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Abstract
Global modeling-based image restoration frame-
works have become popular. However, they often
require a high memory footprint and do not con-
sider task-specific degradation. Our work presents
an alternative approach to global modeling that
is more efficient for image restoration. The key
insights which motivate our study are two-fold:
1) Fourier transform is capable of disentangling
image degradation and content component to a
certain extent, serving as the image degradation
prior, and 2) Fourier domain innately embraces
global properties, where each pixel in the Fourier
space is involved with all spatial pixels. While
adhering to the “spatial interaction + channel evo-
lution” rule of previous studies, we customize
the core designs with Fourier spatial interaction
modeling and Fourier channel evolution. Our
paradigm, Fourmer, achieves competitive perfor-
mance on common image restoration tasks such
as image de-raining, image enhancement, im-
age dehazing, and guided image super-resolution,
while requiring fewer computational resources.
The code for Fourmer is publicly available at
https://manman1995.github.io/.

1. Introduction
Image restoration aims to recover a clear image from its de-
graded version. It is challenging as there are infinite possible
results for a degraded image. Recent research efforts have
focused on solving the single image restoration problem,
which can be divided into two categories: traditional opti-
mization methods and deep learning-based methods (Zhang
et al., 2018; Ren et al., 2018; Fu et al., 2021; Zhang et al.,
2020; Liu et al., 2021a; Zamir et al., 2022; Guo et al., 2023).
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Traditional methods formulate image restoration as an op-
timization problem and use various image priors, such as
dark channel prior for image dehazing (He et al., 2010), his-
togram distribution prior for underwater image enhancement
(Li et al., 2016), non-local mean prior for image denoising
(Dixit & Phadke, 2013), sparse image prior for guided im-
age super-resolution (Kim & Kwon, 2010), to constrain the
solution space. However, these methods often have limited
versatility and require time-consuming optimization.

Deep learning-based methods, particularly CNNs, have
achieved promising results in image restoration tasks com-
pared to traditional methods (Liu et al., 2020; Ma et al.,
2021; Zhou et al., 2022b). Recently, transformer and MLPs-
based global modeling paradigms (Zamir et al., 2022; Tu
et al., 2022) have been used in image restoration, surpass-
ing CNN-based methods. However, these frameworks are
often used without considering the intrinsic characteristics
of specific image restoration tasks and require significant
computational resources. We, therefore, wonder “Can we
provide a customized and efficient global modeling-based
image restoration paradigm?”

In this work, we present a customized and efficient global
modeling paradigm, called Fourmer, for image restoration,
motivated by our observations on the capabilities of the
Fourier transform in image restoration tasks, as shown in
Figure 1. The core insights of our approach include using
the Fourier transform to disentangle image degradation and
content, serving as a general image restoration prior, and
utilizing the global properties of the Fourier domain where
each pixel is connected to all spatial pixels.

Our approach, Fourmer, builds on the “spatial interac-
tion + channel evolution” rule of existing global model-
ing paradigms, such as transformer and MLP-Mixer as
shown in Figure 3, but customizes the core designs with
Fourier spatial interaction and Fourier channel evolution.
These designs provide new insights into global modeling
network structures for image restoration. Our approach is
described in Figure 3 and has been tested on common im-
age restoration tasks, including image de-raining, image
enhancement, image dehazing, and guided image super-
resolution. The results suggest that our paradigm achieves
competitive performance while requiring fewer computa-
tional resources. Our main goal is to provide an alternative,
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Figure 1. Motivations. Our motivation comes from our observations of the capabilities of the Discrete Fourier Transform (DFT) in
common image restoration tasks. We observed that by swapping the amplitude and phase components of a degraded image and its clear
version, the degradation (haze, rain) is transferred to the clear version, as shown in (a) and (b). This suggests that the Fourier transform is
able to disentangle image degradation and content to a certain extent, and that the degradation is mainly in the amplitude component.
To further verify our observation, we also swapped the amplitude and phase components of a degraded image and a clear image with
different content, as shown in (c). The degradation is still related to the amplitude component, such as darkness in image enhancement.
Similarly, in (d), a low-resolution image and its high-resolution counterpart are different in amplitude component. These observations
motivate us to use the Fourier transform as the image degradation prior embedded into image restoration frameworks.

efficient, and customized global modeling-based approach
for image restoration, rather than to outperform previous
computation-intensive frameworks.

