Under review as a conference paper at ICLR 2026

DECOUPLING TASK-SOLVING AND OUTPUT FORMAT-
TING IN LLLM GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly adept at following instructions
containing task descriptions to solve complex problems, such as mathematical rea-
soning and automatic evaluation (LLM-as-a-Judge). However, as prompts grow
more complex, models often struggle to adhere to all instructions. This difficulty
is especially common when instructive prompts intertwine reasoning directives—
specifying what the model should solve—with rigid formatting requirements that
dictate how the solution must be presented. The entanglement creates compet-
ing goals for the model, suggesting that more explicit separation of these two
aspects could lead to improved performance. To this front, we introduce DECO-
G, a decoding framework that explicitly decouples format adherence from task
solving. DECO-G handles format compliance with a separate tractable proba-
bilistic model (TPM), while prompts LLMs with only task instructions. At each
decoding step, DECO-G combines next token probabilities from the LLM with
the TPM calculated format compliance likelihood to form the output probability.
To make this approach both practical and scalable for modern instruction-tuned
LLMs, we introduce three key innovations: instruction-aware distillation, a flexi-
ble trie-building algorithm, and HMM state pruning for computational efficiency.
We demonstrate the effectiveness of DECO-G across a wide range of tasks with
diverse format requirements, including mathematical reasoning, LLM-as-a-judge,
and event argument extraction. Overall, our approach yields 1.0% to 6.0% relative
gain over regular prompting practice with guaranteed format compliance.

Mathematical Reasoning (GSM8k)
Question: Lee runs the 400-meter hurdles in 38 seconds ... what is Gerald's new time?
Format Contraints: The final answer is ...

Prompting w/o Format Constraints Prompting w/ Format Constraints Deco-G

rompt \ /LITM Prompt \
_ (?ﬁ? | Task Instruction

+ i

FEM Format Constraints

To solve this problem, let's break it
down step by step

f Prompt \ /
LLM = 9 LLM
. Task Instruction ‘w‘ fo

I 0,0

of
2

\
ormat Constraint:

To solve this problem, let's break it
down step by step

To find Gerald's new time, we first

“fherefore Gerald, with his improved need to

diet, can run the 400-meter hurdles
in 36 seconds. The final answer is 39.6 The final answer is 36.

KFormat X Answer ?/ \Format Answer x/ \Format Answer

Figure 1: Example of GSM8k responses. LLM prompted without format constraints gets the correct
answer, but the number is embedded in a sentence with mixed types, making it hard to capture. LLM
prompted with format constraints gets the answer wrong. DECO-G prompts the model with task
information and handles the format constraints by employing a Format Estimation Module (FEM).
The framework generates the correct answer in the required format, making it easy to harvest.

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Instruction fine-tuning (Wei et al., |2021; |Chung et al., 2024) enables large language models (LLMs)
to follow user instructions and solve complex tasks. Given a task description and a desired output
format, LLMs can perform tasks such as model evaluation and event extraction without additional
training. Prompting strategies like Chain-of-Thought (Wei et al., 2022) and Tree-of-Thought (Yao
et al.| 2023) further enhance performance by encouraging structured reasoning. However, emerging
evidence suggests that complex instructions—especially those with strict formatting—can nega-
tively impact model performance (Tam et al., 2024;|Long et al., 2025; |He et al.|[2024)). For example,
Long et al.| (2025) reveal that LLM performance varies based on the required output format. On the
MMLU (Hendrycks et al.,|2020) benchmark, a model might fail to provide the correct answer when
forced into one output structure, or provide the correct answer but fail a minor formatting instruction,
which complicates automatic evaluation. In addition, Tam et al.|(2024) point out that stricter format
constraints generally lead to a greater degradation in performance on reasoning tasks. Therefore,
the current paradigm of stacking task instructions and format instructions in the input prompt (as
shown in Figure[l] the attachment of format instruction enclosed in the red hexagon) appears to be
a limiting factor for harnessing LLM capabilities.

Attempts have been made to reduce format constraints’ impact on LLM generation. For in-
stance, Tam et al.|(2024) employ a less strict format to give LLM more flexibility. Long et al.| (2025)
and [He et al.| (2024) explore formats that are more intuitive for the LLM to follow. Yet, they still
pose certain constraints to the LLM, impairing its reasoning skills. Other works (Beurer-Kellner
et al., |2024; |guidance-ai}, 2024} Willard & Louf] 2023)) perform non-neural inference-time control
centered toward constraint satisfaction. They guarantee format compliance by enforcing the model
to decode certain tokens. This mechanism fails to consider the interplay with LLM reasoning, often
resulting in incoherent output. The situation thus highlights the need for a framework that seamlessly
decouples format constraints from LLM task solving to unlock the full potential of LLM:s.

In this paper, we propose a decoupled generation framework DECO-G that separates output
formatting from task reasoning, thereby allowing the LLM to focus on the task without the burden
of format adherence. We leverage the modularity of existing controllable text generation methods
(e.g. GeLaTo (Zhang et al.| [2023), CtrlG (Zhang et al., [2024)) and delegate the format adherence
responsibility to an auxiliary Tractable Probabilistic Model (TPM), which estimates compliance
rate and reweighs token probability. While GeLaTo and CtrlG provide pathways for controllable
generation with keyphrase and length constraints, they face significant challenges when applied to
instruction-tuned LLMs with complex output templates. These challenges stem from a domain shift
and computational bottlenecks that hinder scalability and efficiency. To make our framework prac-
tical and effective for general instructive tasks, we introduce three key techniques. Firstly, we train
the HMM on LLM’s instruction-response pairs to better captures task-oriented behaviors. Secondly,
we employ a flexible trie-based algorithm to efficiently construct automata for complex, multi-part
output templates. Thirdly, we implement HMM hidden state pruning to accelerate inference speed
and ensure practical usability. To our knowledge, we are the first to propose the direct separation
of task solving and format adherence in LLM generation to preserve its full potential.

To assess DECO-G’s effectiveness in handling tasks of different natures, including reasoning and
multi-phrase templates adherence, we test the framework on three different tasks: mathematical rea-
soning, LL.M-as-a-judge evaluation, and generative event argument extraction. Experiment results
show that DECO-G is able to improve overall task performance through multiple aspects: 1) improv-
ing the format satisfaction rate, 2) encouraging more natural and flexible integration of format in the
output, and 3) allowing LLM to concentrate on task solving without the burden of format following.
Our contributions are as follow{]]

* We propose a framework to separate format compliance from task-solving to enhance overall
performance of LLMs on various tasks through the use of a tractable probabilistic model.

* Our framework achieves high efficiency and effectiveness through technical innovations, includ-
ing instruction-aware distillation, a flexible trie-building algorithm, and HMM state pruning.

* We secure improved task performance on multiple tasks compared to baseline methods, observ-
ing relative gains ranging from 1.0% to 6.0% , and provide an analysis of DECO-G’s steering
process with insights into its parameter setup from an entropy perspective.

!Code and model weights will be released upon paper acceptance.

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

In this section, we present our goal of task-format decoupling within a probabilistic formulation
of language model generation. We further discuss how prior controllable generation methods align
with this objective and provide a strong foundation for our approach.

