
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUASI-EQUIVARIANT METANETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Metanetworks are neural architectures designed to operate directly on pretrained
weights to perform downstream tasks. However, the parameter space serves only
as a proxy for the underlying function class, and the parameter-function mapping
is inherently non-injective: distinct parameter configurations may yield identical
input-output behaviors. As a result, metanetworks that rely solely on raw parame-
ters risk overlooking the intrinsic symmetries of the architecture. Reasoning about
functional identity is therefore essential for effective metanetwork design, moti-
vating the development of equivariant metanetworks, which incorporate equivari-
ance principles to respect architectural symmetries. Existing approaches, how-
ever, typically enforce strict equivariance, which imposes rigid constraints and
often leads to sparse and less expressive models. To address this limitation, we
introduce the novel concept of quasi-equivariance, which allows metanetworks to
move beyond the rigidity of strict equivariance while still preserving functional
identity. We lay down a principled basis for this framework and demonstrate
its broad applicability across diverse neural architectures, including feedforward,
convolutional, and transformer networks. Through empirical evaluation, we show
that quasi-equivariant metanetworks achieve good trade-offs between symmetry
preservation and representational expressivity. These findings advance the theo-
retical understanding of weight-space learning and provide a principled founda-
tion for the design of more expressive and functionally robust metanetworks.

1 INTRODUCTION

Modern problem-solving increasingly relies on neural networks, which encode vast amounts of
information within their trainable parameters during learning, ranging the application from computer
vision (Huang et al., 2020; Krizhevsky et al., 2012; He et al., 2015), natural language processing
(Vaswani et al., 2017; Rumelhart et al., 1986; Hochreiter & Schmidhuber, 1997; DeepSeek-AI et al.,
2025), and nature science (Raissi et al., 2019; Jumper et al., 2021). While these parameters capture
rich knowledge, accessing and interpreting it remains a challenge.

Metanetworks. Metanetworks were introduced to analyze and process other neural networks by
treating their weights, gradients, and sparsity patterns as structured inputs. Early work focused on
evaluating their generalization and revealing properties of neural network behavior (Baker et al.,
2018; Eilertsen et al.; Unterthiner et al., 2020; Schürholt et al., 2021; 2022a;b). Common strategies
include flattening parameters or extracting statistics before feeding them into multi-layer percep-
trons (MLPs) (Unterthiner et al., 2020; Dupont et al., 2022; Luigi et al.). Beyond these foundations,
metanetworks have been applied to extracting structure from implicit representations (Müller et al.,
2023; Stanley, 2007; Mildenhall et al., 2021), developing learnable optimizers (Bengio et al., 2013;
Runarsson & Jonsson, 2000; Andrychowicz et al., 2016; Metz et al., 2022), performing model edit-
ing (Sinitsin et al., 2020; Cao et al., 2021; Mitchell et al., 2022), evaluating policies (Harb et al.,
2020), and enabling Bayesian inference (Sokota et al., 2021). Nevertheless, designing metanetworks
remains challenging due to the complexity and high dimensionality of the underlying structures.

Functional Equivalence. A major challenge in designing metanetworks lies on how to capture
functional equivalence - the fact that multiple distinct parameter configurations can realize the same
input-output function (Allen-Zhu et al., 2019; Belkin et al., 2019; Du et al., 2019; Frankle & Carbin,
2019; Novak et al., 2018). This problem was first posed by Hecht-Nielsen (Hecht-Nielsen, 1990).
A key observation is that swapping two hidden units in an MLP leaves its input–output mapping
unchanged, provided their outgoing connections are permuted accordingly (Allen-Zhu et al., 2019;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

strict equivariance

quasi-equivariance

Figure 1: (Left) Illustration of the partition of parameter space into functional equivalence classes. (Right)
Illustration of the quasi-equivariance property and its distinction from strict equivariance.

Du et al., 2019; Frankle & Carbin, 2018; Belkin et al., 2019; Neyshabur et al., 2018). For the same
class of MLPs, Fefferman & Markel (1993) established a stronger result: the input–output mapping
of an MLP with tanh activations uniquely determines both its architecture and its weights, up to
permutations and sign flips. Subsequent work extended these identifiability results to broader MLP
settings (Albertini & Sontag, 1993b;a; Mai & Lampert, 2020; Chen et al., 1993; Kurkova & Kainen,
1994) and, in parallel, to convolutional neural networks (CNNs) (Brea et al., 2019; Novak et al.,
2018; Mai & Lampert, 2020; Tran et al., 2024; Vo et al., 2025).

Equivariant Metanetworks. Building on the insight from permutation invariance in neural net-
works, researchers have developed permutation-equivariant metanetworks (Navon et al., 2023; Zhou
et al., 2024a; Kofinas et al., 2024; Zhou et al., 2024b), which naturally account for neuron reorder-
ing within hidden layers. More recent architectures extend beyond permutation equivariance by
incorporating additional symmetries such as scaling and sign changes (Kalogeropoulos et al., 2024;
Tran et al., 2024; Vo et al., 2025). Furthermore, recent works (Tran et al., 2025; Knyazev et al.,
2024) have characterized the maximal symmetry group of multihead attention and established nec-
essary and sufficient conditions for functional equivalence, offering new insights into the structural
properties of Transformer weights.

Despite advances in metanetwork design, most approaches enforce strict equivariance at the level of
individual weights. However, the true goal is not to preserve the weights themselves, but to capture
the functions they implement—that is, to respect the functional equivalence classes defined by the
parameters. In this context, relaxed or approximate equivariance has emerged in deep learning to
handle imperfect symmetries in real-world data. Early approaches include weight-relaxed convolu-
tions (Wang et al., 2022), soft constraints via multitask losses (Elhag et al., 2024; Pertigkiozoglou
et al., 2024), G-biases for group convolutions (Wu et al., 2025), and extensions to E(3)-equivariant
graph networks (Hofgard et al., 2024). On the theoretical side, Kaba & Ravanbakhsh (2023b) and
Huang et al. (2022) formalized relaxed equivariance and analyzed its bias–variance trade-offs. To-
gether, these insights motivate a class of metanetwork architectures that relax strict weight-level
equivariance, enabling more flexible representations of functional symmetries.

Contributions. Building on this motivation, we introduce a framework for quasi-equivariant
metanetworks–a novel paradigm that relaxes strict equivariance to balance symmetry preservation
with representational flexibility. The paper is organized as follows:

1. In Section 2, we examine the parameter space of a parameterized function, characterize its
associated symmetry group, and introduce the formal notion of maximality within symme-
try groups, establishing a direct connection to Functional Equivalence.

2. In Section 3, we examine the sufficiency of strict equivariance for metanetwork design.
Building on this, we introduce quasi-equivariance, which enables metanetworks to over-
come the limitations of strict equivariance while still maintaining functional identity.

3. In Section 4, we present a general framework for quasi-equivariant metanetworks and
demonstrate its application to feedforward neural networks and multihead attention.

4. In Section 5, we integrate the framework into existing metanetworks. Experiments on
multiple metanetwork benchmarks show that this layer enhances performance considerably
while incurring only a slight increase in the number of parameters.

Supplementary materials, including a comprehensive notation table, theoretical derivations, detailed
proofs, and experimental setups, are provided in the Appendix.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES ON EQUIVARIANT METANETWORKS

In this section, we present the details of the parameter space of a parameterized function, its asso-
ciated symmetry group, and introduce the formal notion of maximality in symmetry groups, which
connects directly to the concept of Functional Equivalence (FE).

2.1 PARAMETER SPACE OF A PARAMETERIZED FUNCTION AND ITS SYMMETRY GROUP

Parameter space. Let f(·; θ) be a function parameterized by θ ∈ Θ = Rdim. The set Θ is called the
parameter space (or weight space) of f . Assume a group G acts on Θ. For each θ ∈ Θ, we define
the set of parameter vectors that yield functionally equivalent models:

[θ] :=
{
θ̄ ∈ Θ

∣∣ f(·; θ̄) = f(·; θ)
}
⊆ Θ. (1)

The parameter space serves merely as a proxy for the function class, and the mapping θ 7! f(·; θ) is
non-injective, as distinct parameter configurations can yield identical behaviors. This phenomenon
is illustrated in Figure 1. FE thus focuses on characterizing the sets [θ]. Explicitly enumerating all
such sets is impractical. A more systematic approach is to view these equivalence classes as orbits
under a group action on Θ, naturally leading to the notion of the symmetry group of f .

Symmetry group. Consider a groupG acting on the space Θ. For θ ∈ Θ, theG-orbit of θ is defined
as Gθ := {gθ | g ∈ G} ⊆ Θ. We now introduce the following definition.

Definition 2.1 (Symmetry Group). A group G is called a symmetry group of the function f if
Gθ ⊆ [θ] for all θ ∈ Θ. Equivalently, for every g ∈ G and θ ∈ Θ, one has f(·; gθ) = f(·; θ).

The phrase “a symmetry group” acknowledges that multiple such groups may exist. In particu-
lar, every subgroup of a symmetry group is itself a symmetry group. Our goal is to represent the
equivalence classes [θ] using G-orbits. To build intuition, we present two following observations.

First observation. Consider the function f(·; a, b) : R ! R, defined by x 7! abx, parameterized
by θ = (a, b) ∈ R2 = Θ. It is straightforward to see that (a, b) and (ā, b̄) yield the same function
if and only if ab = āb̄. This naturally suggests the following group action: let R× denote the
multiplicative group of nonzero real numbers. Define the action of c ∈ R× on (a, b) ∈ R2 by
c · (a, b) 7! (ac, c−1b). It is straightforward to verify that R× is a symmetry group of f . However,
it does not fully capture the equivalence classes. Indeed, for (a, b) ∈ R2 with ab ̸= 0, one has

[(a, b)] = {(ā, b̄) ∈ R2 | ab = āb̄} = {(ac, c−1b) | c ∈ R×} = R×(a, b). (2)

In contrast, for (a, b) ∈ R2 with ab = 0, one obtains [(a, b)] = R×(1, 0) ⊔ R×(0, 1) ⊔ R×(0, 0).
Thus, while R× almost completely describes the functional partition, it fails on the degenerate subset
of the parameter space where ab = 0. It is difficult to identify a larger natural group that extends the
action to cover these exceptional cases.

Second observation. Classical group theory ensures that any partition of a set can be realized as the
orbit decomposition of some group action. Accordingly, there always exists a groupG and an action
ofG on Θ such that theG-orbits match the functional partition. However, constructing such a group
typically requires explicit mappings, which are often intractable and impractical. In the context of
parameterized models, where Θ is a finite-dimensional real space, it is natural to focus on group
actions arising from standard operators such as addition, multiplication, or permutation.

These observations present a trade-off: the tractability of the group and its action versus the descrip-
tive capacity of the functional partition, motivating the notion of maximality of symmetry groups.

Maximal symmetry group. The above observations lead to the following intuitive and informal
description of a maximal symmetry group:

Under generic parameters, the symmetry group G captures all functional equivalences,
up to a sufficiently small exceptional set.

