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ABSTRACT

Large language models (LLMs) are increasingly adept at following instructions
containing task descriptions to solve complex problems, such as mathematical rea-
soning and automatic evaluation (LLM-as-a-Judge). However, as prompts grow
more complex, models often struggle to adhere to all instructions. This difficulty
is especially common when instructive prompts intertwine reasoning directives—
specifying what the model should solve—with rigid formatting requirements that
dictate how the solution must be presented. The entanglement creates compet-
ing goals for the model, suggesting that more explicit separation of these two
aspects could lead to improved performance. To this front, we introduce DECO-
G, a decoding framework that explicitly decouples format adherence from task
solving. DECO-G handles format compliance with a separate tractable proba-
bilistic model (TPM), while prompts LLMs with only task instructions. At each
decoding step, DECO-G combines next token probabilities from the LLM with
the TPM calculated format compliance likelihood to form the output probability.
To make this approach both practical and scalable for modern instruction-tuned
LLMs, we introduce three key innovations: instruction-aware distillation, a flexi-
ble trie-building algorithm, and HMM state pruning for computational efficiency.
We demonstrate the effectiveness of DECO-G across a wide range of tasks with
diverse format requirements, including mathematical reasoning, LLM-as-a-judge,
and event argument extraction. Overall, our approach yields 1.0% to 6.0% relative
gain over regular prompting practice with guaranteed format compliance.

Deco-GPrompting w/ Format ConstraintsPrompting w/o Format Constraints

Mathematical Reasoning (GSM8k)
Question: Lee runs the 400-meter hurdles in 38 seconds ... what is Gerald's new time?
Format Contraints: The final answer is ...

Prompt
LLM

To solve this problem, let's break it
down step by step 
...
Therefore, Gerald, with his improved
diet, can run the 400-meter hurdles
in 36 seconds.

LLM

FEM

To find Gerald's new time, we first
need to 
...
The final answer is 39.6

Format Constraints Format Constraints

To solve this problem, let's break it
down step by step 
...
The final answer is 36.

Task Instruction

Prompt

Task Instruction

Question Question

Format   ✅ Answer   ❌ Format   ✅ Answer   ✅

Prompt

Task Instruction

Question

LLM

Format   ❌ Answer   ❓ 

Figure 1: Example of GSM8k responses. LLM prompted without format constraints gets the correct
answer, but the number is embedded in a sentence with mixed types, making it hard to capture. LLM
prompted with format constraints gets the answer wrong. DECO-G prompts the model with task
information and handles the format constraints by employing a Format Estimation Module (FEM).
The framework generates the correct answer in the required format, making it easy to harvest.
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1 INTRODUCTION

Instruction fine-tuning (Wei et al., 2021; Chung et al., 2024) enables large language models (LLMs)
to follow user instructions and solve complex tasks. Given a task description and a desired output
format, LLMs can perform tasks such as model evaluation and event extraction without additional
training. Prompting strategies like Chain-of-Thought (Wei et al., 2022) and Tree-of-Thought (Yao
et al., 2023) further enhance performance by encouraging structured reasoning. However, emerging
evidence suggests that complex instructions—especially those with strict formatting—can nega-
tively impact model performance (Tam et al., 2024; Long et al., 2025; He et al., 2024). For example,
Long et al. (2025) reveal that LLM performance varies based on the required output format. On the
MMLU (Hendrycks et al., 2020) benchmark, a model might fail to provide the correct answer when
forced into one output structure, or provide the correct answer but fail a minor formatting instruction,
which complicates automatic evaluation. In addition, Tam et al. (2024) point out that stricter format
constraints generally lead to a greater degradation in performance on reasoning tasks. Therefore,
the current paradigm of stacking task instructions and format instructions in the input prompt (as
shown in Figure 1, the attachment of format instruction enclosed in the red hexagon) appears to be
a limiting factor for harnessing LLM capabilities.

Attempts have been made to reduce format constraints’ impact on LLM generation. For in-
stance, Tam et al. (2024) employ a less strict format to give LLM more flexibility. Long et al. (2025)
and He et al. (2024) explore formats that are more intuitive for the LLM to follow. Yet, they still
pose certain constraints to the LLM, impairing its reasoning skills. Other works (Beurer-Kellner
et al., 2024; guidance-ai, 2024; Willard & Louf, 2023) perform non-neural inference-time control
centered toward constraint satisfaction. They guarantee format compliance by enforcing the model
to decode certain tokens. This mechanism fails to consider the interplay with LLM reasoning, often
resulting in incoherent output. The situation thus highlights the need for a framework that seamlessly
decouples format constraints from LLM task solving to unlock the full potential of LLMs.

In this paper, we propose a decoupled generation framework DECO-G that separates output
formatting from task reasoning, thereby allowing the LLM to focus on the task without the burden
of format adherence. We leverage the modularity of existing controllable text generation methods
(e.g. GeLaTo (Zhang et al., 2023), CtrlG (Zhang et al., 2024)) and delegate the format adherence
responsibility to an auxiliary Tractable Probabilistic Model (TPM), which estimates compliance
rate and reweighs token probability. While GeLaTo and CtrlG provide pathways for controllable
generation with keyphrase and length constraints, they face significant challenges when applied to
instruction-tuned LLMs with complex output templates. These challenges stem from a domain shift
and computational bottlenecks that hinder scalability and efficiency. To make our framework prac-
tical and effective for general instructive tasks, we introduce three key techniques. Firstly, we train
the HMM on LLM’s instruction-response pairs to better captures task-oriented behaviors. Secondly,
we employ a flexible trie-based algorithm to efficiently construct automata for complex, multi-part
output templates. Thirdly, we implement HMM hidden state pruning to accelerate inference speed
and ensure practical usability. To our knowledge, we are the first to propose the direct separation
of task solving and format adherence in LLM generation to preserve its full potential.

To assess DECO-G’s effectiveness in handling tasks of different natures, including reasoning and
multi-phrase templates adherence, we test the framework on three different tasks: mathematical rea-
soning, LLM-as-a-judge evaluation, and generative event argument extraction. Experiment results
show that DECO-G is able to improve overall task performance through multiple aspects: 1) improv-
ing the format satisfaction rate, 2) encouraging more natural and flexible integration of format in the
output, and 3) allowing LLM to concentrate on task solving without the burden of format following.
Our contributions are as follow:1

• We propose a framework to separate format compliance from task-solving to enhance overall
performance of LLMs on various tasks through the use of a tractable probabilistic model.