2.1 GENERATION WITH ATTRIBUTE CONTROL

We frame the problem of controllable text generation using a probabilistic formulation. The auto-
regressive generation of a token sequence z1.,, given a desired attribute o can be expressed as:

P(1n]a) = [[Pailr<i,) (1)
t

The objective is to generate a sequence 1., that exhibits the attribute c. At each generation step
t, the target distribution for producing text with the desired attribute is P(x¢|z<¢,). Using Bayes’
rule, we can rewrite this as:

Prv(alzy, 2<4)
Prv(alr<t)
Here, the first term, P\ (2|2 <), is the language model’s next-token probability, which is respon-
sible for generating fluent and coherent content. The second term, the ratio %, acts as a

control signal. It quantifies how the choice of the current token x; influences the probability that the
final, complete sequence will satisfy the attribute «. However, directly calculating this ratio is in-
tractable, as it requires marginalizing over all possible future sequences to compute the likelihoods.
Thus, a key challenge in controllable generation is to find a tractable approximation for this term.

2

P(zi|lr<t, a) = Pom(we]w<y)

2.2 ESTIMATING LIKELIHOOD OF ATTRIBUTE SATISFACTION

Recent controllable generation frameworks such as GeLaTo (Zhang et al.,|2023)) and Ctrl-G (Zhang
et al., 2024)) leverage a tractable probabilistic model (TPM) to efficiently estimate the marginal
probability P(«|x;, z<¢), serving as a signal to steer an LLM’s generation, following

P(zy|x<t, @) o< Pom(@|zet) Prom(elae, T<) 3)

These approaches first distill a Hidden Markov Model (HMM) as a probabilistic approximation of
the LLM and then encode logical constraints to formal structure that the HMM can reason over.

Sequence modeling with Hidden Markov Models. A Hidden Markov Model (HMM) is the spe-
cific type of TPM used in these frameworks, chosen for its ability to model sequential data tractably.
The joint probability distribution over a sequence of observed variables (tokens, z1.,) and a corre-
sponding sequence of hidden state variables z;.,,, is modeled as

T

Pravm (2<t, 2<¢) = P(21) P(z1]21) H P(zt|2e-1) P(w|2t) 4)
=2

Critically, the Markov property of HMMs enables efficient probabilistic inference over all possible

future sequences, a task that is intractable for langauge models. In frameworks like GeL.aTo and Ctrl-

G, the HMM is distilled from the LLM using samples drawn unconditionally from the LLM. This

process involves training the HMM via maximum likelihood on the sampled completions, equivalent

to minimizing the KL-divergence between the two models’ distributions Dxr, (P || Py)-

Formalizing Constraints with Deterministic Finite Automata. To enforce a constraint using
the HMM, the constraints must be expressed in a formal language. [Zhang et al.| (2024) propose
representing logical constraints as Deterministic Finite Automata (DFA). A DFA is an abstract state
machine that recognizes patterns in sequences. Formally, a DFA is a 5-tuple D = (Q, %, 6, qo, F),
where () is a finite set of states, X is the alphabet (the LLM’s token vocabulary), d : Q X ¥ — @
is the transition function, ¢y € (@ is the initial state, and F' C @ is the set of accept states. A
sequence is “accepted” if it drives the machine from its initial state to an accept state; otherwise, it
is “rejected.” This formalism is capable of representing logical constraints including the presence of
keyphrases and word counts by defining the appropriate states and transitions.

Under review as a conference paper at ICLR 2026

Prompt

Task Instruction @LLmM

Read the question carefully and think number
step by step before answering, the final total
answer must be only a number ... AFEM time Deco-G Dist.

Question final
Lee used to be able to run the 400- "“T;:
ter hurdles tw ds faster th]
Gerald .. how fast can Gorald, with hJ FEM Dist. time
improved diet, run the 400-meter final
hurdles, in seconds? number
total
Format Constraint time
< The final answer is ... final
Figure 2: DECO-G decouples task and format—prompting LLM with task-only information and

sending format constraints to FEM. DECO-G decodes from the posterior constructed by multiplying
LLM token probabilities with FEM estimated satisfaction rate.

} LLM Dist.

Probabilistic reasoning over logical constraints. The core idea of these prior frameworks is to
use the TPM to perform a probabilistic lookahead—that is, to efficiently compute Prpy(cv|zs, <),
the probability that the full generated sequence will satisfy the constraint «. This is accomplished
by marginalizing the joint HMM-DFA state space over all possible future sequences that reach an
accepting state in the DFA. According to|Zhang et al.[(2024)), this marginalization can be calculated
efficiently using a backward recurrence relation. Refer to Section [B]for detailed derivation.

2.3 FROM PRIOR WORK TO DECO-G

Prior frameworks like GeLaTo (Zhang et al., [2023)) and Ctrl-G (Zhang et al., [2024)) successfully
use Hidden Markov Models (HMM) as tractable generative models to guide LLM generation, en-
suring outputs satisfy specific logical constraints in tasks such as keyphrase generation and text
editing. While GeLaTo introduces this concept, its use of Conjunctive Normal Forms (CNF) is pri-
marily limited to keyphrase constraints. Ctrl-G generalizes this approach by specifying logical con-
straints through Deterministic Finite Automata (DFA), which can represent constraints on bounded-
length sequences. While this foundation is promising, significant challenges arise when adapting
this framework to decouple format from task reasoning for modern, instruction-tuned LLMs.

* Domain shift: the paradigm shifts from logical-constrained generation to separating task-
instructed generation into two sub-tasks: problem solving (LLM side) and format adherence
(TPM side). This incurs domain mismatch, as prior methods train HMMs on random generation
without context, which is a poor proxy for an LLM conditioned on specific task instructions.

» Complexity of format templates: The intricate nature of real-world format templates presents
a major challenge, as the overhead from constructing complex constraint automata creates a
computational bottleneck.

¢ Inference-time inefficiency: The large vocabulary size of modern LLMs introduces substantial
computational overhead during the inference-time guidance step , which severely impedes the
framework’s latency

3 DEcCoO-G

In this section, we present DECO-G, a framework that realizes the decoupling of task reasoning
from output formatting. As shown in Figure 2] our method separates the input prompt: the LLM
receives only the task-specific information, while a dedicated Format Estimation Module (FEM)
receives the format constraints. At each decoding step, the FEM estimates the likelihood of future
compliance with the given format constraints «. This likelihood is then used to reweigh the LLM’s
original token probabilities, steering the generation towards a format-compliant output. We now
describe the key components that enable this framework.

3.1 INSTRUCTION-AWARE HMM DISTILLATION

An HMM can approximate a large language model’s (LLM) output distribution to guide controllable
generation. The fidelity of this approximation is critical—ideally, an HMM that perfectly replicates
the LLM’s probabilities would yield an exact posterior for format-decoupled generation, per Equa-

Under review as a conference paper at ICLR 2026

tion equation[2] Our key insight is that for instruction-tuned LLMs, the output distribution is funda-
mentally different when conditioned on a prompt versus when generating text unconditionally. Prior
methods (Zhang et al.,[2023};[2024)), however, distill their HMM s using text sampled unconditionally
from a model, an approach that fails to capture the task-oriented behavior that emerges after instruc-
tion fine-tuning. This very design renders methods like CtrlG ineffective in this context, leading to
the suboptimal control patterns we demonstrate in Section [C]

To bridge this gap, we carry out instruction-aware distillation: conditioning an HMM on task-
oriented behavior by training it exclusively on the LLM’s instruction-response pairs. Specifically,
we distill knowledge from over one million completions generated by an LLM prompted with one
thousand unique instructions from the Natural-Instructions-v2 (Mishra et al.,[2022)) dataset. Follow-
ing |Zhang et al.| (2023)), we train the HMM using the Baum-Welch algorithm (Baum et al., |1972).
This process yields a robust HMM that models the LLM’s conditional, instruction-following behav-
ior, enabling more precise control over generation across a wide spectrum of tasks.

