.0 ± 5.5 36.4 ± 3.2 47.5 ± 10.3 79.2 ± 5.4

darts/synflow 6.8 ± 0.2 9.5 ± 2.3 9.4 ± 1.8 30.1 ± 0.8 33.2 ± 0.5 42.8 ± 13.5 57.4 ± 0.9

darts/jacob 11.4 ± 1.2 10.0 ± 0.2 9.6 ± 1.1 33.2 ± 2.3 36.4 ± 1.2 35.9 ± 0.1 71.5 ± 4.5

darts/perturb 11.8 ± 0.1 14.3 ± 3.7 14.3 ± 3.6 40.4 ± 0.2 44.1 ± 5.6 43.0 ± 6.5 65.0 ± 1.2

darts-/prune 6.3 ± 0.1 9.4 ± 2.1 8.3 ± 2.5 32.8 ± 1.7 32.5 ± 4.9 32.1 ± 0.8 77.0 ± 4.7

darts-/valid 7.5 ± 0.5 11.9 ± 0.7 8.8 ± 2.5 38.2 ± 10.7 44.7 ± 7.5 34.0 ± 4.6 77.5 ± 5.2

darts-/synflow 6.8 ± 0.8 6.3 ± 0.5 6.3 ± 0.1 29.2 ± 1.6 28.5 ± 1.5 31.2 ± 2.7 54.7 ± 1.4

darts-/jacob 8.0 ± 0.6 8.2 ± 2.0 6.0 ± 0.3 29.0 ± 1.3 32.2 ± 2.5 31.1 ± 2.8 61.6 ± 5.1

darts-/perturb 6.2 ± 0.4 10.2 ± 1.2 8.1 ± 2.6 28.1 ± 1.0 35.1 ± 3.6 30.2 ± 2.0 64.7 ± 3.0

snas/prune 5.7 ± 0.1 5.9 ± 0.3 6.1 ± 0.3 27.2 ± 0.5 28.4 ± 1.3 30.4 ± 0.4 53.7 ± 0.0

snas/valid 14.8 ± 5.1 8.3 ± 3.4 7.5 ± 1.8 41.3 ± 10.9 37.0 ± 6.3 36.5 ± 9.4 53.4 ± 0.1
snas/synflow 6.6 ± 0.2 6.4 ± 0.1 6.2 ± 0.4 29.7 ± 1.1 29.1 ± 2.1 28.4 ± 1.9 56.9 ± 2.3

snas/jacob 7.9 ± 0.5 7.7 ± 0.3 7.7 ± 0.5 30.1 ± 0.6 32.5 ± 3.8 32.7 ± 0.1 54.6 ± 0.8

snas/perturb 6.2 ± 0.0 7.2 ± 1.5 7.3 ± 1.7 28.0 ± 0.2 33.7 ± 3.4 32.4 ± 0.5 56.2 ± 3.0

gdas/prune 34.8 ± 7.1 12.6 ± 8.5 6.6 ± 0.1 73.3 ± 12.7 83.6 ± 8.8 29.5 ± 0.5 59.0 ± 0.0

gdas/valid 21.5 ± 0.8 17.4 ± 4.4 9.4 ± 2.5 57.0 ± 1.3 53.0 ± 8.0 43.8 ± 1.7 69.3 ± 4.8

gdas/synflow 7.0 ± 0.2 7.0 ± 0.2 6.7 ± 0.1 30.8 ± 0.8 30.2 ± 0.6 30.5 ± 0.9 58.6 ± 0.8

gdas/jacob 7.5 ± 0.1 9.3 ± 1.3 8.5 ± 0.6 32.7 ± 2.4 36.2 ± 2.7 35.0 ± 0.5 63.4 ± 4.5

gdas/perturb 11.1 ± 1.1 8.3 ± 1.5 7.7 ± 0.5 38.4 ± 3.9 38.8 ± 4.1 31.4 ± 0.8 61.4 ± 4.8

drnas/prune 5.8 ± 0.3 5.6 ± 0.0 17.5 ± 8.8 28.0 ± 0.6 28.6 ± 1.6 45.4 ± 0.0 53.7 ± 0.0

