
Published as a conference paper at ICLR 2025

MODELING UNSEEN ENVIRONMENTS WITH
LANGUAGE-GUIDED COMPOSABLE CAUSAL COM-
PONENTS IN REINFORCEMENT LEARNING

Xinyue Wang1, Biwei Huang1

1University of California San Diego
{xiw159, bih007}@ucsd.edu

ABSTRACT

Generalization in reinforcement learning (RL) remains a significant challenge, es-
pecially when agents encounter novel environments with unseen dynamics. Draw-
ing inspiration from human compositional reasoning—where known components
are reconfigured to handle new situations—we introduce World Modeling with
Compositional Causal Components (WM3C). This novel framework enhances RL
generalization by learning and leveraging compositional causal components. Un-
like previous approaches focusing on invariant representation learning or meta-
learning, WM3C identifies and utilizes causal dynamics among composable ele-
ments, facilitating robust adaptation to new tasks. Our approach integrates lan-
guage as a compositional modality to decompose the latent space into meaningful
components and provides theoretical guarantees for their unique identification un-
der mild assumptions. Our practical implementation uses a masked autoencoder
with mutual information constraints and adaptive sparsity regularization to capture
high-level semantic information and effectively disentangle transition dynamics.
Experiments on numerical simulations and real-world robotic manipulation tasks
demonstrate that WM3C significantly outperforms existing methods in identifying
latent processes, improving policy learning, and generalizing to unseen tasks.1

1 INTRODUCTION

Reinforcement learning (RL) has rapidly progressed, driving innovations in domains such as game
playing, robotics, and autonomous driving (Silver et al., 2018; Vinyals et al., 2019; Shi et al., 2022;
Kiran et al., 2020). Deep reinforcement learning (DRL) methods, including Deep Q-Networks
(DQN), Soft Actor-Critic (SAC), and Proximal Policy Optimization (PPO), have addressed vari-
ous challenges in RL, such as stability in training, exploration in large state spaces, and efficient
policy optimization (Haarnoja et al., 2018; Schulman et al., 2017; Mnih et al., 2015; 2016; Fuji-
moto et al., 2018). These breakthroughs underscore the pivotal role of DRL in advancing artificial
intelligence.

Despite these substantial advancements, one of the most pressing issues of DRL is the generaliza-
tion of learned policies to novel, unseen environments (Gamrian & Goldberg, 2018; Song et al.,
2019; Cobbe et al., 2018). For example, the policy excels in push ball to place A might perform
notoriously poorly in the task push ball to place B. This limitation is primarily due to overfitting to
specific training environments. Especially when the agent can only receive visual input in a partially
observable environment, capturing the changes of the observation function and reward function in
the new environment becomes even harder. Thus, locating the change in unseen environment and
adapting learned knowledge to accommodate it are crucial for a generalizable agent.

Previous methods address the challenge of accommodating changes from different perspectives.
Methods like data augmentation and visual encoders improve model robustness to observation func-
tion changes by attempting to incorporate potential visual changes in the training domain (Lee et al.,
2019; Hansen & Wang, 2020; Yuan et al., 2022; Nair et al., 2022). However, these methods of-
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ten rely on extensive domain knowledge to design effective augmentations and can struggle with
changes that were not anticipated during training, e.g. changes in the state space and its dynamic
structure. Additionally, approaches such as invariant representation learning and meta-reinforcement
learning learn task-agnostic information that is stable across multiple training tasks to generalize to
novel observations (Zhang et al., 2020b;a; Duan et al., 2016; Finn et al., 2017). While the former
extracts invariant features that improve the agent’s performance in new environments by leverag-
ing consistent and transferable information, it may be limited in its ability to handle environments
with fundamentally different underlying dynamics. The latter optimizes meta-parameters that enable
rapid adaptation and efficient learning in novel tasks, but it can be computationally expensive and
may not always guarantee quick convergence in highly variable environments. Meanwhile, advances
in model-based reinforcement learning, including DreamerV3 (Hafner et al., 2023) and TD-MPC2
(Hansen et al., 2023), exhibit hyper-parameter robustness abilities across different kinds of environ-
ments. Despite their data efficiency, the learned world model may not accurately capture all aspects
of the underlying data generation process, leading to suboptimal planning and poor generalization
to new situations.

To this end, we ask the question: What does it take to learn a generalizable world model? Humans
understand new concepts and generalize from known structures to unknown situations in a compo-
sitional way (Tenenbaum et al., 2011; Marcus, 2003; Gentner & Markman, 1997). For example,
we learn push ball to place A as learning the composable components push, ball, place A and their
relationships rather than as a single, indivisible task. This compositional understanding allows us to
apply the learned components to new contexts, such as push puck to place A, reusing familiar ele-
ments in a new configuration. By learning these components and their dynamics, we can efficiently
adapt to new tasks and environments.

A critical aspect of achieving this compositional generalization is understanding the environment’s
causal structure. A causal system is characterized by modularity and sparsity (Pearl, 2009; Peters
et al., 2017; Glymour et al., 2019), which is naturally compositionally generalizable. This means
that each component can be learned independently, and then recombined with minimal changes to
handle new tasks. For instance, understanding the causal relationship between the action push and
the object ball in one scenario can be reused to understand the relationship between ’push’ and
’puck’ in another. This modular approach aligns with human learning, where we reuse learned
components across different contexts, enhancing our ability to generalize.

By drawing the connection between the causal system and compositional generalization, we propose
World Modeling with Compositional Causal Components (WM3C), a framework that enables the
agent to identify composable components, learn the causal dynamics among them, and utilize them
for efficient training and adaptation. While previous work has explored causal representation learn-
ing to enhance reinforcement learning (Huang et al., 2021; Liu et al., 2023; Feng & Magliacane,
2024), none have focused on improving generalization via learning composable causal components
and understanding their dynamics. To identify these composable causal components, we leverage
another compositional modality, language (Fodor & Pylyshyn, 1988). We theoretically show that
under mild and reasonable assumptions, composable causal components and their dynamics can be
uniquely identified. We further provide an algorithm for learning a world model that incorporates
these components and demonstrate how this approach generalizes to unseen tasks. The effectiveness
of our approach is validated by achieving state-of-the-art performance on a numerical simulation
dataset and a collection of robot manipulation in the Meta-World environment.

2 WORLD MODEL WITH COMPOSITIONAL CAUSAL COMPONENTS

In the following, we start by giving the motivation and intuition behind our formulation. Then, we
present the identification theory that guarantees their correct identification. We further demonstrate
the world model learning framework based on the environment model and our identification results.

2.1 MOTIVATION AND INTUITIONS

Consider a transfer learning scenario in visual-based RL, where an agent interacts with various fa-
miliar environments and then adapts to new, unseen ones. The challenge here is not just mastering
individual tasks but leveraging past experiences to quickly adapt to novel tasks. Humans excel at this
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Figure 1: Illustrations of environment models

by abstracting composable concepts from known tasks and reusing them in new contexts through
compositional generalization. In this process, language often plays a key role, naturally encapsu-
lating the causal relationships and compositional structures of the environment (Fodor & Pylyshyn,
1988). For example, from tasks like pick-place ball and pull puck, we abstract the concepts of pick-
place and puck. When faced with the task pick-place puck, we only need a few samples to combine
these learned components—such as adjusting our focus and gesture to pick up the puck and place it
in the desired location. This can be seen as a system with two latent components: verb (pick-place)
and object (puck), whose values can be flexibly recombined in new domains for efficient adaptation.

This process mirrors the core principles of a causal system: sparsity and modularity (Pearl, 2009;
Peters et al., 2017; Glymour et al., 2019; Schölkopf et al., 2021). Modularity enables us to inde-
pendently identify causal components and recombine them in novel ways, facilitating adaptation
to different systems. Sparsity ensures that when a distribution shift occurs, it minimally alters the
system, leaving most components unchanged. Thus, only a few new samples are needed to adapt
to new compositions of familiar components. For instance, to generalize efficiently to pick-place
puck, we only need to adjust the causal dynamics between pick-place and puck, while the rest of the
system remains largely intact.

