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ABSTRACT

Metanetworks are neural architectures designed to operate directly on pretrained
weights to perform downstream tasks. However, the parameter space serves only
as a proxy for the underlying function class, and the parameter-function mapping
is inherently non-injective: distinct parameter configurations may yield identical
input-output behaviors. As a result, metanetworks that rely solely on raw parame-
ters risk overlooking the intrinsic symmetries of the architecture. Reasoning about
functional identity is therefore essential for effective metanetwork design, moti-
vating the development of equivariant metanetworks, which incorporate equivari-
ance principles to respect architectural symmetries. Existing approaches, how-
ever, typically enforce strict equivariance, which imposes rigid constraints and
often leads to sparse and less expressive models. To address this limitation, we
introduce the novel concept of quasi-equivariance, which allows metanetworks to
move beyond the rigidity of strict equivariance while still preserving functional
identity. We lay down a principled basis for this framework and demonstrate
its broad applicability across diverse neural architectures, including feedforward,
convolutional, and transformer networks. Through empirical evaluation, we show
that quasi-equivariant metanetworks achieve good trade-offs between symmetry
preservation and representational expressivity. These findings advance the theo-
retical understanding of weight-space learning and provide a principled founda-
tion for the design of more expressive and functionally robust metanetworks.

1 INTRODUCTION

Modern problem-solving increasingly relies on neural networks, which encode vast amounts of
information within their trainable parameters during learning, ranging the application from computer
vision (Huang et al., 2020; Krizhevsky et al., 2012; He et al., 2015), natural language processing
(Vaswani et al., 2017; Rumelhart et al., 1986; Hochreiter & Schmidhuber, 1997; DeepSeek-AI et al.,
2025), and nature science (Raissi et al., 2019; Jumper et al., 2021). While these parameters capture
rich knowledge, accessing and interpreting it remains a challenge.

Metanetworks. Metanetworks were introduced to analyze and process other neural networks by
treating their weights, gradients, and sparsity patterns as structured inputs. Early work focused on
evaluating their generalization and revealing properties of neural network behavior (Baker et al.,
2018; Eilertsen et al.; Unterthiner et al., 2020; Schürholt et al., 2021; 2022a;b). Common strategies
include flattening parameters or extracting statistics before feeding them into multi-layer percep-
trons (MLPs) (Unterthiner et al., 2020; Dupont et al., 2022; Luigi et al.). Beyond these foundations,
metanetworks have been applied to extracting structure from implicit representations (Müller et al.,
2023; Stanley, 2007; Mildenhall et al., 2021), developing learnable optimizers (Bengio et al., 2013;
Runarsson & Jonsson, 2000; Andrychowicz et al., 2016; Metz et al., 2022), performing model edit-
ing (Sinitsin et al., 2020; Cao et al., 2021; Mitchell et al., 2022), evaluating policies (Harb et al.,
2020), and enabling Bayesian inference (Sokota et al., 2021). Nevertheless, designing metanetworks
remains challenging due to the complexity and high dimensionality of the underlying structures.

Functional Equivalence. A major challenge in designing metanetworks lies on how to capture
functional equivalence - the fact that multiple distinct parameter configurations can realize the same
input-output function (Allen-Zhu et al., 2019; Belkin et al., 2019; Du et al., 2019; Frankle & Carbin,
2019; Novak et al., 2018). This problem was first posed by Hecht-Nielsen (Hecht-Nielsen, 1990).
A key observation is that swapping two hidden units in an MLP leaves its input–output mapping
unchanged, provided their outgoing connections are permuted accordingly (Allen-Zhu et al., 2019;
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strict equivariance

quasi-equivariance

Figure 1: (Left) Illustration of the partition of parameter space into functional equivalence classes. (Right)
Illustration of the quasi-equivariance property and its distinction from strict equivariance.

Du et al., 2019; Frankle & Carbin, 2018; Belkin et al., 2019; Neyshabur et al., 2018). For the same
class of MLPs, Fefferman & Markel (1993) established a stronger result: the input–output mapping
of an MLP with tanh activations uniquely determines both its architecture and its weights, up to
permutations and sign flips. Subsequent work extended these identifiability results to broader MLP
settings (Albertini & Sontag, 1993b;a; Mai & Lampert, 2020; Chen et al., 1993; Kurkova & Kainen,
1994) and, in parallel, to convolutional neural networks (CNNs) (Brea et al., 2019; Novak et al.,
2018; Mai & Lampert, 2020; Tran et al., 2024; Vo et al., 2025).

Equivariant Metanetworks. Building on the insight from permutation invariance in neural net-
works, researchers have developed permutation-equivariant metanetworks (Navon et al., 2023; Zhou
et al., 2024a; Kofinas et al., 2024; Zhou et al., 2024b), which naturally account for neuron reorder-
ing within hidden layers. More recent architectures extend beyond permutation equivariance by
incorporating additional symmetries such as scaling and sign changes (Kalogeropoulos et al., 2024;
Tran et al., 2024; Vo et al., 2025). Furthermore, recent works (Tran et al., 2025; Knyazev et al.,
2024) have characterized the maximal symmetry group of multihead attention and established nec-
essary and sufficient conditions for functional equivalence, offering new insights into the structural
properties of Transformer weights.

Despite advances in metanetwork design, most approaches enforce strict equivariance at the level of
individual weights. However, the true goal is not to preserve the weights themselves, but to capture
the functions they implement—that is, to respect the functional equivalence classes defined by the
parameters. In this context, relaxed or approximate equivariance has emerged in deep learning to
handle imperfect symmetries in real-world data. Early approaches include weight-relaxed convolu-
tions (Wang et al., 2022), soft constraints via multitask losses (Elhag et al., 2024; Pertigkiozoglou
et al., 2024), G-biases for group convolutions (Wu et al., 2025), and extensions to E(3)-equivariant
graph networks (Hofgard et al., 2024). On the theoretical side, Kaba & Ravanbakhsh (2023b) and
Huang et al. (2022) formalized relaxed equivariance and analyzed its bias–variance trade-offs. To-
gether, these insights motivate a class of metanetwork architectures that relax strict weight-level
equivariance, enabling more flexible representations of functional symmetries.

Contributions. Building on this motivation, we introduce a framework for quasi-equivariant
metanetworks–a novel paradigm that relaxes strict equivariance to balance symmetry preservation
with representational flexibility. The paper is organized as follows:

1. In Section 2, we examine the parameter space of a parameterized function, characterize its
associated symmetry group, and introduce the formal notion of maximality within symme-
try groups, establishing a direct connection to Functional Equivalence.

2. In Section 3, we examine the sufficiency of strict equivariance for metanetwork design.
Building on this, we introduce quasi-equivariance, which enables metanetworks to over-
come the limitations of strict equivariance while still maintaining functional identity.

3. In Section 4, we present a general framework for quasi-equivariant metanetworks and
demonstrate its application to feedforward neural networks and multihead attention.

4. In Section 5, we integrate the framework into existing metanetworks. Experiments on
multiple metanetwork benchmarks show that this layer enhances performance considerably
while incurring only a slight increase in the number of parameters.

Supplementary materials, including a comprehensive notation table, theoretical derivations, detailed
proofs, and experimental setups, are provided in the Appendix.
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2 PRELIMINARIES ON EQUIVARIANT METANETWORKS

In this section, we present the details of the parameter space of a parameterized function, its asso-
ciated symmetry group, and introduce the formal notion of maximality in symmetry groups, which
connects directly to the concept of Functional Equivalence (FE).

2.1 PARAMETER SPACE OF A PARAMETERIZED FUNCTION AND ITS SYMMETRY GROUP

Parameter space. Let f(·; θ) be a function parameterized by θ ∈ Θ = Rdim. The set Θ is called the
parameter space (or weight space) of f . Assume a group G acts on Θ. For each θ ∈ Θ, we define
the set of parameter vectors that yield functionally equivalent models:

[θ] :=
{
θ̄ ∈ Θ

∣∣ f(·; θ̄) = f(·; θ)
}
⊆ Θ. (1)

The parameter space serves merely as a proxy for the function class, and the mapping θ 7! f(·; θ) is
non-injective, as distinct parameter configurations can yield identical behaviors. This phenomenon
is illustrated in Figure 1. FE thus focuses on characterizing the sets [θ]. Explicitly enumerating all
such sets is impractical. A more systematic approach is to view these equivalence classes as orbits
under a group action on Θ, naturally leading to the notion of the symmetry group of f .

Symmetry group. Consider a groupG acting on the space Θ. For θ ∈ Θ, theG-orbit of θ is defined
as Gθ := {gθ | g ∈ G} ⊆ Θ. We now introduce the following definition.

Definition 2.1 (Symmetry Group). A group G is called a symmetry group of the function f if
Gθ ⊆ [θ] for all θ ∈ Θ. Equivalently, for every g ∈ G and θ ∈ Θ, one has f(·; gθ) = f(·; θ).

The phrase “a symmetry group” acknowledges that multiple such groups may exist. In particu-
lar, every subgroup of a symmetry group is itself a symmetry group. Our goal is to represent the
equivalence classes [θ] using G-orbits. To build intuition, we present two following observations.