3.2 FLEXIBLE TRIE BUILDING FOR COMPLEX FORMAT CONSTRAINTS

To address general format constraints, we extend the DFA with an algorithm based on a flexible trie.
This approach efficiently models structured templates composed of both fixed (pivots) and variable
(wildcards) segments. We formally define the language of these components as follows:

* Pivots: a pivot P is a fixed sequence of tokens z1xs...x,, representing static text in a template.
The language it recognizes is a singleton set, Lp = {leIQ...Ip}.

* Wildcards: a wildcard W represents a slot to be filled by the LLM. It accepts any sequence
of tokens whose length [falls within a specified range [min, max]. Its language is the set of all
possible strings over the alphabet > within that length range:

max

Ly (min, max) = U »!

l=min
Our flexible trie builder constructs a single DFA that recognizes a language formed by the concate-
nation of these components, such as L, = Lp, - Ly, - Lp, - -Lyy, The key to its efficiency is a

trie-based algorithm that shares states for all common prefixes across multiple patterns. By merging
these paths into canonical representations, it constructs a compact DFA for the union of all patterns
in a single pass, avoiding the state-space explosion of composing separate automata.

3.3 ESTIMATING FORMAT COMPLIANCE

With a distilled HMM that simulates LLM distribution and a DFA that encodes format constraints
«, we calculate the marginal probability over all sequences accepted by D(«) as

P(D(O&) = 1,It,$<t)
Pz, w<t)
While the joint probability of format compliance and context sequence P(D(«) = 1, x4, ;) is not
readily available in the FEM, we follow Zhang et al.| (2024)’s marginalization of HMM over DFA

(Section B to calculate this value. Finally, we use the FEM estimated compliance rate as likelihood
to construct the DECO-G posterior for decoupled generation

(&)

Prem(a|ag, xy) =

Poeco-(zt|x<t, @) o< Pom(@e]|z <) [Prem(a|zas,)] (6)

where + is a hyperparameter that controls the strength of steering with default value of 1.

3.4 HMM HIDDEN STATE PRUNING

Although the Format Estimation Module (FEM) provides effective guidance for the generation pro-
cess, its computational overhead presents a significant bottleneck during inference. The primary
source of this overhead lies in the HMM’s emission stage, which calculates the probability distribu-
tion over the entire vocabulary V from a set of / hidden states. This step involves a matrix-vector
multiplication with a complexity of O(h|V|). Given our HMM configuration with A = 4096 hidden
states and vocabulary sizes |V| on the order of 128k for Llama and 152k for Qwen, this step can
severely impede inference latency.

Under review as a conference paper at ICLR 2026

Table 1: GSMS8K results. Table 2: Generative EAE results on ACEOS.
Method Format (%) Acc. (%) Method Al AC Al+ AC+
Llama-3.1-8B-Instruct Llama-3.1-8B-Instruct
NL 96.3 82.3 NL 36.8 273 348 255
NL-S 100 81.3 NL-S 37.1 278 351 260
JSON 64.7 51.8 JSON 352 262 334 246
JSON-S 100 75.7 JSON-S 33.6 252 31.6 236
DECO-G 100 85.2 DECO-G 394 287 370 2638
Owen2.5-7B-Instruct Owen2.5-7B-Instruct
NL 98.0 83.6 NL 32,6 255 312 244
NL-S 99.9 82.7 NL-S 332 249 31.1 237
JSON 93.3 74.8 JSON 319 241 305 229
JSON-S 99.8 79.0 JSON-S 34.1 261 325 24.7
DECO-G"=2 100 88.6 DECO-G”=2 352 259 334 245
Owen3-8B Owen3-8B
NL 97.4 90.5 NL 332 24.6 315 231
NL-S 100 88.3 NL-S 333 242 315 226
JSON 66.9 61.4 JSON 31.7 234 301 21.8
JSON-S 99.2 90.6 JSON-S 325 230 308 215
DECO-G"=2 100 91.7 DECO-G"=2 340 24.6 321 23.1

To mitigate this, we introduce HMM hidden state pruning, an optimization technique to reduce
the computational load while preserving guidance quality. This technique is predicated on the ob-
servation that, at any given generation step, the probability mass of the hidden state distribution is
concentrated within a small subset of states (see Section[D)). Consequently, rather than employing the
full set of & states for the emission probability calculation, we prune the distribution by considering
only the top-k most probable states. Our empirical validation demonstrates that selecting a minimal
fraction of states—specifically, the top 5% (k = 200) based on their probability magnitudes—is
sufficient to retain over 98% of the full model’s performance.

This pruning strategy drastically improves efficiency. The complexity of the emission step is re-
duced from O(h|V]) to O(hlogh + k|V|), where k < h. The O(hlog h) term represents the cost
associated with selecting the top-k states, while the dominant matrix multiplication is reduced to
an O(k|V|) operation. This optimization achieves a considerable reduction in inference time for a
negligible loss in performance, thereby enhancing the practical viability of DECO-G.

4 EXPERIMENT

Experimental Setup. We assess DECO-G’s overall performance over three tasks: (1) math prob-
lem solving with reasoning, (2) LLM-as-a-judge for summary evaluation, and (3) event argument
extraction as a generative task. We apply DECO-G on performant instruction models Llama-3.1-8B-
Instruct (Grattafiori et al., 2024), Qwen2.5-7B-Instruct (Yang et al., |2025b), and Qwen3-8B (Yang
et al.,[2025a)) to verify its effectiveness. The baselines we include for comparison are as follows,

e NL: prompt LLM with task instruction and natural language output constraints, free generation

e NL-S: prompt LLM with task instruction and natural language output constraints, structured
generation enforced through Outlines (Willard & Louf, 2023)

¢ JSON: prompt LLM with task instruction and JSON output constraints, free generation

e JSON-S: prompt LLM with task instruction and JSON output constraints, structured JSON
generation enforced through Outlines

For DECO-G, the HMM for each LLM has hidden states of size h=4096, output space of |V|=128k
for Llama and |V|=152k for Qwen models, and is trained for 100 epochs on one-million LLM
generated responses (sampling takes 56 GPU hours and training takes 1 GPU hour on NVIDIA
A100). For the following experiments, we adopt greedy decoding to ensure fair comparison with
baseline methods and evaluate zero-shot performance.

Under review as a conference paper at ICLR 2026

4.1 MATHEMATICAL REASONING

In this task, we evaluate our framework on GSMS8k (Cobbe et al.,2021), a collection of grade school
math problems that take two to eight steps to solve. Models are expected to carry out step-by-step
reasoning and arrive at the answer. Following [Tam et al.| (2024), a group of task instructions is
adopted to prompt the model to first reason about the math problem and then yield an integer as
its answer. For JSON format output, we prompt the model to output valid JSON blob with keys
“reason” and “answer.” For natural language output, format instructions are used to encourage the
model to generate the tamplate phrase “The final answer is ...” Meanwhile, this phrase is specified
as a key phrase to appear in DECO-G’s generation.