Motivated by modeling the composable environment model from a causal view, we characterize the
environment model using an augmented graph of the partially observable Markov decision process
(See Figure 1b). We denote the sequence of observations as {< ot, at, rt >}Tt=1, referring to image,
action, and reward. We denote the underlying latents by st = (s1,t, s2,t . . . sd,t) and N language
components as {l1, . . . , lm}. We further assume that st = (c1,t, . . . , cm,t) can be uniquely parti-
tioned into m disjoint language-controlled components. The dimension of the language-controlled
components ci is denoted as nci

. The following proposition establishes how we identify these com-
ponents:

Proposition 1 (Language-Controlled Components). Under the assumption that the graphical rep-
resentation of the environment model is Markov and faithful (Spirtes et al., 2001; Glymour et al.,
2019; Pearl, 2009) to the data, ci,t2 is a minimal subset of state dimensions that are directly con-
trolled by the language component li and sj,t ∈ ci,t if and only if sj,t ̸⊥⊥ li | at−1:t, st−1, and
sj,t ⊥⊥ {lk}k ̸=i | li, at−1:t, st−1.

2ci,t and ci are used interchangeably in this paper.
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Intuitively speaking, language-controlled components are a set of state dimensions that are directly
controlled by the individual language components, and this allows us to identify a modular and
interpretable environment model. We can achieve compositional generalization in the latent space
with the guidance of language components, in the unseen test domains. We further relax the con-
ditions to allow the individual component to be influenced by all previous states instead of only the
previous itself (see Equation 2). The data generation process based on composable components is
mathematically formulated as follows:

[ot, rt] = g(st, ϵt), st = (ci,t, . . . , cm,t), L = {l1, ..., lm} (1)

ci,t ∼ p(ci,t|li, st−1, at−1) for i = 1, . . . ,m (2)

2.2 IDENTIFIABILITY THEORY

Accurately identifying composable components and causal dynamics is crucial to developing robust
models capable of generalizing across diverse environments. However, this task is challenging due
to the inherent uncertainty and complexity of the data generation process. Previous work in non-
linear ICA (Khemakhem et al., 2019; Hoyer et al., 2008; Hyvärinen & Pajunen, 1999; Klindt et al.,
2020; Hyvarinen & Morioka, 2016) develops methods for identifying latent variables dimension-
wise using strong assumptions like independence of noise terms and specific functional form priors.
However, they often struggle with complex systems having interdependent latent structures and are
limited by their reliance on a single auxiliary variable, parametric assumptions, and simple graphical
models. Additionally, their sophisticated optimization procedures are difficult to scale up in real-
world applications.

We focus on block-wise identifiability instead of dimension-wise identifiability to achieve a bet-
ter trade-off between scalability and estimation accuracy. Our approach allows separate language
components to independently control their corresponding latent variables, unlike previous temporal
methods (Yao et al., 2021; 2022; Song et al., 2024) that rely on a single auxiliary variable con-
necting with all latent variables. By focusing on identifying language-controlled composable com-
ponents without parametric assumptions, we can maintain theoretical guarantees while requiring
significantly fewer language component values for identification. Note that this framework extends
beyond language as a compositional modality - it applies to any latent system with multiple inter-
mittent control signals, such as decomposing robotics tasks into components controlled by various
signals. We believe this is the first work to demonstrate the identifiability of disentangled compo-
nents separately controlled by different intermittent control signals in a general non-linear case for
reinforcement learning tasks.

We define block-wise identifiability concerning the identification of the language-controlled com-
ponent as follows. Some proof techniques and notations are related to Liu et al. (2023); Sun et al.
(2024).

Definition 1 (Block-wise Identifiability) The true components of changing variables ci are block-
wise identifiable if, for the estimated component of changing variables ĉi and each component of
changing variables ci, there exists an invertible function hi : Rnci → Rnci such that ci = hi(ĉi).

Theorem 1 Suppose that the data generation process follows Equation 1, 2, and the following
assumptions are fulfilled, then the language-controlled component ci is block-wise identifiable:

1. The mixing function [ot, rt] = g(st, ϵt) is invertible and smooth.

2. The set {si ∈ S | p(si) = 0} has measure zero.

3. The conditional probability density should be sufficiently smooth, i.e., p(si,t|li, st−1, at−1)
is at least first-order differentiable.

4. Given language components li, previous state st−1 and previous action at−1, every element
of latent variable sj,t should be independent of each other, i.e., sj,t ⊥⊥ sk,t | li, st−1, at−1

for j, k ∈ {1, . . . , n} and j ̸= k.

5. For any ci ∈ Ci, we assume that there exist nci +1 values of li such that for j = 1, . . . , nci

and k = 1, . . . , nci , the following matrix is invertible:
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where φ′

j(k, 0) :=
∂ log p(sj,t|li,k,st−1,at−1)

∂sj,t
− ∂ log p(sj,t|li,0,st−1,at−1)

∂sj,t
is the difference of the first-

order derivative of the log density of sj,t between the kth value and 0th value of the language
component li.

Most of these assumptions are commonly made in the field of causal representation learning (Kong
et al., 2023a; Von Kügelgen et al., 2021; Huang et al., 2022; Liu et al., 2023; Sun et al., 2024).
They help prevent degenerate cases, ensuring that the composable components in the model are in
generic conditions, while enabling causal structure recovery - once latent variables are identified,
their causal relationships can be discovered with standard causal discovery methods as used in Yao
et al. (2021; 2022). The above theorem introduces a relaxed form of identifiability, showing that
for each language-controlled composable component ci, with nci

+ 1 distinct values in a given lan-
guage component (e.g., nci

+ 1 objects in object component), each true changing variable can be
represented as a function of all estimated changing variables. It suggests that the estimated chang-
ing variables encapsulate all the necessary information for the true changing variables, effectively
separating the component corresponding to the language component Li and the other components
not controlled by it. The minimum number of tasks for identifying all m language-controlled com-
ponents can be as low as

∑m
i nci + 1. More discussions about the requirements of identifying all

language-controlled components {c1, ..., cm} and detailed proof are in Appendix A.3.

2.3 LEARNING COMPOSABLE WORLD MODELS
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Figure 2: Illustrations of environment models.

Our world model identifies composable components and learns composition rules through agent in-
teractions. The learning procedure is grounded on the identifiability results and incorporates natural
properties of causal systems to improve learning and generalization. Notably, our learning frame-
work is agnostic. To create a more efficient prototype, we utilize the state-of-the-art model-based
reinforcement learning algorithm, DreamerV3 (Hafner et al., 2023), and apply insights from the
identifiability results to guide the learning process.
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Approximating invertible mixing function. The traditional encoder-decoder architecture is
adopted to fulfill the invertibility of the mixing function given in Assumption 1. We also learn
to predict the continuation signal for policy learning. To enhance practicality in the multi-task set-
ting, we use a learnable task embedding z to encode each task u, helping these decoding functions
to capture variations across domains (see Figure 2a). We present two variants of WM3C, one uses a
convolutional neural network (CNN) as the default observation encoder and decoder, and the other
employs a Masked Auto-encoder (MAE) following Seo et al. (2023). MAE is particularly effec-
tive at extracting high-level semantic information, which may help bridge the gap between language
components and their corresponding latent components (Kong et al., 2023b). The model components
are: 

Task Encoder: z = fα(u)

Observation Encoder: ht ∼ pβ(ht | ot)
Observation Decoder: ôt ∼ pθ(ôt | mo ⊙ st, z)

Reward Decoder: r̂t ∼ pθ(r̂t | mr ⊙ st, z)

Continuation Decoder: ĉt ∼ pθ(ĉt | mc ⊙ st, z)

(3)

and the corresponding loss function is:

lrep = E

[
T∑

t=1

− log p(ot | mo ⊙ st, z)− log p(rt | mr ⊙ st, z)− log p(ct | mc ⊙ st, z)

]
.