First observation. Consider the function f(·; a, b) : R ! R, defined by x 7! abx, parameterized
by θ = (a, b) ∈ R2 = Θ. It is straightforward to see that (a, b) and (ā, b̄) yield the same function
if and only if ab = āb̄. This naturally suggests the following group action: let R× denote the
multiplicative group of nonzero real numbers. Define the action of c ∈ R× on (a, b) ∈ R2 by
c · (a, b) 7! (ac, c−1b). It is straightforward to verify that R× is a symmetry group of f . However,
it does not fully capture the equivalence classes. Indeed, for (a, b) ∈ R2 with ab ̸= 0, one has

[(a, b)] = {(ā, b̄) ∈ R2 | ab = āb̄} = {(ac, c−1b) | c ∈ R×} = R×(a, b). (2)

In contrast, for (a, b) ∈ R2 with ab = 0, one obtains [(a, b)] = R×(1, 0) ⊔ R×(0, 1) ⊔ R×(0, 0).
Thus, while R× almost completely describes the functional partition, it fails on the degenerate subset
of the parameter space where ab = 0. It is difficult to identify a larger natural group that extends the
action to cover these exceptional cases.

Second observation. Classical group theory ensures that any partition of a set can be realized as the
orbit decomposition of some group action. Accordingly, there always exists a groupG and an action
ofG on Θ such that theG-orbits match the functional partition. However, constructing such a group
typically requires explicit mappings, which are often intractable and impractical. In the context of
parameterized models, where Θ is a finite-dimensional real space, it is natural to focus on group
actions arising from standard operators such as addition, multiplication, or permutation.

These observations present a trade-off: the tractability of the group and its action versus the descrip-
tive capacity of the functional partition, motivating the notion of maximality of symmetry groups.

Maximal symmetry group. The above observations lead to the following intuitive and informal
description of a maximal symmetry group:

Under generic parameters, the symmetry group G captures all functional equivalences,
up to a sufficiently small exceptional set.

In other words, let ε denote a sufficiently small subset of Θ, and consider the restricted domain
Θ \ ε. The group action of G on Θ restricts naturally to Θ \ ε. Then, for all θ, θ̄ ∈ Θ \ ε such that
f(·; θ) = f(·; θ̄), there exists g ∈ G with θ̄ = gθ. Hence, although there may exist parameters in
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Θ for which G does not capture FE, this exceptional set is negligible, and G may still be regarded
as characterizing FE of Θ. The subset ε is typically taken to coincide with the zero set of finitely
many nonzero polynomials, that is, a proper real algebraic variety, consistent with prior work on FE
in neural architectures (Hecht-Nielsen, 1990; Fefferman & Markel, 1993; Mai & Lampert, 2020).
Definition 2.2 (Maximal symmetry group). A symmetry groupG is said to be maximal if there exists
a proper real algebraic variety ε ⊊ Θ such that, for all θ, θ̄ ∈ Θ\ε, whenever f(·; θ) = f(·; θ̄), there
exists g ∈ G with θ̄ = gθ.
Remark 2.3. In the above observation on f(·; a, b), let ε = {(a, b) ∈ R2 : ab = 0}. Then ε is a
proper real algebraic variety, and the group R× serves as a maximal symmetry group of f .

In the next section, we demonstrate that this notion of maximality coincides with prior analyses of
FE in feedforward and convolutional neural networks, as well as in multihead attention.

2.2 ON THE ROLE OF EQUIVARIANCE IN METANETWORKS

A metanetwork is a map F : Θ ! X that takes as input the parameters of a model. Depending on
the application, F may return another element of Θ (as in network editing tasks) or a vector in Rd

for some integer d (as in prediction tasks). The fundamental objective is to determine whether the
parameters of a model contain sufficient information to reveal properties of the function realized
by the model itself. Since F receives θ as input, it is natural to require that F depend only on the
underlying function represented by θ, rather than on the particular parameterization. Equivalently,
the input of F should be the equivalence class [θ], as all elements of [θ] define the same function. It
would be undesirable for F (θ) and F (θ̄) to produce incompatible outcomes whenever [θ] = [θ̄].

A principled approach to this requirement is to impose equivariance or invariance with respect to a
symmetry group G. In particular, suppose F : Θ ! Θ is G-equivariant. By definition, this means

F (gθ) = gF (θ), for all g ∈ G, θ ∈ Θ. (3)

Consequently, the equivalence classes are preserved in the sense that [F (gθ)] = [gF (θ)] = [F (θ)],
thereby ensuring consistency across parameterizations that correspond to the same function. If G
is a maximal symmetry group of the underlying model, such equivariance is sufficient to guarantee
that F operates solely on the functional content of θ. This observation underscores the importance
of characterizing the maximal symmetry group–equivalently, of understanding FE–as a prerequisite
for the systematic study of equivariant metanetworks.

3 IS STRICT EQUIVARIANCE NECESSARY FOR METANETWORK?

As discussed in Section 2.2, equivariance provides a principled mechanism for preserving the func-
tional behavior of input networks. Nevertheless, equivariance should be regarded as a sufficient
condition for such preservation, rather than a necessary one. This naturally leads to the question:

Is strict equivariance necessary for metanetworks?

We now introduce a broader notion, namely quasi-equivariance. Throughout the remainder of the
paper, let G denote the maximal symmetry group, and let F denote a metanetwork map.

Quasi-equivariance. We first address equivariance, deferring the discussion of invariance to a later
stage. The requirement of functionality preservation for a map F : Θ ! Θ can be stated as follows:
for all θ̄ ∈ [θ], one requires that F (θ̄) ∈ [F (θ)]. By the maximality of G, the condition θ̄ ∈ [θ]
implies that there exists g ∈ G such that θ̄ = gθ. The same holds for F (θ) and F (θ̄). Consequently,
the above requirement can be reformulated, motivating the following definition.
Definition 3.1 (Quasi-equivariance). A map F : Θ ! Θ is said to be G-quasi-equivariant if, for all
g ∈ G and θ ∈ Θ, there exists g′ = g′(g, θ) ∈ G such that F (gθ) = g′F (θ).

The notation g′ = g′(g, θ) emphasizes that g′ may depend on both g and θ. Figure 1 illustrates the
quasi-equivariance property. By definition, every G-equivariant map is also G-quasi-equivariant.
Moreover, G-quasi-equivariance ensures functionality preservation. Given the maximality of G
(Definition 2.2), it provides a necessary and sufficient condition for a map to preserve functionality.
Indeed, for θ, θ̄ ∈ Θ such that [θ] = [θ̄], one has θ̄ = gθ for some g ∈ G. Thus, F (θ̄) = F (gθ) =
g′F (θ) for some g′ ∈ G. Therefore, [F (θ̄)] = [g′F (θ)] = [F (θ)].
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Remark 3.2. A natural question is how to construct a map F that satisfies the quasi-equivariant
property. By Definition 3.1, one natural attempt is to first choose an arbitrary group-valued function
α : G×Θ ! G and then solve for a map F : Θ ! Θ satisfying F (gθ) = α(g, θ)F (θ). However,
for a general choice of α, such an F does not exist. Appendix A.1 provides the necessary conditions
on α under which at least one corresponding F can exist. Although this approach is theoretically
motivated, it is not practical for constructing metanetworks. Therefore, in Section 4, we will present
a more effective and implementable design for F .

Invariance. For invariance, introducing a quasi-version is unnecessary. Indeed, to ensure that a
map F : Θ ! X preserves functionality, it suffices to require F (θ̄) = F (θ), which is equivalent to
F (gθ) = F (θ). Hence, strict invariance is necessary.

Properties. In practice, equivariant and invariant metanetworks are constructed by stacking equiv-
ariant and invariant layers on top of one another, in the same manner as deep models are typically
built. This construction relies on standard closure properties: the composition of two equivariant
maps is equivariant, and the composition of an equivariant map with an invariant map is invariant.
For quasi-equivariance, analogous properties hold, as stated in the following result.

Proposition 3.3 (Composition). Let φ,ψ : Θ ! Θ be maps. Then:

1. If both φ and ψ are G-quasi-equivariant, then ψ ◦ φ is G-quasi-equivariant.

2. If φ is G-quasi-equivariant and ψ is G-invariant, then ψ ◦ φ is G-invariant.

The assumption that φ,ψ : Θ ! Θ is made for notational simplicity. In fact, the results remain valid
if Θ is replaced by any domain on which the notions of G-quasi-equivariance and G-invariance are
well-defined. The proof of Proposition 3.3 is provided in Appendix A.2.

Remark 3.4 (Comparison with relaxed notions of equivariance in the literature). In Kaba & Ravan-
bakhsh (2023a), the notion of relaxed equivariance is introduced. Given a group G acting on X and
Y , a map φ : X ! Y is said to satisfy relaxed equivariance if, for all g ∈ G and x ∈ X , there exists
g′ ∈ gGx–with Gx the stabilizer subgroup of x–such that φ(gx) = g′φ(x). This definition is natu-
rally subsumed under the broader notion of quasi-equivariance given in Definition 3.1. Other works,
such as Wang et al. (2024), employ a related but distinct perspective, where relaxed equivariance is
interpreted as an approximation to strict equivariance, namely φ(gx) ≈ gφ(x).

4 QUASI-EQUIVARIANT METANETWORKS

In this section, we establish a general framework for quasi-equivariant metanetworks and subse-
quently apply it to feedforward neural networks and multihead attention.

4.1 A GENERAL FRAMEWORK FOR THE DESIGN OF QUASI-EQUIVARIANT METANETWORKS

Given the notation f , θ, Θ, and G from the previous section, we focus on constructing G–quasi-
equivariant networks. The invariant case is immediate, since it can be obtained by stacking an
invariant layer on top of an equivariant backbone, as observed in Proposition 3.3.

A G–quasi-equivariant layer is defined as follows. Let α : Θ ! G be a map into the group, and let
β : Θ ! Θ be an equivariant map. Define

F : Θ ! Θ, F (θ) := α(θ)β(θ). (4)

By construction, F is G-quasi-equivariant. In this framework, the design of β follows directly
from prior work on equivariant metanetworks. The central task is therefore to construct α so that it
outputs group elements of G. This extension is motivated by the observation that strict equivariance
is not necessary for metanetworks, and that enforcing it often yields sparse models due to the strong
constraints imposed on the network weights. By introducing α, we aim to relax these constraints,
thereby improving both the expressivity and performance of metanetworks.