Our contributions are summarized as follows: (1) We pro-
pose a global modeling paradigm for image restoration that
balances effectiveness and efficiency in comparison to exist-
ing global modeling-based frameworks. (2) We incorporate
a Fourier-based general image degradation prior into our
core structures of Fourier spatial modeling and Fourier chan-
nel evolution, providing new insights into the designs of
global modeling-based image restoration. (3) Our paradigm
Fourmer achieves competitive performance on several main-
stream image restoration tasks, such as image de-raining,
enhancement, dehazing, and guided super-resolution, while
requiring fewer computational resources. Overall, our ap-
proach offers a new perspective on global modeling-based
image restoration, which can be used as an alternative, effi-
cient, and versatile approach to existing methods.

2. Related Work
Image Restoration. Image restoration aims to restore an
image degraded by degradation factors (e.g., rain, haze,
noise) to a clear counterpart, which has been studied for a
long time. Traditional image restoration methods are usually
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Figure 2. Rule of existing global modeling paradigms: “ 1 spa-
tial interaction + 2 channel evolution”.

designed as an optimization problem, which incorporates
specific priors of the latent clear image to constrain the solu-
tion space (He et al., 2009; Li et al., 2016; Dixit & Phadke,
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2013; Kim & Kwon, 2010). For example, dark channel
prior (He et al., 2009) is proposed for image dehazing and
histogram distribution prior (Li et al., 2016) is developed for
underwater image enhancement. These methods involve iter-
ation optimization, consuming considerable computational
resources and limiting their applications.

Recently, deep learning-based methods have achieved im-
pressive performance in a data-driven manner. Among them,
most algorithms are designed with CNN-based architectures.
Early works stack deep convolution layers for improving
model representation ability, such as VDSR (Kim et al.,
2016), DnCNN (Zhang et al., 2017), and ARCNN (Dong
et al., 2015). Advanced methods have adopted more pow-
erful architecture designs, such as residual block (Tai et al.,
2017; Ehrlich & Davis, 2019) and dense block (Zhang
et al., 2020; Dong et al., 2020). Besides, attention mecha-
nism (Zhang et al., 2018; 2021b; zhou et al., 2022) and multi-
stage mechanism (Zamir et al., 2021; Chen et al., 2021c)
have been brought into image restoration algorithms that
improve the performance. However, the locality property of
the convolution operation community limits the perception
of context-wise global information that is critical for image
restoration (Dixit & Phadke, 2013; Berman et al., 2016).

Global Modeling. In recent years, global modeling tech-
niques have gained popularity in the computer vision
community. A line of these methods is based on trans-
former (Vaswani et al., 2017), which has been adapted in
numerous vision tasks such as vision recognition (Liu et al.,
2021b; Xia et al., 2022) and segmentation (Chen et al.,
2021b; Cao et al., 2021). Different from CNN-based ar-
chitectures, transformer learns long-range dependencies
between image patch sequences for global-aware model-
ing (Dosovitskiy et al., 2020). Various image restoration
algorithms based on transformer have been proposed and
achieve superior performance in restoration tasks such as
image dehazing (Guo et al., 2022a; Yu et al., 2022a), image
deraining (Xiao et al., 2022; Zhou et al., 2021b; Xiao et al.,
2021; Zhou et al., 2021a; Zhou & Wang, 2021; Fu et al.,
2021; Guo et al., 2022b), and low-light image enhance-
ment (Xu et al., 2022; Li et al., 2023; Huang et al., 2022a;b;
2023). Among them, a pioneer work IPT directly applies
vanilla transformers to image patches (Chen et al., 2021a),
while Uformer (Wang et al., 2022) and SwinIR (Liang et al.,
2021) apply window-based local attention models on several
image restoration tasks. However, the huge computation
cost and parameters of these transformer frameworks limit
practical applications.