Facilitating modular dynamics. We decompose both the transition model and the representation
model into disentangled modules, following the causal structure of the environment model. The KL
regularization is factorized into component-wise KL divergence as well, acting as a soft indepen-
dence constraint that encourages the disentanglement of composable components. Moreover, the
language components li are encoded as token embeddings ei to increase model flexibility.

Language Component Encoder: ei = fα(li)

Component ci,t Representation Model: ci,t ∼ qγ(ci,t | ht, ei, st−1, at−1)

Component ci,t Transition Model: ˆci,t ∼ pϕ(ĉi,t | ei, st−1, at−1)

(4)

ltrans = E

[
T∑

t=2

N∑
i=1

KL (qγ(ci,t | ht, ei, st−1, at−1) || pϕ(ci,t | ei, st−1, at−1))

]
.

Enhancing causal structure. The identification results imply that if we have enough values for each
component, we can identify the component without additional constraints. However, we observe that
it can be challenging in practice when the effect of the language signal is small. To address this, we
add a mutual information (MI) constraint to strengthen the conditional independence described in the
environment model (Belghazi et al., 2018). Specifically, for each language-controlled composable
component, a mutual information neural estimator is used to maximize the joint MI between the
component and its corresponding language component, while n − 1 estimators minimize the joint
MI between the component and other language components; see below. Detailed derivation and
discussion can be found in Appendix A.4.2.

Mutual Information Maximization: I(li; ci,t, st−1:t−τ , at−1:t−τ )

Mutual Information Minimization:
∑
j ̸=i

I(li; cj,t, lj , st−1:t−τ , at−1:t−τ ) (5)

lmi = E

 T∑
t=1

m∑
i=1

−

I(li; ci,t, st−1:t−τ , at−1:t−τ )−
∑
j ̸=i

I(li; cj,t, lj , st−1:t−τ , at−1:t−τ )

 .

Enforcing sparse interactions. Real-world causal systems are usually sparse, with most variables
not directly influencing each other (Scholkopf et al., 2021; Zhang & Hyvärinen, 2009). To reflect
this characteristic and facilitate learning and identification, we incorporate learnable masks into the
world model. We assume that the observation decoding, reward decoding, and continuous signal
decoding use only a subset of latents, characterized by binary masks mo,mr,mc, respectively. To
alleviate the shrinkage effect of L1 loss and prevent excessive sparsity, which could result in infor-
mation loss during the early stages, we apply a modified gating mask from Rajamanoharan et al.
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(2024) and adaptive L1 loss that dynamically controls the sparsity during the optimization process,
accounting for the sparsity ratio of the latent variables, with the corresponding loss function given
below (see implementation details in Appendix A.5.2):

lspar =

T∑
t=1

∑
i

L1(mi) · 1ratio(mi)<threshold.

Therefore, the total objective for learning the composable world model is expressed as a weighted
summation:

ltotal = αlrep + λltrans + βlmi + γlspar. (6)

Compact states for policy learning. We use a standard soft actor-critic structure as our policy
module, following DreamerV3 (Hafner et al., 2023). The task embedding z, learned from the world
model, is used as a condition in both the actor and critic networks to accommodate the multi-task
setting. Instead of using all latent states st, only the compact reward-relevant states, selected via the
reward mask mr, are fed into the actor and critic networks. The policy module and world model
are optimized alternately, with the world model utilizing the updated policy module to gather new
interactions (see Figure 2b).

Quick adaptation to tasks of new compositions. Synthesis effect might happen in the test time.
For instance, the action open within the verb component can have different meanings when com-
bined with objects that have distinct affordances, such as door and window. Instead of standard
fine-tuning or retraining on all parameters of the world model, we only require minor adjustments
to dynamics-related parts. This is feasible because the individual components have already been
learned in previous tasks—it is only the interactions among them that remain unclear. Hence, we
fine-tune the task encoder, representation model, transition model, decoding masks, and policy mod-
ule to account for the synthesis effect of these recombinations while keeping others fixed.

3 EXPERIMENTS

In this section, we address the following questions:

• How effectively can our learning framework identify language-controlled components in
known environments?

• How accurately can the learned world model predict language-controlled components in
new environments with novel combinations?

• Can our framework enhance RL training and generalization in real-world applications?

• Are the learned language-controlled components interpretable?

We aim to answer these questions through a series of experiments, including tests on synthetic
data where we have access to ground truth latent states, as well as real-world robotic environments
involving a collection of manipulation tasks.

3.1 SYNTHETIC DATA

To validate the accuracy of our language-controlled composable component identification, we con-
duct a simulation study based on the assumed data generation process described in Section 2.1. We
initialize three language-controlled components {c1, c2, c3}, each independently controlled by three
groups of discrete language tokens (where language component li takes nci

+1 values). We split all
possible combinations into a training set for the i.i.d component identification test and a test set for
the o.o.d component prediction test. Following the experimental setting of block-wise identification
in Von Kügelgen et al. (2021); Liu et al. (2023), we compute the coefficient of determination R2

between the estimated components and the ground truth.

We compare the identification accuracy of our method with other causal representation learning
approaches, such as iVAE (Khemakhem et al., 2019), which does not incorporate temporal infor-
mation, TCL (Hyvarinen & Morioka, 2016), and TDRL and NCTRL (Yao et al., 2022; Song et al.,
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2024), which use the independence of the Jacobian matrix to identify dimension-wise temporal de-
pendencies. Additionally, we evaluate our method against state-of-the-art world models, including
DreamerV3 (Hafner et al., 2023) and TD-MPC2 (Hansen et al., 2023), which do not account for
causal representation learning or generalization optimization.

3.1.1 COMPONENT IDENTIFICATION IN KNOWN TASKS

WM3C effectively identifies language-controlled components in known tasks. The plot on the left
of Figure 3 shows that our method (WM3C) accurately captures the underlying latent structure of
the data, with diagonal R2 > 0.9 and off-diagonal values around ∼ 0.1. The middle figure plots
the average R2 values of several baseline models against training steps, where WM3C significantly
outperforms the other models, demonstrating both higher accuracy and minimal standard deviation,
indicating consistent performance.

We attribute the inferior performance of other methods to differences in model priors and optimiza-
tion objectives. For example, iVAE uses a standard domain index rather than language components,
which limits its ability to identify and utilize composable elements effectively. TDRL, which relies
on the independent noise assumption to capture conditional independence among latents, fails to
recognize the composable components tied to language. Although NCTRL models domain shifts
through an underlying hidden Markov model, the prior is too simplistic to capture complex latent
structure changes across domains. Both DreamerV3 and TD-MPC2 focus on fitting models to recon-
struct observations, resulting in an entangled representation space that does not prioritize identifying
distinct latent components.
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Figure 3: Language-controlled composable components identification results on known tasks and
novel tasks. Left: Coefficient of determination (R2) using kernel ridge regression to regress esti-
mated latents on true latents. Middle: Average R2 over the three language-controlled composable
components during training, regressing estimated latents on true latents (the shaded areas represent
the standard deviation across three runs). Right: Average R2 of model imagination over time during
test-time on unseen tasks, where latents are new combinations of known composable components.
All results are reported across three runs with different seeds.