Evaluation Metrics. We measure Format Compliance as the rate to which the generated answer
follows format requirement. In addition, we measure Accuracy as exact match of ground truth
answer.

Results. As shown in Table[T] unstructured NL generation offers decent performance, with Llama
scoring 82.3% and Qwen 83.6% on accuracy. However, together with unstructured JSON, free
generation methods completely rely on the LLM for following the format constraint and thus suffer
from low compliance rate. Structured generation, on the contrary, guarantees format compliance, but
its performance is negatively impacted by the invasive intervention that sometimes cut the generation
flow and alter course abruptly. DECO-G guarantees a 100% format compliance rate and achieves
the best performance over all three models. In practice, we find out that Qwen models have more
skewed token distribution. We thus raise the control factor A to exert stronger control on the output.

4.2 LLM-AS-A-JUDGE EVALUATION

We then use LLMs as judges to evaluate the quality of summaries and assess how well it aligns
with human annotation. This evaluation is performed on the SummEval (Fabbri et al.,2021)) dataset
which consists 1600 machine-generated summaries for 100 news articles, and human annotated
scores over four dimensions: Coherence, Consistency, Fluency, and Relevance. The models are
asked to analyze the summary and assign a score from 1 to 5 based on the given criteria suggested
by ChatGPT (OpenAll 2025). We use the format “The rating is ...” for natural language output and
“rating” as the key for harnessing JSON output.

Evaluation Metrics. Following |[Liu et al.| (2023), we adopt the summary-level Spearman and
Kendall-Tau correlation to gauge the performance of each method. Higher number indicates bet-
ter alignment with human annotated scores.

Results. For this task, Qwen models perform well in following the output format in unstructured
settings, securing over 99.7% compliance rate. This may attribute to a less intensive reasoning phase
compared to mathematical reasoning. As indicated in Table |3} DECO-G demonstrates the strongest
average correlation with human across models, enhancing over Consistency, Fluency, and Relevance
when applied to Qwen models. With Llama, DECO-G gains over Coherence and Relevance while
showing relative weakness in evaluating Consistency and Fluency. A close inspection of model
generated outputs suggests that DECO-G encourages a more flexible integration of the key phrase in
different places of the response: the beginning, middle, and end of response.

4.3 EVENT ARGUMENT EXTRACTION

The generative event argument extraction (EAE) task mainly assess a model’s ability in identifying
role-related arguments from source text. We evaluate on the ACE05-EN dataset (Doddington et al.,
2004)), in which a model is be presented with an article, a trigger word, and a set of roles to determine
whether arguments associated with the roles are present in the article. This is naturally a templated
task as generative model has to specify which word is extracted for which role. Regarding JSON
output, we ask model to generate a JSON blob with roles as keys and extracted arguments as values.
For natural language output, we specify the template “The <role;> is ...” for every relevant roles.
For DECO-G, we construct a flexible DFA that fuses the template phrases together with empty slots
allowing LLM predict arguments spanning from 1 to 5 tokens.

Under review as a conference paper at ICLR 2026

Table 3: SummEval results, measured over Coherence, Consistency, Fluency, and Relevance.

Coherence Consistency Fluency Relevance Avg
Method p T p T p T p T Format p T
Llama-3.1-8B-Instruct
NL 0.381 0.311 0.383 0.351 0.321 0.291 0405 0.337 958 0.372 0.322
NL-S 0.376 0.308 0.375 0.343 0.316 0.287 0.435 0.364 100 0.376 0.325
JSON 0.449 0368 0.446 0.415 0326 0.296 0424 0358 99.8 0411 0.359
JSON-S 0450 0.369 0.447 0.416 0.334 0.302 0.424 0.358 100 0414 0.361

DECO-G 0.458 0.379 0.439 0404 0.331 0.298 0.441 0.371 100 0.418 0.363
QOwen2.5-7B-Instruct

NL 0.407 0.339 0442 0407 0291 0.265 0.399 0340 100 0.385 0.338
NL-S 0.403 0.337 0.448 0.412 0.279 0.254 0.408 0.347 100 0.384 0.338
JSON 0411 0.334 0.488 0.455 0305 0.280 0.383 0.326 99.7 0.396 0.349
JSON-S 0412 0.335 0.489 0.457 0309 0.284 0.387 0.330 100 0.399 0.351
DECO-G”=2 0327 0271 0.506 0.470 0.348 0.311 0.452 0.380 100 0.408 0.358
QOwen3-8B
NL 0.510 0416 0.540 0.504 0.479 0441 0464 0.392 100 0.498 0.439
NL-S 0.507 0413 0.544 0509 0.477 0439 0468 0.396 100 0.499 0.439
JSON 0.504 0409 0.491 0.459 0.444 0410 0450 0.382 99.8 0472 0415
JSON-S 0.486 0.393 0.486 0.454 0.406 0.376 0.441 0.374 100 0.455 0.399

DECO-G"=2 0.490 0.395 0.546 0.516 0.499 0.456 0.494 0.414 100 0.507 0.445

Evaluation Metrics. We measure performance by calculating the fI-score comparing the ex-
tracted tuples and the ground truth tuples for the following categories:

e Argument Id (Al): argument span and event type.

* Argument Class (AC): argument span, event type, and role type.

* Argument-attached Id (Al+): argument span, event type, and event trigger.

* Argument-attached Class (AC+): argument span, event type, event trigger, and role type.

Results. The fI-scores reported in Table [2| suggest that EAE remains a challenging task for gen-
erative models. LLMs suffer from identifying correct relations in the article and presenting valid
predictions that indeed exist in the original text—without modifying entity format or referring to
exterior content. Baseline methods show inconsistent trends across models, indicating LLMs’ lack
of robustness in event argument extraction. Employing DECO-G enhances overall extraction quality
for Llama and Qwen3, while mainly improving over Al and Al+ for Qwen2.5. DECO-G’s gain on
Al and Al+ is more evident than its improvement on AC and AC+, suggesting that DECO-G can
further benefit from a tighter association between roles and extracted arguments—possible through
designing more natural and intuitive control phrase for DECO-G.

5 ANALYSIS

5.1 THE STEERING PROCESS

DECO-G takes advantage of HMM to estimate the future format satisfaction rate and adjust token
probabilities based on the estimation. To better understand this steering process, we examine the
control signals produced by the FEM and visualize the control for a span of decoding step. We track
the original LLM distribution, FEM distribution, and their composed distribution, which DECO-G
decodes from. Figure[3|provides an illustration of DECO-G encuraging the generation of key phrase
after step by step reasoning. While the LLM tends to conclude its response with “The total number
of ... is ...” DECO-G assigns high probabilities to the token “final,” steering the LLM generation to
conform with format constraints.

As LLMs are trained to provide clear and concise response, they tend to avoid repeating themselves
when presenting the final answer. DECO-G captures this intricacy and replaces LLM’s intended
conclusive phrase with the format phrase “The final answer is” to reduce repetition. We consider

Under review as a conference paper at ICLR 2026

this format integration to be more natural than forcing LLM to generate certain phrases as in regex-
structured generation.