drnas/valid 6.3 ± 0.1 6.4 ± 0.1 6.4 ± 0.2 32.4 ± 3.0 30.0 ± 0.6 53.4 ± 23.4 54.7 ± 0.2

drnas/synflow 6.4 ± 0.2 6.0 ± 0.3 5.8 ± 0.1 28.9 ± 0.1 27.5 ± 1.2 29.3 ± 2.4 53.7 ± 0.0

drnas/jacob 8.3 ± 0.6 7.4 ± 0.8 10.4 ± 0.5 32.9 ± 1.9 34.4 ± 3.8 34.7 ± 1.7 56.2 ± 1.5

drnas/perturb 5.7 ± 0.0 5.9 ± 0.2 11.1 ± 0.9 28.4 ± 0.7 29.3 ± 2.4 33.3 ± 0.0 56.0 ± 3.1

Table 9: The means with standard deviations corresponding to the mean values given in Table 2 for

NAS-Bench-201. The underlined and bolded values corresponded to the underlined and

bolded values in the mean table, such that bolded values are the lowest mean test error in

that training context and underlined values are the combinations whose mean test error was

below that of pruning for that Stage-1 algorithm in that training context.

lower numbers of epochs support our hypothesis that GDAS suffers from high uncertainty in its

architecture weights without sufficient (longer) training.

F.1 Operation Bias and Discretization Loss

As shown in Fig. 6, in the DARTS search space, we find that DARTS actually assigns the least

weight to skip connections of the supernet training algorithms, while retaining the lowest entropy,

despite not being the highest performing supernet training algorithm for any training context.

The explanation for this phenomenon is multifaceted but can be summarized by noting that these

measures are search-space specfic. First, as the DARTS search space consists of larger architectures

and every node in the cell has two inputs, including skip connections can prove more helpful and

is less likely to impede the inclusion of useful operations. This is made plain in Figure 7, which

shows that the best discovered DARTS space architecture for CIFAR does include a skip connection

and several highly effective architectures include multiple. Therefore, some bias towards the skip

connection may actually be favorable in this search space and indeed, we see that, for CIFAR10,

the top performing supernet training method, DrNAS, does assign relatively more weight to skip

connections. Secondly, entropy can be misleading in this search space, as it is computed individually

24



Data set CIFAR10 CIFAR100

Epochs 50 100 50 100

darts/prune 3.27 ± 0.44 3.08 ± 0.14 16.67 ± 0.36 17.03 ± 0.17

darts/valid 3.48 ± 0.47 3.16 ± 0.21 17.88 ± 0.42 18.60 ± 1.35

darts/synflow 3.66 ± 0.59 3.52 ± 0.08 17.64 ± 0.78 19.43 ± 0.58

darts/jacob 3.01 ± 0.23 3.04 ± 0.28 17.60 ± 1.23 17.56 ± 0.39

darts/perturb 3.25 ± 0.10 3.01 ± 0.06 17.50 ± 0.23 16.87 ± 0.38

darts-/prune 2.66 ± 0.15 2.89 ± 0.26 17.02 ± 0.42 19.89 ± 0.82

darts-/valid 2.98 ± 0.22 2.80 ± 0.17 17.09 ± 0.42 19.04 ± 1.14

darts-/synflow 3.22 ± 0.43 3.03 ± 0.07 17.48 ± 0.70 19.81 ± 1.75

darts-/jacob 3.11 ± 0.40 3.08 ± 0.37 16.98 ± 0.40 19.08 ± 1.00

darts-/perturb 2.72 ± 0.25 2.93 ± 0.17 16.92 ± 0.54 17.36 ± 0.25

snas/prune 3.10 ± 0.14 3.16 ± 0.07 16.24 ± 0.38 18.22 ± 1.45

snas/valid 3.19 ± 0.31 3.21 ± 0.31 16.79 ± 0.67 18.48 ± 1.21

snas/synflow 3.61 ± 0.67 3.23 ± 0.32 18.32 ± 0.63 18.19 ± 0.42

snas/jacob 3.13 ± 0.35 3.20 ± 0.21 16.41 ± 0.23 17.29 ± 0.31

snas/perturb 2.96 ± 0.32 2.96 ± 0.05 17.74 ± 0.46 16.96 ± 0.53

gdas/prune 3.04 ± 0.39 2.66 ± 0.09 16.49 ± 0.32 16.69 ± 0.69
gdas/valid 4.01 ± 0.62 3.55 ± 0.62 17.68 ± 0.91 18.49 ± 1.22

