

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

QUASI-EQUIVARIANT METANETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Metanetworks are neural architectures designed to operate directly on pretrained weights to perform downstream tasks. However, the parameter space serves only as a proxy for the underlying function class, and the parameter-function mapping is inherently non-injective: distinct parameter configurations may yield identical input-output behaviors. As a result, metanetworks that rely solely on raw parameters risk overlooking the intrinsic symmetries of the architecture. Reasoning about functional identity is therefore essential for effective metanetwork design, motivating the development of equivariant metanetworks, which incorporate equivariance principles to respect architectural symmetries. Existing approaches, however, typically enforce strict equivariance, which imposes rigid constraints and often leads to sparse and less expressive models. To address this limitation, we introduce the novel concept of quasi-equivariance, which allows metanetworks to move beyond the rigidity of strict equivariance while still preserving functional identity. We lay down a principled basis for this framework and demonstrate its broad applicability across diverse neural architectures, including feedforward, convolutional, and transformer networks. Through empirical evaluation, we show that quasi-equivariant metanetworks achieve good trade-offs between symmetry preservation and representational expressivity. These findings advance the theoretical understanding of weight-space learning and provide a principled foundation for the design of more expressive and functionally robust metanetworks.

1 INTRODUCTION

Modern problem-solving increasingly relies on neural networks, which encode vast amounts of information within their trainable parameters during learning, ranging the application from computer vision (Huang et al., 2020; Krizhevsky et al., 2012; He et al., 2015), natural language processing (Vaswani et al., 2017; Rumelhart et al., 1986; Hochreiter & Schmidhuber, 1997; DeepSeek-AI et al., 2025), and nature science (Raissi et al., 2019; Jumper et al., 2021). While these parameters capture rich knowledge, accessing and interpreting it remains a challenge.

Metanetworks. Metanetworks were introduced to analyze and process other neural networks by treating their weights, gradients, and sparsity patterns as structured inputs. Early work focused on evaluating their generalization and revealing properties of neural network behavior (Baker et al., 2018; Eilertsen et al.; Unterthiner et al., 2020; Schürholz et al., 2021; 2022a;b). Common strategies include flattening parameters or extracting statistics before feeding them into multi-layer perceptrons (MLPs) (Unterthiner et al., 2020; Dupont et al., 2022; Luigi et al.). Beyond these foundations, metanetworks have been applied to extracting structure from implicit representations (Müller et al., 2023; Stanley, 2007; Mildenhall et al., 2021), developing learnable optimizers (Bengio et al., 2013; Runarsson & Jonsson, 2000; Andrychowicz et al., 2016; Metz et al., 2022), performing model editing (Sinitzin et al., 2020; Cao et al., 2021; Mitchell et al., 2022), evaluating policies (Harb et al., 2020), and enabling Bayesian inference (Sokota et al., 2021). Nevertheless, designing metanetworks remains challenging due to the complexity and high dimensionality of the underlying structures.

Functional Equivalence. A major challenge in designing metanetworks lies on how to capture functional equivalence - the fact that multiple distinct parameter configurations can realize the same input-output function (Allen-Zhu et al., 2019; Belkin et al., 2019; Du et al., 2019; Frankle & Carbin, 2019; Novak et al., 2018). This problem was first posed by Hecht-Nielsen (Hecht-Nielsen, 1990). A key observation is that swapping two hidden units in an MLP leaves its input-output mapping unchanged, provided their outgoing connections are permuted accordingly (Allen-Zhu et al., 2019;

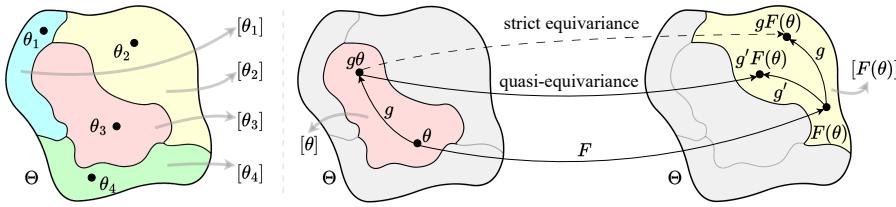


Figure 1: (Left) Illustration of the partition of parameter space into functional equivalence classes. (Right) Illustration of the quasi-equivariance property and its distinction from strict equivariance.

Du et al., 2019; Frankle & Carbin, 2018; Belkin et al., 2019; Neyshabur et al., 2018). For the same class of MLPs, Fefferman & Markel (1993) established a stronger result: the input–output mapping of an MLP with tanh activations uniquely determines both its architecture and its weights, up to permutations and sign flips. Subsequent work extended these identifiability results to broader MLP settings (Albertini & Sontag, 1993b;a; Mai & Lampert, 2020; Chen et al., 1993; Kurkova & Kainen, 1994) and, in parallel, to convolutional neural networks (CNNs) (Brea et al., 2019; Novak et al., 2018; Mai & Lampert, 2020; Tran et al., 2024; Vo et al., 2025).

Equivariant Metanetworks. Building on the insight from permutation invariance in neural networks, researchers have developed permutation-equivariant metanetworks (Navon et al., 2023; Zhou et al., 2024a; Kofinas et al., 2024; Zhou et al., 2024b), which naturally account for neuron reordering within hidden layers. More recent architectures extend beyond permutation equivariance by incorporating additional symmetries such as scaling and sign changes (Kalogeropoulos et al., 2024; Tran et al., 2024; Vo et al., 2025). Furthermore, recent works (Tran et al., 2025; Knyazev et al., 2024) have characterized the maximal symmetry group of multihead attention and established necessary and sufficient conditions for functional equivalence, offering new insights into the structural properties of Transformer weights.

Despite advances in metanetwork design, most approaches enforce strict equivariance at the level of individual weights. However, the true goal is not to preserve the weights themselves, but to capture the *functions* they implement—that is, to respect the *functional equivalence classes* defined by the parameters. In this context, relaxed or approximate equivariance has emerged in deep learning to handle imperfect symmetries in real-world data. Early approaches include weight-relaxed convolutions (Wang et al., 2022), soft constraints via multitask losses (Elhag et al., 2024; Pertigkiozoglou et al., 2024), G-biases for group convolutions (Wu et al., 2025), and extensions to E(3)-equivariant graph networks (Hofgard et al., 2024). On the theoretical side, Kaba & Ravanbakhsh (2023b) and Huang et al. (2022) formalized relaxed equivariance and analyzed its bias–variance trade-offs. Together, these insights motivate a class of metanetwork architectures that relax strict weight-level equivariance, enabling more flexible representations of functional symmetries.