• Our framework achieves high efficiency and effectiveness through technical innovations, includ-
ing instruction-aware distillation, a flexible trie-building algorithm, and HMM state pruning.

• We secure improved task performance on multiple tasks compared to baseline methods, observ-
ing relative gains ranging from 1.0% to 6.0% , and provide an analysis of DECO-G’s steering
process with insights into its parameter setup from an entropy perspective.

1Code and model weights will be released upon paper acceptance.
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2 PRELIMINARIES

In this section, we present our goal of task-format decoupling within a probabilistic formulation
of language model generation. We further discuss how prior controllable generation methods align
with this objective and provide a strong foundation for our approach.

2.1 GENERATION WITH ATTRIBUTE CONTROL

We frame the problem of controllable text generation using a probabilistic formulation. The auto-
regressive generation of a token sequence x1:n given a desired attribute α can be expressed as:

P (x1:n|α) =
∏
t

P (xt|x<t, α) (1)

The objective is to generate a sequence x1:n that exhibits the attribute α. At each generation step
t, the target distribution for producing text with the desired attribute is P (xt|x<t, α). Using Bayes’
rule, we can rewrite this as:

P (xt|x<t, α) = PLM(xt|x<t)
PLM(α|xt, x<t)

PLM(α|x<t)
(2)

Here, the first term, PLM(xt|x<t), is the language model’s next-token probability, which is respon-
sible for generating fluent and coherent content. The second term, the ratio PLM(α|xt,x<t)

PLM(α|x<t)
, acts as a

control signal. It quantifies how the choice of the current token xt influences the probability that the
final, complete sequence will satisfy the attribute α. However, directly calculating this ratio is in-
tractable, as it requires marginalizing over all possible future sequences to compute the likelihoods.
Thus, a key challenge in controllable generation is to find a tractable approximation for this term.

2.2 ESTIMATING LIKELIHOOD OF ATTRIBUTE SATISFACTION

Recent controllable generation frameworks such as GeLaTo (Zhang et al., 2023) and Ctrl-G (Zhang
et al., 2024) leverage a tractable probabilistic model (TPM) to efficiently estimate the marginal
probability P (α|xt, x<t), serving as a signal to steer an LLM’s generation, following

P (xt|x<t, α) ∝ PLM(xt|x<t)PTPM(α|xt, x<t) (3)

These approaches first distill a Hidden Markov Model (HMM) as a probabilistic approximation of
the LLM and then encode logical constraints to formal structure that the HMM can reason over.

Sequence modeling with Hidden Markov Models. A Hidden Markov Model (HMM) is the spe-
cific type of TPM used in these frameworks, chosen for its ability to model sequential data tractably.
The joint probability distribution over a sequence of observed variables (tokens, x1:n) and a corre-
sponding sequence of hidden state variables z1:n, is modeled as

PHMM(x≤t, z≤t) = P (z1)P (x1|z1)
T∏

t=2

P (zt|zt−1)P (xt|zt) (4)

Critically, the Markov property of HMMs enables efficient probabilistic inference over all possible
future sequences, a task that is intractable for langauge models. In frameworks like GeLaTo and Ctrl-
G, the HMM is distilled from the LLM using samples drawn unconditionally from the LLM. This
process involves training the HMM via maximum likelihood on the sampled completions, equivalent
to minimizing the KL-divergence between the two models’ distributions DKL(PLM||PHMM).

Formalizing Constraints with Deterministic Finite Automata. To enforce a constraint using
the HMM, the constraints must be expressed in a formal language. Zhang et al. (2024) propose
representing logical constraints as Deterministic Finite Automata (DFA). A DFA is an abstract state
machine that recognizes patterns in sequences. Formally, a DFA is a 5-tuple D = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is the alphabet (the LLM’s token vocabulary), δ : Q × Σ → Q
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of accept states. A
sequence is “accepted” if it drives the machine from its initial state to an accept state; otherwise, it
is “rejected.” This formalism is capable of representing logical constraints including the presence of
keyphrases and word counts by defining the appropriate states and transitions.
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Format Constraint

Prompt

Question
Lee used to be able to run the 400-
meter hurdles two seconds faster than
Gerald ... how fast can Gerald, with his
improved diet, run the 400-meter
hurdles, in seconds?

Task Instruction
Read the question carefully and think
step by step before answering, the final
answer must be only a number ...

The final answer is ...

LLM

FEM

DFA

the
r0

final
r1 r2 r3

answer

HMM
Deco-G Dist.

number
total
time
final

number
total
time
final

number
total
time
final

LLM Dist.

FEM Dist.

Figure 2: DECO-G decouples task and format—prompting LLM with task-only information and
sending format constraints to FEM. DECO-G decodes from the posterior constructed by multiplying
LLM token probabilities with FEM estimated satisfaction rate.

Probabilistic reasoning over logical constraints. The core idea of these prior frameworks is to
use the TPM to perform a probabilistic lookahead—that is, to efficiently compute PTPM(α|xt, x<t),
the probability that the full generated sequence will satisfy the constraint α. This is accomplished
by marginalizing the joint HMM-DFA state space over all possible future sequences that reach an
accepting state in the DFA. According to Zhang et al. (2024), this marginalization can be calculated
efficiently using a backward recurrence relation. Refer to Section B for detailed derivation.

2.3 FROM PRIOR WORK TO DECO-G

Prior frameworks like GeLaTo (Zhang et al., 2023) and Ctrl-G (Zhang et al., 2024) successfully
use Hidden Markov Models (HMM) as tractable generative models to guide LLM generation, en-
suring outputs satisfy specific logical constraints in tasks such as keyphrase generation and text
editing. While GeLaTo introduces this concept, its use of Conjunctive Normal Forms (CNF) is pri-
marily limited to keyphrase constraints. Ctrl-G generalizes this approach by specifying logical con-
straints through Deterministic Finite Automata (DFA), which can represent constraints on bounded-
length sequences. While this foundation is promising, significant challenges arise when adapting
this framework to decouple format from task reasoning for modern, instruction-tuned LLMs.

• Domain shift: the paradigm shifts from logical-constrained generation to separating task-
instructed generation into two sub-tasks: problem solving (LLM side) and format adherence
(TPM side). This incurs domain mismatch, as prior methods train HMMs on random generation
without context, which is a poor proxy for an LLM conditioned on specific task instructions.

• Complexity of format templates: The intricate nature of real-world format templates presents
a major challenge, as the overhead from constructing complex constraint automata creates a
computational bottleneck.