In other words, let ε denote a sufficiently small subset of Θ, and consider the restricted domain
Θ \ ε. The group action of G on Θ restricts naturally to Θ \ ε. Then, for all θ, θ̄ ∈ Θ \ ε such that
f(·; θ) = f(·; θ̄), there exists g ∈ G with θ̄ = gθ. Hence, although there may exist parameters in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Θ for which G does not capture FE, this exceptional set is negligible, and G may still be regarded
as characterizing FE of Θ. The subset ε is typically taken to coincide with the zero set of finitely
many nonzero polynomials, that is, a proper real algebraic variety, consistent with prior work on FE
in neural architectures (Hecht-Nielsen, 1990; Fefferman & Markel, 1993; Mai & Lampert, 2020).
Definition 2.2 (Maximal symmetry group). A symmetry groupG is said to be maximal if there exists
a proper real algebraic variety ε ⊊ Θ such that, for all θ, θ̄ ∈ Θ\ε, whenever f(·; θ) = f(·; θ̄), there
exists g ∈ G with θ̄ = gθ.
Remark 2.3. In the above observation on f(·; a, b), let ε = {(a, b) ∈ R2 : ab = 0}. Then ε is a
proper real algebraic variety, and the group R× serves as a maximal symmetry group of f .

In the next section, we demonstrate that this notion of maximality coincides with prior analyses of
FE in feedforward and convolutional neural networks, as well as in multihead attention.

2.2 ON THE ROLE OF EQUIVARIANCE IN METANETWORKS

A metanetwork is a map F : Θ ! X that takes as input the parameters of a model. Depending on
the application, F may return another element of Θ (as in network editing tasks) or a vector in Rd

for some integer d (as in prediction tasks). The fundamental objective is to determine whether the
parameters of a model contain sufficient information to reveal properties of the function realized
by the model itself. Since F receives θ as input, it is natural to require that F depend only on the
underlying function represented by θ, rather than on the particular parameterization. Equivalently,
the input of F should be the equivalence class [θ], as all elements of [θ] define the same function. It
would be undesirable for F (θ) and F (θ̄) to produce incompatible outcomes whenever [θ] = [θ̄].

A principled approach to this requirement is to impose equivariance or invariance with respect to a
symmetry group G. In particular, suppose F : Θ ! Θ is G-equivariant. By definition, this means

F (gθ) = gF (θ), for all g ∈ G, θ ∈ Θ. (3)

Consequently, the equivalence classes are preserved in the sense that [F (gθ)] = [gF (θ)] = [F (θ)],
thereby ensuring consistency across parameterizations that correspond to the same function. If G
is a maximal symmetry group of the underlying model, such equivariance is sufficient to guarantee
that F operates solely on the functional content of θ. This observation underscores the importance
of characterizing the maximal symmetry group–equivalently, of understanding FE–as a prerequisite
for the systematic study of equivariant metanetworks.

3 IS STRICT EQUIVARIANCE NECESSARY FOR METANETWORK?

As discussed in Section 2.2, equivariance provides a principled mechanism for preserving the func-
tional behavior of input networks. Nevertheless, equivariance should be regarded as a sufficient
condition for such preservation, rather than a necessary one. This naturally leads to the question:

Is strict equivariance necessary for metanetworks?

We now introduce a broader notion, namely quasi-equivariance. Throughout the remainder of the
paper, let G denote the maximal symmetry group, and let F denote a metanetwork map.

Quasi-equivariance. We first address equivariance, deferring the discussion of invariance to a later
stage. The requirement of functionality preservation for a map F : Θ ! Θ can be stated as follows:
for all θ̄ ∈ [θ], one requires that F (θ̄) ∈ [F (θ)]. By the maximality of G, the condition θ̄ ∈ [θ]
implies that there exists g ∈ G such that θ̄ = gθ. The same holds for F (θ) and F (θ̄). Consequently,
the above requirement can be reformulated, motivating the following definition.
Definition 3.1 (Quasi-equivariance). A map F : Θ ! Θ is said to be G-quasi-equivariant if, for all
g ∈ G and θ ∈ Θ, there exists g′ = g′(g, θ) ∈ G such that F (gθ) = g′F (θ).

The notation g′ = g′(g, θ) emphasizes that g′ may depend on both g and θ. Figure 1 illustrates the
quasi-equivariance property. By definition, every G-equivariant map is also G-quasi-equivariant.
Moreover, G-quasi-equivariance ensures functionality preservation. Given the maximality of G
(Definition 2.2), it provides a necessary and sufficient condition for a map to preserve functionality.
Indeed, for θ, θ̄ ∈ Θ such that [θ] = [θ̄], one has θ̄ = gθ for some g ∈ G. Thus, F (θ̄) = F (gθ) =
g′F (θ) for some g′ ∈ G. Therefore, [F (θ̄)] = [g′F (θ)] = [F (θ)].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Remark 3.2. A natural question is how to construct a map F that satisfies the quasi-equivariant
property. By Definition 3.1, one natural attempt is to first choose an arbitrary group-valued function
α : G×Θ ! G and then solve for a map F : Θ ! Θ satisfying F (gθ) = α(g, θ)F (θ). However,
for a general choice of α, such an F does not exist. Appendix A.1 provides the necessary conditions
on α under which at least one corresponding F can exist. Although this approach is theoretically
motivated, it is not practical for constructing metanetworks. Therefore, in Section 4, we will present
a more effective and implementable design for F .

Invariance. For invariance, introducing a quasi-version is unnecessary. Indeed, to ensure that a
map F : Θ ! X preserves functionality, it suffices to require F (θ̄) = F (θ), which is equivalent to
F (gθ) = F (θ). Hence, strict invariance is necessary.

Properties. In practice, equivariant and invariant metanetworks are constructed by stacking equiv-
ariant and invariant layers on top of one another, in the same manner as deep models are typically
built. This construction relies on standard closure properties: the composition of two equivariant
maps is equivariant, and the composition of an equivariant map with an invariant map is invariant.
For quasi-equivariance, analogous properties hold, as stated in the following result.

Proposition 3.3 (Composition). Let φ,ψ : Θ ! Θ be maps. Then:

1. If both φ and ψ are G-quasi-equivariant, then ψ ◦ φ is G-quasi-equivariant.

2. If φ is G-quasi-equivariant and ψ is G-invariant, then ψ ◦ φ is G-invariant.

The assumption that φ,ψ : Θ ! Θ is made for notational simplicity. In fact, the results remain valid
if Θ is replaced by any domain on which the notions of G-quasi-equivariance and G-invariance are
well-defined. The proof of Proposition 3.3 is provided in Appendix A.2.

Remark 3.4 (Comparison with relaxed notions of equivariance in the literature). In Kaba & Ravan-
bakhsh (2023a), the notion of relaxed equivariance is introduced. Given a group G acting on X and
Y , a map φ : X ! Y is said to satisfy relaxed equivariance if, for all g ∈ G and x ∈ X , there exists
g′ ∈ gGx–with Gx the stabilizer subgroup of x–such that φ(gx) = g′φ(x). This definition is natu-
rally subsumed under the broader notion of quasi-equivariance given in Definition 3.1. Other works,
such as Wang et al. (2024), employ a related but distinct perspective, where relaxed equivariance is
interpreted as an approximation to strict equivariance, namely φ(gx) ≈ gφ(x).

4 QUASI-EQUIVARIANT METANETWORKS

In this section, we establish a general framework for quasi-equivariant metanetworks and subse-
quently apply it to feedforward neural networks and multihead attention.

4.1 A GENERAL FRAMEWORK FOR THE DESIGN OF QUASI-EQUIVARIANT METANETWORKS

Given the notation f , θ, Θ, and G from the previous section, we focus on constructing G–quasi-
equivariant networks. The invariant case is immediate, since it can be obtained by stacking an
invariant layer on top of an equivariant backbone, as observed in Proposition 3.3.

A G–quasi-equivariant layer is defined as follows. Let α : Θ ! G be a map into the group, and let
β : Θ ! Θ be an equivariant map. Define

F : Θ ! Θ, F (θ) := α(θ)β(θ). (4)

By construction, F is G-quasi-equivariant. In this framework, the design of β follows directly
from prior work on equivariant metanetworks. The central task is therefore to construct α so that it
outputs group elements of G. This extension is motivated by the observation that strict equivariance
is not necessary for metanetworks, and that enforcing it often yields sparse models due to the strong
constraints imposed on the network weights. By introducing α, we aim to relax these constraints,
thereby improving both the expressivity and performance of metanetworks.

We now examine several representative cases of G, assuming α is continuous. In machine learning,
continuity–and in practice differentiability–is essential for gradient-based optimization via back-
propagation. The parameterized maps f considered here will primarily be feedforward networks,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

convolutional neural networks, and multihead attention modules, as these are the predominant ar-
chitectures in existing datasets of pretrained weights.

Remark 4.1. In the instances considered in the next part, the group G, although a group, can also
be embedded into Rn for some n. In this setting, the group-valued map α : Θ ! Gmay be regarded
as continuous. We then recall the classical fact that the continuous image of a connected space is
connected. Since Θ = Rd is connected, the image α(Θ) must also be connected. Consequently, if
G is discrete, α must be constant. This observation will be useful in the next part: when G contains
a discrete component (such as permutations), any continuous α cannot meaningfully vary over Θ.
Hence, the discrete part of G can be ignored in the construction, and the focus is placed on the
continuous component of G.

4.2 THE CASE OF FEEDFORWARD AND CONVOLUTIONAL NEURAL NETWORKS

We primarily focus on the feedforward neural network. The convolutional counterpart can be treated
in an analogous manner without loss of generality.

Parameter space. Consider a feedforward neural network f with L layers, having ni neurons in
the ith layer and activation σ. Here, n0 and nL are the input and output dimensions. The map f is
parameterized by θ = {Wi, bi}Li=1, where Wi ∈ Rni×ni−1 and bi ∈ Rni . It is expressed as:

f(x; θ) = fL ◦ σ ◦ fL−1 ◦ σ ◦ · · · ◦ σ ◦ f1(x), (5)

where fi : Rni−1 ! Rni such that x 7!Wi · x+ bi. The parameter space of f is:

Θ =
(
RnL×nL−1 × RnL

)
× · · · ×

(
Rn2×n1 × Rn2

)
×
(
Rn1×n0 × Rn1

)
(6)

Maximal symmetry group. We define a group action on Θ by monomial matrices. Let n be a
positive integer. A monomial matrix of size n × n is a matrix in which each row and each column
contains exactly one nonzero entry. Denote G>0

n as the sets of monomial matrices of size n × n
with all non-zero entries positive. Now, define the group G := G>0

nL−1
× . . . × G>0

n1
. Denote g =

(gL−1, . . . , g1), where gi ∈ Gni
, for elements of G. By convention, denote gL = InL

and g0 = In0
,

which are identity matrices. The group action of G on Θ is defined by

gθ := {W̄i, b̄i}Li=1, where W̄i = gi ·Wi · g−1
i−1 and b̄i = gi · bi. (7)

It is straightforward to check that G forms a symmetry group for f . One expects G to be maximal,
however, for the general setting of f , it is an open question whether G is maximal. Prior studies
only proved G to be maximal when restricted to a restricted setting. For instance, if nL ⩾ . . . ⩾
n2 ⩾ n1 > n0 = 1, then G is maximal (Mai & Lampert, 2020; Grigsby et al., 2023).