Contributions. Building on this motivation, we introduce a framework for *quasi-equivariant metanetworks*—a novel paradigm that relaxes strict equivariance to balance symmetry preservation with representational flexibility. The paper is organized as follows:

1. In Section 2, we examine the parameter space of a parameterized function, characterize its associated symmetry group, and introduce the formal notion of maximality within symmetry groups, establishing a direct connection to Functional Equivalence.
2. In Section 3, we examine the sufficiency of strict equivariance for metanetwork design. Building on this, we introduce quasi-equivariance, which enables metanetworks to overcome the limitations of strict equivariance while still maintaining functional identity.
3. In Section 4, we present a general framework for quasi-equivariant metanetworks and demonstrate its application to feedforward neural networks and multihead attention.
4. In Section 5, we integrate the framework into existing metanetworks. Experiments on multiple metanetwork benchmarks show that this layer enhances performance considerably while incurring only a slight increase in the number of parameters.

Supplementary materials, including a comprehensive notation table, theoretical derivations, detailed proofs, and experimental setups, are provided in the Appendix.

108

2 PRELIMINARIES ON EQUIVARIANT METANETWORKS

109

110 In this section, we present the details of the parameter space of a parameterized function, its asso-
111 ciated symmetry group, and introduce the formal notion of maximality in symmetry groups, which
112 connects directly to the concept of Functional Equivalence (FE).
113

114

2.1 PARAMETER SPACE OF A PARAMETERIZED FUNCTION AND ITS SYMMETRY GROUP

115

116 **Parameter space.** Let $f(\cdot; \theta)$ be a function parameterized by $\theta \in \Theta = \mathbb{R}^{\dim}$. The set Θ is called the
117 *parameter space* (or *weight space*) of f . Assume a group G acts on Θ . For each $\theta \in \Theta$, we define
118 the set of parameter vectors that yield functionally equivalent models:

119
$$[\theta] := \{\bar{\theta} \in \Theta \mid f(\cdot; \bar{\theta}) = f(\cdot; \theta)\} \subseteq \Theta. \quad (1)$$
120

121 The parameter space serves merely as a proxy for the function class, and the mapping $\theta \mapsto f(\cdot; \theta)$ is
122 non-injective, as distinct parameter configurations can yield identical behaviors. This phenomenon
123 is illustrated in Figure 1. FE thus focuses on characterizing the sets $[\theta]$. Explicitly enumerating all
124 such sets is impractical. A more systematic approach is to view these equivalence classes as orbits
125 under a group action on Θ , naturally leading to the notion of the *symmetry group* of f .

126 **Symmetry group.** Consider a group G acting on the space Θ . For $\theta \in \Theta$, the G -orbit of θ is defined
127 as $G\theta := \{g\theta \mid g \in G\} \subseteq \Theta$. We now introduce the following definition.

128 **Definition 2.1** (Symmetry Group). A group G is called a *symmetry group* of the function f if
129 $G\theta \subseteq [\theta]$ for all $\theta \in \Theta$. Equivalently, for every $g \in G$ and $\theta \in \Theta$, one has $f(\cdot; g\theta) = f(\cdot; \theta)$.

131 The phrase “a symmetry group” acknowledges that multiple such groups may exist. In particu-
132 lar, every subgroup of a symmetry group is itself a symmetry group. Our goal is to represent the
133 equivalence classes $[\theta]$ using G -orbits. To build intuition, we present two following observations.

134 *First observation.* Consider the function $f(\cdot; a, b): \mathbb{R} \rightarrow \mathbb{R}$, defined by $x \mapsto abx$, parameterized
135 by $\theta = (a, b) \in \mathbb{R}^2 = \Theta$. It is straightforward to see that (a, b) and (\bar{a}, \bar{b}) yield the same function
136 if and only if $ab = \bar{a}\bar{b}$. This naturally suggests the following group action: let \mathbb{R}^\times denote the
137 multiplicative group of nonzero real numbers. Define the action of $c \in \mathbb{R}^\times$ on $(a, b) \in \mathbb{R}^2$ by
138 $c \cdot (a, b) \mapsto (ac, c^{-1}b)$. It is straightforward to verify that \mathbb{R}^\times is a symmetry group of f . However,
139 it does not fully capture the equivalence classes. Indeed, for $(a, b) \in \mathbb{R}^2$ with $ab \neq 0$, one has

140
$$[(a, b)] = \{(\bar{a}, \bar{b}) \in \mathbb{R}^2 \mid ab = \bar{a}\bar{b}\} = \{(ac, c^{-1}b) \mid c \in \mathbb{R}^\times\} = \mathbb{R}^\times(a, b). \quad (2)$$
141

142 In contrast, for $(a, b) \in \mathbb{R}^2$ with $ab = 0$, one obtains $[(a, b)] = \mathbb{R}^\times(1, 0) \sqcup \mathbb{R}^\times(0, 1) \sqcup \mathbb{R}^\times(0, 0)$.
143 Thus, while \mathbb{R}^\times almost completely describes the functional partition, it fails on the degenerate subset
144 of the parameter space where $ab = 0$. It is difficult to identify a larger natural group that extends the
145 action to cover these exceptional cases.

146 *Second observation.* Classical group theory ensures that any partition of a set can be realized as the
147 orbit decomposition of some group action. Accordingly, there always exists a group G and an action
148 of G on Θ such that the G -orbits match the functional partition. However, constructing such a group
149 typically requires explicit mappings, which are often intractable and impractical. In the context of
150 parameterized models, where Θ is a finite-dimensional real space, it is natural to focus on group
151 actions arising from standard operators such as addition, multiplication, or permutation.

152 These observations present a trade-off: the *tractability* of the group and its action versus the *descrip-
153 tive capacity* of the functional partition, motivating the notion of maximality of symmetry groups.

154 **Maximal symmetry group.** The above observations lead to the following intuitive and informal
155 description of a maximal symmetry group:

157 *Under generic parameters, the symmetry group G captures all functional equivalences,
158 up to a sufficiently small exceptional set.*

160 In other words, let ε denote a sufficiently small subset of Θ , and consider the restricted domain
161 $\Theta \setminus \varepsilon$. The group action of G on Θ restricts naturally to $\Theta \setminus \varepsilon$. Then, for all $\theta, \bar{\theta} \in \Theta \setminus \varepsilon$ such that
 $f(\cdot; \theta) = f(\cdot; \bar{\theta})$, there exists $g \in G$ with $\bar{\theta} = g\theta$. Hence, although there may exist parameters in

162 Θ for which G does not capture FE, this exceptional set is negligible, and G may still be regarded
 163 as characterizing FE of Θ . The subset ε is typically taken to coincide with the zero set of finitely
 164 many nonzero polynomials, that is, a proper real algebraic variety, consistent with prior work on FE
 165 in neural architectures (Hecht-Nielsen, 1990; Fefferman & Markel, 1993; Mai & Lampert, 2020).