3.1.2 COMPONENT PREDICTION IN NOVEL TASKS

We evaluate the generalization of the learned model by comparing the latent rollouts generated by the
world model (through imagination without consecutive observation) with the true latent in unseen
tasks. Here, the unseen tasks are new combinations of language-controlled composable components
from the known tasks. In the plot on the right of Figure 3, we see that WM3C consistently maintains
the highest R2 values over different time points, reinforcing the effectiveness observed in the middle
figure. It is important to note that this evaluation is based on imagination (latent rollouts) in an
unseen environment without observations, which highlights WM3C’s ability to generalize through
learning composable components in the world model.
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3.2 ROBOT MANIPULATION

To answer whether our framework facilitates RL training and generalization in real-world applica-
tions, we conduct experiments in the robotic simulation environment, Meta-world (Yu et al., 2019).
It is a benchmark suite of robotic manipulation environments, where each task is paired with a corre-
sponding language description. Assuming language components verb and object in the data gener-
ation process, we take 18 training tasks that follow this structure and 9 test tasks that either are new
combinations of known language components or mixtures of known and unknown language com-
ponents. Models are trained in a multitask setting, including all 18 training tasks, for a total of 5M
steps, while the adaptation is performed on each test task for 250K steps. We compare the training
and adaptation efficiency of WM3C (MAE) and WM3C (CNN) with DreamerV3 and visual-based
Multi-task SAC (MT-SAC). Additional training and test details are provided in Appendix A.5.2.

3.2.1 TRAINING AND ADAPTATION

Training efficiency. In Figure 4, we report the average success rate across all tasks during the
training process, along with the learning curves of 9 tasks. By learning a composable world model
guided by language, our WM3C demonstrates significantly better data efficiency and performance
compared to DreamerV3 and MT-SAC, with further improvements achieved through masked image
modeling. Additionally, in tasks such as box-close and door-unlock, where DreamerV3 struggles in
learning meaningful representation, our WM3C framework consistently exhibits rapid policy learn-
ing. This highlights the WM3C’s ability to handle diverse task dynamics and confirms its advantage
in learning composable world models as a causal system compared to conventional world models.
We provide an ablation study in Appendix A.7.2 to investigate the effects of the integrated modules.
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Figure 4: Learning curves on Meta-world: Average success rate and 9 specific task success rates.
Results are reported with three seed runs and 10 episodes for each task evaluation.

Adaptation efficiency. To evaluate the generalization advantage of the composable world model,
we test its adaptation ability on new, unseen tasks, including both the compositions of known com-
ponents and compositions involving both known and unknown components (See adaptation details
in Appendix A.5.2). In Figure 5, we see that in the first 7 tasks that recombine learned components,
the WM3C variants, particularly WM3C MAE, consistently achieve higher success rates compared
to full-parameter tuned DreamerV3. This aligns with our assumption that after learning composable
components, adaptation should focus on learning compositional dynamics. For tasks coffe-button
(coffee button is unknown, press is known) and handle-press-side (handle is known, press-side is
unknown), WM3C performs better in one case and worse in both cases, suggesting that while dy-
namics module adaptation alone may not always suffice for novel components, it can be surprisingly
effective in certain similar scenarios.

3.2.2 INTERVENTION IN THE LANGUAGE-CONTROLLED COMPONENTS

In this section, we interpret the language-controlled components identified in Meta-world by inter-
vening corresponding latent components and see how this affects the reconstruction. Although not
all identifiability conditions can be easily met in practical applications, our estimated latent states
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Figure 5: Adaptation curves on 9 unseen tasks, including 7 tasks that are recombination of known
components and 2 tasks have unknown components (handle-press-side and coffee-button). Dream-
erV3 and MT-SAC are full-parameter finetuned while WM3C is only tuned with the dynamics mod-
ule. Results are reported with three seed runs and 10 episodes for each task evaluation.

are still reasonable and meaningful (see Figure 6). We find that intervention on the verb controlled
component does not affect the object in the image but causes the end effector of the robot arm and
its adjacent joint to disappear, as expected for the executor of different verbs. On the other hand,
intervention on the object does not affect the robot arm, but changes the appearance of objects signif-
icantly. This demonstrates that our model successfully learns modular and compositional represen-
tations aligned with the semantic meaning of language components, enhancing both interpretability
and efficient task manipulation. Additional examples can be found in Appendix A.7.3.

Ob ject

Ver b

Observat ion

Reconstruct ion
after Intervening on Object  Component  

Reconstruct ion
after Intervening on Verb Component  

Task: 
Coffee-pull

Task: 
Window-close

Task: 
Drawer-open

Task: 
Door-unlock

Figure 6: Intervention on the language-controlled components. The first row is the original image
observation WM3C receives, the second row is the reconstruction of WM3C’s observation decoder
after intervening on its object latent component and the third row is the reconstruction of WM3C’s
observation decoder after intervening on its verb latent component.

4 CONCLUSION

In this work, we introduced World Modeling with Compositional Causal Components (WM3C),
a framework aimed at improving generalization in reinforcement learning by utilizing composi-
tional causal dynamics. By integrating modalities like language and offering theoretical guarantees
for identifying distinct causal components, WM3C enhances adaptability to unseen environments.
Extensive experiments on synthetic data and real-world robotic tasks show WM3C outperforms ex-
isting methods in uncovering underlying processes and improving policy learning. Future research
can extend WM3C to offline learning and explore scalable modularity and sparsity constraints, con-
sidering the large number of language components involved.
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A APPENDIX

A.1 RELATED WORK

Generalization in Reinforcement Learning. Generalization in reinforcement learning (RL) re-
mains a core challenge, particularly when agents need to adapt to unseen task variations or environ-
ments with minimal additional training. Early approaches like Meta-RL and invariant representa-
tion learning (Lee et al., 2019; Hansen & Wang, 2020; Yuan et al., 2022; Nair et al., 2022) improved
adaptability by learning task-agnostic policies that can be efficiently reused across multiple domains.
In addition, Model-based approaches, particularly world models (Ha & Schmidhuber, 2018; Hafner
et al., 2023; Hansen et al., 2023), have also demonstrated success in generalization by building
latent representations of the environment that allow for planning and imagination-based learning.
However, these approaches often ignore the compositional nature of tasks, limiting their ability to
generalize across tasks that share modular components. In contrast, our work leverages language
as a natural guide to identify and control composable task components for a better environment
modeling.

Causal Representation Learning. Causal representation learning has been a pivotal develop-
ment in machine learning, focusing on uncovering the underlying causal mechanisms within data
(Schölkopf et al., 2021). Prior methods such as nonlinear ICA (Zhang & Hyvarinen, 2012;
Hyvärinen & Pajunen, 1999) and temporal causal representation learning (Yao et al., 2021; 2022;
Song et al., 2024) have sought to identify causal relationships in latent variables using priors such
as independent noise conditions and auxiliary variables. However, these approaches often focus
on dimension-wise identifiability, which can be difficult to scale in real-world applications with
complex causal dynamics. Our framework advances this line of work by introducing block-wise
identifiability across multiple coexisting language components, which establishes a connection to a
compositional modality. This further enables the identification of language-controlled composable
components as distinct blocks, improving scalability and generalization.

A.2 PROOF OF PROPOSITION 1 (LANGUAGE-CONTROLLED COMPONENTS)

Here we present the proof for identifiability of the language-controlled composable components.
The content is arranged as, firstly deriving the relationship between the estimated latent and ground
truth latent variables, then proving that under some language-controlled composable components
can be uniquely and correctly identified. The identifiability theory is suitable for the system in-
cluding arbitrary number of language components and language-controlled latent components. For
simplicity, we present the proof with a system having two language components and it can be easily
extended to arbitrary number of language components.

We first give the definitions of d-separation, global Markov condition, faithfulness assumption,
which are used in the proof (Spirtes et al., 2001; Glymour et al., 2019; Pearl, 2009).

Definition 1 (d-separation). In a directed acyclic graph (DAG), a path between two nodes X and
Y is said to be blocked (or d-separated) by a set of nodes Z if and only if:

For any node on the path:

• If the path includes a chain X → M → Y or a fork X ← M → Y , the path is blocked if
M ∈ Z.