Design of the map α. First, we decompose the group G into factors Gni for i ∈ [L − 1], and
construct maps Θ ! Gni for each i. More generally, the goal is to define a map Θ ! Gn for an
arbitrary positive integer n. To this end, we further analyze the structure of Gn by decomposing
it as follows. Define Pn as the set of monomial matrices whose nonzero entries are all equal to
1, that is, the set of permutation matrices. Consider also the set of n × n diagonal matrices with
positive diagonal entries, which is isomorphic to Rn

>0, where R>0 denotes the multiplicative group
of positive real numbers. Every monomial matrix in Gn can be expressed uniquely as the product of
such a diagonal matrix and a permutation matrix, that is,

Gn = {DP : D ∈ Rn
>0 and P ∈ Pn}. (8)

Formally, Gn is isomorphic to the semidirect product Gn = Rn
>0⋊Pn (see Dummit & Foote (2004)).

Thus, constructing α : Θ ! Gn reduces to specifying two maps: one into Pn and the other into Rn
>0.

The case of the group Pn. Since Pn is discrete, any continuous map α : Θ ! Pn must be constant.

The case of the group Rn
>0. The group Rn

>0 can be further decomposed into its coordinate factors,
so that the construction of α : Θ ! Rn

>0 reduces to specifying n independent maps αj : Θ ! R>0

for j ∈ [n]. To do this, the main idea is to construct the map from θ ∈ Θ to a vector of size n, after
which we take the sin of entries, scale it by a small ϵ > 0 and add a unit vector 1n. The detailed
implementation of α in practice is described in Appendix B.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Remark 4.2 (Extension to CNN). For CNNs, the approach follows the same principle but is adapted
for convolutional filters. Each bias vector bi retains the same dimensions as in MLPs, while the con-
volution filterWi ∈ Rni×ni−1×w (for 1D convolution) orWi ∈ Rni×ni−1×c×w (for 2D convolution)
contains additional spatial dimensions. To handle this, we apply the group action to both the filter’s
channel dimensions and spatial dimensions. Specifically, the filter Wi is treated as having dimen-
sions ni × ni−1 × (cw), where c represents the number of input channels (or more generally, any
extra spatial dimensions like spatial channels). This allows us to apply the quasi-equivariant layer
to the filter in a manner similar to the MLP case, where we perform the scaling operation across the
output channels and input channels.

Remark 4.3 (On activation functions beyond ReLU). In the literature, FE has also been studied
for feedforward neural networks with other activation functions σ. For instance, in the case of the
tanh activation, a maximal symmetry group can be determined (see Chen et al. (1993); Fefferman &
Markel (1993)). However, for most widely used activation functions, the maximal symmetry group
is discrete, making the construction of α trivial. For this reason, our analysis focuses on ReLU.

4.3 THE CASE OF MULTIHEAD ATTENTION

Parameter space. Let d denote the token dimension, L the sequence length, and h the number of
heads, where all are positive integers. Define the space of token sequences as S := ⊔∞

L=1RL×d.
For a fixed head dimension dh, let WQ

i ,W
K
i ,WV

i ,W
O
i ∈ Rd×dh for each i ∈ [h], and set

θ = (WQ
i ,W

K
i ,WV

i ,W
O
i)hi=1. Given an input sequence x = (x1, . . . , xL)

⊤ ∈ RL×d ⊂ S,
the Multihead Attention (MHA) mechanism with h heads is defined by

MHA (x : θ) =

h∑
i=1

softmax
(
(xWQ

i)
(
xWK

i

)⊤) ·
(
xWV

i

)
(WO

i)⊤. (9)

Here, the softmax operator is applied row-wise to the similarity matrix (xWQ
i)(xWK

i)⊤ ∈ RL×L,
producing the attention for x. Each row of this matrix forms a probability distribution that deter-
mines the relative influence of all input tokens on a given output token. Typically, the head dimension
is set to dh = d/h. The parameter space of the MHA map is then defined as Θ :=

(
Rd×dh

)4h
.

We denote by GL(dh) the general linear group of degree dh, i.e., the set of all invertible dh × dh
real matrices.

Maximal symmetry group. Define the following group G := Sh × (GL(dh)× GL(dh))
h
. This

group is exactly the direct product of the permutation group Sh with h copies of GL(dh)×GL(dh).
Each element g ∈ G can be written as g := (σ, (Ui, Vi)

h
i=1), where σ ∈ Sh and Ui, Vi ∈ GL(dh).

The group G acts naturally on the parameter space Θ as follows:

gθ :=
(
WQ

σ(i) · U
⊤
i ,W

K
σ(i) · U

−1
i ,WV

σ(i) · V
⊤
i ,W

O
σ(i) · V

−1
i

)h

i=1
. (10)

It is evident that G serves as a symmetry group of the MHA map. The reasoning is as follows: the
general linear action cancels within the matrix multiplications, while the permutation action induced
by σ commutes with addition. Furthermore, G is maximal, as formalized in the following result.
Theorem 4.4 (See Tran et al. (2025)). Consider two MHA maps with h heads, parameterized by
θ = (WQ

i ,W
K
i ,WV

i ,W
O
i)hi=1 and θ̄ = (W̄Q

i , W̄
K
i , W̄V

i , W̄
O
i)hi=1 in Θ, respectively. Assume that

1. All matrices WQ
i ,W

K
i ,WV

i ,W
O
i and W̄Q

i , W̄
K
i , W̄V

i , W̄
O
i , for all feasible i, are of rank dh.

2. From θ, the matrices {WQ
i (WK

i)⊤}hi=1 are pairwise distinct. The same condition holds for θ̄.

If the two MHA maps are identical, there exists g ∈ G such that θ̄ = gθ.
Remark 4.5. Note that the conditions on θ and θ̄ in Theorem 4.4 can both be expressed as the
vanishing of finitely many nonzero polynomials. This corresponds precisely to the real algebraic
variety ε introduced in Definition 2.2 of maximal symmetry groups.

Design of the map α. In analogy with the feedforward case, we restrict the construction of α : Θ !
G to the design of a map Θ ! GL(n) for a general positive integer n. The idea is as follows:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Mean
Variance
Quantiles

Scale network

Network weights

Statistical
features

Extracted weights

Learned scales

Equivariant
Metanetwork

Figure 2: Illustration of the design of the quasi-equivariant layer. Statistical features are extracted from
network weights and biases, then passed through a Scale network to learn the group action. This corresponds
to the MLP case, where a scaling vector is learned for each layer’s weights and biases. The learned scales are
applied to the outputs of the equivariant layer, enhancing expressiveness while adding only minimal parameters.

first, reshape θ ∈ Θ into an n × n matrix via a feedforward network γ. Next, apply the entrywise
sine function, scale the result by a small ϵ > 0, and finally add the identity matrix In, i.e. θ 7−!
sin(γ(θ)) · ϵ + In. By continuity, and since the range of the sine function is [−1, 1], there exists a
sufficiently small ϵ > 0 such that the resulting matrix is invertible. The detailed implementation of
α in practice is described in Appendix B.1.

Remark 4.6. An alternative approach to constructing a map Θ ! GL(n) is to use the matrix
exponential exp : Rn×n ! GL(n). However, both in theory and in practice, this approach tends to
be slow and numerically unstable. Our experimental trials confirmed these issues, and we therefore
did not pursue this direction further.

5 EXPERIMENTS

In this section, we integrate the quasi-equivariant layer with existing metanetworks: Monomial-NFN
for MLP/CNNs and Transformer-NFN for Transformers. The overall layer is illustrated in Figure 2.
We provide detailed implementation of the MLP network for each case (MLP/CNN or Transformers)
in Appendix B.1. We evaluate these models on three tasks: predicting CNN generalization from
weights, classifying image INRs, and predicting Transformer generalization from parameters. For
each task, we compare against the original baseline and an expanded version with more parameters,
ensuring fair comparison with our method. Our aim is twofold: the quasi-equivariant layer improves
performance efficiently with minimal parameter increase, and it preserves performance under group
action transformations. Results are averaged over five runs; hyperparameters and parameter counts
are detailed in Appendix B.

5.1 PREDICTING CNN GENERALIZATION

Experiment Setup. We aim to predict pretrained CNN generalization using only their weights,
without test data. Experiments use the Small CNN Zoo dataset (Unterthiner et al., 2020), con-
taining CNNs trained with varying hyperparameters and activations. Following Tran et al. (2024),
we analyze the ReLU subset, where models follow the group action M>0

n . Robustness to group-
action transformations is evaluated by augmenting the dataset with variants from diagonal matrices
D>0

n,ii ∼ U [1, 10i] for i ∈ {1, 2, 3, 4} and random permutation matrices Pn. Prediction is measured
with Kendall’s τ rank correlation (Kendall, 1938), which quantifies agreement between predicted
and true accuracy rankings. Our approach extends Monomial-NFN (Tran et al., 2024), denoted
Monomial-NFN Quasi, and is compared with STATNN (Unterthiner et al., 2020), NP, HNP (Zhou
et al., 2024a), and Graph-NN (Kofinas et al., 2024). For Monomial-NFN, we test both the original
and an enlarged, carefully tuned variant for fair comparison.

Results. Table 1 reports model performance. Scaling Monomial-NFN (+68.65% parameters) gives
minor gains, whereas Monomial-NFN Quasi shows notable improvement with only +3.89% param-
eters. On the original subset, where Monomial-NFN lags behind HNP, the Quasi layer matches
its performance. This holds under augmentation, showing that small parameter increases via the
Quasi-equivariant layer can enhance expressiveness and flexibility considerably.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Performance prediction of CNNs on the ReLU subset of Small CNN Zoo with varying scale aug-
mentations. The metric used is Kendall’s τ . Uncertainties indicate the standard error across 5 runs.

Augment settings

No augment U [1, 101] U [1, 102] U [1, 103] U [1, 104]

STATNet (Unterthiner et al., 2020) 0.915± 0.002 0.894± 0.0001 0.853± 0.007 0.523± 0.02 0.516± 0.001

NP (Zhou et al., 2024a) 0.920± 0.003 0.900± 0.002 0.898± 0.003 0.884± 0.002 0.884± 0.002

HNP (Zhou et al., 2024a) 0.926± 0.003 0.913± 0.001 0.903± 0.003 0.891± 0.003 0.601± 0.02

Graph-NN (Kofinas et al., 2024) 0.897± 0.002 0.892± 0.003 0.885± 0.002 0.858± 0.003 0.851± 0.002

Monomial-NFN (Tran et al., 2024) 0.922± 0.001 0.920± 0.001 0.919± 0.001 0.920± 0.002 0.920± 0.001

Monomial-NFN large (68.65% params ++) 0.923± 0.001 0.920± 0.001 0.920± 0.002 0.919± 0.001 0.920± 0.001

Monomial-NFN Quasi (ours) (3.89% params ++) 0.926± 0.002 0.924± 0.002 0.924± 0.002 0.923± 0.001 0.924± 0.002

Table 2: Classification train and test accuracies (%) for implicit neural representations of MNIST, FashionM-
NIST, and CIFAR-10. Uncertainties indicate standard error over 5 runs.