As another line of global modeling paradigm, multi-layer
perceptrons (MLPs)-based methods have attracted attention
in vision problems (Tolstikhin et al., 2021). To adapt this ar-
chitecture for image restoration problems, MAXIM adopts
a multi-axis MLP based mechanism to perceive information

with global receptive field (Tu et al., 2022). Nevertheless,
it still costs enormous computational resources and is thus
hard to be applied to compact devices. In summary, all the
above architectures are not fully explored priors that are
specific for image restoration tasks, which is important for
tiqperformance imporvement. Recently, Fourier transforma-
tion has presented its effectiveness for global modeling (Chi
et al., 2019; 2020). Instead of further exploring the efficacy
of Fourier as global modeling in high-level tasks such as
image classification, video action classification, human key-
point detection in (Chi et al., 2019), our work is the first
to focus on the customized image restoration framework
designs. The work proposed in (Chi et al., 2019) pays more
attention to the global property while our framework further
explores the intrinsic prior tailored for image restoration.
In addition, different from existing Fourier techniques (Chi
et al., 2020) that emphasize the micro basic operator with
the global receptive field, our work focuses on the macro
framework design. In our work, we pay more attention to the
customized image restoration global modeling framework.
We investigate incorporating restoration prior with Fourier
transform to conduct effective global modeling, which is
efficient for practical application.

Existing transformer-based methods (Wang et al., 2022; Za-
mir et al., 2022) and MLP-based methods (Tu et al., 2022)
do not contain the intrinsic knowledge of the specific image
restoration tasks and only roughly focus on the global opera-
tor designs. In contrast, our framework is the first to explore
the customized image restoration global modeling paradigm.
Unlike these methods that only consider global modeling,
our work with efficient structure also meets the requirement
of image restoration on edge devices with limited computa-
tional sources. In general, our proposed framework incor-
porates both advantages of the global modeling mechanism
and general image degradation prior that are introduced by
Fourier transform, thus achieving better performance.

3. Method
3.1. Preliminary

Fourier transform is a widely used technique for analyz-
ing the frequency content of an image. For images with
multiple color channels, the Fourier transform is applied to
each channel separately. Given an image x ∈ RH×W×C,
the Fourier transform F converts it to Fourier space as the
complex component F(x), which is expressed as:

F(x)(u,v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
Hu+ w

Wv),

(1)
where u and v and the coordinates of the Fourier space.
F−1(x) defines the inverse Fourier transform. Both the
Fourier transform and its inverse procedure can be efficiently
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Figure 3. Overview of the proposed efficient and customized global modeling paradigm for image restoration.

implemented using FFT/IFFT algorithms (Frigo & Johnson,
1998). The amplitude component A(x)(u,v) and phase
component P(x)(u,v) are expressed as:

A(x)(u,v)) =
√
R2(x)(u,v)) + I2(x)(u,v)),

P(x)(u,v)) = arctan[
I(x)(u,v))
R(x)(u,v))

],
(2)

where R(x)(u,v) and I(x)(u,v) represent the real and
imaginary parts respectively. The Fourier transform and its
inverse procedure are applied independently to each channel
of the image or feature maps.

We use Fourier transform to conduct a detailed frequency
analysis for image restoration. By analyzing the properties
of phase and amplitude components in the Fourier space,
we observed that the degradation effect is mainly presented
in the amplitude component. This can be seen by swapping
the amplitude and phase components between a degraded
image and its clear version, as shown in Figure 1. This phe-
nomenon indicates that the Fourier transform can effectively
separate image degradation and content to some extent, and
that the degradation primarily occurs in the amplitude com-
ponent. This motivates us to use Fourier transform as an
image degradation prior in image restoration frameworks.