5.2 TOKEN ENTROPY AND STEERING STRENGTH

In the previous section, we report DECO-G’s results with hyperparameter v = 2 for controlling
Owen models, as v = 1 doesn’t provide enough power to steer the model away from its own
generation course. We hypothesize that Qwen models’ token distributions are more skewed than
Llama’s, making it difficult for the control signal to actually make an impact on the distribution.
To verify this, we draw 100 examples from GSMS8k responses and measure the average step-wise
entropy of LLM token distribution. As shown in Figure [Llama’s entropy is significantly higher
than those of Qwen2.5 and Qwen3, suggesting that Llama’s token probabilities are more spread out
and diverse, whereas Qwen models’ token distributions are more peaky. This increased peakiness
could be a consequence of the distribution squeezing induced by more intensive fine-tuning and
preference optimization of the LLM (Ren & Sutherland, 2025)). It is thus intuitive to amplify DECO-
G’s control strength for LLM with more skewed distribution to guarantee format compliance.

Within the same model, structured generation methods (NL-S and JSON-S) have slightly higher
entropy than their unstructured counterparts (NL and JSON). This may attribute to imposed template
tokens provoking more uncertainty in future token prediction. Meanwhile, DECO-G produces lowest
LLM entropy, indicating that an absence of format constraint in task solving may lead to LLM
providing the most confident response.

6 RELATED WORK

In the paper, we explore a controllable text generation (CTG) method to decouple task solving from
format adherence. There are two branches in CTG that provide avenues for achieving this format-
task decoupling—content-wise hard control and attribute-wise soft control.

Content-wise structured generation aims to produce outputs that conform to predefined schemes or
templates. The guaranteed adherence to specified format ensures high reliability when integrating
LLM with external systems. This line of methods (Willard & Louf} |2023; |guidance-ail 2024)), how-
ever, exerts invasive control over the LLM generation which often produce abrupt cut-off, resulting
in incomplete and incoherent responses.

Attribute-wise soft control offers a more flexible paradigm, focusing on conditioning the generation
based on a desired attribute. One line of works instills attribute information into the the LLM and
updates model weights, through retraining (Keskar et al.,2019; |Arora et al.| [2022), fine-tuning (Wei
et al., 2021} [Zeldes et al, [2020; [Li & Liang| 2021} [Lester et al., 2021), or reinforcement learn-
ing (Ouyang et al.l 2022; |Stiennon et al., 2020; Zeng et al.l |2024; |Dai et al.| [2024). This method
benefits from no added computational load during inference, but the expense of training the LLM
for updates can be significant. The other set of works (Dathathri et al.,|2019; |Yang & Klein, 2021}
Krause et al.l 2021 |Schick et al., 2021} [Liu et al., [2021; |[Khandelwal et al.l 2021} |Sitdikov et al.}
2022;|Wen et al.} 2023} Deng & Raffel, |2023)) keeps the LLM as-is and instead modifies the genera-
tion probabilities at inference time, also known as weighted decoding. These methods typically train
a lightweight auxiliary model to guide the LLM’s generation at decoding time according to Bayes’
rule. In light of these prior works, DECO-G takes the weighted decoding measure to compute the
posterior given format constraints as an attribute.

7 CONCLUSION

In this paper, we present DECO-G, a novel decoding framework designed to decouple the respon-
sibilities of task reasoning and format adherence. It achieves this responsibility separation by em-
ploying an auxiliary Format Estimation Module to estimate future format satisfaction and modify
token probabilities, thus allowing the LLM to concentrate solely on problem-solving. Experiments
on mathematical reasoning, LLM-as-a-judge evaluation, and event argument extraction demonstrate
this decoupling approach leads to overall performance gain, attributing to improved format compli-
ance, more natural format integration, and more confident response from the LLM. Limitation of
this work is covered in Section[Al

Under review as a conference paper at ICLR 2026

ETHICAL CONSIDERATIONS

We conduct experiments on mathematical reasoning, LL.M-as-a-judge evaluation, and event argu-
ment extraction. The score assigned by an LLM should not be considered an accurate reflection
of quality of the summary. In addition, the LLM responses to the GSM8k questions should not be
referenced for math instruction as they may include hallucination.

We acknowledge the use of Al assistants for improving the manuscript’s prose, generating tables
in LaTeX format, figure design, and assisting with code implementation for the analysis of HMM
hidden state pruning. All generated content, particularly the data in tables, was manually verified
for accuracy against our experimental results.

REPRODUCIBILITY STATEMENT

A detailed description of our experimental setup, including the specific models used, HMM training
parameters, and decoding strategy, is provided in the introductory paragraph of Sectiond} To allow
for replication of our experiments, the full prompts used for the mathematical reasoning (GSM8k),
LLM-as-a-judge (SummEval), and event argument extraction (ACEQS) tasks are detailed in Sec-
tion |Fl Regarding computational overhead, a breakdown of the FLOPs required for the HMM for-
ward pass, both with and without pruning, is presented in Section [E] Code and model weights will
be made publicly available upon paper acceptance.

REFERENCES

Kushal Arora, Kurt Shuster, Sainbayar Sukhbaatar, and Jason Weston. Director: Generator-
classifiers for supervised language modeling. In Proceedings of the 2nd Conference of the Asia-
Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 512-526, 2022.

Leonard E Baum et al. An inequality and associated maximization technique in statistical estimation
for probabilistic functions of markov processes. Inequalities, 3(1):1-8, 1972.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding LLMs the right way: Fast, non-
invasive constrained generation. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 3658-3673. PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.
press/v235/beurer—-kellner24a.htmll

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback. In The Twelfth International
Conference on Learning Representations, 2024.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Haikang Deng and Colin Raffel. Reward-augmented decoding: Efficient controlled text generation

with a unidirectional reward model. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 11781-11791, 2023.

10

https://proceedings.mlr.press/v235/beurer-kellner24a.html
https://proceedings.mlr.press/v235/beurer-kellner24a.html

Under review as a conference paper at ICLR 2026

George R Doddington, Alexis Mitchell, Mark A Przybocki, Lance A Ramshaw, Stephanie M
Strassel, and Ralph M Weischedel. The automatic content extraction (ace) program-tasks, data,
and evaluation. In Lrec, volume 2, pp. 837-840. Lisbon, 2004.

Alexander R Fabbri, Wojciech KrysSciniski, Bryan McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. Summeval: Re-evaluating summarization evaluation. Transactions of the Asso-
ciation for Computational Linguistics, 9:391-409, 2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

guidance-ai. Guidance: A guidance language for controlling large language models. https:
//github.com/guidance—ai/guidance, 2024.

Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, and Sadid Hasan.
Does prompt formatting have any impact on llm performance?, 2024. URL https://arxiv.
org/abs/2411.10541l

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generaliza-
tion through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2021.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4929—-4952,
2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045-3059, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582-4597, 2021.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pp. 6691-6706, 2021.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

Do Xuan Long, Ngoc-Hai Nguyen, Tiviatis Sim, Hieu Dao, Shafiq Joty, Kenji Kawaguchi, Nancy F.
Chen, and Min-Yen Kan. LLMs are biased towards output formats! systematically evaluating
and mitigating output format bias of LLMs. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.),
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 299—
330, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN
979-8-89176-189-6. URL https://aclanthology.org/2025.naacl-long.15/.

11

https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541
https://aclanthology.org/2025.naacl-long.15/

Under review as a conference paper at ICLR 2026

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In ACL, 2022.

OpenAl. ChatGPT, 2025. URL https://chat.openai.com. Large language model. Ac-
cessed May 19, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Yi Ren and Danica J. Sutherland. Learning dynamics of llm finetuning, 2025. URL https:
//arxiv.org/abs/2407.10490.