166 **Definition 2.2** (Maximal symmetry group). A symmetry group G is said to be *maximal* if there exists
 167 a proper real algebraic variety $\varepsilon \subsetneq \Theta$ such that, for all $\theta, \bar{\theta} \in \Theta \setminus \varepsilon$, whenever $f(\cdot; \theta) = f(\cdot; \bar{\theta})$, there
 168 exists $g \in G$ with $\bar{\theta} = g\theta$.

169 **Remark 2.3.** In the above observation on $f(\cdot; a, b)$, let $\varepsilon = \{(a, b) \in \mathbb{R}^2 : ab = 0\}$. Then ε is a
 170 proper real algebraic variety, and the group \mathbb{R}^\times serves as a maximal symmetry group of f .
 171

172 In the next section, we demonstrate that this notion of maximality coincides with prior analyses of
 173 FE in feedforward and convolutional neural networks, as well as in multihead attention.

175 2.2 ON THE ROLE OF EQUIVARIANCE IN METANETWORKS

176 A *metanetwork* is a map $F: \Theta \rightarrow \mathcal{X}$ that takes as input the parameters of a model. Depending on
 177 the application, F may return another element of Θ (as in network editing tasks) or a vector in \mathbb{R}^d
 178 for some integer d (as in prediction tasks). The fundamental objective is to determine whether the
 179 parameters of a model contain sufficient information to reveal properties of the function realized
 180 by the model itself. Since F receives θ as input, it is natural to require that F depend only on the
 181 underlying function represented by θ , rather than on the particular parameterization. Equivalently,
 182 the input of F should be the equivalence class $[\theta]$, as all elements of $[\theta]$ define the same function. It
 183 would be undesirable for $F(\theta)$ and $F(\bar{\theta})$ to produce incompatible outcomes whenever $[\theta] = [\bar{\theta}]$.

184 A principled approach to this requirement is to impose equivariance or invariance with respect to a
 185 symmetry group G . In particular, suppose $F: \Theta \rightarrow \Theta$ is G -equivariant. By definition, this means

$$187 \quad F(g\theta) = gF(\theta), \quad \text{for all } g \in G, \theta \in \Theta. \quad (3)$$

188 Consequently, the equivalence classes are preserved in the sense that $[F(g\theta)] = [gF(\theta)] = [F(\theta)]$,
 189 thereby ensuring consistency across parameterizations that correspond to the same function. If G
 190 is a maximal symmetry group of the underlying model, such equivariance is sufficient to guarantee
 191 that F operates solely on the functional content of θ . This observation underscores the importance
 192 of characterizing the maximal symmetry group—equivalently, of understanding FE—as a prerequisite
 193 for the systematic study of equivariant metanetworks.

194 3 IS STRICT EQUIVARIANCE NECESSARY FOR METANETWORK?

195 As discussed in Section 2.2, equivariance provides a principled mechanism for preserving the func-
 196 tional behavior of input networks. Nevertheless, equivariance should be regarded as a *sufficient*
 197 condition for such preservation, rather than a necessary one. This naturally leads to the question:

200 *Is strict equivariance necessary for metanetworks?*

201 We now introduce a broader notion, namely quasi-equivariance. Throughout the remainder of the
 202 paper, let G denote the maximal symmetry group, and let F denote a metanetwork map.

203 **Quasi-equivariance.** We first address equivariance, deferring the discussion of invariance to a later
 204 stage. The requirement of functionality preservation for a map $F: \Theta \rightarrow \Theta$ can be stated as follows:
 205 for all $\bar{\theta} \in [\theta]$, one requires that $F(\bar{\theta}) \in [F(\theta)]$. By the maximality of G , the condition $\bar{\theta} \in [\theta]$
 206 implies that there exists $g \in G$ such that $\bar{\theta} = g\theta$. The same holds for $F(\theta)$ and $F(\bar{\theta})$. Consequently,
 207 the above requirement can be reformulated, motivating the following definition.

208 **Definition 3.1** (Quasi-equivariance). A map $F: \Theta \rightarrow \Theta$ is said to be G -quasi-equivariant if, for all
 209 $g \in G$ and $\theta \in \Theta$, there exists $g' = g'(\theta, g) \in G$ such that $F(g\theta) = g'F(\theta)$.

210 The notation $g' = g'(\theta, g)$ emphasizes that g' may depend on both g and θ . Figure 1 illustrates the
 211 quasi-equivariance property. By definition, every G -equivariant map is also G -quasi-equivariant.
 212 Moreover, G -quasi-equivariance ensures functionality preservation. Given the maximality of G
 213 (Definition 2.2), it provides a *necessary and sufficient* condition for a map to preserve functionality.
 214 Indeed, for $\theta, \bar{\theta} \in \Theta$ such that $[\theta] = [\bar{\theta}]$, one has $\bar{\theta} = g\theta$ for some $g \in G$. Thus, $F(\bar{\theta}) = F(g\theta) =$
 215 $g'F(\theta)$ for some $g' \in G$. Therefore, $[F(\bar{\theta})] = [g'F(\theta)] = [F(\theta)]$.

216 **Remark 3.2.** A natural question is how to construct a map F that satisfies the quasi-equivariant
 217 property. By Definition 3.1, one natural attempt is to first choose an arbitrary group-valued function
 218 $\alpha : G \times \Theta \rightarrow G$ and then solve for a map $F : \Theta \rightarrow \Theta$ satisfying $F(g\theta) = \alpha(g, \theta) F(\theta)$. However,
 219 for a general choice of α , such an F does not exist. Appendix A.1 provides the necessary conditions
 220 on α under which at least one corresponding F can exist. Although this approach is theoretically
 221 motivated, it is not practical for constructing metanetworks. Therefore, in Section 4, we will present
 222 a more effective and implementable design for F .

223 **Invariance.** For invariance, introducing a quasi-version is unnecessary. Indeed, to ensure that a
 224 map $F : \Theta \rightarrow \mathcal{X}$ preserves functionality, it suffices to require $F(\bar{\theta}) = F(\theta)$, which is equivalent to
 225 $F(g\theta) = F(\theta)$. Hence, strict invariance is necessary.

226 **Properties.** In practice, equivariant and invariant metanetworks are constructed by stacking equiv-
 227 ariant and invariant layers on top of one another, in the same manner as deep models are typically
 228 built. This construction relies on standard closure properties: the composition of two equivariant
 229 maps is equivariant, and the composition of an equivariant map with an invariant map is invariant.
 230 For quasi-equivariance, analogous properties hold, as stated in the following result.