• If the path includes a collider X → M ← Y , the path is blocked unless M ∈ Z or any of
its descendants are in Z.

Definition 2 (Global Markov Condition). The distribution p over a set of variables V satisfies the
global Markov property on a directed acyclic graph (DAG) G if for any partition (X,Z, Y ) of the
variables such that Z d-separates X from Y in G, we have:

p(X,Y | Z) = p(X | Z)p(Y | Z)

Definition 3 (Faithfulness Assumption). A distribution p over a set of variables V is faithful to
a directed acyclic graph G if all and only the conditional independencies in p are implied by the
global Markov condition on G.
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This implies that if two variables are conditionally independent in p, this must be reflected by d-
separation in G, and there are no additional independencies beyond those imposed by the graph
structure.

Proposition 1 (Language-Controlled Components). Under the assumption that the graphical rep-
resentation of the environment model is Markov and faithful to the data, ci,t is a minimal subset of
state dimensions that are directly controlled by the language component li and sj,t ∈ ci,t if and only
if sj,t ̸⊥⊥ li | at−1:t, st−1, and sj,t ⊥⊥ {lk}k ̸=i | li, at−1:t, st−1.

Proof. The proof is done with twice contradiction as follows:

Step 1: We first show that if sj,t ∈ ci,t, then sj,t ̸⊥⊥ li | at−1:t, st−1.

We prove this by contradiction. Assume sj,t ⊥⊥ li | at−1:t, st−1, meaning that sj,t is independent
of li given the previous actions at−1:t and state dimensions st−1. According to the faithfulness
assumption, this implies that there is no directed path from li to sj,t in the graphical model, contra-
dicting the assumption that sj,t is part of ci,t, which consists of state dimensions controlled by li.
Thus, by contradiction, it follows that sj,t ̸⊥⊥ li | at−1:t, st−1, meaning that sj,t has a directed path
from li, and is thereby controlled by li.

Step 2: Next, we show that sj,t ⊥⊥ {lk}k ̸=i | li, at−1:t, st−1.

Again, suppose by contradiction that sj,t ̸⊥⊥ {lk}k ̸=i | li, at−1:t, st−1, implying that sj,t is depen-
dent on another language component lk (for some k ̸= i) even after conditioning on li, the action
sequence, and the previous state. According to the faithfulness assumption, this would mean there
is a direct path from lk to sj,t. However, this contradicts the proposition’s condition that sj,t ∈ ci,t,
which requires that sj,t is controlled specifically by li and not influenced by any other lk for k ̸= i.
Therefore, by contradiction, it must be true that sj,t ⊥⊥ {lk}k ̸=i | li, at−1:t, st−1.

From the two steps, we have shown that sj,t ∈ ci,t if and only if sj,t ̸⊥⊥ li | at−1:t, st−1 and
sj,t ⊥⊥ {lk}k ̸=i | li, at−1:t, st−1. Thus, ci,t is a minimal subset of state dimensions controlled by
the language component li.

A.3 PROOF OF IDENTIFYING LANGUAGE-CONTROLLED LATENT COMPONENTS

Consider the data generation process described by Equations (1) and (2). To simplify the notation,
we demonstrate the proof for a system with two language components, {l1, l2}, and their corre-
sponding language-controlled latent components, {c1,t, c2,t}. The proof generalizes to any number
of language components and associated latent variables.

[ot, rt] = g(st, ϵt) st = (c1,t, . . . , cm,t) (7)

cit ∼ p(cit|li, st−1, at−1) for i = 1, . . . , n (8)

We begin by matching the observation distributions:

p(ot, rt | l1, l2, st−1, at−1) = p(ôt, r̂t | l1, l2, ŝt−1, at−1), (9)
p(g(st, ϵt) | l1, l2, st−1, at−1) = p(ĝ(ŝt, ϵ̂t) | l1, l2, ŝt−1, at−1). (10)

The proof of the elimation of noise can be referred to Khemakhem et al. (2020). Assuming that the
observation function g is invertible and differentiable, and applying the change of variables formula,
we have:

p(st | l1, l2, st−1, at−1) = p(ŝt | l1, l2, ŝt−1, at−1)
∣∣det J−1

h

∣∣ , (11)

where h = g−1 ◦ ĝ is the invertible transformation from the estimated latent variables ŝt to the true
latent variables st, and Jh is the Jacobian of h.

Taking the logarithm of both sides:
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log p(st | l1, l2, st−1, at−1) = log p(ŝt | l1, l2, ŝt−1, at−1) + log
∣∣det J−1

h

∣∣ . (12)

Under Assumption 3, given the language token l1 and l2, the previous state st−1 and the previous
action at−1, each latent variable si,t is independent of the other latent variables. Thus, the log-
density of st given l1, l2 can be decomposed as:

log p(st | l1, l2, st−1, at−1) =

n∑
i=1

log p(si,t | l1, l2, st−1, at−1), (13)

and similarly for the estimated latent variables:

log p(ŝt | l1, l2, ŝt−1, at−1) =

n∑
i=1

log p(ŝi,t | l1, l2, ŝt−1, at−1). (14)

Substituting these into the previous equation:

n∑
i=1

log p(si,t | l1, l2, st−1, at−1) =

n∑
i=1

log p(ŝi,t | l1, l2, ŝt−1, at−1) + log
∣∣det J−1

h

∣∣ . (15)

Here, we first identify c1, the l1 controlled latent component. We use dimension index {1, ..., nc1}
to indicate the latent variables belonging to c1, and dimension idex {nc1 + 1, ..., n} to indi-
cate the latent variables belonging to c2, where n represents the total dimensions of the latent
space. We further simplify the notation that qi(si,t, l1, l2) := log p(si,t | l1, l2, st−1, at−1) and
q̂i(ŝi,t, l1, l2) := log p(ŝi,t | l1, l2, st−1, at−1).

We begin by taking the derivative with the estimated latent variable ŝj,t where j ∈ {nc1 + 1, ..., n}.

n∑
i=1

∂qi(si,t, l1, l2)

∂si,t

∂si,t
∂ŝj,t

=
∂q̂j(ŝj,t, l1, l2)

∂ŝj,t
+

log
∣∣det J−1

h

∣∣
∂ŝj,t

(16)

Here we build the connection between the dimensions in the true l1 controlled component si,t and
the estimated latent in the l2 controlled component, sj,t. Although it is helpful in the sense of
identification of c1, it is challenging in estimation because we do not have knowledge about the
invertible function, h, making the estimation intractable.

Fortunately, if we have multiple values of l1, we can leverage them to make the estimation tractable
by constructing the difference terms. We assume l1’s value can be taken from {l1,0, ..., l1,k}.

n∑
i=1

∂qi(si,t, l1,k, l2)

∂si,t

∂si,t
∂ŝj,t

− ∂qi(si,t, l1,0, l2)

∂si,t

∂si,t
∂ŝj,t

=
∂q̂j(ŝj,t, l1,k, l2)

∂ŝj,t
− ∂q̂j(ŝj,t, l1,0, l2)

∂ŝj,t
(17)

Recall that the independent assumpation that the latent component controlled by l2 are not con-
trolled by l1. q̂j(ŝj,t, l1,k, l2) does not change when only l1 changes. However, this also adds some
constraints and requirements on the number of tasks that combined l1 and l2, which we are going to
discuss later. Here we can remove the l2 from the conditions since according to the proposition of
si,t ∈ c1,t, it is independent from l2 given l1, st−1 and at−1.

nc1∑
i=1

(
∂qi(si,t, l1,k)

∂si,t
− ∂qi(si,t, l1,0)

∂si,t
)
∂si,t
∂ŝj,t

= 0 (18)

Suppose we have nc1 values in l1, from l1,0 to l1,k, we can construct a linear system as follows:
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∂q1(s1,t,l1,1)

∂s1,t
− ∂q1(s1,t,l1,0)

∂s1,t
. . .