• Inference-time inefficiency: The large vocabulary size of modern LLMs introduces substantial
computational overhead during the inference-time guidance step , which severely impedes the
framework’s latency

3 DECO-G

In this section, we present DECO-G, a framework that realizes the decoupling of task reasoning
from output formatting. As shown in Figure 2, our method separates the input prompt: the LLM
receives only the task-specific information, while a dedicated Format Estimation Module (FEM)
receives the format constraints. At each decoding step, the FEM estimates the likelihood of future
compliance with the given format constraints α. This likelihood is then used to reweigh the LLM’s
original token probabilities, steering the generation towards a format-compliant output. We now
describe the key components that enable this framework.

3.1 INSTRUCTION-AWARE HMM DISTILLATION

An HMM can approximate a large language model’s (LLM) output distribution to guide controllable
generation. The fidelity of this approximation is critical—ideally, an HMM that perfectly replicates
the LLM’s probabilities would yield an exact posterior for format-decoupled generation, per Equa-
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tion equation 2. Our key insight is that for instruction-tuned LLMs, the output distribution is funda-
mentally different when conditioned on a prompt versus when generating text unconditionally. Prior
methods (Zhang et al., 2023; 2024), however, distill their HMMs using text sampled unconditionally
from a model, an approach that fails to capture the task-oriented behavior that emerges after instruc-
tion fine-tuning. This very design renders methods like CtrlG ineffective in this context, leading to
the suboptimal control patterns we demonstrate in Section C.

To bridge this gap, we carry out instruction-aware distillation: conditioning an HMM on task-
oriented behavior by training it exclusively on the LLM’s instruction-response pairs. Specifically,
we distill knowledge from over one million completions generated by an LLM prompted with one
thousand unique instructions from the Natural-Instructions-v2 (Mishra et al., 2022) dataset. Follow-
ing Zhang et al. (2023), we train the HMM using the Baum-Welch algorithm (Baum et al., 1972).
This process yields a robust HMM that models the LLM’s conditional, instruction-following behav-
ior, enabling more precise control over generation across a wide spectrum of tasks.

3.2 FLEXIBLE TRIE BUILDING FOR COMPLEX FORMAT CONSTRAINTS

To address general format constraints, we extend the DFA with an algorithm based on a flexible trie.
This approach efficiently models structured templates composed of both fixed (pivots) and variable
(wildcards) segments. We formally define the language of these components as follows:

• Pivots: a pivot P is a fixed sequence of tokens x1x2...xp, representing static text in a template.
The language it recognizes is a singleton set, LP = {x1x2...xp}.

• Wildcards: a wildcard W represents a slot to be filled by the LLM. It accepts any sequence
of tokens whose length l falls within a specified range [min,max]. Its language is the set of all
possible strings over the alphabet Σ within that length range:

LW (min,max) =
max⋃

l=min

Σl

Our flexible trie builder constructs a single DFA that recognizes a language formed by the concate-
nation of these components, such as Lα = LP1

·LW1
·LP2

· ·LW2
. . . . The key to its efficiency is a

trie-based algorithm that shares states for all common prefixes across multiple patterns. By merging
these paths into canonical representations, it constructs a compact DFA for the union of all patterns
in a single pass, avoiding the state-space explosion of composing separate automata.

3.3 ESTIMATING FORMAT COMPLIANCE

With a distilled HMM that simulates LLM distribution and a DFA that encodes format constraints
α, we calculate the marginal probability over all sequences accepted by D(α) as

PFEM(α|xt, x<t) =
P (D(α) = 1, xt, x<t)

P (xt, x<t)
(5)

While the joint probability of format compliance and context sequence P (D(α) = 1, xt, x<t) is not
readily available in the FEM, we follow Zhang et al. (2024)’s marginalization of HMM over DFA
(Section B) to calculate this value. Finally, we use the FEM estimated compliance rate as likelihood
to construct the DECO-G posterior for decoupled generation

PDECO-G(xt|x<t, α) ∝ PLM(xt|x<t)[PFEM(α|x<t, xt)]
γ (6)

where γ is a hyperparameter that controls the strength of steering with default value of 1.

3.4 HMM HIDDEN STATE PRUNING

Although the Format Estimation Module (FEM) provides effective guidance for the generation pro-
cess, its computational overhead presents a significant bottleneck during inference. The primary
source of this overhead lies in the HMM’s emission stage, which calculates the probability distribu-
tion over the entire vocabulary V from a set of h hidden states. This step involves a matrix-vector
multiplication with a complexity of O(h|V|). Given our HMM configuration with h = 4096 hidden
states and vocabulary sizes |V| on the order of 128k for Llama and 152k for Qwen, this step can
severely impede inference latency.

5
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Table 1: GSM8k results.

Method Format (%) Acc. (%)

Llama-3.1-8B-Instruct

NL 96.3 82.3
NL-S 100 81.3
JSON 64.7 51.8
JSON-S 100 75.7
DECO-G 100 85.2

Qwen2.5-7B-Instruct

NL 98.0 83.6
NL-S 99.9 82.7
JSON 93.3 74.8
JSON-S 99.8 79.0
DECO-Gγ=2 100 88.6

Qwen3-8B

NL 97.4 90.5
NL-S 100 88.3
JSON 66.9 61.4
JSON-S 99.2 90.6
DECO-Gγ=2 100 91.7

Table 2: Generative EAE results on ACE05.

Method AI AC AI+ AC+

Llama-3.1-8B-Instruct

NL 36.8 27.3 34.8 25.5
NL-S 37.1 27.8 35.1 26.0
JSON 35.2 26.2 33.4 24.6
JSON-S 33.6 25.2 31.6 23.6
DECO-G 39.4 28.7 37.0 26.8

Qwen2.5-7B-Instruct

NL 32.6 25.5 31.2 24.4
NL-S 33.2 24.9 31.1 23.7
JSON 31.9 24.1 30.5 22.9
JSON-S 34.1 26.1 32.5 24.7
DECO-Gγ=2 35.2 25.9 33.4 24.5

Qwen3-8B

NL 33.2 24.6 31.5 23.1
NL-S 33.3 24.2 31.5 22.6
JSON 31.7 23.4 3.01 21.8
JSON-S 32.5 23.0 30.8 21.5
DECO-Gγ=2 34.0 24.6 32.1 23.1

To mitigate this, we introduce HMM hidden state pruning, an optimization technique to reduce
the computational load while preserving guidance quality. This technique is predicated on the ob-
servation that, at any given generation step, the probability mass of the hidden state distribution is
concentrated within a small subset of states (see Section D). Consequently, rather than employing the
full set of h states for the emission probability calculation, we prune the distribution by considering
only the top-k most probable states. Our empirical validation demonstrates that selecting a minimal
fraction of states—specifically, the top 5% (k = 200) based on their probability magnitudes—is
sufficient to retain over 98% of the full model’s performance.