gdas/synflow 4.94 ± 0.29 4.24 ± 0.65 20.36 ± 1.18 20.31 ± 1.38

gdas/jacob 2.90 ± 0.11 3.30 ± 0.29 17.48 ± 0.75 17.21 ± 0.36

drnas/prune 2.65 ± 0.06 2.60 ± 0.09 16.73 ± 0.44 17.96 ± 0.38

drnas/valid 3.36 ± 0.07 2.74 ± 0.08 17.25 ± 0.79 17.55 ± 0.51

drnas/synflow 3.67 ± 0.66 3.46 ± 0.99 18.26 ± 0.67 17.06 ± 0.23

drnas/jacob 3.21 ± 0.32 2.84 ± 0.16 17.26 ± 0.05 17.12 ± 0.72

drnas/perturb 2.78 ± 0.05 2.77 ± 0.13 17.08 ± 0.62 17.10 ± 0.21

Table 10: The means with standard deviations corresponding to the mean values given in Table 2

for DARTS-space. The underlined and bolded values corresponded to the underlined and

bolded values in the mean table, such that bolded values are the lowest mean test error in

that training context and underlined values are the combinations whose mean test error was

below that of pruning for that Stage-1 algorithm in that training context.

for each edge, however only 8 of the possible 14 edges are actually utilized by candidate architectures.

The sampling based NAS algorithms are able to minimize discretization loss without near-discrete

architecture weights by taking near-discrete (or discrete) samples from those architectures weights.

The rest of the the entropy and skip connection weight plots are provided below for completeness.
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Figure 6: Top: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Bottom: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during training.

Both plots show results for training with CIFAR 10 in the DARTS search space, with the

results for the normal cell on the left and the results for the reduction cell on the right.

0 1 2 3 4 5 6
# skip connections in normal cell

2.5

3.0

3.5

4.0

4.5

5.0

Te
st

 e
rro

r

Figure 7: The accuracy and number of skip connections of all DARTS space final architectures trained

on CIFAR-10.
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Figure 8: Top: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Bottom: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during training.

Both plots show results for training with CIFAR 10 in the DARTS search space, with the

results for the normal cell on the left and the results for the reduction cell on the right.
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Figure 9: Top: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Bottom: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during training.

Both plots show results for training with CIFAR 10 in the DARTS search space, with the

results for the normal cell on the left and the results for the reduction cell on the right.
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Figure 10: Top: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Bottom: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during

training. Both plots show results for training with CIFAR 10 in the DARTS search space,

with the results for the normal cell on the left and the results for the reduction cell on the

right.
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Figure 11: Left: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Right: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during

training. Both plots show results for training with CIFAR 10 in the NAS-Bench-201 search

space.
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Figure 12: Left: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Right: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during

training. Both plots show results for training with CIFAR 10 in the NAS-Bench-201 search

space.
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Figure 13: Left: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Right: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during

training. Both plots show results for training with CIFAR 100 in the NAS-Bench-201 search

space.
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Figure 14: Left: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Right: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during

training. Both plots show results for training with CIFAR 100 in the NAS-Bench-201 search

space.
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Figure 15: Left: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Right: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during

training. Both plots show results for training with CIFAR 100 in the NAS-Bench-201 search

space.
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Figure 16: Left: The total weight (after softmax normalization) assigned to skip connections across all

edges by each supernet training algorithm during training. Right: The entropy (summed

over all edges) of the architecture weights for eah supernet training algorithm during

training. Both plots show results for training with ImageNet16-120 in the NAS-Bench-201

search space.
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