231 **Proposition 3.3** (Composition). *Let $\varphi, \psi : \Theta \rightarrow \Theta$ be maps. Then:*

232

- 233 1. *If both φ and ψ are G -quasi-equivariant, then $\psi \circ \varphi$ is G -quasi-equivariant.*
- 234 2. *If φ is G -quasi-equivariant and ψ is G -invariant, then $\psi \circ \varphi$ is G -invariant.*

235 The assumption that $\varphi, \psi : \Theta \rightarrow \Theta$ is made for notational simplicity. In fact, the results remain valid
 236 if Θ is replaced by any domain on which the notions of G -quasi-equivariance and G -invariance are
 237 well-defined. The proof of Proposition 3.3 is provided in Appendix A.2.

238 **Remark 3.4** (Comparison with relaxed notions of equivariance in the literature). In [Kaba & Ravan-](#)
 239 [bakhsh \(2023a\)](#), the notion of *relaxed equivariance* is introduced. Given a group G acting on \mathcal{X} and
 240 \mathcal{Y} , a map $\varphi : \mathcal{X} \rightarrow \mathcal{Y}$ is said to satisfy relaxed equivariance if, for all $g \in G$ and $x \in \mathcal{X}$, there exists
 241 $g' \in gG_x$ —with G_x the stabilizer subgroup of x —such that $\varphi(gx) = g'\varphi(x)$. This definition is natu-
 242 rally subsumed under the broader notion of quasi-equivariance given in Definition 3.1. Other works,
 243 such as [Wang et al. \(2024\)](#), employ a related but distinct perspective, where relaxed equivariance is
 244 interpreted as an approximation to strict equivariance, namely $\varphi(gx) \approx g\varphi(x)$.

247 4 QUASI-EQUIVARIANT METANETWORKS

248 In this section, we establish a general framework for quasi-equivariant metanetworks and subse-
 249 quently apply it to feedforward neural networks and multihead attention.

250 4.1 A GENERAL FRAMEWORK FOR THE DESIGN OF QUASI-EQUIVARIANT METANETWORKS

251 Given the notation f , θ , Θ , and G from the previous section, we focus on constructing G -quasi-
 252 equivariant networks. The invariant case is immediate, since it can be obtained by stacking an
 253 invariant layer on top of an equivariant backbone, as observed in Proposition 3.3.

254 A G -quasi-equivariant layer is defined as follows. Let $\alpha : \Theta \rightarrow G$ be a map into the group, and let
 255 $\beta : \Theta \rightarrow \Theta$ be an equivariant map. Define

$$256 \quad F : \Theta \rightarrow \Theta, \quad F(\theta) := \alpha(\theta)\beta(\theta). \quad (4)$$

257 By construction, F is G -quasi-equivariant. In this framework, the design of β follows directly
 258 from prior work on equivariant metanetworks. The central task is therefore to construct α so that it
 259 outputs group elements of G . This extension is motivated by the observation that strict equivariance
 260 is not necessary for metanetworks, and that enforcing it often yields sparse models due to the strong
 261 constraints imposed on the network weights. By introducing α , we aim to relax these constraints,
 262 thereby improving both the expressivity and performance of metanetworks.

263 We now examine several representative cases of G , assuming α is continuous. In machine learning,
 264 continuity—and in practice differentiability—is essential for gradient-based optimization via back-
 265 propagation. The parameterized maps f considered here will primarily be feedforward networks,

270 convolutional neural networks, and multihead attention modules, as these are the predominant ar-
 271 chitectures in existing datasets of pretrained weights.

272 **Remark 4.1.** In the instances considered in the next part, the group G , although a group, can also
 273 be embedded into \mathbb{R}^n for some n . In this setting, the group-valued map $\alpha: \Theta \rightarrow G$ may be regarded
 274 as continuous. We then recall the classical fact that the continuous image of a connected space is
 275 connected. Since $\Theta = \mathbb{R}^d$ is connected, the image $\alpha(\Theta)$ must also be connected. Consequently, if
 276 G is discrete, α must be constant. This observation will be useful in the next part: when G contains
 277 a discrete component (such as permutations), any continuous α cannot meaningfully vary over Θ .
 278 Hence, the discrete part of G can be ignored in the construction, and the focus is placed on the
 279 continuous component of G .

280 281 4.2 THE CASE OF FEEDFORWARD AND CONVOLUTIONAL NEURAL NETWORKS

283 We primarily focus on the feedforward neural network. The convolutional counterpart can be treated
 284 in an analogous manner without loss of generality.

285 **Parameter space.** Consider a feedforward neural network f with L layers, having n_i neurons in
 286 the i^{th} layer and activation σ . Here, n_0 and n_L are the input and output dimensions. The map f is
 287 parameterized by $\theta = \{W_i, b_i\}_{i=1}^L$, where $W_i \in \mathbb{R}^{n_i \times n_{i-1}}$ and $b_i \in \mathbb{R}^{n_i}$. It is expressed as:

$$288 \quad 289 \quad f(x; \theta) = f_L \circ \sigma \circ f_{L-1} \circ \sigma \circ \cdots \circ \sigma \circ f_1(x), \quad (5)$$

290 where $f_i: \mathbb{R}^{n_{i-1}} \rightarrow \mathbb{R}^{n_i}$ such that $x \mapsto W_i \cdot x + b_i$. The *parameter space* of f is:

$$291 \quad 292 \quad \Theta = (\mathbb{R}^{n_L \times n_{L-1}} \times \mathbb{R}^{n_L}) \times \cdots \times (\mathbb{R}^{n_2 \times n_1} \times \mathbb{R}^{n_2}) \times (\mathbb{R}^{n_1 \times n_0} \times \mathbb{R}^{n_1}) \quad (6)$$

293 **Maximal symmetry group.** We define a group action on Θ by monomial matrices. Let n be a
 294 positive integer. A *monomial matrix* of size $n \times n$ is a matrix in which each row and each column
 295 contains exactly one nonzero entry. Denote $\mathcal{G}_n^{>0}$ as the sets of monomial matrices of size $n \times n$
 296 with all non-zero entries positive. Now, define the group $G := \mathcal{G}_{n_{L-1}}^{>0} \times \cdots \times \mathcal{G}_{n_1}^{>0}$. Denote $g =$
 297 (g_{L-1}, \dots, g_1) , where $g_i \in \mathcal{G}_{n_i}$, for elements of G . By convention, denote $g_L = I_{n_L}$ and $g_0 = I_{n_0}$,
 298 which are identity matrices. The *group action* of G on Θ is defined by

$$299 \quad 300 \quad g\theta := \{\bar{W}_i, \bar{b}_i\}_{i=1}^L, \text{ where } \bar{W}_i = g_i \cdot W_i \cdot g_{i-1}^{-1} \text{ and } \bar{b}_i = g_i \cdot b_i. \quad (7)$$

301 It is straightforward to check that G forms a symmetry group for f . One expects G to be maximal,
 302 however, for the general setting of f , it is an open question whether G is maximal. Prior studies
 303 only proved G to be maximal when restricted to a restricted setting. For instance, if $n_L \geq \dots \geq$
 304 $n_2 \geq n_1 > n_0 = 1$, then G is maximal (Mai & Lampert, 2020; Grigsby et al., 2023).