MNIST CIFAR-10 FashionMNIST

MLP 10.62± 0.54 10.48± 0.74 9.95± 0.36

NP (Zhou et al., 2024a) 69.82± 0.42 33.74± 0.26 58.21± 0.31

HNP (Zhou et al., 2024a) 66.02± 0.51 31.61± 0.22 57.43± 0.46

Monomial-NFN (Tran et al., 2024) 68.43± 0.51 34.23± 0.33 61.15± 0.55

Monomial-NFN tuned (≈ 3% params++) 68.87± 0.42 34.26± 0.28 61.44± 0.35

Monomial-NFN Quasi (ours) (≈ 3% params ++) 70.21± 0.34 35.32± 0.56 62.11± 0.27

5.2 CLASSIFYING IMPLICIT NEURAL REPRESENTATIONS OF IMAGES

Experiment Setup. This experiment focuses on classifying the source class of pretrained Implicit
Neural Representation (INR) weights. Following the setup in (Tran et al., 2024), we use three INR
weight datasets introduced in (Zhou et al., 2024a), each corresponding to a different image dataset:
CIFAR-10 (Krizhevsky & Hinton, 2009), FashionMNIST (Xiao et al., 2017), and MNIST (LeCun
& Cortes, 2005). In these datasets, each INR is trained to represent a single image, encoding image
structure by mapping pixel coordinates (x, y) to pixel color values. CIFAR-10 images are encoded as
3-channel RGB outputs, while MNIST and FashionMNIST are represented with a single grayscale
channel. Since excessively increasing parameters in Monomial-NFN leads to overfitting in this
setting, we introduce a variant, Monomial-NFN tuned, which is carefully adjusted to match the
parameter count of Monomial-NFN Quasi. This ensures a fair comparison between the two models.

Results. Table 2 shows the performance of all models on INR classification. The tuned Monomial-
NFN, which adds 3% more parameters, yields only minor improvement. In contrast, adding the
proposed quasi layer with the same parameter increase allows Monomial-NFN Quasi to outperform
NP on the MNIST task and achieve the best results across all three datasets. The performance gap
between Monomial-NFN Quasi and Monomial-NFN is about 1% on CIFAR-10 and FashionMNIST,
and 1.78% on MNIST. These results demonstrate the consistency of the proposed method.

5.3 PREDICTING TRANSFORMERS GENERALIZATION

Experiment Setup. In this task, we predict the accuracies of pretrained Transformer checkpoints,
aiming to test whether metanetworks capture structural patterns in Transformer weights. Follow-
ing (Tran et al., 2025), we integrate our quasi-layer into Transformer-NFN and conduct evaluations
on two datasets: MNIST-Transformers, built from models trained for MNIST image classification,
and AGNews-Transformers, derived from models trained for AGNews text classification. Perfor-
mance is assessed using Kendall’s τ . To probe model performance under varying difficulty levels,
we evaluate not only on the full dataset but also on four subsets defined by minimum accuracy
thresholds of 20%, 40%, 60%, and 80%. Since most pretrained models in these datasets achieve
high accuracy, maintaining strong Kendall’s τ becomes more difficult as the threshold increases.

Results. Table 3 presents the results on MNIST-Transformer and AGNews-Transformer. In both
benchmarks, scaling up Transformer-NFN to a larger version (with up to 59.38% more parameters)
can improve Kendall’s τ , but adding the quasi-equivariant layer achieves even greater gains with far
fewer extra parameters (only up to 5.27%). The improvement holds across all accuracy thresholds,
demonstrating both the efficiency and effectiveness of our approach.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Performance measured by Kendall’s τ of all models on MNIST- and AGNews-Transformers datasets.
Uncertainties indicate standard error over 5 runs.

Accuracy threshold

No threshold 20% 40% 60% 80%

MNIST-Transformers

MLP 0.866± 0.002 0.873± 0.001 0.874± 0.003 0.874± 0.006 0.873± 0.007

STATNN (Unterthiner et al., 2020) 0.881± 0.001 0.872± 0.001 0.868± 0.001 0.860± 0.001 0.856± 0.001

XGBoost (Chen & Guestrin, 2016) 0.860± 0.002 0.839± 0.004 0.869± 0.003 0.846± 0.001 0.884± 0.001

LightGBM (Ke et al., 2017) 0.858± 0.002 0.835± 0.001 0.847± 0.001 0.822± 0.001 0.830± 0.001

Random Forest (Breiman, 2001) 0.772± 0.002 0.758± 0.004 0.769± 0.001 0.752± 0.001 0.759± 0.001

Transformer-NFN (Tran et al., 2025) 0.905± 0.002 0.899± 0.001 0.895± 0.001 0.895± 0.002 0.888± 0.002

Transformer-NFN large (57.66% params ++) 0.907± 0.001 0.904± 0.002 0.897± 0.002 0.897± 0.002 0.890± 0.001

Transformer-NFN Quasi (Ours) (4.54% params ++) 0.911± 0.001 0.905± 0.001 0.898± 0.002 0.897± 0.001 0.892± 0.001

AGNews-Transformers

MLP 0.879± 0.006 0.875± 0.001 0.841± 0.012 0.842± 0.001 0.862± 0.006

STATNN (Unterthiner et al., 2020) 0.841± 0.002 0.839± 0.003 0.812± 0.003 0.813± 0.001 0.812± 0.001

XGBoost (Chen & Guestrin, 2016) 0.859± 0.001 0.852± 0.002 0.872± 0.002 0.874± 0.001 0.872± 0.001

LightGBM (Ke et al., 2017) 0.835± 0.001 0.845± 0.001 0.837± 0.001 0.835± 0.001 0.820± 0.001

Random Forest (Breiman, 2001) 0.774± 0.003 0.801± 0.001 0.797± 0.001 0.798± 0.002 0.773± 0.001

Transformer-NFN (Tran et al., 2025) 0.910± 0.001 0.908± 0.001 0.897± 0.001 0.896± 0.001 0.890± 0.001

Transformer-NFN large (59.38% params ++) 0.913± 0.001 0.910± 0.002 0.898± 0.002 0.898± 0.001 0.893± 0.002

Transformer-NFN Quasi (Ours) (5.27% params ++) 0.914± 0.001 0.913± 0.002 0.901± 0.001 0.903± 0.002 0.896± 0.001

6 CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS

This paper introduces quasi-equivariant metanetworks, a framework that relaxes strict equivariance
to balance symmetry preservation with representational flexibility. By analyzing parameter spaces,
their symmetry groups, and maximality, we establish a theoretical connection to functional equiva-
lence and formalize quasi-equivariance as a principled extension of strict equivariance. We demon-
strate applicability of the framework to feedforward networks and multihead attention, and validate
its effectiveness across multiple metanetwork benchmarks, achieving substantial performance gains
with minimal additional parameters. A current limitation of our work is that quasi-equivariance has
so far been applied primarily to metanetworks with linear architectures. Extending this framework
to more complex structures, such as graph-based metanetworks, remains unexplored due to the di-
versity and rarity of such architectures. Moreover, the quasi-equivariant design could be beneficial
in various other fields, such as computational chemistry, physics, and materials science, where sym-
metries may only approximately hold and greater modeling flexibility is required. We view these as
promising directions for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics Statement. Considering the scope and focus of this work, we do not anticipate any adverse
societal or ethical consequences.

Reproducibility Statement. The source code for all experiments is included in the paper’s sup-
plementary materials. Detailed descriptions of our experimental setup can be found in Section 5
and Appendix B. All datasets used are publicly accessible via an anonymous link provided in the
README of the supplementary materials.

LLM Usage. In this work, we use large language models (LLMs) solely as a tool to assist and
refine the presentation of our ideas. The LLM was employed only to improve clarity, grammar, and
overall readability, without influencing the scientific content, methodology, or experimental results.
All technical contributions, analyses, and conclusions in the paper are entirely the authors’ original
work.

REFERENCES

Francesca Albertini and Eduardo D. Sontag. Identifiability of discrete-time neural networks. In
Proceedings of the European Control Conference, pp. 460–465. Springer Berlin, 1993a.

Francesca Albertini and Eduardo D Sontag. For neural networks, function determines form. Neural
networks, 6(7):975–990, 1993b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture
search using performance prediction. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=HJqk3N1vG.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019. doi: 10.1073/pnas.1903070116. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.1903070116.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic
learning rule. In Optimality in Biological and Artificial Networks?, pp. 265–287. Routledge, 2013.

Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in deep
networks gives rise to permutation saddles, connected by equal-loss valleys across the loss land-
scape. arXiv preprint arXiv:1907.02911, 2019.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, pp. 6491–6506. Association for Computational Linguistics, 2021.

An Mei Chen, Haw minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural
network error surfaces. Neural Computation, 5(6):910–927, 1993.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
volume 11 of KDD ’16, pp. 785–794. ACM, August 2016. doi: 10.1145/2939672.2939785.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui

11

https://openreview.net/forum?id=HJqk3N1vG
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley Hoboken, 2004.

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum.
From data to functa: Your data point is a function and you can treat it like one. In International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 5694–5725. PMLR, 2022. URL
https://proceedings.mlr.press/v162/dupont22a.html.

Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas Unger, and Anders Ynnerman. Classifying
the classifier: Dissecting the weight space of neural networks. In ECAI 2020 - 24th European
Conference on Artificial Intelligence, volume 325 of Frontiers in Artificial Intelligence and Ap-
plications, pp. 1119–1126. IOS Press. URL https://doi.org/10.3233/FAIA200209.

Ahmed A Elhag, T Konstantin Rusch, Francesco Di Giovanni, and Michael Bronstein. Relaxed
equivariance via multitask learning. arXiv preprint arXiv:2410.17878, 2024.

Charles Fefferman and Scott Markel. Recovering a feed-forward net from its output. In Advances
in Neural Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA,
1993], pp. 335–342. Morgan Kaufmann, 1993. URL http://papers.nips.cc/paper/
748-recovering-a-feed-forward-net-from-its-output.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2018. URL https://openreview.net/forum?id=
rJl-b3RcF7.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learning Representations (ICLR), New Orleans,
LA, USA, 2019. OpenReview.net.

Elisenda Grigsby, Kathryn Lindsey, and David Rolnick. Hidden symmetries of relu networks. In
International Conference on Machine Learning, pp. 11734–11760. PMLR, 2023.

12

https://arxiv.org/abs/2412.19437
https://proceedings.mlr.press/v162/dupont22a.html
https://doi.org/10.3233/FAIA200209
http://papers.nips.cc/paper/748-recovering-a-feed-forward-net-from-its-output
http://papers.nips.cc/paper/748-recovering-a-feed-forward-net-from-its-output
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jean Harb, Tom Schaul, Doina Precup, and Pierre-Luc Bacon. Policy evaluation networks. arXiv
preprint arXiv:2002.11833, 2020.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.
URL https://api.semanticscholar.org/CorpusID:206594692.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Ad-
vanced Neural Computers, pp. 129–135. Elsevier, 1990.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, 1997. doi: 10.1162/NECO.1997.9.8.1735. URL https://doi.org/10.1162/
neco.1997.9.8.1735.

Elyssa Hofgard, Rui Wang, Robin Walters, and Tess Smidt. Relaxed equivariant graph neural net-
works. In ICML 2024 Workshop on Geometry-grounded Representation Learning and Generative
Modeling, 2024. URL https://openreview.net/forum?id=eVB1fn37Ay.

Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Equivariant
graph mechanics networks with constraints. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=SHbhHHfePhP.

Yujia Huang, James Gornet, Sihui Dai, Zhiding Yu, Tan Nguyen, Doris Tsao, and Anima Anand-
kumar. Neural networks with recurrent generative feedback. Advances in Neural Information
Processing Systems, 33:535–545, 2020.

John M. Jumper, Richard O. Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russell Bates, Augustin Žı́dek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, R. D. Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David L. Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction
with alphafold. Nature, 596(7873):583–589, July 2021. doi: 10.1038/s41586-021-03819-2. URL
https://lens.org/103-212-983-826-945.