3.2. Overall Framework

Structure Flow. Our main goal is to develop an effec-
tive and efficient global modeling paradigm for image

restoration, detailed in Figure 3. Given a degraded image
I ∈ RH×W×Cin , the approach first applies a convolution
layer to protect the image into shallow feature embedding
X0 ∈ RH×W×C. Following a U-shaped network design,
the shallow embedding is passed through N encoder stages.
Each stage consists of a stack of the proposed core building
module, the Fourier Prior Embedded (FPE) Block, and a
downsampling layer. The FPE Block takes advantage of
the inborn global modeling properties of Fourier transform
and adheres to the underlying global modeling rule “spatial
interaction + channel evolution” to customize the Fourier
spatial and channel information interaction. The downsam-
pling layer downsamples the 2D spatial feature maps using
a 3× 3 convolution with stride 2. Similarly, in the decoder
stages, we use the stack of the proposed FPE Block and one
upsampling layer for feature reconstruction in each stage. To
assist the recovery process, each stage takes the high-level
decoder features concatenated with the same stage low-level
encoder features via skip connections as input. This helps
in preserving the fine structural and textural details in the
restored images. Finally, a convolution layer is applied to
generate a residual image I ∈ RH×W×Cin , which is added
to the degraded image to obtain the final result HO.

Optimization Flow. In addition to the novel network de-
signs, we also introduce a new loss function for optimizing
the network training for better results in both spatial and
frequency domains. The new loss function consists of two
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Figure 4. Details of the Fourier Prior Embedded Block. The FPE Block follows the same global modeling rule “spatial interaction +
channel evolution” but is with new designs: Fourier spatial interaction modeling and Fourier channel evolution.

parts: a spatial domain loss and a frequency domain loss.

In the spatial domain, we adopt the L1 loss function, as ex-
pressed in Equation (3). This ensures that the network out-
put HO is as close as possible to the corresponding ground
truth image GT in the pixel-level.

Lspa = ∥HO −GT∥1 . (3)

To improve the restoration performance and better recon-
struct global information, we also add frequency domain
supervision via Fourier transform. In the frequency domain,
we first use the Discrete Fourier Transform (DFT) to convert
HO and GT into the Fourier space. Then, the L1-norm of
the amplitude difference and phase difference between HO

and GT are calculated and summed to produce the total
frequency loss as expressed in Equation (4).

Lfre = ∥A(HO)−A(GT)∥1 + ∥P(HO)− P(GT)∥1 .
(4)

Finally, the overall loss function is formulated as

L = Lspa + λLfre, (5)

where λ is the weight factor and is set to 0.1. By minimizing
this loss function, the network is trained to produce better
results in both spatial and frequency domains.

3.3. Fourier Prior Embedded Block

As shown in Figure 4, the Fourier Prior Embedded Block as
a core building module contains two fundamental elements:
Fourier Spatial Interaction and Fourier Channel Evolution.

Fourier Spatial Interaction. The Fourier Spatial Interac-
tion first takes the feature maps as input and then applies
Fourier transform to convert the spatial features into real and
imaginary components. Suppose that the features are denote
as X ∈ RH×W×B, the corresponding Fourier transform is
expressed as

X
(b)
I ,X

(b)
R = F(X(b)), (6)

where b = 1, . . . ,B, X(b)
I and X

(b)
R indicate the real and

imaginary respectively. Then, we implement the spatial

interaction by a stack of depth-wise convolution with the
kernel size of 3 × 3 and the ReLU function. Specifically,
X

(b)
I and X

(b)
R share the common depth-wise operator while

different channels are independently performed. The spatial
interaction can be written as follows:

S
(b)
I = σ ·DW(b)(X

(b)
I ), (7)

S
(b)
R = σ ·DW(b)(X

(b)
R ), (8)

where σ and DW indicate the ReLU function and depth-
wise convolution respectively. Next, we apply the inverse
DFT to transform the filtered frequency components of S(b)

I
and S

(b)
R back to the spatial domain

Xb
S = F−1(S

(b)
I ,S

(b)
R ). (9)

The spectral convolution theorem in Fourier theory states
that processing information in the frequency domain can
reveal the overall frequency composition. We then combine
the Fourier-transformed spatial features, XS, by concatenat-
ing each component, Xb

S, with the spatial features processed
by a half-instance normalization block, resulting in the final
output, SX.