305 **Design of the map α .** First, we decompose the group G into factors \mathcal{G}_{n_i} for $i \in [L-1]$, and
 306 construct maps $\Theta \rightarrow \mathcal{G}_{n_i}$ for each i . More generally, the goal is to define a map $\Theta \rightarrow \mathcal{G}_n$ for an
 307 arbitrary positive integer n . To this end, we further analyze the structure of \mathcal{G}_n by decomposing
 308 it as follows. Define \mathcal{P}_n as the set of monomial matrices whose nonzero entries are all equal to
 309 1, that is, the set of permutation matrices. Consider also the set of $n \times n$ diagonal matrices with
 310 positive diagonal entries, which is isomorphic to $\mathbb{R}_{>0}^n$, where $\mathbb{R}_{>0}$ denotes the multiplicative group
 311 of positive real numbers. Every monomial matrix in \mathcal{G}_n can be expressed uniquely as the product of
 312 such a diagonal matrix and a permutation matrix, that is,

$$313 \quad 314 \quad \mathcal{G}_n = \{DP : D \in \mathbb{R}_{>0}^n \text{ and } P \in \mathcal{P}_n\}. \quad (8)$$

315 Formally, \mathcal{G}_n is isomorphic to the semidirect product $\mathcal{G}_n = \mathbb{R}_{>0}^n \rtimes \mathcal{P}_n$ (see Dummit & Foote (2004)).
 316 Thus, constructing $\alpha: \Theta \rightarrow \mathcal{G}_n$ reduces to specifying two maps: one into \mathcal{P}_n and the other into $\mathbb{R}_{>0}^n$.

317 *The case of the group \mathcal{P}_n .* Since \mathcal{P}_n is discrete, any continuous map $\alpha: \Theta \rightarrow \mathcal{P}_n$ must be constant.

318 *The case of the group $\mathbb{R}_{>0}^n$.* The group $\mathbb{R}_{>0}^n$ can be further decomposed into its coordinate factors,
 319 so that the construction of $\alpha: \Theta \rightarrow \mathbb{R}_{>0}^n$ reduces to specifying n independent maps $\alpha_j: \Theta \rightarrow \mathbb{R}_{>0}$
 320 for $j \in [n]$. To do this, the main idea is to construct the map from $\theta \in \Theta$ to a vector of size n , after
 321 which we take the sin of entries, scale it by a small $\epsilon > 0$ and add a unit vector 1_n . The detailed
 322 implementation of α in practice is described in Appendix B.1.

324 **Remark 4.2** (Extension to CNN). For CNNs, the approach follows the same principle but is adapted
 325 for convolutional filters. Each bias vector b_i retains the same dimensions as in MLPs, while the con-
 326 volution filter $W_i \in \mathbb{R}^{n_i \times n_{i-1} \times w}$ (for 1D convolution) or $W_i \in \mathbb{R}^{n_i \times n_{i-1} \times c \times w}$ (for 2D convolution)
 327 contains additional spatial dimensions. To handle this, we apply the group action to both the filter’s
 328 channel dimensions and spatial dimensions. Specifically, the filter W_i is treated as having dimen-
 329 sions $n_i \times n_{i-1} \times (cw)$, where c represents the number of input channels (or more generally, any
 330 extra spatial dimensions like spatial channels). This allows us to apply the quasi-equivariant layer
 331 to the filter in a manner similar to the MLP case, where we perform the scaling operation across the
 332 output channels and input channels.

333 **Remark 4.3** (On activation functions beyond ReLU). In the literature, FE has also been studied
 334 for feedforward neural networks with other activation functions σ . For instance, in the case of the
 335 tanh activation, a maximal symmetry group can be determined (see [Chen et al. \(1993\)](#); [Fefferman &](#)
 336 [Markel \(1993\)](#)). However, for most widely used activation functions, the maximal symmetry group
 337 is discrete, making the construction of α trivial. For this reason, our analysis focuses on ReLU.

339 4.3 THE CASE OF MULTIHEAD ATTENTION

340 **Parameter space.** Let d denote the token dimension, L the sequence length, and h the number of
 341 heads, where all are positive integers. Define the space of token sequences as $\mathcal{S} := \sqcup_{L=1}^{\infty} \mathbb{R}^{L \times d}$.
 342 For a fixed head dimension d_h , let $W_i^Q, W_i^K, W_i^V, W_i^O \in \mathbb{R}^{d \times d_h}$ for each $i \in [h]$, and set
 343 $\theta = (W_i^Q, W_i^K, W_i^V, W_i^O)_{i=1}^h$. Given an input sequence $\mathbf{x} = (x_1, \dots, x_L)^\top \in \mathbb{R}^{L \times d} \subset \mathcal{S}$,
 344 the Multihead Attention (MHA) mechanism with h heads is defined by
 345

$$346 \quad 347 \quad \text{MHA}(\mathbf{x}; \theta) = \sum_{i=1}^h \text{softmax} \left((\mathbf{x} W_i^Q) (\mathbf{x} W_i^K)^\top \right) \cdot (\mathbf{x} W_i^V) (W_i^O)^\top. \quad (9)$$

348 Here, the softmax operator is applied row-wise to the similarity matrix $(\mathbf{x} W_i^Q) (\mathbf{x} W_i^K)^\top \in \mathbb{R}^{L \times L}$,
 349 producing the attention for \mathbf{x} . Each row of this matrix forms a probability distribution that deter-
 350 mines the relative influence of all input tokens on a given output token. Typically, the head dimension
 351 is set to $d_h = d/h$. The parameter space of the MHA map is then defined as $\Theta := (\mathbb{R}^{d \times d_h})^{4h}$.
 352

353 We denote by $\text{GL}(d_h)$ the general linear group of degree d_h , i.e., the set of all invertible $d_h \times d_h$
 354 real matrices.