Sékou-Oumar Kaba and Siamak Ravanbakhsh. Symmetry breaking and equivariant neural networks.
CoRR, abs/2312.09016, 2023a. doi: 10.48550/ARXIV.2312.09016. URL https://doi.org/
10.48550/arXiv.2312.09016.

Sékou-Oumar Kaba and Siamak Ravanbakhsh. Symmetry breaking and equivariant neural networks.
arXiv preprint arXiv:2312.09016, 2023b.

Ioannis Kalogeropoulos, Giorgos Bouritsas, and Yannis Panagakis. Scale equivari-
ant graph metanetworks. In Advances in Neural Information Processing Systems
38, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
c13d5a10028586fdc15ee7da97b7563f-Abstract-Conference.html.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

M. G. Kendall. A NEW MEASURE OF RANK CORRELATION. Biometrika, 30(1-2):81–93,
06 1938. ISSN 0006-3444. doi: 10.1093/biomet/30.1-2.81. URL https://doi.org/10.
1093/biomet/30.1-2.81.

Boris Knyazev, Abhinav Moudgil, Guillaume Lajoie, Eugene Belilovsky, and Simon Lacoste-
Julien. Accelerating training with neuron interaction and nowcasting networks. arXiv preprint
arXiv:2409.04434, 2024.

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves,
Cees G. M. Snoek, and David W. Zhang. Graph neural networks for learning equivariant represen-
tations of neural networks. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=oO6FsMyDBt.

13

https://api.semanticscholar.org/CorpusID:206594692
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=eVB1fn37Ay
https://openreview.net/forum?id=SHbhHHfePhP
https://lens.org/103-212-983-826-945
https://doi.org/10.48550/arXiv.2312.09016
https://doi.org/10.48550/arXiv.2312.09016
http://papers.nips.cc/paper_files/paper/2024/hash/c13d5a10028586fdc15ee7da97b7563f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c13d5a10028586fdc15ee7da97b7563f-Abstract-Conference.html
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1093/biomet/30.1-2.81
https://openreview.net/forum?id=oO6FsMyDBt

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.
toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems 25, pp.
1106–1114, 2012. URL https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

Vera Kurkova and Paul C Kainen. Functionally equivalent feedforward neural networks. Neural
Computation, 6(3):543–558, 1994.

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. In Proceedings of the
IEEE, 2005. URL https://api.semanticscholar.org/CorpusID:60282629.

Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti,
and Luigi Di Stefano. Deep learning on implicit neural representations of shapes. In The
Eleventh International Conference on Learning Representations, ICLR 2023. URL https:
//openreview.net/forum?id=OoOIW-3uadi.

Phuong Bui Thi Mai and Christoph Lampert. Functional vs. parametric equivalence of relu net-
works. In 8th International Conference on Learning Representations (ICLR), 2020.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale. In The Tenth International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=0DcZxeWfOPt.

Andreas Müller, Carlo Curino, and Raghu Ramakrishnan. Mothernet: A foundational hypernetwork
for tabular classification. arXiv preprint arXiv:2312.08598, 2023.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-
ariant architectures for learning in deep weight spaces. In International Conference on Machine
Learning, pp. 25790–25816. PMLR, 2023.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. To-
wards understanding the role of over-parametrization in generalization of neural networks. arXiv
preprint arXiv:1805.12076, 2018.

Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein.
Sensitivity and generalization in neural networks: An empirical study. In 6th International Con-
ference on Learning Representations (ICLR), Vancouver, BC, Canada, 2018. OpenReview.net.

Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, and Kostas Dani-
ilidis. Improving equivariant model training via constraint relaxation. In Advances in Neu-
ral Information Processing Systems, volume 37, pp. 83497–83520. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/98082e6b4b97ab7d3af1134a5013304e-Paper-Conference.pdf.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

14

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://api.semanticscholar.org/CorpusID:60282629
https://openreview.net/forum?id=OoOIW-3uadi
https://openreview.net/forum?id=OoOIW-3uadi
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.neurips.cc/paper_files/paper/2024/file/98082e6b4b97ab7d3af1134a5013304e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/98082e6b4b97ab7d3af1134a5013304e-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations
by error propagation. 1986. URL https://api.semanticscholar.org/CorpusID:
62245742.

Thomas Philip Runarsson and Magnus Thor Jonsson. Evolution and design of distributed learning
rules. In 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Net-
works. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation
and Neural Networks (Cat. No. 00, pp. 59–63. IEEE, 2000.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learn-
ing on neural network weights for model characteristic prediction. Advances in Neural Informa-
tion Processing Systems, 34:16481–16493, 2021.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
representations as generative models: Sampling unseen neural network weights. Advances in
Neural Information Processing Systems, 35:27906–27920, 2022a.

Konstantin Schürholt, Diyar Taskiran, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth.
Model zoos: A dataset of diverse populations of neural network models. Advances in Neural
Information Processing Systems, 35:38134–38148, 2022b.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry V. Pyrkin, Sergei Popov, and Artem Babenko. Ed-
itable neural networks. In 8th International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HJedXaEtvS.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. Implicit neural representations with periodic activation functions.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
53c04118df112c13a8c34b38343b9c10-Abstract.html.

Samuel Sokota, Hengyuan Hu, David J Wu, J Zico Kolter, Jakob Nicolaus Foerster, and Noam
Brown. A fine-tuning approach to belief state modeling. In International Conference on Learning
Representations, 2021.

Kenneth O Stanley. Compositional pattern producing networks: A novel abstraction of development.
Genetic programming and evolvable machines, 8:131–162, 2007.

Hoang Tran, Thieu Vo, Tho Huu, An Nguyen The, and Tan Nguyen. Monomial
matrix group equivariant neural functional networks. In Advances in Neural In-
formation Processing Systems, volume 37, pp. 48628–48665. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/577cd5863ec73be4e6871340be0936ae-Paper-Conference.pdf.

Hoang V. Tran, Thieu Vo, An Nguyen The, Tho Tran Huu, Minh-Khoi Nguyen-Nhat, Thanh Tran,
Duy-Tung Pham, and Tan Minh Nguyen. Equivariant neural functional networks for transformers.
In The Thirteenth International Conference on Learning Representations, ICLR, 2025.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predict-
ing neural network accuracy from weights. arXiv preprint arXiv:2002.11448, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30, pp. 5998–6008, 2017. URL https://proceedings.neurips.
cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.
html.

Thieu Vo, Hoang V. Tran, Tho Tran Huu, An Nguyen The, Thanh Tran, Minh-Khoi Nguyen-Nhat,
Duy-Tung Pham, and Tan Minh Nguyen. Equivariant polynomial functional networks. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=eTDgECpQ2I.

15

https://api.semanticscholar.org/CorpusID:62245742
https://api.semanticscholar.org/CorpusID:62245742
https://openreview.net/forum?id=HJedXaEtvS
https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/577cd5863ec73be4e6871340be0936ae-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/577cd5863ec73be4e6871340be0936ae-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=eTDgECpQ2I
https://openreview.net/forum?id=eTDgECpQ2I

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly sym-
metric dynamics. In International Conference on Machine Learning, pp. 23078–23091. PMLR,
2022.

Shih-Hsin Wang, Yung-Chang Hsu, Justin Baker, Andrea L. Bertozzi, Jack Xin, and Bao Wang. Re-
thinking the benefits of steerable features in 3d equivariant graph neural networks. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=mGHJAyR8w0.

Zhiqiang Wu, Yingjie Liu, Licheng Sun, Jian Yang, Hanlin Dong, Shing-Ho J Lin, Xuan Tang,
Jinpeng Mi, Bo Jin, and Xian Wei. Relaxed rotational equivariance via g-biases in vision. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 8541–8549, 2025.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. CoRR, abs/1708.07747, 2017. URL http://arxiv.org/
abs/1708.07747.

Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J Zico
Kolter, and Chelsea Finn. Permutation equivariant neural functionals. Advances in Neural Infor-
mation Processing Systems, 36, 2024a.

Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J Zico Kolter,
and Chelsea Finn. Neural functional transformers. Advances in Neural Information Processing
Systems, 36, 2024b.

16

https://openreview.net/forum?id=mGHJAyR8w0
https://openreview.net/forum?id=mGHJAyR8w0
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

TABLE OF NOTATION

Θ Parameter space of the network
Wi Weight of feed forward neural network in layer i
bi Bias of feed forward neural network in layer i
Gn Monomial matrix of size n
h Number of head of Attention module
d Hidden dimension of the model
dh Hidden dimension of a head in the model
Dk Dimension of key/query vector in Attention module
WQ

i Weight of query matrix of head i
WK

i Weight of key matrix of head i
WV

i Weight of value matrix of head i
WO

i Weight of out projection matrix of head i
G Symmetric group of the weight space
σ() Relu activation
Sh Head permutation group action in Attention module
E() Equivariant layer
I() Invariant layer
Rd d-dimensional Euclidean space
⟨·, ·⟩ standard dot product
⊔ disjoint union
g element of group
GL(dh) General linear group of invertible dh × dh matrices

over R
α() Quasi-equivariant map
β() Equivariant map

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Supplement to “Quasi-Equivariant Metanetworks”
Table of Contents

A Quasi-Equivariant Metanetworks 18

A.1 On the Well-Definedness of the Quasi-Equivariance Property 18

A.2 Proof of Proposition 3.3 . 20

B Additional Details of Experiments 21

B.1 Details on Group Action Learning . 21

B.2 Predicting CNN Generalization . 22

B.3 Classifying implicit neural representations of images 23

B.4 Predicting Transformers Generalization . 24

B.5 Ablation on the MLP network for Group Action Learning 25

B.6 Experiments on Augmented AGNews-Transformers dataset 26

B.7 Analysis on the learned scaling . 26

B.8 Sensitivity of ϵ . 27

B.9 Weight space style editing . 28

A QUASI-EQUIVARIANT METANETWORKS

We provide theoretical guarantees together with rigorous proofs for the results stated in the main
paper.

A.1 ON THE WELL-DEFINEDNESS OF THE QUASI-EQUIVARIANCE PROPERTY

We now examine the well-definedness of the quasi-equivariance property, as stated in Remark 3.2.
Although the construction of quasi-equivariant maps discussed in this section is not used in our
implementation due to its inefficiency, we include the following analysis for completeness and for
potential future work, where one may wish to construct quasi-equivariant maps using this approach.

Setup. Let a group G act on a set Θ. Let a (possibly the same) group H act on a set X . A map
F : Θ ! X is called α–quasi–equivariant if there exists

α : G×Θ ! H (11)

such that for all g ∈ G and θ ∈ Θ,

F (gθ) = α(g, θ) · F (θ). (12)

When H = G and the group action of H on X is the given group action of G, this reduces to our
original formulation on quasi-equivariance.

Well-definedness across different representatives. The relation g1θ1 = g2θ2 gives two represen-
tations of the same point in Θ. Thus Equation (13) must produce the same value of F . A necessary
and sufficient condition on α is presented as follows.
Proposition A.1 (Normalized 1-cocycle condition). The following statements are equivalent:

1. For every choice of a section S ⊂ Θ meeting each G-orbit exactly once, and for every seed
map s : S ! X satisfying the stabilizer constraint (see Proposition A.2), there exists a
unique map F : Θ ! X obeying the quasi–equivariance relation

F (gθ) = α(g, θ) · F (θ), for all g ∈ G, θ ∈ Θ, (13)

such that F is independent of the choice of representative of a point in Θ.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2. The function α : G×Θ ! H satisfies, for all g1, g2 ∈ G and θ ∈ Θ,

α(e, θ) = eH , (14)
α(g1g2, θ) = α(g1, g2θ)α(g2, θ). (15)

Proof. The proof proceeds as follows.