Fourier Channel Evolution. The Fourier Channel Evolu-
tion performs point-wise channel interaction by first decom-
posing the output SX from the Fourier Spatial Interaction
into real and imaginary components CR and CI . It then
applies a stack of convolution operator with a kernel size
of 1 × 1 and the ReLU function to perform the channel
interaction, where each position in the frequency space is
shared. The Fourier Channel Interaction can be written as:

CXI = σ · conv(cat[C1
I , . . . ,C

B
I ]), (10)

CXR = σ · conv(cat[C1
R, . . . ,CB

R]), (11)

where conv indicates the convolution with a kernel size of
1×1. The filtered frequency components CX

(b)
I and CX

(b)
R

are then transformed back to the spatial domain using the
inverse DFT:

Cb
S = F−1(CX

(b)
I ,CX

(b)
R ). (12)
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Table 1. Quantitative comparison for image dehazing. ‘-’ indicate the result is not available.

Method SOTS Dense-Haze NH-HAZE Param (M) GFLOPsPSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DCP 15.09 0.7649 10.06 0.3856 10.57 0.5196 - -

DehazeNet 20.64 0.7995 13.84 0.4252 16.62 0.5238 0.01 -
AOD-Net 19.82 0.8178 13.14 0.4144 15.40 0.5693 0.002 0.1

GridDehazeNet 32.16 0.9836 13.31 0.3681 13.80 0.5370 0.96 21.5
FFA-Net 36.39 0.9886 14.39 0.4524 19.87 0.6915 4.68 288.1
MSBDN 33.79 0.9840 15.37 0.4858 19.23 0.7056 31.35 41.5
KDDN 34.72 0.9845 14.28 0.4074 17.39 0.5897 5.99 -

AECR-Net 37.17 0.9901 15.80 0.4660 19.88 0.7173 2.61 43.0
Fourmer (Ours) 37.32 0.9901 15.95 0.4917 19.91 0.7214 1.29 20.6

Finally, we perform a similar merging process with the
Fourier Spatial Interaction, achieving the global modeling
for both spatial and channel dimensions.

4. Experiment
We conduct extensive experiments on common image
restoration tasks, including image de-raining, image en-
hancement, image dehazing, and guided image super-
resolution. These results will provide insight into the per-
formance of the proposed paradigm and how it compares to
other existing methods in the field. For these tasks, the only
difference in our frameworks is the number of features as
some tasks require more features to optimize the network.

4.1. Experimental Settings

Low-light image enhancement. We evaluate our paradigm
on two popular low-light image enhancement bench-
marks, including LOL (Chen Wei, 2018) and Huawei (Hai
et al., 2021). LOL dataset consists of 500 low-/normal-
light image pairs and splits 485 for training and 15 for
testing. Huawei dataset contains 2,480 paired images
and splits 2,200 for training and 280 for testing. We
compare our paradigm with 13 state-of-the-art low-light
image enhancement methods: SRIE (Fu et al., 2016),
RetinexNet (Chen Wei, 2018), MBLLEN (Lv et al., 2018),
EnlightenGAN (Jiang et al., 2021), GLADNet (Wang et al.,
2018), Xu et al. (Xu et al., 2020), TBEFN (Lu & Zhang,
2020), KinD (Zhang et al., 2019), Zero-DCE++ (Li et al.,
2021), DRBN (Yang et al., 2020), RetinexDIP (Zhao et al.,
2021), RUAS (Liu et al., 2021a), KinD++ (Zhang et al.,
2021a), and URetinex (Wu et al., 2022).

Image De-raining. Following the work (Zamir et al., 2021),
our paradigm is evaluated on 13,712 clean-rain image pairs,
gathered from multiple synthetic datasets. We perform eval-
uations on the Rain100H and Rain100L. We compare our
paradigm and 9 representative state-of-the-art methods: De-
rainNet (Yang et al., 2017b), SEMI (Wei et al., 2019), DID-
MDN (Zhang & Patel, 2018), UMRL (Yasarla & Patel,
2019), RESCAN (Li et al., 2018b), PReNet (Ren et al.,

2019), MSPFN (Jiang et al., 2020), MPRNet (Zamir et al.,
2021), and HINet (Chen et al., 2021c).