355 **Maximal symmetry group.** Define the following group $G := S_h \times (\text{GL}(d_h) \times \text{GL}(d_h))^h$. This
 356 group is exactly the direct product of the permutation group S_h with h copies of $\text{GL}(d_h) \times \text{GL}(d_h)$.
 357 Each element $g \in G$ can be written as $g := (\sigma, (U_i, V_i)_{i=1}^h)$, where $\sigma \in S_h$ and $U_i, V_i \in \text{GL}(d_h)$.
 358 The group G acts naturally on the parameter space Θ as follows:

$$359 \quad 360 \quad g\theta := \left(W_{\sigma(i)}^Q \cdot U_i^\top, W_{\sigma(i)}^K \cdot U_i^{-1}, W_{\sigma(i)}^V \cdot V_i^\top, W_{\sigma(i)}^O \cdot V_i^{-1} \right)_{i=1}^h. \quad (10)$$

361 It is evident that G serves as a symmetry group of the MHA map. The reasoning is as follows: the
 362 general linear action cancels within the matrix multiplications, while the permutation action induced
 363 by σ commutes with addition. Furthermore, G is maximal, as formalized in the following result.

364 **Theorem 4.4** (See [Tran et al. \(2025\)](#)). *Consider two MHA maps with h heads, parameterized by
 365 $\theta = (W_i^Q, W_i^K, W_i^V, W_i^O)_{i=1}^h$ and $\bar{\theta} = (\bar{W}_i^Q, \bar{W}_i^K, \bar{W}_i^V, \bar{W}_i^O)_{i=1}^h$ in Θ , respectively. Assume that*

- 366 1. All matrices $W_i^Q, W_i^K, W_i^V, W_i^O$ and $\bar{W}_i^Q, \bar{W}_i^K, \bar{W}_i^V, \bar{W}_i^O$, for all feasible i , are of rank d_h .
- 367 2. From θ , the matrices $\{W_i^Q (W_i^K)^\top\}_{i=1}^h$ are pairwise distinct. The same condition holds for $\bar{\theta}$.

368 If the two MHA maps are identical, there exists $g \in G$ such that $\bar{\theta} = g\theta$.

369 **Remark 4.5.** Note that the conditions on θ and $\bar{\theta}$ in Theorem 4.4 can both be expressed as the
 370 vanishing of finitely many nonzero polynomials. This corresponds precisely to the real algebraic
 371 variety ε introduced in Definition 2.2 of maximal symmetry groups.

372 **Design of the map α .** In analogy with the feedforward case, we restrict the construction of $\alpha: \Theta \rightarrow$
 373 G to the design of a map $\Theta \rightarrow \text{GL}(n)$ for a general positive integer n . The idea is as follows:

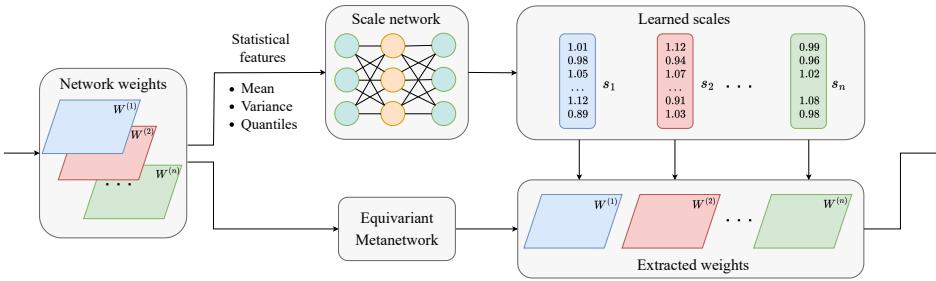


Figure 2: Illustration of the design of the quasi-equivariant layer. Statistical features are extracted from network weights and biases, then passed through a Scale network to learn the group action. This corresponds to the MLP case, where a scaling vector is learned for each layer’s weights and biases. The learned scales are applied to the outputs of the equivariant layer, enhancing expressiveness while adding only minimal parameters.

first, reshape $\theta \in \Theta$ into an $n \times n$ matrix via a feedforward network γ . Next, apply the entrywise sine function, scale the result by a small $\epsilon > 0$, and finally add the identity matrix I_n , i.e. $\theta \mapsto \sin(\gamma(\theta)) \cdot \epsilon + I_n$. By continuity, and since the range of the sine function is $[-1, 1]$, there exists a sufficiently small $\epsilon > 0$ such that the resulting matrix is invertible. The detailed implementation of α in practice is described in Appendix B.1.

Remark 4.6. An alternative approach to constructing a map $\Theta \rightarrow \text{GL}(n)$ is to use the matrix exponential $\exp: \mathbb{R}^{n \times n} \rightarrow \text{GL}(n)$. However, both in theory and in practice, this approach tends to be slow and numerically unstable. Our experimental trials confirmed these issues, and we therefore did not pursue this direction further.

5 EXPERIMENTS

In this section, we integrate the quasi-equivariant layer with existing metanetworks: Monomial-NFN for MLP/CNNs and Transformer-NFN for Transformers. The overall layer is illustrated in Figure 2. We provide detailed implementation of the MLP network for each case (MLP/CNN or Transformers) in Appendix B.1. We evaluate these models on three tasks: predicting CNN generalization from weights, classifying image INRs, and predicting Transformer generalization from parameters. For each task, we compare against the original baseline and an expanded version with more parameters, ensuring fair comparison with our method. Our aim is twofold: the quasi-equivariant layer improves performance efficiently with minimal parameter increase, and it preserves performance under group action transformations. Results are averaged over five runs; hyperparameters and parameter counts are detailed in Appendix B.

5.1 PREDICTING CNN GENERALIZATION

Experiment Setup. We aim to predict pretrained CNN generalization using only their weights, without test data. Experiments use the Small CNN Zoo dataset (Unterthiner et al., 2020), containing CNNs trained with varying hyperparameters and activations. Following Tran et al. (2024), we analyze the ReLU subset, where models follow the group action $\mathcal{M}_n^{>0}$. Robustness to group-action transformations is evaluated by augmenting the dataset with variants from diagonal matrices $\mathcal{D}_{n,ii}^{>0} \sim \mathcal{U}[1, 10^4]$ for $i \in \{1, 2, 3, 4\}$ and random permutation matrices \mathcal{P}_n . Prediction is measured with Kendall’s τ rank correlation (Kendall, 1938), which quantifies agreement between predicted and true accuracy rankings. Our approach extends Monomial-NFN (Tran et al., 2024), denoted Monomial-NFN Quasi, and is compared with STATNN (Unterthiner et al., 2020), NP, HNP (Zhou et al., 2024a), and Graph-NN (Kofinas et al., 2024). For Monomial-NFN, we test both the original and an enlarged, carefully tuned variant for fair comparison.