Timo Schick, Sahana Udupa, and Hinrich Schiitze. Self-diagnosis and self-debiasing: A proposal for
reducing corpus-based bias in nlp. Transactions of the Association for Computational Linguistics,
9:1408-1424, 2021.

Askhat Sitdikov, Nikita Balagansky, Daniil Gavrilov, and Alexander Markov. Classifiers are better
experts for controllable text generation. arXiv preprint arXiv:2205.07276, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung yi Lee, and Yun-Nung Chen. Let
me speak freely? a study on the impact of format restrictions on performance of large language
models, 2024. URL https://arxiv.orqg/abs/2408.02442

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,

Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Zhihua Wen, Zhiliang Tian, Zhen Huang, Yuxin Yang, Zexin Jian, Changjian Wang, and Dongsheng
Li. Grace: gradient-guided controllable retrieval for augmenting attribute-based text generation.
In Findings of the Association for Computational Linguistics: ACL 2023, pp. 8377-8398, 2023.

Brandon T Willard and Rémi Louf. Efficient guided generation for llms. arXiv preprint
arXiv:2307.09702, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388!

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pp. 3511-3535, 2021.

Qwen: An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025b.
URLhttps://arxiv.org/abs/2412.15115.

12

https://chat.openai.com
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2412.15115

Under review as a conference paper at ICLR 2026

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

Yoel Zeldes, Dan Padnos, Or Sharir, and Barak Peleg. Technical report: Auxiliary tuning and its
application to conditional text generation. arXiv preprint arXiv:2006.16823, 2020.

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
direct preference optimization. In Proceedings of the 41st International Conference on Machine
Learning, pp. 58348-58365, 2024.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for
autoregressive language generation, 2023. URL https://arxiv.org/abs/2304.07438\

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck, and Nanyun Peng. Adapt-
able logical control for large language models, 2024. URL https://arxiv.org/abs/
2406.13892.

13

https://arxiv.org/abs/2304.07438
https://arxiv.org/abs/2406.13892
https://arxiv.org/abs/2406.13892

Under review as a conference paper at ICLR 2026

APPENDIX

A LIMITATIONS

While we show DECO-G enhances LLM task performance in various tasks, a few limitations should
be taken into consideration when using DECO-G. Firstly, the HMM used to estimate format satis-
faction rate is specific to an LLM, meaning that one has to distill a new HMM when switching to a
different LLM. Although, in practice, we find out that an HMM can be applied to larger LLMs in
the same family, it is not an accurate representation of their token distributions. Secondly, similar
to other CTG methods that includes additional module for attribute modeling, DECO-G introduces
additional computation overhead during decoding. As suggested by (Zhang et al.,[2024), the prob-
abilistic traversal of future generation courses using HMM has a complexity that is linear to the
number of edges in DFA and quadratic to the number of hidden states in HMM. Complex format
constraints, converted to larger DFA, are thus likely to increase generation runtime. Finally, finding
the optimal hyperparameter v for LLMs with highly peaked token distributions may require empir-
ical explorations. Such distributions require increased -y to ensure robust format compliance, yet an
excessive value may adversely affect the output quality.

B PROBABILISTIC REASONING OVER LOGICAL CONSTRAINTS

Zhang et al.|(2023)) and|Zhang et al.[(2024) use a TPM to perform a probabilistic lookahead—that is,
to efficiently compute Prpy (|2 <), the probability that the full generated sequence will satisfy the
constraint «. The constraint is encoded as a DFA, and compliance is denoted by the event D(«) = 1.
Then, the marginal probability over all sequences accepted by D(«) is expressed as

PTPM (D(a) = 1, Igt)
Paviv(2<¢)

Prpy(alr<y) = (7
where the numerator—likelihood of satisfying the constraint given a prefix x<;—is found by
marginalizing over the HMM hidden states z; and the DFA states s,

Prpy(D(a) = 1,0<4) = ZPTPM(D(Q) = 1|z, 5¢) Puvm (21, T<y) ®)

The conditional compliance probability Prpy (D(a) = 1|2, s¢), as shown in|Zhang et al.|(2024), is
calculated using a backward recurrence relation. This sums the probabilities of all valid transitions
from step ¢ to ¢ + 1, weighted by the HMM’s transition and emission probabilities

P(D(a) =1|z,5) = »_ Plz1lze) > P(D(a) = 1|ze11, 5¢41) > P(xi11]2e41)

Zt41 St+1 0(S¢t,Tt41)=5t41
)

The computed probability then serves as the tractable approximation of the format compliance like-
lihood, which is used to guide the LLM’s next-token generation as shown in Equation

C SUBOPTIMAL CONTROL FROM UNCONDITIONED HMM DISTILLATION

When an instruction-tuned model is prompted with no specific user input for unconditional sam-
pling, it often defaults to generic conversational phrases like, “Is there something I can help you
with?” This behavior is a byproduct of its safety and helpfulness training. An HMM distilled from
thousands of such non-substantive responses learns a token distribution that is unrepresentative of
the model’s capabilities in actual problem-solving scenarios.

Consequently, when this poorly-approximated HMM is applied to a complex reasoning task, it pro-
vides a suboptimal control signal. The HMM, having not learned the patterns of reasoned thought,
cannot accurately predict the LLM’s token distribution during task execution. This leads to im-
proper guidance that can disrupt the generation process. For example, when we applied CtrlG to
the GSM8k dataset, its control mechanism prematurely forced the model to generate the required
format phrase (“The final answer is ...”), suppressing the step-by-step reasoning necessary to solve

14

Under review as a conference paper at ICLR 2026

the problem. This resulted in an accuracy of only 60.6%, a significant drop compared to the standard
natural language baseline.

The table below provides an example of this failure mode on a GSM8k problem, contrasting CtrlG’s
flawed output with the coherent response from DECO-G, which uses an instruction-aware HMM.

Table 4: Comparison of CtrlG and DECO-G outputs on a GSM8k reasoning task.

Method Output
CtrlG The final answer is 0.36 (INCORRECT)

DECO-G To find the probability that both tickets are winners, we need to multiply the probabili-
ties of each ticket winning.

1. The probability of the first ticket winning is 20% or 0.2.

2. The probability of the second ticket winning is three times more likely, so it’s
3x0.2=0.6.

3. The probability of both tickets winning is the product of their individual prob-
abilities: 0.2 x 0.6 = 0.12.

4. To express this as a percentage, we multiply by 100: 0.12 x 100 = 12%.

The final answer is 12. (CORRECT)

D HMM PRUNING AND EFFICIENCY

As established in Section hidden state pruning is employed to mitigate the computational over-
head of the HMM. This optimization is empirically justified by the highly concentrated nature of
the hidden state probability distribution, as illustrated in Figure [5] Our analysis confirms that for
Llama- and Qwen-distilled HMMs, the top 5% of hidden states (k = 200) retain over 97.8% of the
total probability mass on average.

This high mass retention translates to a negligible impact on task performance. As shown in Table[6}
the accuracy degradation on the GSM8k benchmark is minimal when pruning is applied: -0.2% for
Llama, -1.2% for Qwen2.5, and +0.9% for Qwen3. This result validates that the pruned HMM
provides sufficient guidance, confirming the efficacy of the optimization.