Image Dehazing. We evaluate our paradigm on synthetic
and real-world datasets. For synthetic scenes, we employ
RESIDE (Li et al., 2018a) dataset. The subset Indoor Train-
ing Set (ITS) of RESIDE contains a total of 13,990 hazy
indoor images, generated from 1,399 clear images. The
subset Synthetic Objective Testing Set (SOTS) of RESIDE
consists of 500 indoor and 500 outdoor hazy images. In addi-
tion, we adopt two real-world datasets: Dense-Haze (Ancuti
et al., 2019) and NH-HAZE (Ancuti et al., 2020) to evalu-
ate the generalization. Both datasets consist of 55 paired
images. We compare our paradigm with 7 representative
methods: DCP (He et al., 2010) and DehazeNet (Cai et al.,
2016), AOD-Net (Li et al., 2017), GridDehazeNet (Liu et al.,
2019), FFA-Net (Qin et al., 2020), MSBDN (Dong et al.,
2020), and AECR-Net (Wu et al., 2021).

Guided Image Super-resolution. Following (Zhou et al.,
2022a; Yan et al., 2022), we adopt the representative task
of guided image super-resolution, pan-sharpening, for eval-
uations. The WorldView II, WorldView III, and GaoFen2
datasets (Zhou et al., 2022a; Yan et al., 2022) are used. We
choose the 11 representative pan-sharpening methods for
comparison: 1) 6 state-of-the-art deep-learning-based meth-
ods, including PNN (Masi et al., 2016), PANNET (Yang
et al., 2017a), MSDCNN (Yuan et al., 2018), SRPPNN
(Cai & Huang, 2021), GPPNN (Xu et al., 2021), and IN-
Nformer(Zhou et al., 2022a); 2) 5 traditional methods, in-
cluding SFIM (Liu., 2000), Brovey (Gillespie et al., 1987),
GS (Laben & Brower, 2000), IHS (Haydn et al., 1982), and
GFPCA (Liao et al., 2017).

Evaluation Metrics. The performance of the proposed
paradigm is evaluated using several commonly-used image
quality assessment (IQA) metrics. These metrics include
relative dimensionless global error in synthesis (ERGAS)
(Alparone et al., 2007), peak signal-to-noise ratio (PSNR),
Structural Similarity Index (SSIM), and spectral angle map-
per (SAM) (Yuhas & Boardman, 1992).
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Table 2. Quantitative comparison for image de-raining. ‘-’ indicate the result is not available.

Method Test100 Rain100H Rain100L Test1200 Param (M) GFLOPsPSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DerainNet 22.77 0.810 14.92 0.592 27.03 0.884 23.38 0.835 0.058 1.453

SEMI 22.35 0.788 16.56 0.486 25.03 0.842 26.05 0.822 - -
DIDMDN 22.56 0.818 17.35 0.524 25.23 0.741 29.65 0.901 0.373 1.686

UMRL 24.41 0.829 26.01 0.832 29.18 0.923 30.55 0.910 0.98 -
RESCAN 25.00 0.835 26.36 0.786 29.80 0.881 30.51 0.882 1.04 20.361
PReNet 24.81 0.851 26.77 0.858 32.44 0.950 31.36 0.911 0.17 73.021
MSPFN 27.50 0.876 28.66 0.860 32.40 0.933 32.39 0.916 13.22 604.70
MPRNet 30.27 0.897 30.41 0.890 36.40 0.965 32.91 0.916 3.64 141.28

HINet 30.29 0.906 30.65 0.894 37.28 0.970 33.05 0.919 3.72 170.71
Fourmer (Ours) 30.54 0.911 30.76 0.896 37.47 0.970 33.05 0.921 0.4 16.753

Table 3. Quantitative comparison for image enhancement. ‘-’ indicate the result is not available.

Method LOL Huawei Param (M) GFLOPsPSNR↑ SSIM↑ PSNR↑ SSIM↑
SRIE 12.28 0.596 13.04 0.477 - -

RobustRetinex 13.88 0.664 14.60 0.559 - -
RetinexNet 16.77 0.425 16.65 0.485 0.84 148.54
MBLLEN 17.56 0.729 16.63 0.526 0.45 21.37
EnGAN 17.48 0.674 17.03 0.514 8.37 72.61

GLADNet 19.72 0.680 17.76 0.521 1.13 275.32
Xu et al. 16.78 0.766 16.12 0.586 8.62 68.45
TBEFN 17.35 0.781 16.88 0.575 0.49 24.11
KinD 20.86 0.802 16.48 0.540 8.54 36.57