Necessity. Fix g1, g2, θ. Using Equation (13) twice,

F (g1g2θ) = α(g1, g2θ) · F (g2θ) = α(g1, g2θ)α(g2, θ) · F (θ). (16)

On the other hand, applying Equation (13) once with g1g2 gives

F (g1g2θ) = α(g1g2, θ) · F (θ), (17)

so Equation (15) of 1-cocycle follows. Setting g = e in Equation (13) yields Equation (14) of
Normalization.

Sufficiency. Given any representative gθ0 of a point in the orbit of θ0, define F (gθ0) by Equa-
tion (13). If g1θ0 = g2θ0, then g−1

2 g1 ∈ Gθ0 and the cocycle identity implies the two definitions
coincide provided the stabilizer constraint in Proposition A.2 holds.

Stabilizers and orbit descent. Denote Gθ = {h ∈ G : hθ = θ}. The values of α on Gθ control
whether F is well-defined from orbit data alone.

Proposition A.2 (Stabilizer constraints). Assume Equations (14) and (15). Then for each θ and
h ∈ Gθ, one has

F (θ) = F (hθ) = α(h, θ) · F (θ). (18)

Hence F (θ) must lie in the fixed-point set

FixX
(
α(Gθ, θ)

)
= {x ∈ X : α(h, θ) · x = x for all h ∈ Gθ}. (19)

In particular:

• If F is required to be definable independently of any additional constraints on its values
(i.e., to descend to Θ/G without restricting the image), then a necessary and sufficient
condition is

α(h, θ) = eH for all h ∈ Gθ, θ ∈ Θ. (20)

• More generally, F (θ) is allowed to live in the moving fixed-point set above; then triviality
on stabilizers is not required, but the image of F is constrained.

Gauge/coboundary equivalence. Two quasi–equivariant structures related by a change of variables
in X are equivalent.

Proposition A.3 (Gauge transform and trivial class). Let β : Θ ! H . Define

αβ(g, θ) := β(gθ)α(g, θ)β(θ)−1, F β(θ) := β(θ) · F (θ). (21)

Then F satisfies Equation (13) with α if and only if F β satisfies Equation (13) with αβ . In particular,
if α is a coboundary, i.e.

α(g, θ) = β(gθ)β(θ)−1, (22)

then with F ′(θ) := β(θ)−1 · F (θ) one has the strict equivariance:

F ′(gθ) = F ′(θ) if H acts trivially, or (23)

F ′(gθ) = g · F ′(θ) if β is valued in G and H = G. (24)

Thus, normalized cocycles modulo coboundaries classify quasi–equivariant structures up to gauge
(a H1 of the transformation groupoid G⋉Θ with coefficients in H).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Regularity (topological/smooth settings). If Θ,X are topological (or smooth) spaces and the group
actions are continuous (or smooth), then to ensure F is continuous (or smooth) whenever the seed s
is, one additionally asks α(·, ·) to be continuous (or smooth) and the group actions to be continuous
(or smooth). The results above remain valid verbatim.

Conclusion. We have the following observations.

1. Strict equivariance. If α(g, θ) ≡ g (andH = Gwith the given action), then Equation (15)
is automatic and we recover the standard G–equivariance F (gθ) = g · F (θ).

2. Homomorphic twist. If α(g, θ) = ψ(g) for a homomorphism ψ : G ! H , then Equa-
tion (15) holds. To descend to orbits without image constraints one needs ψ(h) = eH for
all h ∈ Gθ and all θ (i.e., ψ trivial on all stabilizers).

3. Coboundary (gauge) case. If α(g, θ) = β(gθ)β(θ)−1, one can gauge to a strictly equiv-
ariant F ′ as in Proposition A.3.

To make sense of the quasi–equivariance relation F (gθ) = α(g, θ) · F (θ) independently of how a
point of Θ is represented, the essential structural requirement is that α be a normalized 1-cocycle on
the transformation groupoid G ⋉ Θ with values in H (Equations (14) and 15). Descent to the orbit
space without restricting the image of F additionally demands triviality on stabilizers. Up to gauge,
quasi–equivariant structures are classified by the corresponding first cohomology set; coboundaries
are precisely those that can be turned into strict equivariance by a change of variables.
Remark A.4. The three conclusions regarding the conditions on α serve as necessary requirements
for the existence of a map F satisfying

F (gθ) = α(g, θ)F (θ). (25)

A.2 PROOF OF PROPOSITION 3.3

In this section, we provide the proof for Proposition 3.3.

Proof of Proposition 3.3. We provide a proof of each part of the proposition.

Part 1. Assume φ and ψ are G-quasi-equivariant.

∀h ∈ G, ∀θ ∈ Θ, ∃h1 ∈ G : φ(hθ) = h1φ(θ). (26)

Then

∀h1 ∈ G, ∀ϑ ∈ Θ, ∃h2 ∈ G : ψ(h1ϑ) = h2ψ(ϑ). (27)

Taking ϑ = φ(θ),

∀h ∈ G, ∀θ ∈ Θ, ∃h2 ∈ G : ψ(φ(hθ)) = ψ(h1φ(θ)) = h2ψ(φ(θ)). (28)

Hence

∀h ∈ G, ∀θ ∈ Θ, ∃h2 ∈ G : (ψ ◦ φ)(hθ) = h2(ψ ◦ φ)(θ), (29)

so ψ ◦ φ is G-quasi-equivariant.

Part 2. Assume φ is G-quasi-equivariant and ψ is G-invariant:

∀h ∈ G, ∀θ ∈ Θ, ∃h1 ∈ G : φ(hθ) = h1φ(θ), (30)

and

∀k ∈ G, ∀ϑ ∈ Θ : ψ(kϑ) = ψ(ϑ). (31)

Taking k = h1 and ϑ = φ(θ),

∀h ∈ G, ∀θ ∈ Θ : ψ(φ(hθ)) = ψ(h1φ(θ)) = ψ(φ(θ)). (32)

Therefore

∀h ∈ G, ∀θ ∈ Θ : (ψ ◦ φ)(hθ) = (ψ ◦ φ)(θ), (33)

so ψ ◦ φ is G-invariant.

The proof is complete.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B ADDITIONAL DETAILS OF EXPERIMENTS

B.1 DETAILS ON GROUP ACTION LEARNING

We provide more details on building the process to learn group actions for two cases: MLP/CNN
and Transformers.

Our quasi-equivariant layer is designed in two stages: feature selection and group action learning.
The goal is to learn a group action (α) from network weights and biases, and then apply it to the
outputs of existing equivariant layers.

• Feature Selection: A straightforward approach is to flatten and concatenate weights and
biases, but this introduces excessive parameters and becomes infeasible for large networks.
To address this, inspired by STATNET (Unterthiner et al., 2020), we instead compute sta-
tistical features: mean, variance, and five quantiles (0, 0.25, 0.5, 0.75, 1) of weights and
biases. These features are concatenated into a compact representation that scales consis-
tently with network size while retaining essential information.

• Group Action Learning: We adopt a MLP to model the group action, tailored to the
underlying MLP or Transformer weight space. To encourage stability, the action is learned
around the identity. Inspired by Fourier analysis, where sine functions form basic signal
components, we introduce a structured noise mechanism: ã = sin(Wscalex + bscale) · ϵ +
{1n, In}, where Wscale and bscale are parameters of MLP, and ϵ is a small learnable factor.
This generates mild oscillations centered at unity, preserving the base equivariant behavior
while providing flexibility for improved learning.

Implementation of Quasi-Equivariant Layer for MLP/CNN weights. In MLPs and CNNs, our
goal is to learn a positive scale vector for each layer. The group action is applied to the output
dimensions of the weights and biases by scaling all neurons in the output dimension, while cor-
respondingly scaling the input dimension of the subsequent layer with the reciprocal value of the
scale.

To construct this, we first extract the weights and biases from the input network. For each layer,
we compute seven statistical features: the mean, variance, and five quantiles (0, 0.25, 0.5, 0.75, 1).
Features from weights and biases are concatenated, yielding a 14-dimensional representation per
layer. Aggregating across all layers produces a feature vector of size 14 · L, where L is the total
number of layers in the network.

The group action for each layer is parameterized as a positive scale vector of size Nout, where
Nout denotes the layer’s output dimension. We learn this vector using a Gated-MLP with hidden
dimension 32, assigning a separate network to each layer. To ensure stability and positivity, we
incorporate the structured noise mechanism described above. The resulting scale is then applied to
the final equivariant layer of the metanetwork (specifically, Monomial-NFN).

Implementation of Quasi-Equivariant Layer for Transformer weights. In Transformers, our
objective is to learn two invertible matrices, M and N , for each layer, representing the GL group
action applied to Wq,Wk,Wv, and Wo. Specifically, M is applied to the query and key matrices,
yielding WqM

T and WkM
−1. This ensures that the attention score remains unchanged, since

(WqM
T)(WkM

−1)T =WqW
T
k .

Similarly, N is applied to the value and output projection matrices, transforming them into WvN
and N−1Wo.

To construct these transformations, we extract all weights and biases from the input network:
Wq,Wk,Wv,Wo,WA, bA,WB , bB . For each layer, we compute seven statistical features—the
mean, variance, and five quantiles (0, 0.25, 0.5, 0.75, 1). Concatenating features from all weights
and biases gives a 56-dimensional representation per layer. Aggregating across L layers results in a
feature vector of size 56 · L.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The group action for each layer is parameterized as two invertible matrices of shape (D,D), where
D denotes the hidden dimension in attention, and each attention head has its own pair (M,N). To
learn these matrices, we employ an MLP with hidden dimension 32, assigning one network per layer.
The MLP maps the feature vector to nh ·D ·D, which is then reshaped into (nh, D,D). To guarantee
stability and numerical soundness, we apply the structured noise mechanism described above. This
procedure produces matrices that are invertible almost everywhere, allowing stable training. The
learned transformations are finally applied to the last equivariant layer of the metanetwork (specifi-
cally, Transformer-NFN).

On the design of quasi-equivariant layer. In the MLP/CNN case, the map α consists of two
parts: a constant map for the group Pn and a map for the group Rn

>0. To learn the latter map, we
construct a network that can translate from the weight space to a diagonal matrix in Rn

>0, which can
also be represented as a vector in Rn with all positive entries. We compute statistical features of
the weights, with shape D, to serve as input to the network. Therefore, the introduced network is
basically a MLP {Wscale, bscale} that maps from D ! n.

The formula sin(Wscalex+bscale)·ϵ+1n naturally relaxes the strict equivariance typically imposed in
metanetworks. By introducing a sine function, we allow the transformation to gently oscillate around
the identity, creating a smooth, controlled variation. This approach is inspired by Fourier analysis,
where sine waves naturally introduce periodic fluctuations, offering flexibility without disrupting
the overall structure. The small learnable parameter ϵ simply scales these oscillations, determining
how much relaxation to apply. This design provides a natural way to balance stability and flexibility,
enabling the model to remain expressive while avoiding the constraints of strict equivariance.