∂qnc1
(snc1 ,t,l1,1)

∂snc1 ,t
− ∂qnc1

(snc1 ,t,l1,0)

∂snc1 ,t

...
...

∂q1(s1,t,l1,k)
∂s1,t

− ∂q1(s1,t,l1,0)
∂s1,t

. . .
∂qnc1

(snc1 ,t,l1,k)

∂sn,t
− ∂qnc1

(snc1 ,t,l1,0)

∂snc1 ,t




∂s1,t
∂ŝj,t

...
∂snc1 ,t

∂ŝj,t

 = 0. (19)

To achieve ∂si,t
∂ŝj,t

= 0 for any i ∈ {1, . . . , nc1} and j ∈ {nc1 + 1, . . . , n}, the left matrix has to be

full rank. This further implies that if the cardinality of l1’s range (k) is larger than nc1
+1, ∂c1

∂ĉ2
= 0,

as well as ∂c1

∂ ˆ̄c1
= 0.

Next, we turn to the Jacobian matrix of h that describes the relationship between the true latent
variables st and the estimated latent variables ŝt:

Jh =

[
∂c1,t

∂ ˆc1,t

∂c1,t

∂ ˆc2,t
∂c2,t

∂ ˆc1,t

∂c2,t

∂ ˆc2,t

]
. (20)

By assuming the transformation h is invertible, the Jacobian matrix Jh is full rank. We can safely
meet conclude that, ∂sc1

∂ŝc2
= 0, and the non-zero entries can only appear in ∂sc1

∂ŝc1
. The c2 here can be

further extended to the concatenation of components that are not controlled by l1, namely c̄1 in the
cases of having language components more than 2.

After proving the number of l1 for identifying c1, it is straightforward to know the number of li needs
and the number of tasks (combinations of li) for identifying all the language-controlled components.

We can use the same procedure to prove the number of l2 needed for identifying c1 is the same as
proving the identification of c1, which requires nc2

+ 1 values of l2.

Below, we discuss two estimation procedures for identifying all the language-controlled compo-
nents, related to the tradeoff between practicality and minimal number of tasks.

For the case having two language components, suppose we have enough data, e.g. sufficient vari-
ability in l1 and l2. We have two ways to identify c1 and c2.

• One by one: We can first identify one component with a model and then identify another
component with another model in a one-by-one order. The least number of tasks we need is∑2

i=1 nci
+ 1 for 2 language components and

∑m
i=1 nci

+ 1 for m language components.
However, it is limited in practical use since we can not identify all language-controlled
components simultaneously in the estimation procedure. In order to meet the requirement
in Equation 17, we need to control the q̂j(ŝj,t, l1,k, l2) does not change when only l1,k.
It requires us to have tasks that allow us to control the l2 to be a fixed value when l1 is
changing, and vice versa. Then, we can use these tasks to estimate c1 and in turn estimate
the c2 with another set of tasks where l1 is fixed and l2 is changing. While it requires the
minimal number of tasks and language tokens, the estimation procedure is sophisticated.

• All in one: We can learn a model to simultaneously identify and estimate all the com-
ponents with more needs on variability. To make sure the the q̂j(ŝj,t, l1,k, l2) does not
change when only l1,k, we need enough values of l2 presented with each value of l1. That
helps because when l1 is changing, there is also enough l2 values to let us identify c2. It
is the same in the case where more than 2 language components evolved, where we want
to have enough combinations of the rest language components’ values. This would re-
quire

∏2
i=1 nci

tasks for 2 language components and
∏m

i=1 nci
+ 1 tasks for m language

components.

Once the latent variables are identified using Theorem 1, the causal structure among these latent
variables can be directly recovered using standard causal discovery methods, such as constraint-
based or score-based approaches used in prior work (Yao et al., 2021; 2022; Song et al., 2024).
These methods leverage the identified latent space to ensure the underlying causal relationships are
correctly estimated, providing a clear path to causal structure identifiability.
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A.4 OBJECTIVE DERIVATIONS

A.4.1 REPRESENTATION AND DYNAMICS OBJECTIVES

We define the extended information bottleneck objective based on Dreamer (Hafner et al., 2019),
now conditioning on L = {l1, ..., lm}, as follows:

max I(s1:T ; (o1:T , r1:T )|a1:T , L)− βI(s1:T , i1:T |a1:T , L),

where β is a scalar and it are dataset indices that determine the observations p(ot|it) = δ(ot − ōt)
as in .

Maximizing this objective encourages the model to reconstruct each image by relying on information
extracted at preceding time steps to the extent possible, and only accessing additional information
from the current image when necessary.

Lower bounding the first term gives us the objective of optimizing the latent representation.

I(s1:T ; (o1:T , r1:T )|a1:T , L)

= Ep(o1:T ,r1:T ,s1:T ,a1:T ,L)

(∑
t

ln p(o1:T , r1:T |s1:T , a1:T , L)− ln p(o1:T , r1:T |a1:T , L)

)
+
= E

(∑
t

ln p(o1:T , r1:T |s1:T , a1:T , L)

)

≥ E

(∑
t

ln p(o1:T , r1:T |s1:T , a1:T , L)

)
− KL

(
p(o1:T , r1:T |s1:T , a1:T , L) ∥

∏
t

q(ot|st)q(rt|st)

)

= E

(∑
t

ln q(ot|st) + ln q(rt|st)

)
.

Upper bounding the second term gives us the objective of optimizing the latent transition dynamics.

I(s1:T ; i1:T |a1:T , L)

= Ep(o1:T ,r1:T ,s1:T ,a1:T ,i1:T ,L)

(∑
t

ln p(st|st−1, at−1, it, L)− ln p(st|st−1, at−1, L)

)

= E

(∑
t

ln p(st|st−1, at−1, ot, L)− ln p(st|st−1, at−1, lj)

)

≤ E

(∑
t

ln p(st|st−1, at−1, ot, L)− ln q(st|st−1, at−1, L)

)

= E

(∑
t

KL (p(st|st−1, at−1, ot, L) ∥ q(st|st−1, at−1, L))

)

This lower bounds the objective. It can be further decomposed to the summation of independent KL
terms according to the environment model we assume in Section. 2.1 and the Proposition A.2 of the
language-controlled component.
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I(s1:T ; i1:T |a1:T , L)

= E

(∑
t

KL (p(st|st−1, at−1, ot, L) ∥ q(st|st−1, at−1, L))

)

= E

(∑
t

m∑
i

KL
(
p(ci,t|st−1, at−1, ot, li) ∥ q(ci,t|st−1, at−1, li)

))

A.4.2 MUTUAL INFORMATION CONSTRAINT DERIVATIONS

In order to enhance the conditional independence in the latent space, we also adopt the mutual
information constraints, which are as follows:

I(li; ci,t | st−1:t−τ , at−1:t−τ )−
∑
j ̸=i

I(li; cj,t | lj , st−1:t−τ , at−1:t−τ )

It is used to characterize the language-controlled component ci, by enhancing the dependence be-
tween ci and li, given at−1:t−τ , st−1:t−τ , and enhancing the independence between li and each cj
conditioning on corresponding lj , st−1:t−τ , at−1:t−τ . The τ here refers to the length of history that
considering conditioning on, which is normally 1 when assumed markov assumption. By applying
the chain rule of mutual information for the first term and second term, we can have the following:

I(li; ci,t | st−1:t−τ , at−1:t−τ ) = I(li; ci,tst−1:t−τ , at−1:t−τ )− I(li; st−1:t−τ , at−1:t−τ )

I(li; cj,t | lj , st−1:t−τ , at−1:t−τ ) = I(li; cj,t, lj , st−1:t−τ , at−1:t−τ )− I(li; lj , st−1:t−τ , at−1:t−τ )

In order to simultaneously optimize the representation and dynamics objectives, we apply the stop
gradient to st−1, which converts the optimization of the conditional mutual information to the joint
mutual information since the second terms in both directions are constant.