The primary benefit of this approach is a substantial improvement in computational efficiency. By
reducing the computation of the HMM emission stage, pruning achieves a 13x reduction in the
FLOPs required by the HMM forward function at each decoding step (from approx. 1.08 GFLOPs
to 0.08 GFLOPs for Llama, see Sectionfor calculation). When compared to the LLM’s own for-
ward pass, which requires approximately 16 GFLOPs per token (Kaplan et al. [2020), the pruned
FEM’s computational cost constitutes only about 0.53% of the main inference workload. This opti-
mization renders the guidance overhead practically insignificant, thereby enhancing the viability of
the DECO-G framework.

E HMM FORWARD COMPUTATION COST

This section details the computational cost (in FLOPs) of the HMM’s forward pass. The calculation
uses the HMM parameters for the Llama model: hidden states h=4096, vocabulary size |V|=128k,
and top-k states for pruning £=200.

Before Pruning The total cost is the sum of the state transition cost (2h?) and the emission cost
2h|V)).

Total FLOPs = (2 x 4096%) + (2 x 4096 x 128,000)
= (3.36 x 107) + (1.05 x 10°) ~ 1.08 GFLOPs

15

Under review as a conference paper at ICLR 2026

After Pruning The cost is the sum of the state transition cost and the pruned emission cost (2k|V|).

Total FLOPs = (2 x 4096%) + (2 x 200 x 128,000)
= (3.36 x 107) + (5.12 x 107) ~ 0.08 GFLOPs

This optimization reduces the HMM’s computational overhead from 1.08 GFLOPs to 0.08 GFLOPs,
a ~13x reduction per decoding step.

F PROMPT CONSTRUCTION

We present the set of prompts used in the experiments. For GSM8k (Table [7), we sample from a
set of task instructions and a set of format instructions to construct prompts for baseline methods.
For SummEval (Table [8), we include domain specific scoring criteria in the task instructions to
help LLM align better with human annotations for all methods. For ACEO5 (Table [9), an event
description is appended to the task instructions which further explains the event of interest.

Table 5: Full ACEO5 Results.

Model Method Al AC Al AC+
Precision Recall f1 Precision Recall ~ f1 Precision Recall fl Precision Recall f1
NL 33.7 405 36.8 242 314 273 30.5 405 348 21.7 310 255
NL-S 33.7 413 37.1 244 323 278 30.5 413 351 21.8 321 260
Llama-3.1-8B-Instruct JSON 30.5 418 352 21.5 333 262 27.8 417 334 19.6 33.0 246
JSON-S 28.0 42.0 336 19.8 344 252 254 41.6 316 18.0 34.1 236
DECO-G 394 393 394 273 303 287 355 385 370 24.5 29.6 268
NL 29.7 362 326 22.6 294 255 27.5 357 312 21.0 29.0 244
NL-S 28.6 395 332 20.7 314 249 26.2 39.0 313 19.1 312 237
Qwen2.5-7B-Instruct JSON 29.1 352 319 21.3 277 24.1 27.0 350 305 19.7 274 229
’ JSON-S 322 362 341 239 28.7 26.1 29.6 36.1 325 21.9 284 247
DECO-G 7?2 30.9 41.0 352 21.8 320 259 284 40.5 334 20.1 314 245
NL 28.0 409 332 19.5 333 246 25.6 409 315 17.8 330 231
NL-S 27.9 414 333 18.9 33.6 242 25.4 413 315 17.1 332 226
Qwen3-8B JSON 27.0 384 317 18.6 31.7 234 24.7 384 30.1 16.7 314 218
N JSON-S 26.8 414 325 17.5 334 230 24.5 413 308 159 332 215

DECO-G 7=2 27.9 43.6 340 18.9 351 246 25.5 434 321 17.3 348 231

G MORE EAE RESULTS

In Table 2] we report the fI-scores for each method. In Table [5] we present the full results for our
event argument extraction experiment.

H HMM DISTILLATION AND USAGE

For Llama and Qwen, we distill their HMMs on the LLM continuation only, since the instructions
from Natural-Instructions are human authored and should not be considered reflecting LLM distri-
bution. We remove the special chat tokens (e.g. <Isysteml>, <luserl>, etc.) from the responses for
HMM to capture the natural language distribution.

We tried different inputs to the HMM, including 1) regular prompt (with chat template), 2) cleaned
text prompt (without chat template), and 3) no prompt (empty string). In practice, their results are
almost identical. Nonetheless, in accordance with the distillation objective, we report scores yielded
from using empty input to the HMM.

I VISUALIZATION OF DECO-G’S STEERING PROCESS

Figure [3|shows an example of DECO-G steering Llama’s token probability to encourage the gener-
ation of format tokens.

16

Under review as a conference paper at ICLR 2026

LLM Distribution

The
Therefore
So

Total
Answer
However
Thus
Therefore

0.0 0.5 1.0
Prob

total
final
answer
program
correct
number
solution
result

0.0 0.5 1.0
Prob

answer {In
number -
total 1
result
step -
Answer -
count A
ans -

0.5 1.0
Prob

0.0

is
to A
for
was

of |

0.5
Prob

0.0 1.0

FEM Distribution

Prob x10~*

final
imes
ined
d
pencils
roses
books
mystery

0 2 4 6
Prob x1073

answer {EE——

%
exactly 1
having A

%

/.

+

0.000 0.005 0.010 0.015
Prob

Prob

Deco-G Distribution

The
Therefore
So

Total
However
Answer
Thus
Therefore

0.0

0.5
Prob

1.0

final
total
answer
program
correct
number
solution
result

0.0 0.5 1.0
Prob

answer 8
number
total 1
result
step 1
Answer -
count
amount A

0.0

0.5 1.0
Prob

is

to A

for
was

of

0.5
Prob

0.0 1.0

Figure 3: DECO-G steers Llama to generate predefined template “The final answer is ...” by boosting

probabilities of template tokens.

Comparison of Model Entropy

Entropy (bits)

Llama-3.1-8B-Instruct

Qwen2.5-7B-Instruct

Qwen3-8B

Figure 4: LLM’s token-level entropy for different models and methods. Llama has a more flexible
token distribution as compared to Qwen.

17

Under review as a conference paper at ICLR 2026

Hidden State Mass Retention Hidden State Mass Retention

K=200 (99.1%)

Hidden State Mass Retention
100.0

=
1)
I

.
o
o

97.54 K=200(97.9%)

97.5 97.54 K=200(97.8%)

95.0+ 95.0 95.0+

92.5+ 92,5 92.5+

90.0 4 90.0 90.0 4

87.51 87.5 87.51

85.0 85.0 85.0

82.59 —— Average Retention Curve 82.5 —— Average Retention Curve 8251 —— Average Retention Curve

Percentage of Mass Retained (%)
Percentage of Mass Retained (%)

Percentage of Mass Retained (%)

80.0

80.0

80.0

5 10 15 20
Top-K Percentage of Dimensions Kept (%)

0 5 10 15 20
Top-K Percentage of Dimensions Kept (%)

5 10 15 20
Top-K Percentage of Dimensions Kept (%)

(a) Llama-3.1-8B-Instruct (b) Qwen2.5-7B-Instruct (c) Qwen3-8B

Figure 5: Average retention rate (of total mass) over top-k HMM hidden states on GSM8k dataset.

Table 6: DECO-G performance on GSM8k with and without pruning.