We now examine several representative cases of G, assuming α is continuous. In machine learning,
continuity–and in practice differentiability–is essential for gradient-based optimization via back-
propagation. The parameterized maps f considered here will primarily be feedforward networks,
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convolutional neural networks, and multihead attention modules, as these are the predominant ar-
chitectures in existing datasets of pretrained weights.

Remark 4.1. In the instances considered in the next part, the group G, although a group, can also
be embedded into Rn for some n. In this setting, the group-valued map α : Θ ! Gmay be regarded
as continuous. We then recall the classical fact that the continuous image of a connected space is
connected. Since Θ = Rd is connected, the image α(Θ) must also be connected. Consequently, if
G is discrete, α must be constant. This observation will be useful in the next part: when G contains
a discrete component (such as permutations), any continuous α cannot meaningfully vary over Θ.
Hence, the discrete part of G can be ignored in the construction, and the focus is placed on the
continuous component of G.

4.2 THE CASE OF FEEDFORWARD AND CONVOLUTIONAL NEURAL NETWORKS

We primarily focus on the feedforward neural network. The convolutional counterpart can be treated
in an analogous manner without loss of generality.

Parameter space. Consider a feedforward neural network f with L layers, having ni neurons in
the ith layer and activation σ. Here, n0 and nL are the input and output dimensions. The map f is
parameterized by θ = {Wi, bi}Li=1, where Wi ∈ Rni×ni−1 and bi ∈ Rni . It is expressed as:

f(x; θ) = fL ◦ σ ◦ fL−1 ◦ σ ◦ · · · ◦ σ ◦ f1(x), (5)

where fi : Rni−1 ! Rni such that x 7!Wi · x+ bi. The parameter space of f is:

Θ =
(
RnL×nL−1 × RnL

)
× · · · ×

(
Rn2×n1 × Rn2

)
×
(
Rn1×n0 × Rn1

)
(6)

Maximal symmetry group. We define a group action on Θ by monomial matrices. Let n be a
positive integer. A monomial matrix of size n × n is a matrix in which each row and each column
contains exactly one nonzero entry. Denote G>0

n as the sets of monomial matrices of size n × n
with all non-zero entries positive. Now, define the group G := G>0

nL−1
× . . . × G>0

n1
. Denote g =

(gL−1, . . . , g1), where gi ∈ Gni
, for elements of G. By convention, denote gL = InL

and g0 = In0
,

which are identity matrices. The group action of G on Θ is defined by

gθ := {W̄i, b̄i}Li=1, where W̄i = gi ·Wi · g−1
i−1 and b̄i = gi · bi. (7)

It is straightforward to check that G forms a symmetry group for f . One expects G to be maximal,
however, for the general setting of f , it is an open question whether G is maximal. Prior studies
only proved G to be maximal when restricted to a restricted setting. For instance, if nL ⩾ . . . ⩾
n2 ⩾ n1 > n0 = 1, then G is maximal (Mai & Lampert, 2020; Grigsby et al., 2023).

Design of the map α. First, we decompose the group G into factors Gni for i ∈ [L − 1], and
construct maps Θ ! Gni for each i. More generally, the goal is to define a map Θ ! Gn for an
arbitrary positive integer n. To this end, we further analyze the structure of Gn by decomposing
it as follows. Define Pn as the set of monomial matrices whose nonzero entries are all equal to
1, that is, the set of permutation matrices. Consider also the set of n × n diagonal matrices with
positive diagonal entries, which is isomorphic to Rn

>0, where R>0 denotes the multiplicative group
of positive real numbers. Every monomial matrix in Gn can be expressed uniquely as the product of
such a diagonal matrix and a permutation matrix, that is,

Gn = {DP : D ∈ Rn
>0 and P ∈ Pn}. (8)

Formally, Gn is isomorphic to the semidirect product Gn = Rn
>0⋊Pn (see Dummit & Foote (2004)).

Thus, constructing α : Θ ! Gn reduces to specifying two maps: one into Pn and the other into Rn
>0.

The case of the group Pn. Since Pn is discrete, any continuous map α : Θ ! Pn must be constant.

The case of the group Rn
>0. The group Rn

>0 can be further decomposed into its coordinate factors,
so that the construction of α : Θ ! Rn

>0 reduces to specifying n independent maps αj : Θ ! R>0

for j ∈ [n]. To do this, the main idea is to construct the map from θ ∈ Θ to a vector of size n, after
which we take the sin of entries, scale it by a small ϵ > 0 and add a unit vector 1n. The detailed
implementation of α in practice is described in Appendix B.1.
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Remark 4.2 (Extension to CNN). For CNNs, the approach follows the same principle but is adapted
for convolutional filters. Each bias vector bi retains the same dimensions as in MLPs, while the con-
volution filterWi ∈ Rni×ni−1×w (for 1D convolution) orWi ∈ Rni×ni−1×c×w (for 2D convolution)
contains additional spatial dimensions. To handle this, we apply the group action to both the filter’s
channel dimensions and spatial dimensions. Specifically, the filter Wi is treated as having dimen-
sions ni × ni−1 × (cw), where c represents the number of input channels (or more generally, any
extra spatial dimensions like spatial channels). This allows us to apply the quasi-equivariant layer
to the filter in a manner similar to the MLP case, where we perform the scaling operation across the
output channels and input channels.

Remark 4.3 (On activation functions beyond ReLU). In the literature, FE has also been studied
for feedforward neural networks with other activation functions σ. For instance, in the case of the
tanh activation, a maximal symmetry group can be determined (see Chen et al. (1993); Fefferman &
Markel (1993)). However, for most widely used activation functions, the maximal symmetry group
is discrete, making the construction of α trivial. For this reason, our analysis focuses on ReLU.

4.3 THE CASE OF MULTIHEAD ATTENTION

Parameter space. Let d denote the token dimension, L the sequence length, and h the number of
heads, where all are positive integers. Define the space of token sequences as S := ⊔∞

L=1RL×d.
For a fixed head dimension dh, let WQ

i ,W
K
i ,WV

i ,W
O
i ∈ Rd×dh for each i ∈ [h], and set

θ = (WQ
i ,W

K
i ,WV

i ,W
O
i )hi=1. Given an input sequence x = (x1, . . . , xL)

⊤ ∈ RL×d ⊂ S,
the Multihead Attention (MHA) mechanism with h heads is defined by

MHA (x : θ) =

h∑
i=1

softmax
(
(xWQ

i )
(
xWK

i

)⊤) ·
(
xWV

i

)
(WO

i )⊤. (9)

Here, the softmax operator is applied row-wise to the similarity matrix (xWQ
i )(xWK

i )⊤ ∈ RL×L,
producing the attention for x. Each row of this matrix forms a probability distribution that deter-
mines the relative influence of all input tokens on a given output token. Typically, the head dimension
is set to dh = d/h. The parameter space of the MHA map is then defined as Θ :=

(
Rd×dh

)4h
.

We denote by GL(dh) the general linear group of degree dh, i.e., the set of all invertible dh × dh
real matrices.

Maximal symmetry group. Define the following group G := Sh × (GL(dh)× GL(dh))
h
. This

group is exactly the direct product of the permutation group Sh with h copies of GL(dh)×GL(dh).
Each element g ∈ G can be written as g := (σ, (Ui, Vi)

h
i=1), where σ ∈ Sh and Ui, Vi ∈ GL(dh).

The group G acts naturally on the parameter space Θ as follows:

gθ :=
(
WQ

σ(i) · U
⊤
i ,W

K
σ(i) · U

−1
i ,WV

σ(i) · V
⊤
i ,W

O
σ(i) · V

−1
i

)h

i=1
. (10)

It is evident that G serves as a symmetry group of the MHA map. The reasoning is as follows: the
general linear action cancels within the matrix multiplications, while the permutation action induced
by σ commutes with addition. Furthermore, G is maximal, as formalized in the following result.
Theorem 4.4 (See Tran et al. (2025)). Consider two MHA maps with h heads, parameterized by
θ = (WQ

i ,W
K
i ,WV

i ,W
O
i )hi=1 and θ̄ = (W̄Q

i , W̄
K
i , W̄V

i , W̄
O
i )hi=1 in Θ, respectively. Assume that

1. All matrices WQ
i ,W

K
i ,WV

i ,W
O
i and W̄Q

i , W̄
K
i , W̄V

i , W̄
O
i , for all feasible i, are of rank dh.

2. From θ, the matrices {WQ
i (WK

i )⊤}hi=1 are pairwise distinct. The same condition holds for θ̄.

If the two MHA maps are identical, there exists g ∈ G such that θ̄ = gθ.
Remark 4.5. Note that the conditions on θ and θ̄ in Theorem 4.4 can both be expressed as the
vanishing of finitely many nonzero polynomials. This corresponds precisely to the real algebraic
variety ε introduced in Definition 2.2 of maximal symmetry groups.