B.2 PREDICTING CNN GENERALIZATION

Dataset. The Small CNN Zoo provides a ReLU subset containing 6,050 samples for training and
1,513 for testing. To enlarge the dataset, we apply data augmentation with a factor of 2, generating
one additional variant for every original instance. This procedure yields an augmented ReLU subset
with 12,100 training examples and 3,026 test examples.

Baselines. We evaluate our model against five established baselines:

• STATNN (Unterthiner et al., 2020): extracts statistical features from network weights and
biases.

• Graph-NN (Kofinas et al., 2024): models network parameters as graphs and applies Graph
Neural Networks for processing.

• NP and HNP (Zhou et al., 2024a): integrate neuron permutation symmetries into neural
functional networks.

• Monomial-NFN (Tran et al., 2024): generalizes the action on weights from permutation
matrices to monomial matrices, incorporating scaling and sign-flip symmetries.

Model Configurations. Our Monomial-NFN Quasi extends Monomial-NFN, which follows the
architecture of Zhou et al. (2024a). The base model consists of three equivariant Monomial-NFN
layers with 16, 16, and 5 channels, each followed by a ReLU activation. In our variant, the fi-
nal Monomial-NFN layer is replaced with a Monomial-NFN Quasi layer, where a learned scale is
applied to the output of the standard Monomial-NFN layer.

The resulting weight-space features are then fed into an invariant Monomial-NFN layer with
Monomial-NFN pooling, which contains learnable parameters. This pooling layer normalizes the
weights along the hidden dimension and computes averages across rows (first layer), columns (last
layer), or both (intermediate layers). The pooled output is flattened and projected to R200, followed
by an MLP with two hidden layers and ReLU activations. Finally, the output is linearly mapped to
a scalar and passed through a sigmoid function.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 4: Number of parameters of all models for prediciting generalization task.

Model STATNN NP HNP Monomial-NFN Monomial-NFN large Monomial-NFN Quasi

Number of parameters 1.06M 2.03M 2.81M 0.25M 0.43 0.26M

Table 5: Hyperparameters for Monomial-NFN and Monomial-NFN an on predicting generalization
task.

Monomial-NFN dim MLP dim Loss Optimizer Learning rate Batch size Epoch

Monomial-NFN [16,16,5] 200 Binary cross-entropy Adam 0.001 8 50
Monomial-NFN large [20,20,5] 200 Binary cross-entropy Adam 0.001 8 50
Monomial-NFN Quasi [16,16,5 (quasi layer)] 200 Binary cross-entropy Adam 0.001 8 50

Training. We train the model with Binary Cross Entropy (BCE) loss for 50 epochs, applying early
stopping based on a validation threshold τ . On an A100 GPU, the full training process requires
approximately 35 minutes.

Other Baselines. For Graph-NN, we adopt the official implementation provided in (Kofinas
et al., 2024) (https://github.com/mkofinas/neural-graphs). The implementations of NP, HNP, and
Monomial-NFN follow the setups in (Zhou et al., 2024a) (https://github.com/AllanYangZhou/nfn)
and (Tran et al., 2024). For these models, we use three equivariant layers with channel sizes of 16,
16, and 5. The features extracted are processed through average pooling, and subsequently passed
into three MLP layers, each with a hidden size of 200. We provide the number of parameters and
hyperparameters in Table 4 and Table 5

B.3 CLASSIFYING IMPLICIT NEURAL REPRESENTATIONS OF IMAGES

Dataset. We employ the original INRs dataset, which includes three subsets: CIFAR-10, MNIST,
and Fashion-MNIST. Each image in these datasets is represented using a single SIREN model, as
described in Zhou et al. (2024a). Following the setup in Tran et al. (2024), no data augmentation is
applied. The numbers of training, validation, and test samples for each dataset are summarized in
Table 6.

Baselines. Follow (Zhou et al., 2024a; Tran et al., 2024), we compare our method against MLP,
NP, HNP, and Monomial-NFN. For baselines, we follow the architecture in Zhou et al. (2024a),
with a reduced hidden dimension (512 → 256) to mitigate overfitting. All baseline models and our
base model use a hidden dimension of 256. The hyperparameters of Monomial-NFN and the tuned
version is given in Table 7

Model Configurations. In these experiments, our architecture consists of two Monomial-NFN
layers with sine activations, followed by one Monomial-NFN Quasi layer with absolute activation.
The hidden dimensions for Monomial-NFN Quasi layers vary by dataset and are listed in Table 8.
We also provide the parameters count for all models in Table 9

The subsequent design follows the NP and HNP models of Zhou et al. (2024a). Specifically, we
apply a Gaussian Fourier transformation to encode the input with sine and cosine components, ex-
panding from one dimension to 256 dimensions. When using NP as the base layer, the features are
further processed by IOSinusoidalEncoding—a positional encoding tailored for NP—with a maxi-
mum frequency of 10 and six frequency bands. The encoded features are then passed through three
NP or HNP layers with ReLU activations, followed by average pooling. The pooled output is flat-
tened and fed into an MLP with two hidden layers of 1000 units each, also with ReLU activations.
Finally, the output is linearly projected to a scalar.

For the MNIST dataset, we insert a Channel Dropout layer (after each HNP ReLU activation) and
a Dropout layer (after each MLP ReLU activation), both with a dropout rate of 0.1. Training uses
Binary Cross Entropy (BCE) loss for 200,000 steps, which takes approximately 1 hour 50 minutes
on an A100 GPU.

23

https://github.com/mkofinas/neural-graphs
https://github.com/AllanYangZhou/nfn

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Dataset size for Classifying INRs task.

Train Validation Test

CIFAR-10 45000 5000 10000
MNIST 45000 5000 10000
Fashion-MNIST 45000 5000 20000

Table 7: Hyperparameters of Monomial-NFN and Monomial-NFN tuned (in parentheses) for each
dataset in Classify INRs task.

MNIST Fashion-MNIST CIFAR-10

Monomial-NFN hidden dim 64 (128) 64 (128) 16 (64)
Base model HNP NP HNP

Base model hidden dim 256 256 256
MLP hidden neurons 1000 500 1000

Dropout value 0.1 0 0
Learning rate 0.000075 0.0001 0.0001

Batch size 32 32 32
Number of training steps 200000 200000 200000

Loss function Binary cross-entropy Binary cross-entropy Binary cross-entropy

Table 8: Hyperparameters of Monomial-NFN Quasi for each dataset in Classify INRs task.

MNIST Fashion-MNIST CIFAR-10

Scale network hidden dim 32 32 32
Scale network weight initialization Xavier Xavier Xavier

Scale network ϵ initialization 0.01 0.01 0.01
Monomial-NFN hidden dim 64 64 16

Base model HNP NP HNP
Base model hidden dim 256 256 256

MLP hidden neurons 1000 500 1000
Dropout value 0.1 0 0
Learning rate 0.000075 0.0001 0.0001

Batch size 32 32 32
Number of training steps 200000 200000 200000

Loss function Binary cross-entropy Binary cross-entropy Binary cross-entropy

Table 9: Number of parameters of all models for classifying INRs task.

CIFAR-10 MNIST Fashion-MNIST

MLP 2M 2M 2M
NP 16M 15M 15M

HNP 42M 22M 22M
Monomial-NFN 16M 22M 20M

Monomial-NFN tuned 16.3M 22.3M 20.7M
Monomial-NFN Quasi (ours) 16.3M 22.2M 20.5M

B.4 PREDICTING TRANSFORMERS GENERALIZATION

Dataset. We use the Small Transformer Zoo dataset (Tran et al., 2025), which includes two sub-
sets: MNIST-Transformer and AGNews-Transformer. These datasets are generated by training
Transformer models on MNIST image classification and AGNews text classification tasks, while
varying key hyperparameters such as training fraction, dropout rate, learning rate, and weight ini-
tialization. In total, the zoo contains 62,756 models for MNIST-Transformer and 63,796 models for
AGNews-Transformer. Following the experimental setup in (Tran et al., 2025), we use the check-
points at epoch 75, corresponding to 15,689 models in MNIST-Transformer and 15,949 models in
AGNews-Transformer. The ratio of train, validation and test set is 0.7, 0.15, and 0.15, respectively.

Baselines. The baselines are implemented following (Tran et al., 2025). More specifically:

• MLP. For the MLP baseline, each network component is treated independently. The corre-
sponding weights are flattened and passed through dedicated MLPs: a single hidden layer

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Number of parameters for all models

Model MNIST-Transformers AGNews-Transformers

Transformer-NFN 1.812M 1.804M
Transformer-NFN large 2.857M 2.857M
Transformer-NFN quasi 1.894M 1.887M
MLP 0.933M 0.896M
STATNN 0.203M 0.168M

Table 11: Performance measured by Kendall’s τ of all models on AGNews-Transformers dataset. Uncertain-
ties indicate standard error over 5 runs.

Accuracy threshold
Quasi dim No threshold 20% 40% 60% 80%

Transformer-NFN - 0.910± 0.001 0.908± 0.001 0.897± 0.001 0.896± 0.001 0.890± 0.001

Transformer-NFN Quasi 8 0.911± 0.002 0.909± 0.001 0.897± 0.001 0.897± 0.002 0.891± 0.001
Transformer-NFN Quasi 16 0.913± 0.002 0.911± 0.001 0.901± 0.001 0.902± 0.002 0.894± 0.001
Transformer-NFN Quasi 32 0.914± 0.001 0.913± 0.002 0.901± 0.001 0.903± 0.002 0.896± 0.001
Transformer-NFN Quasi 64 0.913± 0.001 0.911± 0.001 0.899± 0.002 0.903± 0.002 0.894± 0.002

with 50 units is used for both the transformer block and the embedding, while the classifier
is modeled by a two-layer MLP with 50 units per layer. The outputs from these modules
are concatenated and further processed by a final MLP that produces the prediction.

• STATNN (Unterthiner et al., 2020). To adapt STATNN to transformer architectures, we
first compute statistical summaries from the weights of the query, key, value, and output
projections, together with the weights and biases of the two feedforward layers. These
features are concatenated and given as input to a one-layer MLP with 256 hidden units.
For the classifier, we retain the original STATNN feature extraction scheme, followed by
another MLP with 256 hidden units. The embedding is handled separately with a one-layer
MLP of 64 hidden units. The outputs from all three components are merged and passed
through a final single-layer MLP to obtain the prediction.

• XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and Random Forest
(Breiman, 2001). For tree-based approaches, we directly flatten all component weights
and use them as input features. Across all three models, we set the hyperparameters to a
maximum tree depth of 10, a minimum child weight of 50, and at most 256 leaves.

Model Configurations. Our approach is built on the Transformer-NFN backbone, with the
Transformer-NFN Quasi model consisting of three modules that process the weights of a transformer
network. The embedding and classifier components are modeled as MLPs with ReLU activations,
each applied independently to their respective inputs. The transformer block is handled separately
using an invariant architecture: several equivariant Transformer-NFN Quasi layers with ReLU acti-
vations are applied to the two MLP submodules of the block, and their outputs are passed through
an invariant polynomial Transformer-NFN layer. The resulting vectors from all components are
concatenated and processed by a final MLP with Sigmoid activation to produce the prediction.

In our experiments, the embedding module is implemented as a one-layer MLP with 10 hidden units,
while the classifier is a two-layer MLP, each with 10 hidden units. For the transformer block, we
use an equivariant Transformer-NFN Quasi layer with 10 hidden channels, followed by an invariant
Transformer-NFN layer and an MLP that generates a 10-dimensional output vector. These outputs
are concatenated and fed into a classification head to yield the final prediction.