Results. Table 1 reports model performance. Scaling Monomial-NFN (+68.65% parameters) gives minor gains, whereas Monomial-NFN Quasi shows notable improvement with only +3.89% parameters. On the original subset, where Monomial-NFN lags behind HNP, the Quasi layer matches its performance. This holds under augmentation, showing that small parameter increases via the Quasi-equivariant layer can enhance expressiveness and flexibility considerably.

432 Table 1: Performance prediction of CNNs on the ReLU subset of Small CNN Zoo with varying scale aug-
 433 mentations. The metric used is Kendall’s τ . Uncertainties indicate the standard error across 5 runs.

	Augment settings				
	No augment	$\mathcal{U}[1, 10^1]$	$\mathcal{U}[1, 10^2]$	$\mathcal{U}[1, 10^3]$	$\mathcal{U}[1, 10^4]$
STATNet (Unterthiner et al., 2020)	0.915 ± 0.002	0.894 ± 0.0001	0.853 ± 0.007	0.523 ± 0.02	0.516 ± 0.001
NP (Zhou et al., 2024a)	0.920 ± 0.003	0.900 ± 0.002	0.898 ± 0.003	0.884 ± 0.002	0.884 ± 0.002
HNP (Zhou et al., 2024a)	0.926 ± 0.003	0.913 ± 0.001	0.903 ± 0.003	0.891 ± 0.003	0.601 ± 0.02
Graph-NN (Kofinas et al., 2024)	0.897 ± 0.002	0.892 ± 0.003	0.885 ± 0.002	0.858 ± 0.003	0.851 ± 0.002
Monomial-NFN (Tran et al., 2024)	0.922 ± 0.001	0.920 ± 0.001	0.919 ± 0.001	0.920 ± 0.002	0.920 ± 0.001
Monomial-NFN large (68.65% params ++)	0.923 ± 0.001	0.920 ± 0.001	0.920 ± 0.002	0.919 ± 0.001	0.920 ± 0.001
Monomial-NFN Quasi (ours) (3.89% params ++)	0.926 ± 0.002	0.924 ± 0.002	0.924 ± 0.002	0.923 ± 0.001	0.924 ± 0.002

434
 435 Table 2: Classification train and test accuracies (%) for implicit neural representations of MNIST, FashionM-
 436 NIST, and CIFAR-10. Uncertainties indicate standard error over 5 runs.

	MNIST	CIFAR-10	FashionMNIST
MLP	10.62 ± 0.54	10.48 ± 0.74	9.95 ± 0.36
NP (Zhou et al., 2024a)	69.82 ± 0.42	33.74 ± 0.26	58.21 ± 0.31
HNP (Zhou et al., 2024a)	66.02 ± 0.51	31.61 ± 0.22	57.43 ± 0.46
Monomial-NFN (Tran et al., 2024)	68.43 ± 0.51	34.23 ± 0.33	61.15 ± 0.55
Monomial-NFN tuned ($\approx 3\%$ params ++)	68.87 ± 0.42	34.26 ± 0.28	61.44 ± 0.35
Monomial-NFN Quasi (ours) ($\approx 3\%$ params ++)	70.21 ± 0.34	35.32 ± 0.56	62.11 ± 0.27

437 5.2 CLASSIFYING IMPLICIT NEURAL REPRESENTATIONS OF IMAGES

438 **Experiment Setup.** This experiment focuses on classifying the source class of pretrained Implicit
 439 Neural Representation (INR) weights. Following the setup in (Tran et al., 2024), we use three INR
 440 weight datasets introduced in (Zhou et al., 2024a), each corresponding to a different image dataset:
 441 CIFAR-10 (Krizhevsky & Hinton, 2009), FashionMNIST (Xiao et al., 2017), and MNIST (LeCun
 442 & Cortes, 2005). In these datasets, each INR is trained to represent a single image, encoding image
 443 structure by mapping pixel coordinates (x, y) to pixel color values. CIFAR-10 images are encoded as
 444 3-channel RGB outputs, while MNIST and FashionMNIST are represented with a single grayscale
 445 channel. Since excessively increasing parameters in Monomial-NFN leads to overfitting in this
 446 setting, we introduce a variant, Monomial-NFN tuned, which is carefully adjusted to match the
 447 parameter count of Monomial-NFN Quasi. This ensures a fair comparison between the two models.

448 **Results.** Table 2 shows the performance of all models on INR classification. The tuned Monomial-
 449 NFN, which adds 3% more parameters, yields only minor improvement. In contrast, adding the
 450 proposed quasi layer with the same parameter increase allows Monomial-NFN Quasi to outperform
 451 NP on the MNIST task and achieve the best results across all three datasets. The performance gap
 452 between Monomial-NFN Quasi and Monomial-NFN is about 1% on CIFAR-10 and FashionMNIST,
 453 and 1.78% on MNIST. These results demonstrate the consistency of the proposed method.

454 5.3 PREDICTING TRANSFORMERS GENERALIZATION

455 **Experiment Setup.** In this task, we predict the accuracies of pretrained Transformer checkpoints,
 456 aiming to test whether metanetworks capture structural patterns in Transformer weights. Following
 457 (Tran et al., 2025), we integrate our quasi-layer into Transformer-NFN and conduct evaluations
 458 on two datasets: MNIST-Transformers, built from models trained for MNIST image classification,
 459 and AGNews-Transformers, derived from models trained for AGNews text classification. Perfor-
 460 mance is assessed using Kendall’s τ . To probe model performance under varying difficulty levels,
 461 we evaluate not only on the full dataset but also on four subsets defined by minimum accuracy
 462 thresholds of 20%, 40%, 60%, and 80%. Since most pretrained models in these datasets achieve
 463 high accuracy, maintaining strong Kendall’s τ becomes more difficult as the threshold increases.

464 **Results.** Table 3 presents the results on MNIST-Transformer and AGNews-Transformer. In both
 465 benchmarks, scaling up Transformer-NFN to a larger version (with up to 59.38% more parameters)
 466 can improve Kendall’s τ , but adding the quasi-equivariant layer achieves even greater gains with far
 467 fewer extra parameters (only up to 5.27%). The improvement holds across all accuracy thresholds,
 468 demonstrating both the efficiency and effectiveness of our approach.