Design of the map α. In analogy with the feedforward case, we restrict the construction of α : Θ !
G to the design of a map Θ ! GL(n) for a general positive integer n. The idea is as follows:

7
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Mean
Variance
Quantiles

Scale network

Network weights

Statistical 
features

Extracted weights

Learned scales

Equivariant
Metanetwork

Figure 2: Illustration of the design of the quasi-equivariant layer. Statistical features are extracted from
network weights and biases, then passed through a Scale network to learn the group action. This corresponds
to the MLP case, where a scaling vector is learned for each layer’s weights and biases. The learned scales are
applied to the outputs of the equivariant layer, enhancing expressiveness while adding only minimal parameters.

first, reshape θ ∈ Θ into an n × n matrix via a feedforward network γ. Next, apply the entrywise
sine function, scale the result by a small ϵ > 0, and finally add the identity matrix In, i.e. θ 7−!
sin(γ(θ)) · ϵ + In. By continuity, and since the range of the sine function is [−1, 1], there exists a
sufficiently small ϵ > 0 such that the resulting matrix is invertible. The detailed implementation of
α in practice is described in Appendix B.1.

Remark 4.6. An alternative approach to constructing a map Θ ! GL(n) is to use the matrix
exponential exp : Rn×n ! GL(n). However, both in theory and in practice, this approach tends to
be slow and numerically unstable. Our experimental trials confirmed these issues, and we therefore
did not pursue this direction further.

5 EXPERIMENTS

In this section, we integrate the quasi-equivariant layer with existing metanetworks: Monomial-NFN
for MLP/CNNs and Transformer-NFN for Transformers. The overall layer is illustrated in Figure 2.
We provide detailed implementation of the MLP network for each case (MLP/CNN or Transformers)
in Appendix B.1. We evaluate these models on three tasks: predicting CNN generalization from
weights, classifying image INRs, and predicting Transformer generalization from parameters. For
each task, we compare against the original baseline and an expanded version with more parameters,
ensuring fair comparison with our method. Our aim is twofold: the quasi-equivariant layer improves
performance efficiently with minimal parameter increase, and it preserves performance under group
action transformations. Results are averaged over five runs; hyperparameters and parameter counts
are detailed in Appendix B.

5.1 PREDICTING CNN GENERALIZATION

Experiment Setup. We aim to predict pretrained CNN generalization using only their weights,
without test data. Experiments use the Small CNN Zoo dataset (Unterthiner et al., 2020), con-
taining CNNs trained with varying hyperparameters and activations. Following Tran et al. (2024),
we analyze the ReLU subset, where models follow the group action M>0

n . Robustness to group-
action transformations is evaluated by augmenting the dataset with variants from diagonal matrices
D>0

n,ii ∼ U [1, 10i] for i ∈ {1, 2, 3, 4} and random permutation matrices Pn. Prediction is measured
with Kendall’s τ rank correlation (Kendall, 1938), which quantifies agreement between predicted
and true accuracy rankings. Our approach extends Monomial-NFN (Tran et al., 2024), denoted
Monomial-NFN Quasi, and is compared with STATNN (Unterthiner et al., 2020), NP, HNP (Zhou
et al., 2024a), and Graph-NN (Kofinas et al., 2024). For Monomial-NFN, we test both the original
and an enlarged, carefully tuned variant for fair comparison.

Results. Table 1 reports model performance. Scaling Monomial-NFN (+68.65% parameters) gives
minor gains, whereas Monomial-NFN Quasi shows notable improvement with only +3.89% param-
eters. On the original subset, where Monomial-NFN lags behind HNP, the Quasi layer matches
its performance. This holds under augmentation, showing that small parameter increases via the
Quasi-equivariant layer can enhance expressiveness and flexibility considerably.
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Table 1: Performance prediction of CNNs on the ReLU subset of Small CNN Zoo with varying scale aug-
mentations. The metric used is Kendall’s τ . Uncertainties indicate the standard error across 5 runs.

Augment settings

No augment U [1, 101] U [1, 102] U [1, 103] U [1, 104]

STATNet (Unterthiner et al., 2020) 0.915± 0.002 0.894± 0.0001 0.853± 0.007 0.523± 0.02 0.516± 0.001

NP (Zhou et al., 2024a) 0.920± 0.003 0.900± 0.002 0.898± 0.003 0.884± 0.002 0.884± 0.002

HNP (Zhou et al., 2024a) 0.926± 0.003 0.913± 0.001 0.903± 0.003 0.891± 0.003 0.601± 0.02

Graph-NN (Kofinas et al., 2024) 0.897± 0.002 0.892± 0.003 0.885± 0.002 0.858± 0.003 0.851± 0.002

Monomial-NFN (Tran et al., 2024) 0.922± 0.001 0.920± 0.001 0.919± 0.001 0.920± 0.002 0.920± 0.001

Monomial-NFN large (68.65% params ++) 0.923± 0.001 0.920± 0.001 0.920± 0.002 0.919± 0.001 0.920± 0.001

Monomial-NFN Quasi (ours) (3.89% params ++) 0.926± 0.002 0.924± 0.002 0.924± 0.002 0.923± 0.001 0.924± 0.002

Table 2: Classification train and test accuracies (%) for implicit neural representations of MNIST, FashionM-
NIST, and CIFAR-10. Uncertainties indicate standard error over 5 runs.

MNIST CIFAR-10 FashionMNIST

MLP 10.62± 0.54 10.48± 0.74 9.95± 0.36

NP (Zhou et al., 2024a) 69.82± 0.42 33.74± 0.26 58.21± 0.31

HNP (Zhou et al., 2024a) 66.02± 0.51 31.61± 0.22 57.43± 0.46

Monomial-NFN (Tran et al., 2024) 68.43± 0.51 34.23± 0.33 61.15± 0.55

Monomial-NFN tuned (≈ 3% params++) 68.87± 0.42 34.26± 0.28 61.44± 0.35

Monomial-NFN Quasi (ours) (≈ 3% params ++) 70.21± 0.34 35.32± 0.56 62.11± 0.27

5.2 CLASSIFYING IMPLICIT NEURAL REPRESENTATIONS OF IMAGES

Experiment Setup. This experiment focuses on classifying the source class of pretrained Implicit
Neural Representation (INR) weights. Following the setup in (Tran et al., 2024), we use three INR
weight datasets introduced in (Zhou et al., 2024a), each corresponding to a different image dataset:
CIFAR-10 (Krizhevsky & Hinton, 2009), FashionMNIST (Xiao et al., 2017), and MNIST (LeCun
& Cortes, 2005). In these datasets, each INR is trained to represent a single image, encoding image
structure by mapping pixel coordinates (x, y) to pixel color values. CIFAR-10 images are encoded as
3-channel RGB outputs, while MNIST and FashionMNIST are represented with a single grayscale
channel. Since excessively increasing parameters in Monomial-NFN leads to overfitting in this
setting, we introduce a variant, Monomial-NFN tuned, which is carefully adjusted to match the
parameter count of Monomial-NFN Quasi. This ensures a fair comparison between the two models.

Results. Table 2 shows the performance of all models on INR classification. The tuned Monomial-
NFN, which adds 3% more parameters, yields only minor improvement. In contrast, adding the
proposed quasi layer with the same parameter increase allows Monomial-NFN Quasi to outperform
NP on the MNIST task and achieve the best results across all three datasets. The performance gap
between Monomial-NFN Quasi and Monomial-NFN is about 1% on CIFAR-10 and FashionMNIST,
and 1.78% on MNIST. These results demonstrate the consistency of the proposed method.

5.3 PREDICTING TRANSFORMERS GENERALIZATION

Experiment Setup. In this task, we predict the accuracies of pretrained Transformer checkpoints,
aiming to test whether metanetworks capture structural patterns in Transformer weights. Follow-
ing (Tran et al., 2025), we integrate our quasi-layer into Transformer-NFN and conduct evaluations
on two datasets: MNIST-Transformers, built from models trained for MNIST image classification,
and AGNews-Transformers, derived from models trained for AGNews text classification. Perfor-
mance is assessed using Kendall’s τ . To probe model performance under varying difficulty levels,
we evaluate not only on the full dataset but also on four subsets defined by minimum accuracy
thresholds of 20%, 40%, 60%, and 80%. Since most pretrained models in these datasets achieve
high accuracy, maintaining strong Kendall’s τ becomes more difficult as the threshold increases.

Results. Table 3 presents the results on MNIST-Transformer and AGNews-Transformer. In both
benchmarks, scaling up Transformer-NFN to a larger version (with up to 59.38% more parameters)
can improve Kendall’s τ , but adding the quasi-equivariant layer achieves even greater gains with far
fewer extra parameters (only up to 5.27%). The improvement holds across all accuracy thresholds,
demonstrating both the efficiency and effectiveness of our approach.
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Table 3: Performance measured by Kendall’s τ of all models on MNIST- and AGNews-Transformers datasets.
Uncertainties indicate standard error over 5 runs.