B.5 ABLATION ON THE MLP NETWORK FOR GROUP ACTION LEARNING

Experiment Setup. To assess the robustness of the scale network, we conduct experiments by
systematically varying the hidden dimension of the MLPs. Our evaluation is carried out using the
Transformer-NFN Quasi architecture on the AGNews-Transformers dataset. In particular, we inves-
tigate the capacity of the model to learn the two invertible matrices M and N under different hidden
dimensions, specifically 8, 16, 32, and 64.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Results. Table 11 reports the performance of Transformer-NFN Quasi under different hidden di-
mensions of the scale network. Incorporating the quasi-equivariant layer consistently improves per-
formance, with gains increasing as the hidden dimension grows, and reaching the highest score at
32 dimensions. Based on this observation, we select a hidden dimension of 32 for the final model.

B.6 EXPERIMENTS ON AUGMENTED AGNEWS-TRANSFORMERS DATASET

Experiment Setup. We evaluate the robustness of Transformer-NFN Quasi under strong group ac-
tions in weight space, testing whether the quasi layer compromises architectural symmetry. Follow-
ing the setup in (Tran et al., 2025), we conduct experiments on the AGNews-Transformers dataset
augmented with the group action GU . Both training and test sets are 2-fold augmented: the original
weights are retained, and additional weights are generated by applying permutations and scaling
transformations to Transformer modules. The elements of M and N are uniformly sampled from
[−1, 1], [−10, 10], and [−100, 100].

Results. Table 12 summarizes the results. Transformer-NFN shows stable Kendall’s τ values
across all ranges of scaling, with a consistent score of 0.914. While our model does not gain from
increasingly large augmentation scales, its performance remains steady, highlighting the balanced
trade-off of Transformer-NFN Quasi: it enhances the expressiveness of the base model while pre-
serving its inherent symmetry.

Table 12: Performance measured by Kendall’s τ of all models on augmented AGNews-Transformers
dataset using the group action GU . Uncertainties indicate standard error over 5 runs.

Original [−1, 1] [−10, 10] [−100, 100]

XGBoost 0.859± 0.001 0.799± 0.003 0.800± 0.001 0.802± 0.003
LightGBM 0.835± 0.001 0.785± 0.003 0.784± 0.003 0.786± 0.004
Random Forest 0.774± 0.003 0.714± 0.001 0.715± 0.002 0.716± 0.002
MLP 0.879± 0.006 0.830± 0.002 0.833± 0.002 0.833± 0.005
STATNN 0.841± 0.002 0.793± 0.003 0.791± 0.003 0.771± 0.013

Transformer-NFN 0.910± 0.001 0.912± 0.001 0.912± 0.002 0.913± 0.001
Transformer-NFN Quasi 0.914± 0.001 0.914± 0.002 0.914± 0.002 0.914± 0.002

B.7 ANALYSIS ON THE LEARNED SCALING

Experiment Setup. To analyze the sensitivity of ϵ and the learned scaling (sin(γ(θ)) · ϵ + 1n)
in MLP/CNN case, we conduct experiments on the task of Predicting CNN Generalization. We
introduce learned scale layers (with corresponding ϵ) on top of Monomial-NFN equivariant layers
and explore two cases: one with a fixed ϵ and one with a learnable ϵ. The results are presented in
Table 13. The table reports the following values:

• Initial ϵ: The initial value of ϵ
• Learnable/Fixed: How ϵ changes during training
• Final ϵ: The final value of the first layer ϵ after training
• Learned scale: The first layer learned scaling (sin(Wscalex+ bscale) · ϵ+ 1n)
• Kendall’s τ : Evaluation metric (Higher is better)

Results. When ϵ is fixed at a small value, the learned scaling slightly deviates from the identity,
resulting in marginal performance gains. However, when ϵ is learnable, the learned scaling can
deviate further from the identity, leading to a broader scaling range that enhances performance.
Additionally, when ϵ is learnable, the final ϵ values tend to converge, regardless of their initial
values. For larger values of ϵ, instability may arise due to significant deviations in the early steps.
Consequently, in our study, we choose a learnable ϵ with an initial value of 0.01 to ensure training
stability.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 13: Analysis on the learned scaling with varying ϵ

Initial ϵ Learnable/Fixed Final ϵ Learned scale Kendall’s τ

0 (Baseline) - - - 0.922
0.001 Fixed 0.001 1.000± 0.001 0.922
0.01 Fixed 0.01 0.999± 0.007 0.923
0.1 Fixed 0.1 1.003± 0.079 0.923
0.2 Fixed 0.2 0.933± 0.135 0.923
0.4 Fixed 0.4 0.972± 0.378 0.924

0.001 Learnable 0.966 0.796± 0.668 0.925
0.01 Learnable 0.970 0.941± 0.710 0.926
0.1 Learnable 0.971 0.918± 0.758 0.926
0.2 Learnable 0.946 0.743± 0.626 0.925
0.4 Learnable 0.988 0.762± 0.624 0.925

B.8 SENSITIVITY OF ϵ

Experiment Setup. We present an ablation study on the sensitivity of ϵ by conducting the ”Pre-
dict Transformer Generalization” experiment on the MNIST-Transformer dataset. Specifically, we
analyze two cases: when ϵ is learnable versus fixed, and report the performance alongside statistics
of learned noises (sin(γ(θ)) · ϵ) for the matrices M and N , which represent the two GL group ac-
tions applied to the weights of the MHA layer. For each noise, we compute the mean and standard
deviation of the diagonal and off-diagonal elements. The results are summarized in Table 14. The
table reports the following values:

• Initial ϵ: The initial value of ϵ for both M and N .

• Learnable/Fixed: Whether ϵ is changed during training.

• Final ϵM , ϵN : The final value of ϵ after training.

• DiagonalM , N : Mean and standard deviation of the learned noises sin(γ(θ)) ·ϵ forM and
N , computed for diagonal elements.

• Off-diagonal M , N : Mean and standard deviation of the learned noises sin(γ(θ)) · ϵ for M
and N , computed for off-diagonal elements.

• Kendall’s τ : Evaluation metric (higher is better).

Table 14: Ablation study on ϵ with metrics for M and N.

Initial ϵ Type Final ϵM Final ϵN Diagonal M Off-diagonal M Diagonal N Off-diagonal N Kendall’s τ

Baseline - - - - - - - 0.905
0.001 Fixed 0.001 0.001 0.000± 0.000 0.062± 0.242 0.000± 0.000 0.063± 0.242 0.909
0.01 Fixed 0.01 0.01 0.001± 0.002 0.062± 0.242 −0.001± 0.005 0.062± 0.242 0.909
0.1 Fixed 0.1 0.1 0.005± 0.020 0.062± 0.245 −0.038± 0.065 0.061± 0.244 0.907
0.2 Fixed 0.2 0.2 0.010± 0.040 0.061± 0.249 −0.002± 0.144 0.059± 0.285 0.910
0.4 Fixed 0.4 0.4 0.021± 0.080 0.060± 0.265 −0.055± 0.221 0.073± 0.323 0.909

0.001 Learnable 0.001 -0.187 0.000± 0.000 0.063± 0.242 −0.068± 0.117 0.059± 0.260 0.908
0.01 Learnable 0.010 0.182 0.001± 0.002 0.062± 0.241 −0.056± 0.084 0.061± 0.244 0.911
0.1 Learnable 0.099 0.234 0.005± 0.020 0.062± 0.245 −0.085± 0.114 0.060± 0.250 0.910
0.2 Learnable 0.200 0.290 0.010± 0.040 0.061± 0.249 −0.011± 0.218 0.062± 0.316 0.909
0.4 Learnable 0.400 0.298 0.021± 0.079 0.060± 0.265 −0.011± 0.179 0.065± 0.298 0.909

Results. When the GL group is learned through our quasi-equivariant layers, the off-diagonal
elements provide additional flexibility, leading to a noticeable improvement in performance even
with a fixed ϵ. With a learnable ϵ, the range of values for N expands and become more stable,
resulting in better predictive performance. Overall, this study suggests that increasing the relaxation

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

through ϵ can enhance performance. For our experiments, we select a learnable ϵ with an initial
value of 0.01 to ensure the training stability.

B.9 WEIGHT SPACE STYLE EDITING

Experiment Setup. In this experiment, we focus on modifying the image content encoded in each
SIREN model (Sitzmann et al., 2020) by adjusting its weights. Specifically, we leverage pretrained
models from (Zhou et al., 2024a), which encode images from the CIFAR-10 and MNIST datasets.
The experimental setup follows the approach described in (Zhou et al., 2024a; Tran et al., 2024).
Our main goal is to explore two tasks that involve altering the embedded information within the
SIREN model: first, enhancing the contrast of CIFAR-10 images, and second, applying dilation to
MNIST images.

To evaluate the effectiveness of these modifications, we compute the mean squared error (MSE) loss
between the images encoded by the modified SIREN network and the corresponding ground truth
images, which have undergone contrast enhancement for CIFAR-10 and dilation for MNIST. The
baseline for comparison is the Monomial-NFN model (Tran et al., 2024), which is already a highly
optimized version. In this case, further increasing the parameters does not lead to a noticeable
improvement in performance, serving as a useful benchmark for our experiments. The results from
these tasks are summarized in Table 15.

Table 15: Weight space style editing (INRs editing)

Model Contrast (CIFAR-10) Dilate (MNIST)

MLP 0.031± 0.001 0.306± 0.001
HNP (Zhou et al., 2024a) 0.021± 0.001 0.071± 0.001
NP (Zhou et al., 2024a) 0.020± 0.002 0.068± 0.002
Monomial-NFN (Tran et al., 2024) 0.020± 0.001 0.069± 0.002
Monomial-NFN Quasi (1% params ++) 0.019± 0.001 0.066± 0.001

Results. In this task, Monomial-NFN model initially underperforms compared to the NP model.
However, by incorporating our newly introduced Quasi layer, which adds only 1% more param-
eters, we are able to significantly improve the performance of the Monomial-NFN model. This
enhancement allows it to surpass the performance of the NP baseline in both tasks, demonstrating
the effectiveness of our approach with minimal increase in model complexity.

28

	Introduction
	Preliminaries on Equivariant Metanetworks
	Parameter Space of a Parameterized Function and Its Symmetry Group
	On the Role of Equivariance in Metanetworks

	Is Strict Equivariance Necessary for Metanetwork?
	Quasi-Equivariant Metanetworks
	A General Framework for the Design of Quasi-Equivariant Metanetworks
	The Case of Feedforward and Convolutional Neural Networks
	The Case of Multihead Attention

	Experiments
	Predicting CNN Generalization
	Classifying implicit neural representations of images
	Predicting Transformers Generalization

	Conclusions, Limitations, and Future Directions
	Quasi-Equivariant Metanetworks
	On the Well-Definedness of the Quasi-Equivariance Property
	Proof of Proposition 3.3

	Additional Details of Experiments
	Details on Group Action Learning
	Predicting CNN Generalization
	Classifying implicit neural representations of images
	Predicting Transformers Generalization
	Ablation on the MLP network for Group Action Learning
	Experiments on Augmented AGNews-Transformers dataset
	Analysis on the learned scaling
	Sensitivity of
	Weight space style editing