This pruning strategy drastically improves efficiency. The complexity of the emission step is re-
duced from O(h|V|) to O(h log h + k|V|), where k ≪ h. The O(h log h) term represents the cost
associated with selecting the top-k states, while the dominant matrix multiplication is reduced to
an O(k|V|) operation. This optimization achieves a considerable reduction in inference time for a
negligible loss in performance, thereby enhancing the practical viability of DECO-G.

4 EXPERIMENT

Experimental Setup. We assess DECO-G’s overall performance over three tasks: (1) math prob-
lem solving with reasoning, (2) LLM-as-a-judge for summary evaluation, and (3) event argument
extraction as a generative task. We apply DECO-G on performant instruction models Llama-3.1-8B-
Instruct (Grattafiori et al., 2024), Qwen2.5-7B-Instruct (Yang et al., 2025b), and Qwen3-8B (Yang
et al., 2025a) to verify its effectiveness. The baselines we include for comparison are as follows,

• NL: prompt LLM with task instruction and natural language output constraints, free generation
• NL-S: prompt LLM with task instruction and natural language output constraints, structured

generation enforced through Outlines (Willard & Louf, 2023)
• JSON: prompt LLM with task instruction and JSON output constraints, free generation
• JSON-S: prompt LLM with task instruction and JSON output constraints, structured JSON

generation enforced through Outlines

For DECO-G, the HMM for each LLM has hidden states of size h=4096, output space of |V|=128k
for Llama and |V|=152k for Qwen models, and is trained for 100 epochs on one-million LLM
generated responses (sampling takes 56 GPU hours and training takes 1 GPU hour on NVIDIA
A100). For the following experiments, we adopt greedy decoding to ensure fair comparison with
baseline methods and evaluate zero-shot performance.

6
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4.1 MATHEMATICAL REASONING

In this task, we evaluate our framework on GSM8k (Cobbe et al., 2021), a collection of grade school
math problems that take two to eight steps to solve. Models are expected to carry out step-by-step
reasoning and arrive at the answer. Following Tam et al. (2024), a group of task instructions is
adopted to prompt the model to first reason about the math problem and then yield an integer as
its answer. For JSON format output, we prompt the model to output valid JSON blob with keys
“reason” and “answer.” For natural language output, format instructions are used to encourage the
model to generate the tamplate phrase “The final answer is ...” Meanwhile, this phrase is specified
as a key phrase to appear in DECO-G’s generation.

Evaluation Metrics. We measure Format Compliance as the rate to which the generated answer
follows format requirement. In addition, we measure Accuracy as exact match of ground truth
answer.

Results. As shown in Table 1, unstructured NL generation offers decent performance, with Llama
scoring 82.3% and Qwen 83.6% on accuracy. However, together with unstructured JSON, free
generation methods completely rely on the LLM for following the format constraint and thus suffer
from low compliance rate. Structured generation, on the contrary, guarantees format compliance, but
its performance is negatively impacted by the invasive intervention that sometimes cut the generation
flow and alter course abruptly. DECO-G guarantees a 100% format compliance rate and achieves
the best performance over all three models. In practice, we find out that Qwen models have more
skewed token distribution. We thus raise the control factor λ to exert stronger control on the output.

4.2 LLM-AS-A-JUDGE EVALUATION

We then use LLMs as judges to evaluate the quality of summaries and assess how well it aligns
with human annotation. This evaluation is performed on the SummEval (Fabbri et al., 2021) dataset
which consists 1600 machine-generated summaries for 100 news articles, and human annotated
scores over four dimensions: Coherence, Consistency, Fluency, and Relevance. The models are
asked to analyze the summary and assign a score from 1 to 5 based on the given criteria suggested
by ChatGPT (OpenAI, 2025). We use the format “The rating is ...” for natural language output and
“rating” as the key for harnessing JSON output.

Evaluation Metrics. Following Liu et al. (2023), we adopt the summary-level Spearman and
Kendall-Tau correlation to gauge the performance of each method. Higher number indicates bet-
ter alignment with human annotated scores.

Results. For this task, Qwen models perform well in following the output format in unstructured
settings, securing over 99.7% compliance rate. This may attribute to a less intensive reasoning phase
compared to mathematical reasoning. As indicated in Table 3, DECO-G demonstrates the strongest
average correlation with human across models, enhancing over Consistency, Fluency, and Relevance
when applied to Qwen models. With Llama, DECO-G gains over Coherence and Relevance while
showing relative weakness in evaluating Consistency and Fluency. A close inspection of model
generated outputs suggests that DECO-G encourages a more flexible integration of the key phrase in
different places of the response: the beginning, middle, and end of response.

4.3 EVENT ARGUMENT EXTRACTION

The generative event argument extraction (EAE) task mainly assess a model’s ability in identifying
role-related arguments from source text. We evaluate on the ACE05-EN dataset (Doddington et al.,
2004), in which a model is be presented with an article, a trigger word, and a set of roles to determine
whether arguments associated with the roles are present in the article. This is naturally a templated
task as generative model has to specify which word is extracted for which role. Regarding JSON
output, we ask model to generate a JSON blob with roles as keys and extracted arguments as values.
For natural language output, we specify the template “The <rolei> is ...” for every relevant roles.
For DECO-G, we construct a flexible DFA that fuses the template phrases together with empty slots
allowing LLM predict arguments spanning from 1 to 5 tokens.

7
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Table 3: SummEval results, measured over Coherence, Consistency, Fluency, and Relevance.