Accuracy threshold

No threshold 20% 40% 60% 80%

MNIST-Transformers

MLP 0.866± 0.002 0.873± 0.001 0.874± 0.003 0.874± 0.006 0.873± 0.007

STATNN (Unterthiner et al., 2020) 0.881± 0.001 0.872± 0.001 0.868± 0.001 0.860± 0.001 0.856± 0.001

XGBoost (Chen & Guestrin, 2016) 0.860± 0.002 0.839± 0.004 0.869± 0.003 0.846± 0.001 0.884± 0.001

LightGBM (Ke et al., 2017) 0.858± 0.002 0.835± 0.001 0.847± 0.001 0.822± 0.001 0.830± 0.001

Random Forest (Breiman, 2001) 0.772± 0.002 0.758± 0.004 0.769± 0.001 0.752± 0.001 0.759± 0.001

Transformer-NFN (Tran et al., 2025) 0.905± 0.002 0.899± 0.001 0.895± 0.001 0.895± 0.002 0.888± 0.002

Transformer-NFN large (57.66% params ++) 0.907± 0.001 0.904± 0.002 0.897± 0.002 0.897± 0.002 0.890± 0.001

Transformer-NFN Quasi (Ours) (4.54% params ++) 0.911± 0.001 0.905± 0.001 0.898± 0.002 0.897± 0.001 0.892± 0.001

AGNews-Transformers

MLP 0.879± 0.006 0.875± 0.001 0.841± 0.012 0.842± 0.001 0.862± 0.006

STATNN (Unterthiner et al., 2020) 0.841± 0.002 0.839± 0.003 0.812± 0.003 0.813± 0.001 0.812± 0.001

XGBoost (Chen & Guestrin, 2016) 0.859± 0.001 0.852± 0.002 0.872± 0.002 0.874± 0.001 0.872± 0.001

LightGBM (Ke et al., 2017) 0.835± 0.001 0.845± 0.001 0.837± 0.001 0.835± 0.001 0.820± 0.001

Random Forest (Breiman, 2001) 0.774± 0.003 0.801± 0.001 0.797± 0.001 0.798± 0.002 0.773± 0.001

Transformer-NFN (Tran et al., 2025) 0.910± 0.001 0.908± 0.001 0.897± 0.001 0.896± 0.001 0.890± 0.001

Transformer-NFN large (59.38% params ++) 0.913± 0.001 0.910± 0.002 0.898± 0.002 0.898± 0.001 0.893± 0.002

Transformer-NFN Quasi (Ours) (5.27% params ++) 0.914± 0.001 0.913± 0.002 0.901± 0.001 0.903± 0.002 0.896± 0.001

6 CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS

This paper introduces quasi-equivariant metanetworks, a framework that relaxes strict equivariance
to balance symmetry preservation with representational flexibility. By analyzing parameter spaces,
their symmetry groups, and maximality, we establish a theoretical connection to functional equiva-
lence and formalize quasi-equivariance as a principled extension of strict equivariance. We demon-
strate applicability of the framework to feedforward networks and multihead attention, and validate
its effectiveness across multiple metanetwork benchmarks, achieving substantial performance gains
with minimal additional parameters. A current limitation of our work is that quasi-equivariance has
so far been applied primarily to metanetworks with linear architectures. Extending this framework
to more complex structures, such as graph-based metanetworks, remains unexplored due to the di-
versity and rarity of such architectures. Moreover, the quasi-equivariant design could be beneficial
in various other fields, such as computational chemistry, physics, and materials science, where sym-
metries may only approximately hold and greater modeling flexibility is required. We view these as
promising directions for future research.
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Ethics Statement. Considering the scope and focus of this work, we do not anticipate any adverse
societal or ethical consequences.

Reproducibility Statement. The source code for all experiments is included in the paper’s sup-
plementary materials. Detailed descriptions of our experimental setup can be found in Section 5
and Appendix B. All datasets used are publicly accessible via an anonymous link provided in the
README of the supplementary materials.

LLM Usage. In this work, we use large language models (LLMs) solely as a tool to assist and
refine the presentation of our ideas. The LLM was employed only to improve clarity, grammar, and
overall readability, without influencing the scientific content, methodology, or experimental results.
All technical contributions, analyses, and conclusions in the paper are entirely the authors’ original
work.
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TABLE OF NOTATION

Θ Parameter space of the network
Wi Weight of feed forward neural network in layer i
bi Bias of feed forward neural network in layer i
Gn Monomial matrix of size n
h Number of head of Attention module
d Hidden dimension of the model
dh Hidden dimension of a head in the model
Dk Dimension of key/query vector in Attention module
WQ

i Weight of query matrix of head i
WK

i Weight of key matrix of head i
WV

i Weight of value matrix of head i
WO

i Weight of out projection matrix of head i
G Symmetric group of the weight space
σ() Relu activation
Sh Head permutation group action in Attention module
E() Equivariant layer
I() Invariant layer
Rd d-dimensional Euclidean space
⟨·, ·⟩ standard dot product
⊔ disjoint union
g element of group
GL(dh) General linear group of invertible dh × dh matrices

over R
α() Quasi-equivariant map
β() Equivariant map
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A QUASI-EQUIVARIANT METANETWORKS

We provide theoretical guarantees together with rigorous proofs for the results stated in the main
paper.

A.1 ON THE WELL-DEFINEDNESS OF THE QUASI-EQUIVARIANCE PROPERTY

We now examine the well-definedness of the quasi-equivariance property, as stated in Remark 3.2.
Although the construction of quasi-equivariant maps discussed in this section is not used in our
implementation due to its inefficiency, we include the following analysis for completeness and for
potential future work, where one may wish to construct quasi-equivariant maps using this approach.

Setup. Let a group G act on a set Θ. Let a (possibly the same) group H act on a set X . A map
F : Θ ! X is called α–quasi–equivariant if there exists

α : G×Θ ! H (11)

such that for all g ∈ G and θ ∈ Θ,

F (gθ) = α(g, θ) · F (θ). (12)

When H = G and the group action of H on X is the given group action of G, this reduces to our
original formulation on quasi-equivariance.

Well-definedness across different representatives. The relation g1θ1 = g2θ2 gives two represen-
tations of the same point in Θ. Thus Equation (13) must produce the same value of F . A necessary
and sufficient condition on α is presented as follows.
Proposition A.1 (Normalized 1-cocycle condition). The following statements are equivalent:

1. For every choice of a section S ⊂ Θ meeting each G-orbit exactly once, and for every seed
map s : S ! X satisfying the stabilizer constraint (see Proposition A.2), there exists a
unique map F : Θ ! X obeying the quasi–equivariance relation

F (gθ) = α(g, θ) · F (θ), for all g ∈ G, θ ∈ Θ, (13)

such that F is independent of the choice of representative of a point in Θ.
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2. The function α : G×Θ ! H satisfies, for all g1, g2 ∈ G and θ ∈ Θ,

α(e, θ) = eH , (14)
α(g1g2, θ) = α(g1, g2θ)α(g2, θ). (15)

Proof. The proof proceeds as follows.

Necessity. Fix g1, g2, θ. Using Equation (13) twice,

F (g1g2θ) = α(g1, g2θ) · F (g2θ) = α(g1, g2θ)α(g2, θ) · F (θ). (16)

On the other hand, applying Equation (13) once with g1g2 gives

F (g1g2θ) = α(g1g2, θ) · F (θ), (17)

so Equation (15) of 1-cocycle follows. Setting g = e in Equation (13) yields Equation (14) of
Normalization.

Sufficiency. Given any representative gθ0 of a point in the orbit of θ0, define F (gθ0) by Equa-
tion (13). If g1θ0 = g2θ0, then g−1

2 g1 ∈ Gθ0 and the cocycle identity implies the two definitions
coincide provided the stabilizer constraint in Proposition A.2 holds.

Stabilizers and orbit descent. Denote Gθ = {h ∈ G : hθ = θ}. The values of α on Gθ control
whether F is well-defined from orbit data alone.

Proposition A.2 (Stabilizer constraints). Assume Equations (14) and (15). Then for each θ and
h ∈ Gθ, one has

F (θ) = F (hθ) = α(h, θ) · F (θ). (18)

Hence F (θ) must lie in the fixed-point set

FixX
(
α(Gθ, θ)

)
= {x ∈ X : α(h, θ) · x = x for all h ∈ Gθ}. (19)

In particular:

• If F is required to be definable independently of any additional constraints on its values
(i.e., to descend to Θ/G without restricting the image), then a necessary and sufficient
condition is

α(h, θ) = eH for all h ∈ Gθ, θ ∈ Θ. (20)

• More generally, F (θ) is allowed to live in the moving fixed-point set above; then triviality
on stabilizers is not required, but the image of F is constrained.

Gauge/coboundary equivalence. Two quasi–equivariant structures related by a change of variables
in X are equivalent.

Proposition A.3 (Gauge transform and trivial class). Let β : Θ ! H . Define

αβ(g, θ) := β(gθ)α(g, θ)β(θ)−1, F β(θ) := β(θ) · F (θ). (21)

Then F satisfies Equation (13) with α if and only if F β satisfies Equation (13) with αβ . In particular,
if α is a coboundary, i.e.

α(g, θ) = β(gθ)β(θ)−1, (22)

then with F ′(θ) := β(θ)−1 · F (θ) one has the strict equivariance:

F ′(gθ) = F ′(θ) if H acts trivially, or (23)

F ′(gθ) = g · F ′(θ) if β is valued in G and H = G. (24)

Thus, normalized cocycles modulo coboundaries classify quasi–equivariant structures up to gauge
(a H1 of the transformation groupoid G⋉Θ with coefficients in H).
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Regularity (topological/smooth settings). If Θ,X are topological (or smooth) spaces and the group
actions are continuous (or smooth), then to ensure F is continuous (or smooth) whenever the seed s
is, one additionally asks α(·, ·) to be continuous (or smooth) and the group actions to be continuous
(or smooth). The results above remain valid verbatim.

Conclusion. We have the following observations.

1. Strict equivariance. If α(g, θ) ≡ g (andH = Gwith the given action), then Equation (15)
is automatic and we recover the standard G–equivariance F (gθ) = g · F (θ).

2. Homomorphic twist. If α(g, θ) = ψ(g) for a homomorphism ψ : G ! H , then Equa-
tion (15) holds. To descend to orbits without image constraints one needs ψ(h) = eH for
all h ∈ Gθ and all θ (i.e., ψ trivial on all stabilizers).

3. Coboundary (gauge) case. If α(g, θ) = β(gθ)β(θ)−1, one can gauge to a strictly equiv-
ariant F ′ as in Proposition A.3.