I(li; ci,t | st−1:t−τ , at−1:t−τ )
+
= I(li; ci,tst−1:t−τ , at−1:t−τ )

I(li; cj,t | lj , st−1:t−τ , at−1:t−τ )
+
= I(li; cj,t, lj , st−1:t−τ , at−1:t−τ )

Then we obtain the mutual information constraints in 5. For each languauge component li, we
maximize the conditional mutual information between it and its corresponding language-controlled
component ci and minimize the summation of the conditional mutual information between it and
the other language-controlled component cj .

T∑
t=1

m=1∑
i

I(li; ci,t, st−1:t−τ , at−1:t−τ )−
∑
j ̸=i

I(li; cj,t, lj , st−1:t−τ , at−1:t−τ )

Concretely, we learn groups of mutual information estimators to estimate these mutual information
values by maximizing the Donsker-Varadhan representation Lower Bound with mutual information
neural estimator Belghazi et al. (2018), then use these estimators to help constrain the latent space
of world model.

A.5 EXPERIMENT SETTINGS

A.5.1 NUMERAICAL SIMULATION

In the simulation process, we follow the data generation process in Equation 1 and 2, and identifiabil-
ity conditions in Thereom 1. While our framework is suitable for any number of language-controlled
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components, we use three language components {l1, l2, l3} for simplicity. The latent variables st
have 6 dimensions, where nc1

= nc2
= nc3

= 2. We set the number of values in each li as 3 and
generate all 27 possible combinations of tasks, indicated by (l1, l2, l3), e.g. (0, 1, 2). We take three
tasks that are the recombinations of values that appeared in the other tasks as test tasks, and use the
rest tasks as training tasks. Even though this makes us cannot have an optimal number of tasks to
identify all components simultaneously in a perfect way, the R2 shows that it does not affect a lot.
To make sure that different language components have different effects on the transition dynamics,
we further embed them using embedding layers of different sizes before incorporating them in the
transition functions. At each time step, a one-hot action of dimension 3 is taken. The functions in
the data generation process are initialized with MLPs. This setting allows us to take the all-in-one
strategy to identify c1, c2 and c3.

A.5.2 META-WORLD

Environemnt Details Meta-World is a benchmark suite of 50 robotic manipulation environments
designed for multitask and meta-reinforcement learning, where each task is accompanied by a corre-
sponding language description. To best achieve the identifiability condition, we choose the common
language component system that include most tasks, verb and object. We use these 18 tasks as train-
ing tasks and the other 9 tasks that haven’t shown in the training tasks but can be either presented
as the recombination of language components in the training tasks or tasks that have one known
component in the training tasks, as test tasks. The tasks are as follows:

Set Task Language Components (Verb, Object)
Train Box-Close Pick-Place, Cover

Bin-Picking Pick-Place, Bin
Basketball Pick-Place, Basketball

Soccer Push, Soccer
Button-Press Press, Button
Coffee-Pull Pull, Mug
Dial-Turn Open, Dial

Door-Close Close, Door
Door-Lock Lock, Door

Door-Unlock Unlock, Door
Faucet-Open Open, Faucet
Handle-Pull Pull, Handle
Push-Back Pull, Puck

Push Push, Puck
Plate-Slide-Back Retrieve, Plate

Sweep Sweep, Puck
Window-Close Close, Window
Drawer-Open Open, Drawer

Test Faucet-Close† Close, Faucet
Coffee-Push† Push, Mug
Handle-Press† Press, Handle
Drawer-Close† Close, Drawer
Window-Open† Open, Window

Door-Open† Open, Door
Plate-Slide† Push, Plate

Handle-Press-Side∗ Press-Side, Handle
Coffee-Button∗ Press, Coffee Button

Table 1: Task descriptions in Meta-World training and test sets. †Test tasks that are recombinations
of verb-object components from the training set. ∗Test tasks that contain either a novel verb variant
(Press-Side) or a novel object (Coffee Button) not present in the training set.

Model Details For WM3C CNN, we build upon the JAX implementation of DreamerV3 - small and
use the medium-size visual encoder and policy module, to balance the extra parameters introduced
by the modifications. For WM3C MAE, we substitute the CNN encoder and decoder in the WM3C
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CNN with MAE and keep the others to be the same as WM3C CNN, referring Seo et al. (2023). The
details in implementing mutual information constraints and learnable masks are described as below:

• MI The mutual information estimators are implemented in JAX, referring MINE (Belg-
hazi et al., 2018). An cosine annealing scheduler as below is used to smoothly adjust the
coefficient of mutual information constraints in the objective from zero to the set value to
prevent the training instability brought by inaccurate estimation and variances in min-max
optimization in the early stages.

scale(t) =
{
vstart +

1
2 (vend − vstart)(1− cos(πt)) if vend > vstart

vend +
1
2 (vstart − vend)(1 + cos(πt)) otherwise

(21)

• Mask We apply a modified gated masks inspired by (Rajamanoharan et al., 2024) to have
more flexibility of sparsity and alleviate the shrinkge effect of L1 loss, which potentially
affects the exploration efficiency of policy. To accurately control the sparsity rate in the
latents and mitigate the ineffective learning because of over-sparse, we also apply cosine
annealing scheduler to smoothly increase the sparsity rate threshold from zero, jointly with
the adaptive L1 loss. We apply the masks only to the deterministic part and keep the
stochastic part of latent to be unchanged. The masking formula and L1 loss are as follows:

m⊙ x := 1n

|x|+ bgate︸ ︷︷ ︸
mgate(x)

> 0

⊙ (exp(rmag) · x+ bmag)︸ ︷︷ ︸
fmag(x)

(22)

L1(m) := ∥ReLU(mgate)∥1 (23)

For DreamerV3, we take the official JAX implementation of DreamerV3 (Hafner et al., 2023) from
https://github.com/danijar/dreamerv3, and use the medium version for all experiments.

For visual-based multi-task SAC (MT-SAC), we take the visual-based SAC implementation from
https://github.com/KarlXing/RL-Visual-Continuous-Control and modified it to the multi-task SAC
by including the contextual embedding of the task language description, as well as the hyperparam-
eters for Meta-world, referring CARE (Sodhani et al., 2021).

Training Details In the training stage, we train all the models (WM3C, DreamerV3, MT-SAC) for
5M environment steps in total in a multi-task online learning way, which on average for each task
is around 280K steps.

Adaptation Details In the adaptation stage, we fine-tune all the pretrained models (WM3C, Dream-
erV3, MT-SAC) for 250K steps separately for each test task. The 250K steps can be reduced since
for most tasks, the adaptation does not require much change and converges much earlier than that.
For WM3C CNN and MAE, we only fine-tune the factorized dynamics module (representation mod-
els and transition models), task encoder, decoding masks, and policy module, while the rest of the
model is frozen. We improve the threshold of the sparsity rate to encourage a more strict selection
of the latent for decoding since for a specific task, the ground truth latent should be less than the
latent related to multiple tasks. For DreamerV3 and MT-SAC, we fine-tune all the parameters.

Hyperparameters We summarized the important hyperparameters of WM3C CNN as follows: The
WM3C MAE is the same as WM3C CNN except the visual encoder and decoder are substituted
with vanilla MAE. The important hyperparameters are as follows:

A.5.3 COMPUTATIONAL RESOURCES

All experiments are conducted a 4 × Nvidia 3090 GPU. Training from scratch on the simulation
experiment takes 2 hours for one run, training on the 18 Meta-world tasks takes 8 days for 5M steps
and each fine-tuning task takes 8 hours for 250K steps.