Coherence Consistency Fluency Relevance Avg

Method ρ τ ρ τ ρ τ ρ τ Format ρ τ

Llama-3.1-8B-Instruct

NL 0.381 0.311 0.383 0.351 0.321 0.291 0.405 0.337 95.8 0.372 0.322
NL-S 0.376 0.308 0.375 0.343 0.316 0.287 0.435 0.364 100 0.376 0.325
JSON 0.449 0.368 0.446 0.415 0.326 0.296 0.424 0.358 99.8 0.411 0.359
JSON-S 0.450 0.369 0.447 0.416 0.334 0.302 0.424 0.358 100 0.414 0.361
DECO-G 0.458 0.379 0.439 0.404 0.331 0.298 0.441 0.371 100 0.418 0.363

Qwen2.5-7B-Instruct

NL 0.407 0.339 0.442 0.407 0.291 0.265 0.399 0.340 100 0.385 0.338
NL-S 0.403 0.337 0.448 0.412 0.279 0.254 0.408 0.347 100 0.384 0.338
JSON 0.411 0.334 0.488 0.455 0.305 0.280 0.383 0.326 99.7 0.396 0.349
JSON-S 0.412 0.335 0.489 0.457 0.309 0.284 0.387 0.330 100 0.399 0.351
DECO-Gγ=2 0.327 0.271 0.506 0.470 0.348 0.311 0.452 0.380 100 0.408 0.358

Qwen3-8B

NL 0.510 0.416 0.540 0.504 0.479 0.441 0.464 0.392 100 0.498 0.439
NL-S 0.507 0.413 0.544 0.509 0.477 0.439 0.468 0.396 100 0.499 0.439
JSON 0.504 0.409 0.491 0.459 0.444 0.410 0.450 0.382 99.8 0.472 0.415
JSON-S 0.486 0.393 0.486 0.454 0.406 0.376 0.441 0.374 100 0.455 0.399
DECO-Gγ=2 0.490 0.395 0.546 0.516 0.499 0.456 0.494 0.414 100 0.507 0.445

Evaluation Metrics. We measure performance by calculating the f1-score comparing the ex-
tracted tuples and the ground truth tuples for the following categories:

• Argument Id (AI): argument span and event type.
• Argument Class (AC): argument span, event type, and role type.
• Argument-attached Id (AI+): argument span, event type, and event trigger.
• Argument-attached Class (AC+): argument span, event type, event trigger, and role type.

Results. The f1-scores reported in Table 2 suggest that EAE remains a challenging task for gen-
erative models. LLMs suffer from identifying correct relations in the article and presenting valid
predictions that indeed exist in the original text—without modifying entity format or referring to
exterior content. Baseline methods show inconsistent trends across models, indicating LLMs’ lack
of robustness in event argument extraction. Employing DECO-G enhances overall extraction quality
for Llama and Qwen3, while mainly improving over AI and AI+ for Qwen2.5. DECO-G’s gain on
AI and AI+ is more evident than its improvement on AC and AC+, suggesting that DECO-G can
further benefit from a tighter association between roles and extracted arguments—possible through
designing more natural and intuitive control phrase for DECO-G.

5 ANALYSIS

5.1 THE STEERING PROCESS

DECO-G takes advantage of HMM to estimate the future format satisfaction rate and adjust token
probabilities based on the estimation. To better understand this steering process, we examine the
control signals produced by the FEM and visualize the control for a span of decoding step. We track
the original LLM distribution, FEM distribution, and their composed distribution, which DECO-G
decodes from. Figure 3 provides an illustration of DECO-G encuraging the generation of key phrase
after step by step reasoning. While the LLM tends to conclude its response with “The total number
of ... is ...” DECO-G assigns high probabilities to the token “final,” steering the LLM generation to
conform with format constraints.

As LLMs are trained to provide clear and concise response, they tend to avoid repeating themselves
when presenting the final answer. DECO-G captures this intricacy and replaces LLM’s intended
conclusive phrase with the format phrase “The final answer is” to reduce repetition. We consider
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this format integration to be more natural than forcing LLM to generate certain phrases as in regex-
structured generation.

5.2 TOKEN ENTROPY AND STEERING STRENGTH

In the previous section, we report DECO-G’s results with hyperparameter γ = 2 for controlling
Qwen models, as γ = 1 doesn’t provide enough power to steer the model away from its own
generation course. We hypothesize that Qwen models’ token distributions are more skewed than
Llama’s, making it difficult for the control signal to actually make an impact on the distribution.
To verify this, we draw 100 examples from GSM8k responses and measure the average step-wise
entropy of LLM token distribution. As shown in Figure 4, Llama’s entropy is significantly higher
than those of Qwen2.5 and Qwen3, suggesting that Llama’s token probabilities are more spread out
and diverse, whereas Qwen models’ token distributions are more peaky. This increased peakiness
could be a consequence of the distribution squeezing induced by more intensive fine-tuning and
preference optimization of the LLM (Ren & Sutherland, 2025). It is thus intuitive to amplify DECO-
G’s control strength for LLM with more skewed distribution to guarantee format compliance.

Within the same model, structured generation methods (NL-S and JSON-S) have slightly higher
entropy than their unstructured counterparts (NL and JSON). This may attribute to imposed template
tokens provoking more uncertainty in future token prediction. Meanwhile, DECO-G produces lowest
LLM entropy, indicating that an absence of format constraint in task solving may lead to LLM
providing the most confident response.

6 RELATED WORK

In the paper, we explore a controllable text generation (CTG) method to decouple task solving from
format adherence. There are two branches in CTG that provide avenues for achieving this format-
task decoupling—content-wise hard control and attribute-wise soft control.

Content-wise structured generation aims to produce outputs that conform to predefined schemes or
templates. The guaranteed adherence to specified format ensures high reliability when integrating
LLM with external systems. This line of methods (Willard & Louf, 2023; guidance-ai, 2024), how-
ever, exerts invasive control over the LLM generation which often produce abrupt cut-off, resulting
in incomplete and incoherent responses.

Attribute-wise soft control offers a more flexible paradigm, focusing on conditioning the generation
based on a desired attribute. One line of works instills attribute information into the the LLM and
updates model weights, through retraining (Keskar et al., 2019; Arora et al., 2022), fine-tuning (Wei
et al., 2021; Zeldes et al., 2020; Li & Liang, 2021; Lester et al., 2021), or reinforcement learn-
ing (Ouyang et al., 2022; Stiennon et al., 2020; Zeng et al., 2024; Dai et al., 2024). This method
benefits from no added computational load during inference, but the expense of training the LLM
for updates can be significant. The other set of works (Dathathri et al., 2019; Yang & Klein, 2021;
Krause et al., 2021; Schick et al., 2021; Liu et al., 2021; Khandelwal et al., 2021; Sitdikov et al.,
2022; Wen et al., 2023; Deng & Raffel, 2023) keeps the LLM as-is and instead modifies the genera-
tion probabilities at inference time, also known as weighted decoding. These methods typically train
a lightweight auxiliary model to guide the LLM’s generation at decoding time according to Bayes’
rule. In light of these prior works, DECO-G takes the weighted decoding measure to compute the
posterior given format constraints as an attribute.