ZeroDCE 15.29 0.518 12.46 0.407 0.08 20.24
DRBN 20.13 0.801 18.46 0.635 0.58 42.41
RUAS 16.41 0.500 13.76 0.516 0.003 0.86

KinD++ 21.30 0.822 15.78 0.452 8.28 2970.50
URetinex 21.32 0.835 18.79 0.607 1.23 68.37

Fourmer (Ours) 23.57 0.832 19.17 0.621 0.08 5.03

Table 4. Quantitative comparison for guided image super-resolution. ‘-’ indicate the result is not available.
Method Worldview II GaoFen2 Worldview III Param (M) GFLOPsPSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓
SFIM 34.1297 0.8975 0.0439 2.3449 36.9060 0.8882 0.0318 1.7398 21.8212 0.5457 0.1208 8.9730 - -

Brovey 35.8646 0.9216 0.0403 1.8238 37.7974 0.9026 0.0218 1.372 22.5060 0.5466 0.1159 8.2331 - -
GS 35.6376 0.9176 0.0423 1.8774 37.2260 0.9034 0.0309 1.6736 22.5608 0.5470 0.1217 8.2433 - -
IHS 35.2962 0.9027 0.0461 2.0278 38.1754 0.9100 0.0243 1.5336 22.5579 0.5354 0.1266 8.3616 - -

GFPCA 34.5581 0.9038 0.0488 2.1411 37.9443 0.9204 0.0314 1.5604 22.3344 0.4826 0.1294 8.3964 - -
PNN 40.7550 0.9624 0.0259 1.0646 43.1208 0.9704 0.0172 0.8528 29.9418 0.9121 0.0824 3.3206 0.689 1.1289

PANNET 40.8176 0.9626 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577 29.6840 0.9072 0.0851 3.4263 0.688 1.1275
MSDCNN 41.3355 0.9664 0.0242 0.9940 45.6874 0.9827 0.0135 0.6389 30.3038 0.9184 0.0782 3.1884 2.39 3.9158
SRPPNN 41.4538 0.9679 0.0233 0.9899 47.1998 0.9877 0.0106 0.5586 30.4346 0.9202 0.0770 3.1553 17.114 21.1059
GPPNN 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361 30.1785 0.9175 0.0776 3.2593 1.198 1.3967

INNformer 41.6903 0.9704 0.0227 0.9514 47.3528 0.9893 0.0102 0.5479 30.5365 0.9225 0.0747 3.0997 0.706 1.3907
Fourmer (Ours) 41.8325 0.9731 0.0219 0.9506 47.5334 0.9912 0.0102 0.5448 30.5987 0.9241 0.0738 3.0763 0.715 1.386

4.2. Comparisons

The quantitative performance comparison is presented in Ta-
bles 1, 2, 3, and 4, where the best results are highlighted in
bold. From the results, it can be observed that our paradigm
achieves promising performance with fewer computational
burdens against the compared methods across all tasks and
on all testing datasets. These results indicate that the pro-
posed paradigm is able to achieve high-quality results while
being computationally efficient, making it a valuable contri-
bution to the field of image restoration.

In Figures 5, 6, 7, and 8, we show the visual comparison

that our method has produced the more pleasing results.
Due to to the constraint of limited space, we only present
the results of representative methods. As can be seen, our
proposed method achieves the best performance against
other state-of-the-art algorithms.

4.3. Ablation Studies and Analysis

To understand the impact of each key component on the
proposed paradigm, comprehensive ablation studies are con-
ducted. We take the task of guided image super-resolution
as an example and perform main experiments on the World-
view II dataset.
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 Hazy input DCP DehazeNet AOD-Net GridDehazeNet

FFA-Net MSBDN AECR-Net Fourmer (Ours) GT

Figure 5. Visual comparison on image dehazing task.

SRIE RobustRetinex RetinexNet MBLLEN EnGAN

GLADNet Xu et al. TBEFN KinD ZeroDCE 

DRBN RUAS KinD++ Fourmer (Ours) GT
Figure 6. Visual comparison on low-light image enhancement task.