To make sense of the quasi–equivariance relation F (gθ) = α(g, θ) · F (θ) independently of how a
point of Θ is represented, the essential structural requirement is that α be a normalized 1-cocycle on
the transformation groupoid G ⋉ Θ with values in H (Equations (14) and 15). Descent to the orbit
space without restricting the image of F additionally demands triviality on stabilizers. Up to gauge,
quasi–equivariant structures are classified by the corresponding first cohomology set; coboundaries
are precisely those that can be turned into strict equivariance by a change of variables.
Remark A.4. The three conclusions regarding the conditions on α serve as necessary requirements
for the existence of a map F satisfying

F (gθ) = α(g, θ)F (θ). (25)

A.2 PROOF OF PROPOSITION 3.3

In this section, we provide the proof for Proposition 3.3.

Proof of Proposition 3.3. We provide a proof of each part of the proposition.

Part 1. Assume φ and ψ are G-quasi-equivariant.

∀h ∈ G, ∀θ ∈ Θ, ∃h1 ∈ G : φ(hθ) = h1φ(θ). (26)

Then

∀h1 ∈ G, ∀ϑ ∈ Θ, ∃h2 ∈ G : ψ(h1ϑ) = h2ψ(ϑ). (27)

Taking ϑ = φ(θ),

∀h ∈ G, ∀θ ∈ Θ, ∃h2 ∈ G : ψ(φ(hθ)) = ψ(h1φ(θ)) = h2ψ(φ(θ)). (28)

Hence

∀h ∈ G, ∀θ ∈ Θ, ∃h2 ∈ G : (ψ ◦ φ)(hθ) = h2(ψ ◦ φ)(θ), (29)

so ψ ◦ φ is G-quasi-equivariant.

Part 2. Assume φ is G-quasi-equivariant and ψ is G-invariant:

∀h ∈ G, ∀θ ∈ Θ, ∃h1 ∈ G : φ(hθ) = h1φ(θ), (30)

and

∀k ∈ G, ∀ϑ ∈ Θ : ψ(kϑ) = ψ(ϑ). (31)

Taking k = h1 and ϑ = φ(θ),

∀h ∈ G, ∀θ ∈ Θ : ψ(φ(hθ)) = ψ(h1φ(θ)) = ψ(φ(θ)). (32)

Therefore

∀h ∈ G, ∀θ ∈ Θ : (ψ ◦ φ)(hθ) = (ψ ◦ φ)(θ), (33)

so ψ ◦ φ is G-invariant.

The proof is complete.
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B ADDITIONAL DETAILS OF EXPERIMENTS

B.1 DETAILS ON GROUP ACTION LEARNING

We provide more details on building the process to learn group actions for two cases: MLP/CNN
and Transformers.

Our quasi-equivariant layer is designed in two stages: feature selection and group action learning.
The goal is to learn a group action (α) from network weights and biases, and then apply it to the
outputs of existing equivariant layers.

• Feature Selection: A straightforward approach is to flatten and concatenate weights and
biases, but this introduces excessive parameters and becomes infeasible for large networks.
To address this, inspired by STATNET (Unterthiner et al., 2020), we instead compute sta-
tistical features: mean, variance, and five quantiles (0, 0.25, 0.5, 0.75, 1) of weights and
biases. These features are concatenated into a compact representation that scales consis-
tently with network size while retaining essential information.

• Group Action Learning: We adopt a MLP to model the group action, tailored to the
underlying MLP or Transformer weight space. To encourage stability, the action is learned
around the identity. Inspired by Fourier analysis, where sine functions form basic signal
components, we introduce a structured noise mechanism: ã = sin(Wscalex + bscale) · ϵ +
{1n, In}, where Wscale and bscale are parameters of MLP, and ϵ is a small learnable factor.
This generates mild oscillations centered at unity, preserving the base equivariant behavior
while providing flexibility for improved learning.

Implementation of Quasi-Equivariant Layer for MLP/CNN weights. In MLPs and CNNs, our
goal is to learn a positive scale vector for each layer. The group action is applied to the output
dimensions of the weights and biases by scaling all neurons in the output dimension, while cor-
respondingly scaling the input dimension of the subsequent layer with the reciprocal value of the
scale.

To construct this, we first extract the weights and biases from the input network. For each layer,
we compute seven statistical features: the mean, variance, and five quantiles (0, 0.25, 0.5, 0.75, 1).
Features from weights and biases are concatenated, yielding a 14-dimensional representation per
layer. Aggregating across all layers produces a feature vector of size 14 · L, where L is the total
number of layers in the network.

The group action for each layer is parameterized as a positive scale vector of size Nout, where
Nout denotes the layer’s output dimension. We learn this vector using a Gated-MLP with hidden
dimension 32, assigning a separate network to each layer. To ensure stability and positivity, we
incorporate the structured noise mechanism described above. The resulting scale is then applied to
the final equivariant layer of the metanetwork (specifically, Monomial-NFN).

Implementation of Quasi-Equivariant Layer for Transformer weights. In Transformers, our
objective is to learn two invertible matrices, M and N , for each layer, representing the GL group
action applied to Wq,Wk,Wv, and Wo. Specifically, M is applied to the query and key matrices,
yielding WqM

T and WkM
−1. This ensures that the attention score remains unchanged, since

(WqM
T )(WkM

−1)T =WqW
T
k .

Similarly, N is applied to the value and output projection matrices, transforming them into WvN
and N−1Wo.

To construct these transformations, we extract all weights and biases from the input network:
Wq,Wk,Wv,Wo,WA, bA,WB , bB . For each layer, we compute seven statistical features—the
mean, variance, and five quantiles (0, 0.25, 0.5, 0.75, 1). Concatenating features from all weights
and biases gives a 56-dimensional representation per layer. Aggregating across L layers results in a
feature vector of size 56 · L.
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The group action for each layer is parameterized as two invertible matrices of shape (D,D), where
D denotes the hidden dimension in attention, and each attention head has its own pair (M,N). To
learn these matrices, we employ an MLP with hidden dimension 32, assigning one network per layer.
The MLP maps the feature vector to nh ·D ·D, which is then reshaped into (nh, D,D). To guarantee
stability and numerical soundness, we apply the structured noise mechanism described above. This
procedure produces matrices that are invertible almost everywhere, allowing stable training. The
learned transformations are finally applied to the last equivariant layer of the metanetwork (specifi-
cally, Transformer-NFN).

On the design of quasi-equivariant layer. In the MLP/CNN case, the map α consists of two
parts: a constant map for the group Pn and a map for the group Rn

>0. To learn the latter map, we
construct a network that can translate from the weight space to a diagonal matrix in Rn

>0, which can
also be represented as a vector in Rn with all positive entries. We compute statistical features of
the weights, with shape D, to serve as input to the network. Therefore, the introduced network is
basically a MLP {Wscale, bscale} that maps from D ! n.

The formula sin(Wscalex+bscale)·ϵ+1n naturally relaxes the strict equivariance typically imposed in
metanetworks. By introducing a sine function, we allow the transformation to gently oscillate around
the identity, creating a smooth, controlled variation. This approach is inspired by Fourier analysis,
where sine waves naturally introduce periodic fluctuations, offering flexibility without disrupting
the overall structure. The small learnable parameter ϵ simply scales these oscillations, determining
how much relaxation to apply. This design provides a natural way to balance stability and flexibility,
enabling the model to remain expressive while avoiding the constraints of strict equivariance.

B.2 PREDICTING CNN GENERALIZATION

Dataset. The Small CNN Zoo provides a ReLU subset containing 6,050 samples for training and
1,513 for testing. To enlarge the dataset, we apply data augmentation with a factor of 2, generating
one additional variant for every original instance. This procedure yields an augmented ReLU subset
with 12,100 training examples and 3,026 test examples.

Baselines. We evaluate our model against five established baselines:

• STATNN (Unterthiner et al., 2020): extracts statistical features from network weights and
biases.

• Graph-NN (Kofinas et al., 2024): models network parameters as graphs and applies Graph
Neural Networks for processing.

• NP and HNP (Zhou et al., 2024a): integrate neuron permutation symmetries into neural
functional networks.

• Monomial-NFN (Tran et al., 2024): generalizes the action on weights from permutation
matrices to monomial matrices, incorporating scaling and sign-flip symmetries.

Model Configurations. Our Monomial-NFN Quasi extends Monomial-NFN, which follows the
architecture of Zhou et al. (2024a). The base model consists of three equivariant Monomial-NFN
layers with 16, 16, and 5 channels, each followed by a ReLU activation. In our variant, the fi-
nal Monomial-NFN layer is replaced with a Monomial-NFN Quasi layer, where a learned scale is
applied to the output of the standard Monomial-NFN layer.

The resulting weight-space features are then fed into an invariant Monomial-NFN layer with
Monomial-NFN pooling, which contains learnable parameters. This pooling layer normalizes the
weights along the hidden dimension and computes averages across rows (first layer), columns (last
layer), or both (intermediate layers). The pooled output is flattened and projected to R200, followed
by an MLP with two hidden layers and ReLU activations. Finally, the output is linearly mapped to
a scalar and passed through a sigmoid function.
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Table 4: Number of parameters of all models for prediciting generalization task.

Model STATNN NP HNP Monomial-NFN Monomial-NFN large Monomial-NFN Quasi

Number of parameters 1.06M 2.03M 2.81M 0.25M 0.43 0.26M

Table 5: Hyperparameters for Monomial-NFN and Monomial-NFN an on predicting generalization
task.

Monomial-NFN dim MLP dim Loss Optimizer Learning rate Batch size Epoch

Monomial-NFN [16,16,5] 200 Binary cross-entropy Adam 0.001 8 50
Monomial-NFN large [20,20,5] 200 Binary cross-entropy Adam 0.001 8 50
Monomial-NFN Quasi [16,16,5 (quasi layer)] 200 Binary cross-entropy Adam 0.001 8 50

Training. We train the model with Binary Cross Entropy (BCE) loss for 50 epochs, applying early
stopping based on a validation threshold τ . On an A100 GPU, the full training process requires
approximately 35 minutes.