7 CONCLUSION

In this paper, we present DECO-G, a novel decoding framework designed to decouple the respon-
sibilities of task reasoning and format adherence. It achieves this responsibility separation by em-
ploying an auxiliary Format Estimation Module to estimate future format satisfaction and modify
token probabilities, thus allowing the LLM to concentrate solely on problem-solving. Experiments
on mathematical reasoning, LLM-as-a-judge evaluation, and event argument extraction demonstrate
this decoupling approach leads to overall performance gain, attributing to improved format compli-
ance, more natural format integration, and more confident response from the LLM. Limitation of
this work is covered in Section A.
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ETHICAL CONSIDERATIONS

We conduct experiments on mathematical reasoning, LLM-as-a-judge evaluation, and event argu-
ment extraction. The score assigned by an LLM should not be considered an accurate reflection
of quality of the summary. In addition, the LLM responses to the GSM8k questions should not be
referenced for math instruction as they may include hallucination.

We acknowledge the use of AI assistants for improving the manuscript’s prose, generating tables
in LaTeX format, figure design, and assisting with code implementation for the analysis of HMM
hidden state pruning. All generated content, particularly the data in tables, was manually verified
for accuracy against our experimental results.

REPRODUCIBILITY STATEMENT

A detailed description of our experimental setup, including the specific models used, HMM training
parameters, and decoding strategy, is provided in the introductory paragraph of Section 4. To allow
for replication of our experiments, the full prompts used for the mathematical reasoning (GSM8k),
LLM-as-a-judge (SummEval), and event argument extraction (ACE05) tasks are detailed in Sec-
tion F. Regarding computational overhead, a breakdown of the FLOPs required for the HMM for-
ward pass, both with and without pruning, is presented in Section E. Code and model weights will
be made publicly available upon paper acceptance.
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APPENDIX

A LIMITATIONS

While we show DECO-G enhances LLM task performance in various tasks, a few limitations should
be taken into consideration when using DECO-G. Firstly, the HMM used to estimate format satis-
faction rate is specific to an LLM, meaning that one has to distill a new HMM when switching to a
different LLM. Although, in practice, we find out that an HMM can be applied to larger LLMs in
the same family, it is not an accurate representation of their token distributions. Secondly, similar
to other CTG methods that includes additional module for attribute modeling, DECO-G introduces
additional computation overhead during decoding. As suggested by (Zhang et al., 2024), the prob-
abilistic traversal of future generation courses using HMM has a complexity that is linear to the
number of edges in DFA and quadratic to the number of hidden states in HMM. Complex format
constraints, converted to larger DFA, are thus likely to increase generation runtime. Finally, finding
the optimal hyperparameter γ for LLMs with highly peaked token distributions may require empir-
ical explorations. Such distributions require increased γ to ensure robust format compliance, yet an
excessive value may adversely affect the output quality.

B PROBABILISTIC REASONING OVER LOGICAL CONSTRAINTS

Zhang et al. (2023) and Zhang et al. (2024) use a TPM to perform a probabilistic lookahead—that is,
to efficiently compute PTPM(α|x≤t), the probability that the full generated sequence will satisfy the
constraint α. The constraint is encoded as a DFA, and compliance is denoted by the event D(α) = 1.
Then, the marginal probability over all sequences accepted by D(α) is expressed as

PTPM(α|x≤t) =
PTPM(D(α) = 1, x≤t)

PHMM(x≤t)
(7)

where the numerator—likelihood of satisfying the constraint given a prefix x≤t—is found by
marginalizing over the HMM hidden states zt and the DFA states st

PTPM(D(α) = 1, x≤t) =
∑
zt

PTPM(D(α) = 1|zt, st)PHMM(zt, x≤t) (8)

The conditional compliance probability PTPM(D(α) = 1|zt, st), as shown in Zhang et al. (2024), is
calculated using a backward recurrence relation. This sums the probabilities of all valid transitions
from step t to t+ 1, weighted by the HMM’s transition and emission probabilities

P (D(α) = 1|zt, st) =
∑
zt+1

P (zt+1|zt)
∑
st+1

P (D(α) = 1|zt+1, st+1)
∑

δ(st,xt+1)=st+1

P (xt+1|zt+1)

(9)
The computed probability then serves as the tractable approximation of the format compliance like-
lihood, which is used to guide the LLM’s next-token generation as shown in Equation 3.

C SUBOPTIMAL CONTROL FROM UNCONDITIONED HMM DISTILLATION

When an instruction-tuned model is prompted with no specific user input for unconditional sam-
pling, it often defaults to generic conversational phrases like, “Is there something I can help you
with?” This behavior is a byproduct of its safety and helpfulness training. An HMM distilled from
thousands of such non-substantive responses learns a token distribution that is unrepresentative of
the model’s capabilities in actual problem-solving scenarios.

Consequently, when this poorly-approximated HMM is applied to a complex reasoning task, it pro-
vides a suboptimal control signal. The HMM, having not learned the patterns of reasoned thought,
cannot accurately predict the LLM’s token distribution during task execution. This leads to im-
proper guidance that can disrupt the generation process. For example, when we applied CtrlG to
the GSM8k dataset, its control mechanism prematurely forced the model to generate the required
format phrase (“The final answer is ...”), suppressing the step-by-step reasoning necessary to solve
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the problem. This resulted in an accuracy of only 60.6%, a significant drop compared to the standard
natural language baseline.

The table below provides an example of this failure mode on a GSM8k problem, contrasting CtrlG’s
flawed output with the coherent response from DECO-G, which uses an instruction-aware HMM.

Table 4: Comparison of CtrlG and DECO-G outputs on a GSM8k reasoning task.

Method Output
CtrlG The final answer is 0.36 (INCORRECT)

DECO-G To find the probability that both tickets are winners, we need to multiply the probabili-
ties of each ticket winning.

1. The probability of the first ticket winning is 20% or 0.2.
2. The probability of the second ticket winning is three times more likely, so it’s

3× 0.2 = 0.6.
3. The probability of both tickets winning is the product of their individual prob-

abilities: 0.2× 0.6 = 0.12.
4. To express this as a percentage, we multiply by 100: 0.12× 100 = 12%.