Method Acc (%)
Llama-3.1-8B-Instruct

DECO-G w/o Pruning 854

DEco-G 85.2 (A=-0.2)

Owen2.5-7B-Instruct
DECO-G w/o Pruning 89.8
DEco-G 88.6 (A=-1.2)
Owen3-8B
DECO-G w/o Pruning 90.8
DEcCoO-G 91.7 (A=+0.9)

Table 7: GSM8k prompt construction and an example question.

GSM8k

Task Instructions

1. Follow the instruction to complete the task:\nYou are a math tutor who
helps students of all levels understand and solve mathematical problems.
\nRead the last question carefully and think step by step before answering,
the final answer must be only a number.

2. Follow the instruction to complete the task:\nRead the last question care-
fully and think step by step before answering, the final answer must be only
a number. You are a math tutor who helps students of all levels understand
and solve mathematical problems.

3. Follow the instruction to complete the task:\nMathematical problem-
solving task:\n- Given: A mathematical question or problem\n- Required:
A numerical answer only\n- Role: You are a math tutor assisting students of
all levels\n- Process: Think step by step to solve the problem\nNote: Read
the question carefully before beginning your analysis.

NL Format Instructions

JSON Format Instructions

1. Provide your output in the following text format:\n<think step by step>.
The final answer is <answer>

2. Provide your output in the following text format:\nReasoning: <reason-
ing first>. Answer: The final answer is ...

Provide your output in the following valid JSON format:\n{“reason”:

“<step by step reasoning>",“answer": “<final answer>"}

Question Example

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morn-
ing and bakes muffins for her friends every day with four. She sells the
remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market?

18

Under review as a conference paper at ICLR 2026

SummEval

Table 8: SummEval prompts.

Task Instructions
(Coherence)

Task Instructions
(Consistency)

Task Instructions
(Fluency)

Task Instructions
(Relevance)

You will be provided with a summary written for a news article \nYour task is to rate
the summary based on its coherence. \n\nPlease ensure you read and understand
these instructions carefully. Keep this document open while reviewing, and refer
to it as needed. \n\nEvaluation Criteria: \nCoherence (1-5): \n- 5: The summary
is well-structured and organized, presenting information in a logical and seamless
flow. \n- 4: The summary is mostly coherent, with minor lapses in organization
or flow. \n- 3: The summary has noticeable organizational issues or lacks a smooth
flow but is somewhat understandable. \n- 2: The summary is poorly structured, with
significant difficulties in following its logic or flow. \n- 1: The summary is highly
disjointed and lacks any meaningful structure or coherence. \nUse these criteria to
assign a coherence score between 1 and 5 based on how well the summary organizes
and presents information in a clear and logical manner.

You will be provided with a news article and a summary written for this article. \nY-
our task is to rate the summary based on its consistency. \n\nPlease ensure you read
and understand these instructions carefully. Keep this document open while review-
ing, and refer to it as needed. \n\nEvaluation Criteria: \nConsistency (1-5): \n- 5:
The summary is fully factually accurate and all its statements are directly supported
by the source document. \n- 4: The summary is mostly factually accurate, with only
minor errors or omissions. \n- 3: The summary contains noticeable factual errors or
unsupported statements but retains some alignment with the source document. \n- 2:
The summary has significant factual inaccuracies or includes multiple unsupported
claims. \n- 1: The summary is largely inconsistent with the source, containing nu-
merous factual inaccuracies or fabricated details. \nUse these criteria to assign a
consistency score between 1 and 5 based on how well the summary aligns factually
with the source article.

You will be provided with a summary written for a news article. \nYour task is to
rate the summary based on its fluency. \n\nPlease ensure you read and understand
these instructions carefully. Keep this document open while reviewing, and refer
to it as needed. \n\nEvaluation Criteria: \nFluency (1-5): \n- 5: The summary is
clear and easy to read, with good grammar, spelling, and sentence structure. \n-
4: The summary is generally clear and fluent, with a few minor errors that don’t
interfere with understanding. \n- 3: The summary has some noticeable issues that
might make it a little harder to read but still understandable overall. \n- 2: The
summary has more noticeable problems that might make it challenging to follow in
places. \n- 1: The summary has significant errors that make it difficult to read or
understand in many parts. \nUse these criteria to assign a fluency score between
1 and 5 based on the quality of grammar, word choice, and sentence structure.
\nImportant: When evaluating fluency, ignore punctuation and capitalization. Focus
only on how natural and easy the language feels regardless of formatting.

You will be provided with a summary written for a news article. \nYour task is to
rate the summary based on its relevance. \n\nPlease ensure you read and understand
these instructions carefully. Keep this document open while reviewing, and refer
to it as needed. \n\nEvaluation Criteria: \nRelevance (1-5): \n- 5: The summary
includes all the important information from the source document with no redundan-
cies or irrelevant details. \n- 4: The summary is mostly relevant, with only minor
omissions or slight redundancies. \n- 3: The summary includes some important
information but misses key points or has noticeable redundancies. \n- 2: The sum-
mary contains limited relevant information, with significant omissions or excessive
irrelevant content. \n- 1: The summary is largely irrelevant, failing to capture the
main points of the source document. \nUse these criteria to assign a relevance score
between 1 and 5 based on how well the summary captures the important content
from the source without including excess or redundant information.

NL Format In-
structions

JSON Format In-
structions

Provide your output in the following text format: <analyze the summary>. The
rating is <a number between 1 and 5>

Provide your output in the following valid JSON format:\n{“analysis”: “<analyze

99

the summary>",“rating”: <a number between 1 and 5>}

19

Under review as a conference paper at ICLR 2026

Table 9: ACEO5 prompt construction and an example question.

ACE05

Task Instructions

You are an argument extractor designed to check for the presence of argu-
ments regarding specific roles for an event in a sentence. \nTask Descrip-
tion: Identify all arguments related to the role Attacker, Target, Instrument,
Place, Agent in the sentence. These arguments should have the semantic
role corresponding to the given event trigger by the word span between [t]
and [/t].

The event of interest is Conflict: Attack. The event is related to conflict and
some violent physical act. Roles of interest: Attacker, Target, Instrument,
Place, Agent

NL Format Instructions

JSON Format Instructions

Provide your output in the following text format:\nThe <role_1> is:
<extracted argument>\nThe <role_2> is: <extracted argument>\n...\nThe
<role_n> is: <extracted argument>

Provide your output in the following valid JSON format:\n{“<role>": “<ex-
tracted argument>" for role in roles of interest}

Question Example

Text: Efforts were to continue at the United Nations Friday to find a break-
through in the diplomatic stalemate on Iraq , with Washington warning it
could bypass the Security Council and go to [t] war [/t] alone .

20

	Introduction
	Preliminaries
	Generation with attribute control
	Estimating likelihood of attribute satisfaction
	From prior work to Deco-G

	Deco-G
	Instruction-aware HMM distillation
	Flexible trie building for complex format constraints
	Estimating format compliance
	HMM hidden state pruning

	Experiment
	Mathematical reasoning
	LLM-as-a-judge evaluation
	Event argument extraction

	Analysis
	The steering process
	Token entropy and steering strength

	Related work
	Conclusion
	Limitations
	Probabilistic reasoning over logical constraints
	Suboptimal control from unconditioned HMM distillation
	HMM pruning and efficiency
	HMM forward computation cost
	Prompt Construction
	More EAE Results
	HMM Distillation and Usage
	Visualization of Deco-G's Steering Process