Other Baselines. For Graph-NN, we adopt the official implementation provided in (Kofinas
et al., 2024) (https://github.com/mkofinas/neural-graphs). The implementations of NP, HNP, and
Monomial-NFN follow the setups in (Zhou et al., 2024a) (https://github.com/AllanYangZhou/nfn)
and (Tran et al., 2024). For these models, we use three equivariant layers with channel sizes of 16,
16, and 5. The features extracted are processed through average pooling, and subsequently passed
into three MLP layers, each with a hidden size of 200. We provide the number of parameters and
hyperparameters in Table 4 and Table 5

B.3 CLASSIFYING IMPLICIT NEURAL REPRESENTATIONS OF IMAGES

Dataset. We employ the original INRs dataset, which includes three subsets: CIFAR-10, MNIST,
and Fashion-MNIST. Each image in these datasets is represented using a single SIREN model, as
described in Zhou et al. (2024a). Following the setup in Tran et al. (2024), no data augmentation is
applied. The numbers of training, validation, and test samples for each dataset are summarized in
Table 6.

Baselines. Follow (Zhou et al., 2024a; Tran et al., 2024), we compare our method against MLP,
NP, HNP, and Monomial-NFN. For baselines, we follow the architecture in Zhou et al. (2024a),
with a reduced hidden dimension (512 → 256) to mitigate overfitting. All baseline models and our
base model use a hidden dimension of 256. The hyperparameters of Monomial-NFN and the tuned
version is given in Table 7

Model Configurations. In these experiments, our architecture consists of two Monomial-NFN
layers with sine activations, followed by one Monomial-NFN Quasi layer with absolute activation.
The hidden dimensions for Monomial-NFN Quasi layers vary by dataset and are listed in Table 8.
We also provide the parameters count for all models in Table 9

The subsequent design follows the NP and HNP models of Zhou et al. (2024a). Specifically, we
apply a Gaussian Fourier transformation to encode the input with sine and cosine components, ex-
panding from one dimension to 256 dimensions. When using NP as the base layer, the features are
further processed by IOSinusoidalEncoding—a positional encoding tailored for NP—with a maxi-
mum frequency of 10 and six frequency bands. The encoded features are then passed through three
NP or HNP layers with ReLU activations, followed by average pooling. The pooled output is flat-
tened and fed into an MLP with two hidden layers of 1000 units each, also with ReLU activations.
Finally, the output is linearly projected to a scalar.

For the MNIST dataset, we insert a Channel Dropout layer (after each HNP ReLU activation) and
a Dropout layer (after each MLP ReLU activation), both with a dropout rate of 0.1. Training uses
Binary Cross Entropy (BCE) loss for 200,000 steps, which takes approximately 1 hour 50 minutes
on an A100 GPU.
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Table 6: Dataset size for Classifying INRs task.

Train Validation Test

CIFAR-10 45000 5000 10000
MNIST 45000 5000 10000
Fashion-MNIST 45000 5000 20000

Table 7: Hyperparameters of Monomial-NFN and Monomial-NFN tuned (in parentheses) for each
dataset in Classify INRs task.

MNIST Fashion-MNIST CIFAR-10

Monomial-NFN hidden dim 64 (128) 64 (128) 16 (64)
Base model HNP NP HNP

Base model hidden dim 256 256 256
MLP hidden neurons 1000 500 1000

Dropout value 0.1 0 0
Learning rate 0.000075 0.0001 0.0001

Batch size 32 32 32
Number of training steps 200000 200000 200000

Loss function Binary cross-entropy Binary cross-entropy Binary cross-entropy

Table 8: Hyperparameters of Monomial-NFN Quasi for each dataset in Classify INRs task.

MNIST Fashion-MNIST CIFAR-10

Scale network hidden dim 32 32 32
Scale network weight initialization Xavier Xavier Xavier

Scale network ϵ initialization 0.01 0.01 0.01
Monomial-NFN hidden dim 64 64 16

Base model HNP NP HNP
Base model hidden dim 256 256 256

MLP hidden neurons 1000 500 1000
Dropout value 0.1 0 0
Learning rate 0.000075 0.0001 0.0001

Batch size 32 32 32
Number of training steps 200000 200000 200000

Loss function Binary cross-entropy Binary cross-entropy Binary cross-entropy

Table 9: Number of parameters of all models for classifying INRs task.

CIFAR-10 MNIST Fashion-MNIST

MLP 2M 2M 2M
NP 16M 15M 15M

HNP 42M 22M 22M
Monomial-NFN 16M 22M 20M

Monomial-NFN tuned 16.3M 22.3M 20.7M
Monomial-NFN Quasi (ours) 16.3M 22.2M 20.5M

B.4 PREDICTING TRANSFORMERS GENERALIZATION

Dataset. We use the Small Transformer Zoo dataset (Tran et al., 2025), which includes two sub-
sets: MNIST-Transformer and AGNews-Transformer. These datasets are generated by training
Transformer models on MNIST image classification and AGNews text classification tasks, while
varying key hyperparameters such as training fraction, dropout rate, learning rate, and weight ini-
tialization. In total, the zoo contains 62,756 models for MNIST-Transformer and 63,796 models for
AGNews-Transformer. Following the experimental setup in (Tran et al., 2025), we use the check-
points at epoch 75, corresponding to 15,689 models in MNIST-Transformer and 15,949 models in
AGNews-Transformer. The ratio of train, validation and test set is 0.7, 0.15, and 0.15, respectively.

Baselines. The baselines are implemented following (Tran et al., 2025). More specifically:

• MLP. For the MLP baseline, each network component is treated independently. The corre-
sponding weights are flattened and passed through dedicated MLPs: a single hidden layer
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Table 10: Number of parameters for all models

Model MNIST-Transformers AGNews-Transformers

Transformer-NFN 1.812M 1.804M
Transformer-NFN large 2.857M 2.857M
Transformer-NFN quasi 1.894M 1.887M
MLP 0.933M 0.896M
STATNN 0.203M 0.168M

Table 11: Performance measured by Kendall’s τ of all models on AGNews-Transformers dataset. Uncertain-
ties indicate standard error over 5 runs.

Accuracy threshold
Quasi dim No threshold 20% 40% 60% 80%

Transformer-NFN - 0.910± 0.001 0.908± 0.001 0.897± 0.001 0.896± 0.001 0.890± 0.001

Transformer-NFN Quasi 8 0.911± 0.002 0.909± 0.001 0.897± 0.001 0.897± 0.002 0.891± 0.001
Transformer-NFN Quasi 16 0.913± 0.002 0.911± 0.001 0.901± 0.001 0.902± 0.002 0.894± 0.001
Transformer-NFN Quasi 32 0.914± 0.001 0.913± 0.002 0.901± 0.001 0.903± 0.002 0.896± 0.001
Transformer-NFN Quasi 64 0.913± 0.001 0.911± 0.001 0.899± 0.002 0.903± 0.002 0.894± 0.002

with 50 units is used for both the transformer block and the embedding, while the classifier
is modeled by a two-layer MLP with 50 units per layer. The outputs from these modules
are concatenated and further processed by a final MLP that produces the prediction.

• STATNN (Unterthiner et al., 2020). To adapt STATNN to transformer architectures, we
first compute statistical summaries from the weights of the query, key, value, and output
projections, together with the weights and biases of the two feedforward layers. These
features are concatenated and given as input to a one-layer MLP with 256 hidden units.
For the classifier, we retain the original STATNN feature extraction scheme, followed by
another MLP with 256 hidden units. The embedding is handled separately with a one-layer
MLP of 64 hidden units. The outputs from all three components are merged and passed
through a final single-layer MLP to obtain the prediction.

• XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and Random Forest
(Breiman, 2001). For tree-based approaches, we directly flatten all component weights
and use them as input features. Across all three models, we set the hyperparameters to a
maximum tree depth of 10, a minimum child weight of 50, and at most 256 leaves.

Model Configurations. Our approach is built on the Transformer-NFN backbone, with the
Transformer-NFN Quasi model consisting of three modules that process the weights of a transformer
network. The embedding and classifier components are modeled as MLPs with ReLU activations,
each applied independently to their respective inputs. The transformer block is handled separately
using an invariant architecture: several equivariant Transformer-NFN Quasi layers with ReLU acti-
vations are applied to the two MLP submodules of the block, and their outputs are passed through
an invariant polynomial Transformer-NFN layer. The resulting vectors from all components are
concatenated and processed by a final MLP with Sigmoid activation to produce the prediction.

In our experiments, the embedding module is implemented as a one-layer MLP with 10 hidden units,
while the classifier is a two-layer MLP, each with 10 hidden units. For the transformer block, we
use an equivariant Transformer-NFN Quasi layer with 10 hidden channels, followed by an invariant
Transformer-NFN layer and an MLP that generates a 10-dimensional output vector. These outputs
are concatenated and fed into a classification head to yield the final prediction.

B.5 ABLATION ON THE MLP NETWORK FOR GROUP ACTION LEARNING

Experiment Setup. To assess the robustness of the scale network, we conduct experiments by
systematically varying the hidden dimension of the MLPs. Our evaluation is carried out using the
Transformer-NFN Quasi architecture on the AGNews-Transformers dataset. In particular, we inves-
tigate the capacity of the model to learn the two invertible matrices M and N under different hidden
dimensions, specifically 8, 16, 32, and 64.
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Results. Table 11 reports the performance of Transformer-NFN Quasi under different hidden di-
mensions of the scale network. Incorporating the quasi-equivariant layer consistently improves per-
formance, with gains increasing as the hidden dimension grows, and reaching the highest score at
32 dimensions. Based on this observation, we select a hidden dimension of 32 for the final model.