The final answer is 12. (CORRECT)

D HMM PRUNING AND EFFICIENCY

As established in Section 3.4, hidden state pruning is employed to mitigate the computational over-
head of the HMM. This optimization is empirically justified by the highly concentrated nature of
the hidden state probability distribution, as illustrated in Figure 5. Our analysis confirms that for
Llama- and Qwen-distilled HMMs, the top 5% of hidden states (k = 200) retain over 97.8% of the
total probability mass on average.

This high mass retention translates to a negligible impact on task performance. As shown in Table 6,
the accuracy degradation on the GSM8k benchmark is minimal when pruning is applied: -0.2% for
Llama, -1.2% for Qwen2.5, and +0.9% for Qwen3. This result validates that the pruned HMM
provides sufficient guidance, confirming the efficacy of the optimization.

The primary benefit of this approach is a substantial improvement in computational efficiency. By
reducing the computation of the HMM emission stage, pruning achieves a 13x reduction in the
FLOPs required by the HMM forward function at each decoding step (from approx. 1.08 GFLOPs
to 0.08 GFLOPs for Llama, see Section E for calculation). When compared to the LLM’s own for-
ward pass, which requires approximately 16 GFLOPs per token (Kaplan et al., 2020), the pruned
FEM’s computational cost constitutes only about 0.53% of the main inference workload. This opti-
mization renders the guidance overhead practically insignificant, thereby enhancing the viability of
the DECO-G framework.

E HMM FORWARD COMPUTATION COST

This section details the computational cost (in FLOPs) of the HMM’s forward pass. The calculation
uses the HMM parameters for the Llama model: hidden states h=4096, vocabulary size |V|=128k,
and top-k states for pruning k=200.

Before Pruning The total cost is the sum of the state transition cost (2h2) and the emission cost
(2h|V|).

Total FLOPs = (2× 40962) + (2× 4096× 128, 000)

= (3.36× 107) + (1.05× 109) ≈ 1.08 GFLOPs
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After Pruning The cost is the sum of the state transition cost and the pruned emission cost (2k|V|).

Total FLOPs = (2× 40962) + (2× 200× 128, 000)

= (3.36× 107) + (5.12× 107) ≈ 0.08 GFLOPs

This optimization reduces the HMM’s computational overhead from 1.08 GFLOPs to 0.08 GFLOPs,
a ∼13x reduction per decoding step.

F PROMPT CONSTRUCTION

We present the set of prompts used in the experiments. For GSM8k (Table 7), we sample from a
set of task instructions and a set of format instructions to construct prompts for baseline methods.
For SummEval (Table 8), we include domain specific scoring criteria in the task instructions to
help LLM align better with human annotations for all methods. For ACE05 (Table 9), an event
description is appended to the task instructions which further explains the event of interest.

Table 5: Full ACE05 Results.

Model Method AI AC AI+ AC+
Precision Recall f1 Precision Recall f1 Precision Recall f1 Precision Recall f1

Llama-3.1-8B-Instruct

NL 33.7 40.5 36.8 24.2 31.4 27.3 30.5 40.5 34.8 21.7 31.0 25.5
NL-S 33.7 41.3 37.1 24.4 32.3 27.8 30.5 41.3 35.1 21.8 32.1 26.0
JSON 30.5 41.8 35.2 21.5 33.3 26.2 27.8 41.7 33.4 19.6 33.0 24.6
JSON-S 28.0 42.0 33.6 19.8 34.4 25.2 25.4 41.6 31.6 18.0 34.1 23.6
DECO-G 39.4 39.3 39.4 27.3 30.3 28.7 35.5 38.5 37.0 24.5 29.6 26.8

Qwen2.5-7B-Instruct

NL 29.7 36.2 32.6 22.6 29.4 25.5 27.5 35.7 31.2 21.0 29.0 24.4
NL-S 28.6 39.5 33.2 20.7 31.4 24.9 26.2 39.0 31.3 19.1 31.2 23.7
JSON 29.1 35.2 31.9 21.3 27.7 24.1 27.0 35.0 30.5 19.7 27.4 22.9
JSON-S 32.2 36.2 34.1 23.9 28.7 26.1 29.6 36.1 32.5 21.9 28.4 24.7
DECO-G γ=2 30.9 41.0 35.2 21.8 32.0 25.9 28.4 40.5 33.4 20.1 31.4 24.5

Qwen3-8B

NL 28.0 40.9 33.2 19.5 33.3 24.6 25.6 40.9 31.5 17.8 33.0 23.1
NL-S 27.9 41.4 33.3 18.9 33.6 24.2 25.4 41.3 31.5 17.1 33.2 22.6
JSON 27.0 38.4 31.7 18.6 31.7 23.4 24.7 38.4 30.1 16.7 31.4 21.8
JSON-S 26.8 41.4 32.5 17.5 33.4 23.0 24.5 41.3 30.8 15.9 33.2 21.5
DECO-G γ=2 27.9 43.6 34.0 18.9 35.1 24.6 25.5 43.4 32.1 17.3 34.8 23.1

G MORE EAE RESULTS

In Table 2, we report the f1-scores for each method. In Table 5, we present the full results for our
event argument extraction experiment.

H HMM DISTILLATION AND USAGE

For Llama and Qwen, we distill their HMMs on the LLM continuation only, since the instructions
from Natural-Instructions are human authored and should not be considered reflecting LLM distri-
bution. We remove the special chat tokens (e.g. <|system|>, <|user|>, etc.) from the responses for
HMM to capture the natural language distribution.

We tried different inputs to the HMM, including 1) regular prompt (with chat template), 2) cleaned
text prompt (without chat template), and 3) no prompt (empty string). In practice, their results are
almost identical. Nonetheless, in accordance with the distillation objective, we report scores yielded
from using empty input to the HMM.

I VISUALIZATION OF DECO-G’S STEERING PROCESS

Figure 3 shows an example of DECO-G steering Llama’s token probability to encourage the gener-
ation of format tokens.
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Figure 3: DECO-G steers Llama to generate predefined template “The final answer is ...” by boosting
probabilities of template tokens.

Llama-3.1-8B-Instruct Qwen2.5-7B-Instruct Qwen3-8B
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Figure 4: LLM’s token-level entropy for different models and methods. Llama has a more flexible
token distribution as compared to Qwen.
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Figure 5: Average retention rate (of total mass) over top-k HMM hidden states on GSM8k dataset.

Table 6: DECO-G performance on GSM8k with and without pruning.