Input DerainNet PreNet RESCAN

MPRNet HINet Fourmer (Ours) GT

Figure 7. Visual comparison on image de-raining task.

Table 5. Ablation study for the Fourier Prior Embedded Block.

Method Worldview II GaoFen2 Worldview III
PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

GPPNN 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361 30.1785 0.9175 0.0776 3.2593
w/FPE 41.4513 0.9675 0.0236 1.0001 45.5436 0.9823 0.0135 0.6557 30.4127 0.9201 0.0770 3.1562
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Figure 8. Visual comparison on guided image super-resolution task. The residual maps between the results of different methods and the
ground truth are provided at the bottom.

Table 6. Ablation study for the Fourier Spatial Interaction (FSI)
and Fourier Channel Evolution (FCE).

Method PSNR↑ SSIM↑ SAM↓ ERGAS↓
Ours 41.8325 0.9731 0.0219 0.9506

w/o FSI 41.4513 0.9675 0.0236 1.0001
w/o FCE 41.5823 0.9705 0.0227 0.9517

Efficacy of Fourier Prior Embedded Block. To verify
the efficacy of the Fourier Prior Embedded Block, it is
inserted into an existing network, specifically GPPNN (Xu
et al., 2021). This is done by replacing the basic blocks
of GPPNN with the proposed FPE Blocks. The results
presented in Table 5 show the benefit of the introduction of
the FPE Block, as it improves network performance.

In addition to the verification of the FPE block, the gain
introduced by the Fourier Spatial Interaction and Fourier
Channel Evolution is examined separately. As shown in Ta-
ble 6, both FSI and FCE contribute to the good performance
of the FPE block. This indicates that the combination of the
Fourier Spatial Interaction and Fourier Channel Evolution
with the FPE block leads to even better performance. The
results suggest that the proposed FPE block, along with the
Fourier Spatial Interaction and Fourier Channel Evolution,
form an effective design for image restoration tasks.

Impact of Hierarchical Number. To explore the impact
of hierarchical numbers, i.e., the numbers of domsampling
stages in our U-shape network, we experiment with the
proposed network with varying hierarchical numbers. The
corresponding quantitative results for the number K ranging
from 1 to 4 are reported in Table 7.

Effectiveness of Frequency Loss. The new frequency loss
aims to directly emphasize global frequency information
optimization. In Table 8, we remove it to examine its effec-
tiveness. The results in Table 8 demonstrate that removing
it severally degrades all metrics, indicating its significance.

Analysis on Our Framework’s Effectiveness. The com-

Table 7. Ablation study for the hierarchical number.
K PSNR↑ SSIM↑ SAM↓ ERGAS↓
1 41.1827 0.9646 0.0255 1.0209
2 41.3324 0.9655 0.0249 1.0125
3 41.5331 0.9682 0.0240 0.9839
4 41.8325 0.9731 0.0219 0.9506

Table 8. Ablation study for the frequency loss.
Fre Loss PSNR↑ SSIM↑ SAM↓ ERGAS↓

41.7840 0.9725 0.0221 0.9508

✓ 41.8325 0.9731 0.0219 0.9506

mon sense in traditional image restoration algorithms is to
explore the intrinsic knowledge and image prior. Besides,
the effectiveness of global modeling for image restoration
has been demonstrated in previous works. Our work in-
corporates both advantages of global modeling and general
image degradation prior that are introduced by Fourier trans-
form. Specifically, recent works (Dai et al., 2022; Yu et al.,
2022b) have demonstrated that “spatial interaction + chan-
nel evolution” is the core contribution of the effectiveness
within transformer structures. Our work stands on the rule
with new designs in Fourier space, achieving better results.

5. Conclusion
In this paper, we presented a novel and efficient global mod-
eling approach for image restoration. We analyzed existing
global modeling approaches and identified the key design
principles of “spatial interaction + channel evolution”. We
also examined the properties of the Fourier prior for image
restoration, including its decomposition of image degrada-
tion and content. Based on these insights, we developed the
core designs of Fourier spatial modeling and Fourier channel
evolution. Our approach achieves competitive performance
while requiring fewer computational resources.
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