B.6 EXPERIMENTS ON AUGMENTED AGNEWS-TRANSFORMERS DATASET

Experiment Setup. We evaluate the robustness of Transformer-NFN Quasi under strong group ac-
tions in weight space, testing whether the quasi layer compromises architectural symmetry. Follow-
ing the setup in (Tran et al., 2025), we conduct experiments on the AGNews-Transformers dataset
augmented with the group action GU . Both training and test sets are 2-fold augmented: the original
weights are retained, and additional weights are generated by applying permutations and scaling
transformations to Transformer modules. The elements of M and N are uniformly sampled from
[−1, 1], [−10, 10], and [−100, 100].

Results. Table 12 summarizes the results. Transformer-NFN shows stable Kendall’s τ values
across all ranges of scaling, with a consistent score of 0.914. While our model does not gain from
increasingly large augmentation scales, its performance remains steady, highlighting the balanced
trade-off of Transformer-NFN Quasi: it enhances the expressiveness of the base model while pre-
serving its inherent symmetry.

Table 12: Performance measured by Kendall’s τ of all models on augmented AGNews-Transformers
dataset using the group action GU . Uncertainties indicate standard error over 5 runs.

Original [−1, 1] [−10, 10] [−100, 100]

XGBoost 0.859± 0.001 0.799± 0.003 0.800± 0.001 0.802± 0.003
LightGBM 0.835± 0.001 0.785± 0.003 0.784± 0.003 0.786± 0.004
Random Forest 0.774± 0.003 0.714± 0.001 0.715± 0.002 0.716± 0.002
MLP 0.879± 0.006 0.830± 0.002 0.833± 0.002 0.833± 0.005
STATNN 0.841± 0.002 0.793± 0.003 0.791± 0.003 0.771± 0.013

Transformer-NFN 0.910± 0.001 0.912± 0.001 0.912± 0.002 0.913± 0.001
Transformer-NFN Quasi 0.914± 0.001 0.914± 0.002 0.914± 0.002 0.914± 0.002

B.7 ANALYSIS ON THE LEARNED SCALING

Experiment Setup. To analyze the sensitivity of ϵ and the learned scaling (sin(γ(θ)) · ϵ + 1n)
in MLP/CNN case, we conduct experiments on the task of Predicting CNN Generalization. We
introduce learned scale layers (with corresponding ϵ) on top of Monomial-NFN equivariant layers
and explore two cases: one with a fixed ϵ and one with a learnable ϵ. The results are presented in
Table 13. The table reports the following values:

• Initial ϵ: The initial value of ϵ
• Learnable/Fixed: How ϵ changes during training
• Final ϵ: The final value of the first layer ϵ after training
• Learned scale: The first layer learned scaling (sin(Wscalex+ bscale) · ϵ+ 1n)
• Kendall’s τ : Evaluation metric (Higher is better)

Results. When ϵ is fixed at a small value, the learned scaling slightly deviates from the identity,
resulting in marginal performance gains. However, when ϵ is learnable, the learned scaling can
deviate further from the identity, leading to a broader scaling range that enhances performance.
Additionally, when ϵ is learnable, the final ϵ values tend to converge, regardless of their initial
values. For larger values of ϵ, instability may arise due to significant deviations in the early steps.
Consequently, in our study, we choose a learnable ϵ with an initial value of 0.01 to ensure training
stability.
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Table 13: Analysis on the learned scaling with varying ϵ

Initial ϵ Learnable/Fixed Final ϵ Learned scale Kendall’s τ

0 (Baseline) - - - 0.922
0.001 Fixed 0.001 1.000± 0.001 0.922
0.01 Fixed 0.01 0.999± 0.007 0.923
0.1 Fixed 0.1 1.003± 0.079 0.923
0.2 Fixed 0.2 0.933± 0.135 0.923
0.4 Fixed 0.4 0.972± 0.378 0.924

0.001 Learnable 0.966 0.796± 0.668 0.925
0.01 Learnable 0.970 0.941± 0.710 0.926
0.1 Learnable 0.971 0.918± 0.758 0.926
0.2 Learnable 0.946 0.743± 0.626 0.925
0.4 Learnable 0.988 0.762± 0.624 0.925

B.8 SENSITIVITY OF ϵ

Experiment Setup. We present an ablation study on the sensitivity of ϵ by conducting the ”Pre-
dict Transformer Generalization” experiment on the MNIST-Transformer dataset. Specifically, we
analyze two cases: when ϵ is learnable versus fixed, and report the performance alongside statistics
of learned noises (sin(γ(θ)) · ϵ) for the matrices M and N , which represent the two GL group ac-
tions applied to the weights of the MHA layer. For each noise, we compute the mean and standard
deviation of the diagonal and off-diagonal elements. The results are summarized in Table 14. The
table reports the following values:

• Initial ϵ: The initial value of ϵ for both M and N .

• Learnable/Fixed: Whether ϵ is changed during training.

• Final ϵM , ϵN : The final value of ϵ after training.

• DiagonalM , N : Mean and standard deviation of the learned noises sin(γ(θ)) ·ϵ forM and
N , computed for diagonal elements.

• Off-diagonal M , N : Mean and standard deviation of the learned noises sin(γ(θ)) · ϵ for M
and N , computed for off-diagonal elements.

• Kendall’s τ : Evaluation metric (higher is better).

Table 14: Ablation study on ϵ with metrics for M and N.

Initial ϵ Type Final ϵM Final ϵN Diagonal M Off-diagonal M Diagonal N Off-diagonal N Kendall’s τ

Baseline - - - - - - - 0.905
0.001 Fixed 0.001 0.001 0.000± 0.000 0.062± 0.242 0.000± 0.000 0.063± 0.242 0.909
0.01 Fixed 0.01 0.01 0.001± 0.002 0.062± 0.242 −0.001± 0.005 0.062± 0.242 0.909
0.1 Fixed 0.1 0.1 0.005± 0.020 0.062± 0.245 −0.038± 0.065 0.061± 0.244 0.907
0.2 Fixed 0.2 0.2 0.010± 0.040 0.061± 0.249 −0.002± 0.144 0.059± 0.285 0.910
0.4 Fixed 0.4 0.4 0.021± 0.080 0.060± 0.265 −0.055± 0.221 0.073± 0.323 0.909

0.001 Learnable 0.001 -0.187 0.000± 0.000 0.063± 0.242 −0.068± 0.117 0.059± 0.260 0.908
0.01 Learnable 0.010 0.182 0.001± 0.002 0.062± 0.241 −0.056± 0.084 0.061± 0.244 0.911
0.1 Learnable 0.099 0.234 0.005± 0.020 0.062± 0.245 −0.085± 0.114 0.060± 0.250 0.910
0.2 Learnable 0.200 0.290 0.010± 0.040 0.061± 0.249 −0.011± 0.218 0.062± 0.316 0.909
0.4 Learnable 0.400 0.298 0.021± 0.079 0.060± 0.265 −0.011± 0.179 0.065± 0.298 0.909

Results. When the GL group is learned through our quasi-equivariant layers, the off-diagonal
elements provide additional flexibility, leading to a noticeable improvement in performance even
with a fixed ϵ. With a learnable ϵ, the range of values for N expands and become more stable,
resulting in better predictive performance. Overall, this study suggests that increasing the relaxation

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

through ϵ can enhance performance. For our experiments, we select a learnable ϵ with an initial
value of 0.01 to ensure the training stability.

B.9 WEIGHT SPACE STYLE EDITING

Experiment Setup. In this experiment, we focus on modifying the image content encoded in each
SIREN model (Sitzmann et al., 2020) by adjusting its weights. Specifically, we leverage pretrained
models from (Zhou et al., 2024a), which encode images from the CIFAR-10 and MNIST datasets.
The experimental setup follows the approach described in (Zhou et al., 2024a; Tran et al., 2024).
Our main goal is to explore two tasks that involve altering the embedded information within the
SIREN model: first, enhancing the contrast of CIFAR-10 images, and second, applying dilation to
MNIST images.

To evaluate the effectiveness of these modifications, we compute the mean squared error (MSE) loss
between the images encoded by the modified SIREN network and the corresponding ground truth
images, which have undergone contrast enhancement for CIFAR-10 and dilation for MNIST. The
baseline for comparison is the Monomial-NFN model (Tran et al., 2024), which is already a highly
optimized version. In this case, further increasing the parameters does not lead to a noticeable
improvement in performance, serving as a useful benchmark for our experiments. The results from
these tasks are summarized in Table 15.

Table 15: Weight space style editing (INRs editing)

Model Contrast (CIFAR-10) Dilate (MNIST)

MLP 0.031± 0.001 0.306± 0.001
HNP (Zhou et al., 2024a) 0.021± 0.001 0.071± 0.001
NP (Zhou et al., 2024a) 0.020± 0.002 0.068± 0.002
Monomial-NFN (Tran et al., 2024) 0.020± 0.001 0.069± 0.002
Monomial-NFN Quasi (1% params ++) 0.019± 0.001 0.066± 0.001

Results. In this task, Monomial-NFN model initially underperforms compared to the NP model.
However, by incorporating our newly introduced Quasi layer, which adds only 1% more param-
eters, we are able to significantly improve the performance of the Monomial-NFN model. This
enhancement allows it to surpass the performance of the NP baseline in both tasks, demonstrating
the effectiveness of our approach with minimal increase in model complexity.
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