Method Acc (%)

Llama-3.1-8B-Instruct

DECO-G w/o Pruning 85.4
DECO-G 85.2 (∆=-0.2)

Qwen2.5-7B-Instruct

DECO-G w/o Pruning 89.8
DECO-G 88.6 (∆=-1.2)

Qwen3-8B

DECO-G w/o Pruning 90.8
DECO-G 91.7 (∆=+0.9)

Table 7: GSM8k prompt construction and an example question.

GSM8k
Task Instructions 1. Follow the instruction to complete the task:\nYou are a math tutor who

helps students of all levels understand and solve mathematical problems.
\nRead the last question carefully and think step by step before answering,
the final answer must be only a number.

2. Follow the instruction to complete the task:\nRead the last question care-
fully and think step by step before answering, the final answer must be only
a number. You are a math tutor who helps students of all levels understand
and solve mathematical problems.

3. Follow the instruction to complete the task:\nMathematical problem-
solving task:\n- Given: A mathematical question or problem\n- Required:
A numerical answer only\n- Role: You are a math tutor assisting students of
all levels\n- Process: Think step by step to solve the problem\nNote: Read
the question carefully before beginning your analysis.

NL Format Instructions 1. Provide your output in the following text format:\n<think step by step>.
The final answer is <answer>

2. Provide your output in the following text format:\nReasoning: <reason-
ing first>. Answer: The final answer is ...

JSON Format Instructions Provide your output in the following valid JSON format:\n{“reason”:
“<step by step reasoning>”,“answer": “<final answer>”}

Question Example Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morn-
ing and bakes muffins for her friends every day with four. She sells the
remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market?
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Table 8: SummEval prompts.
SummEval
Task Instructions
(Coherence)

You will be provided with a summary written for a news article \nYour task is to rate
the summary based on its coherence. \n\nPlease ensure you read and understand
these instructions carefully. Keep this document open while reviewing, and refer
to it as needed. \n\nEvaluation Criteria: \nCoherence (1-5): \n- 5: The summary
is well-structured and organized, presenting information in a logical and seamless
flow. \n- 4: The summary is mostly coherent, with minor lapses in organization
or flow. \n- 3: The summary has noticeable organizational issues or lacks a smooth
flow but is somewhat understandable. \n- 2: The summary is poorly structured, with
significant difficulties in following its logic or flow. \n- 1: The summary is highly
disjointed and lacks any meaningful structure or coherence. \nUse these criteria to
assign a coherence score between 1 and 5 based on how well the summary organizes
and presents information in a clear and logical manner.

Task Instructions
(Consistency)

You will be provided with a news article and a summary written for this article. \nY-
our task is to rate the summary based on its consistency. \n\nPlease ensure you read
and understand these instructions carefully. Keep this document open while review-
ing, and refer to it as needed. \n\nEvaluation Criteria: \nConsistency (1-5): \n- 5:
The summary is fully factually accurate and all its statements are directly supported
by the source document. \n- 4: The summary is mostly factually accurate, with only
minor errors or omissions. \n- 3: The summary contains noticeable factual errors or
unsupported statements but retains some alignment with the source document. \n- 2:
The summary has significant factual inaccuracies or includes multiple unsupported
claims. \n- 1: The summary is largely inconsistent with the source, containing nu-
merous factual inaccuracies or fabricated details. \nUse these criteria to assign a
consistency score between 1 and 5 based on how well the summary aligns factually
with the source article.

Task Instructions
(Fluency)

You will be provided with a summary written for a news article. \nYour task is to
rate the summary based on its fluency. \n\nPlease ensure you read and understand
these instructions carefully. Keep this document open while reviewing, and refer
to it as needed. \n\nEvaluation Criteria: \nFluency (1-5): \n- 5: The summary is
clear and easy to read, with good grammar, spelling, and sentence structure. \n-
4: The summary is generally clear and fluent, with a few minor errors that don’t
interfere with understanding. \n- 3: The summary has some noticeable issues that
might make it a little harder to read but still understandable overall. \n- 2: The
summary has more noticeable problems that might make it challenging to follow in
places. \n- 1: The summary has significant errors that make it difficult to read or
understand in many parts. \nUse these criteria to assign a fluency score between
1 and 5 based on the quality of grammar, word choice, and sentence structure.
\nImportant: When evaluating fluency, ignore punctuation and capitalization. Focus
only on how natural and easy the language feels regardless of formatting.

Task Instructions
(Relevance)

You will be provided with a summary written for a news article. \nYour task is to
rate the summary based on its relevance. \n\nPlease ensure you read and understand
these instructions carefully. Keep this document open while reviewing, and refer
to it as needed. \n\nEvaluation Criteria: \nRelevance (1-5): \n- 5: The summary
includes all the important information from the source document with no redundan-
cies or irrelevant details. \n- 4: The summary is mostly relevant, with only minor
omissions or slight redundancies. \n- 3: The summary includes some important
information but misses key points or has noticeable redundancies. \n- 2: The sum-
mary contains limited relevant information, with significant omissions or excessive
irrelevant content. \n- 1: The summary is largely irrelevant, failing to capture the
main points of the source document. \nUse these criteria to assign a relevance score
between 1 and 5 based on how well the summary captures the important content
from the source without including excess or redundant information.

NL Format In-
structions

Provide your output in the following text format: <analyze the summary>. The
rating is <a number between 1 and 5>

JSON Format In-
structions

Provide your output in the following valid JSON format:\n{“analysis”: “<analyze
the summary>”,“rating”: <a number between 1 and 5>}
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Table 9: ACE05 prompt construction and an example question.

ACE05
Task Instructions You are an argument extractor designed to check for the presence of argu-

ments regarding specific roles for an event in a sentence. \nTask Descrip-
tion: Identify all arguments related to the role Attacker, Target, Instrument,
Place, Agent in the sentence. These arguments should have the semantic
role corresponding to the given event trigger by the word span between [t]
and [/t].

The event of interest is Conflict:Attack. The event is related to conflict and
some violent physical act. Roles of interest: Attacker, Target, Instrument,
Place, Agent

NL Format Instructions Provide your output in the following text format:\nThe <role_1> is:
<extracted argument>\nThe <role_2> is: <extracted argument>\n...\nThe
<role_n> is: <extracted argument>

JSON Format Instructions Provide your output in the following valid JSON format:\n{“<role>”: “<ex-
tracted argument>” for role in roles of interest}

Question Example Text: Efforts were to continue at the United Nations Friday to find a break-
through in the diplomatic stalemate on Iraq , with Washington warning it
could bypass the Security Council and go to [t] war [/t] alone .
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