A.6 EXTENDED DISCUSSIONS

A.6.1 COMPARISON WITH HIERARCHICAL RL

WM3C and hierarchical reinforcement learning (HRL) (Barto & Mahadevan, 2003; Nachum et al.,
2018; Parr & Russell, 1997) share a conceptual similarity in their focus on decomposing tasks into
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Category Hyperparameter Value
General Batch size 50

Batch length 50
Train ratio 500
Training fill 5000
Image size (64, 64, 3)

World Model Component deterministic size 512
Component stochastic size 16
Component classes 32
CNN depth 48
Reward&Cont layers 2
Reward&Cont units 512
Actor&Critic layers 3
Actor&Critic units 640
Task embedding dim 128
Token embedding dim 128
Mask types [decoder, reward, cont]

Training Training steps 5× 106

Sparsity rate 0.25
Optimize MINE after steps 0
Maximize MINE after steps 1e4
Minimize MINE after steps 1e4

Adaptation Adaptation steps 2.5× 105

Sparsity rate 0.35
Maximize MINE after steps 0
Minimize MINE after steps 0

Table 2: Hyperparameters for WM3C CNN implementation in Meta-world.

Component Hyperparameter Value
MAE Encoder Patch size 8

Embedding dimension 256
Encoder depth 4
Number of heads 4
Mask ratio 0.75

MAE Decoder Decoder embedding dim 256
Decoder depth 3
Decoder heads 4
Early convolution True

ViT Parameters Image size 8
Patch size 1
Embedding dimension 128
Depth 2
Number of heads 4
Input channels 256

Table 3: MAE and ViT hyperparameters for WM3C MAE in Meta-world. The architecture decou-
ples the visual learning and dynamics learning, and small ViTs are added in the dynamics module
to align visual and dynamics information.
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smaller, more manageable components. However, their methodologies and applications diverge
significantly. HRL typically structures policies into hierarchies, such as high-level managers setting
subgoals for low-level controllers. These subgoals are often state-specific and lack explicit modeling
of compositionality or causal dynamics among task components.

In contrast, WM3C explicitly learns compositional causal components grounded in the environ-
ment’s causal structure, enabling robust adaptation to unseen tasks by recombining previously
learned components. This distinction is particularly evident in WM3C’s use of language as a com-
positional modality, which aligns causal components with interpretable semantic elements. While
HRL might excel in navigating hierarchical tasks, it may struggle with environments requiring flex-
ible recombination of causal dynamics—a strength of WM3C.

A.6.2 COMPARISON WITH PREVIOUS NON-LINEAR ICA AND CAUSAL REPRESENTATION
LEARNING

WM3C builds upon the principles of non-linear independent component analysis (ICA) but departs
from prior approaches in two critical ways. First, non-linear ICA methods, such as iVAE (Khe-
makhem et al., 2019), SlowVAE (Klindt et al., 2020) and TCL (Hyvarinen & Morioka, 2016), focus
on identifying latent variables under strong assumptions like independence of noise terms or specific
priors on functional forms. These methods are often dimension-wise and fail to scale effectively to
complex systems with interdependent latent structures. Furthermore, WM3C considers the case of
multiple auxiliary variables (language components) co-existing, while prior results only allow one
auxiliary variable and a much simpler graph rather than the graphical model in the POMDP process.
WM3C does not assume a parametric expression to acquire identification, enabling a more flexible
and practical estimation.

WM3C introduces block-wise identifiability, enabling the identification of language-controlled com-
positional components rather than individual latent variables. We allow the separate language com-
ponents connecting to the latents they control rather than having only one auxiliary variable con-
necting to all the latents, different from previous non-linear ICA for time-series like LEAP(Yao
et al., 2021), TDRL(Yao et al., 2022), NCTRL (Song et al., 2024). The formalization of block-wise
identifiability on language-controlled components improves scalability and maintains theoretical
guarantees, which requires a much smaller number of changes in auxiliary variables to identify the
latent variables of interest than the previous work.

A.6.3 APPLICABILITY

The applicability of WM3C is currently demonstrated in multi-task training and single-task adap-
tation settings in Meta-World. By pre-training the world model on a set of tasks, WM3C learns
composable causal components while simultaneously training a multi-task policy. This composable
representation not only makes policy learning more efficient but also enables quick adaptation to new
tasks with shared components through minimal adjustments of components’ dynamics. This makes
WM3C particularly suitable for domains where tasks can be naturally decomposed into modular
components, such as robotic manipulation or other scenarios with well-defined causal structures.
Furthermore, while the current framework primarily uses language as the compositional modality,
WM3C is expected to generalize to other modalities, such as visual or auditory signals. For exam-
ple, auditory signals could be decomposed into frequency domains or audio patterns, allowing the
framework to leverage the stability and generality of the composition system to handle multi-modal
tasks effectively.

Current formulation of WM3C has limitations when applied to environments with highly overlap-
ping causal components or complex language instructions (e.g., long or ambiguous sentences),
where disentangling and identifying independent components becomes more challenging. How-
ever, these challenges are not insurmountable. One potential solution is to leverage large language
models (LLMs) or human annotations to first convert long and intricate language descriptions into
clearer, more structured formats. This preprocessing step simplifies the identification of composi-
tional components by aligning the input with the framework’s assumptions. Furthermore, causal
components overlapping and complex structure learning (e.g. hierarchy) have been explored in the
field of causal representation learning (Liu et al., 2023; Kong et al., 2023a; Morioka & Hyvärinen,
2023). By drawing on these existing studies, the WM3C framework can be extended to effectively
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handle such scenarios. Jointly with the extension to offline learning, these enhancements would
enable WM3C to be scale-up and learn a more complex and generalized causal component system.

A.7 EXTENDED RESULTS

A.7.1 SINGLE TASK PERFORMANCE IN META-WORLD

We present the success rate curves of all 18 training tasks, comparing WM3C, DreamerV3, and
visual-based multi-task SAC. Results show that WM3C outperforms DreamerV3 in most tasks, even
with CNN.
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Figure 7: Training success rates on Meta-world: success rates curve of all 18 tasks

A.7.2 ABLATION STUDY

To further investigate the effects of integrated modules, we conduct an ablation study on two scales
of training in Meta-world, a 5 tasks training in 1M steps and a 18 tasks training in 2M steps. The 5
tasks are push, faucet-open, handle-pull, door-lock and drawer-open, a subset of complete 18 tasks.
The 18 tasks are the same as those we use for training. We compare WM3C with MAE and CNN,
and remove the mutual information constraints and decoding masks. The difference between the
WM3C without masks and mutual information constraints and DreamerV3 is still present. WM3C
features a language-conditioned, factorized dynamics module and learnable task embedding, which
sets it apart from DreamerV3.

We see that all modules contribute to certain parts of the model’s robust performance (see Figure
10). Using MAE as the visual module consistently improves the representation quality in both
small and large-scale training regimes. The incorporated mutual information and sparsity constraints
significantly improve sample efficiency consistently in both scales. Interestingly, we find that when
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the task number increases, the benefits brought by the mutual information and sparsity constraints
are larger.
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Figure 8: Ablation study on two scales of training data: 5 tasks in 1M steps training and 18 tasks in
2M steps training.
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Figure 9: Individual tasks plot in 5 tasks and 1M steps training.

A.7.3 INTERVENTION EFFECT ON THE LANGUAGE-CONTROLLED COMPONENTS

Here we present more examples of the effect of intervention on the language-controlled components
at different tasks.
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Figure 10: Individual tasks plot in 18 tasks and 2M steps training.
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Figure 11: Intervention effect on the object component. The first row is the image observation
WM3C receives, and the second row is the observation reconstruction from the latent whose object
component has been intervened.
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Figure 12: Intervention effect on the verb component. The first row is the image observation WM3C
receives, and the second row is the observation reconstruction from the latent whose verb component
has been intervened.
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