486 **Table 3: Performance measured by Kendall’s τ of all models on MNIST- and AGNews-Transformers datasets.**
 487 **Uncertainties indicate standard error over 5 runs.**

	Accuracy threshold				
	No threshold	20%	40%	60%	80%
<i>MNIST-Transformers</i>					
MLP	0.866 \pm 0.002	0.873 \pm 0.001	0.874 \pm 0.003	0.874 \pm 0.006	0.873 \pm 0.007
STATNN (Unterthiner et al., 2020)	0.881 \pm 0.001	0.872 \pm 0.001	0.868 \pm 0.001	0.860 \pm 0.001	0.856 \pm 0.001
XGBoost (Chen & Guestrin, 2016)	0.860 \pm 0.002	0.839 \pm 0.004	0.869 \pm 0.003	0.846 \pm 0.001	0.884 \pm 0.001
LightGBM (Ke et al., 2017)	0.858 \pm 0.002	0.835 \pm 0.001	0.847 \pm 0.001	0.822 \pm 0.001	0.830 \pm 0.001
Random Forest (Breiman, 2001)	0.772 \pm 0.002	0.758 \pm 0.004	0.769 \pm 0.001	0.752 \pm 0.001	0.759 \pm 0.001
Transformer-NFN (Tran et al., 2025)	0.905 \pm 0.002	0.899 \pm 0.001	0.895 \pm 0.001	0.895 \pm 0.002	0.888 \pm 0.002
Transformer-NFN large (57.66% params ++)	0.907 \pm 0.001	0.904 \pm 0.002	0.897 \pm 0.002	0.897 \pm 0.002	0.890 \pm 0.001
Transformer-NFN Quasi (Ours) (4.54% params ++)	0.911 \pm 0.001	0.905 \pm 0.001	0.898 \pm 0.002	0.897 \pm 0.001	0.892 \pm 0.001
<i>AGNews-Transformers</i>					
MLP	0.879 \pm 0.006	0.875 \pm 0.001	0.841 \pm 0.012	0.842 \pm 0.001	0.862 \pm 0.006
STATNN (Unterthiner et al., 2020)	0.841 \pm 0.002	0.839 \pm 0.003	0.812 \pm 0.003	0.813 \pm 0.001	0.812 \pm 0.001
XGBoost (Chen & Guestrin, 2016)	0.859 \pm 0.001	0.852 \pm 0.002	0.872 \pm 0.002	0.874 \pm 0.001	0.872 \pm 0.001
LightGBM (Ke et al., 2017)	0.835 \pm 0.001	0.845 \pm 0.001	0.837 \pm 0.001	0.835 \pm 0.001	0.820 \pm 0.001
Random Forest (Breiman, 2001)	0.774 \pm 0.003	0.801 \pm 0.001	0.797 \pm 0.001	0.798 \pm 0.002	0.773 \pm 0.001
Transformer-NFN (Tran et al., 2025)	0.910 \pm 0.001	0.908 \pm 0.001	0.897 \pm 0.001	0.896 \pm 0.001	0.890 \pm 0.001
Transformer-NFN large (59.38% params ++)	0.913 \pm 0.001	0.910 \pm 0.002	0.898 \pm 0.002	0.898 \pm 0.001	0.893 \pm 0.002
Transformer-NFN Quasi (Ours) (5.27% params ++)	0.914 \pm 0.001	0.913 \pm 0.002	0.901 \pm 0.001	0.903 \pm 0.002	0.896 \pm 0.001

505 6 CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS

506 This paper introduces quasi-equivariant metanetworks, a framework that relaxes strict equivariance
 507 to balance symmetry preservation with representational flexibility. By analyzing parameter spaces,
 508 their symmetry groups, and maximality, we establish a theoretical connection to functional equiva-
 509 lence and formalize quasi-equivariance as a principled extension of strict equivariance. We demon-
 510 strate applicability of the framework to feedforward networks and multihead attention, and validate
 511 its effectiveness across multiple metanetwork benchmarks, achieving substantial performance gains
 512 with minimal additional parameters. A current limitation of our work is that quasi-equivariance has
 513 so far been applied primarily to [metanetworks with linear architectures](#). Extending this framework
 514 to more complex structures, such as graph-based metanetworks, remains unexplored due to the di-
 515 versity and rarity of such architectures. [Moreover, the quasi-equivariant design could be beneficial](#)
 516 [in various other fields, such as computational chemistry, physics, and materials science, where sym-](#)
 517 [metries may only approximately hold and greater modeling flexibility is required.](#) We view these as
 518 [promising directions](#) for future research.

519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 **Ethics Statement.** Considering the scope and focus of this work, we do not anticipate any adverse
 541 societal or ethical consequences.
 542
 543 **Reproducibility Statement.** The source code for all experiments is included in the paper’s sup-
 544 plementary materials. Detailed descriptions of our experimental setup can be found in Section 5
 545 and Appendix B. All datasets used are publicly accessible via an anonymous link provided in the
 546 README of the supplementary materials.
 547
 548 **LLM Usage.** In this work, we use large language models (LLMs) solely as a tool to assist and
 549 refine the presentation of our ideas. The LLM was employed only to improve clarity, grammar, and
 550 overall readability, without influencing the scientific content, methodology, or experimental results.
 551 All technical contributions, analyses, and conclusions in the paper are entirely the authors’ original
 552 work.
 553

REFERENCES

554 Francesca Albertini and Eduardo D. Sontag. Identifiability of discrete-time neural networks. In
 555 *Proceedings of the European Control Conference*, pp. 460–465. Springer Berlin, 1993a.
 556
 557 Francesca Albertini and Eduardo D Sontag. For neural networks, function determines form. *Neural*
 558 *networks*, 6(7):975–990, 1993b.
 559
 560 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
 561 parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019.
 562
 563 Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
 564 Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
 565 descent. *Advances in neural information processing systems*, 29, 2016.
 566
 567 Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture
 568 search using performance prediction. In *6th International Conference on Learning Representa-
 569 tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings*.
 570 OpenReview.net, 2018. URL <https://openreview.net/forum?id=HJqk3N1vG>.
 571
 572 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
 573 learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy*
 574 *of Sciences*, 116(32):15849–15854, 2019. doi: 10.1073/pnas.1903070116. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1903070116>.
 575
 576 Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic
 577 learning rule. In *Optimality in Biological and Artificial Networks?*, pp. 265–287. Routledge, 2013.
 578
 579 Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in deep
 580 networks gives rise to permutation saddles, connected by equal-loss valleys across the loss land-
 581 scape. *arXiv preprint arXiv:1907.02911*, 2019.
 582
 583 Leo Breiman. Random forests. *Machine learning*, 45:5–32, 2001.
 584
 585 Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
 586 *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,*
 587 *EMNLP 2021*, pp. 6491–6506. Association for Computational Linguistics, 2021.
 588
 589 An Mei Chen, Haw minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural
 590 network error surfaces. *Neural Computation*, 5(6):910–927, 1993.
 591
 592 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of*
 593 *the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*,
 594 volume 11 of *KDD ’16*, pp. 785–794. ACM, August 2016. doi: 10.1145/2939672.2939785.
 595
 596 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
 597 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
 598 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
 599 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui

594 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
 595 Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
 596 Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
 597 Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
 598 Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
 599 Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
 600 Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
 601 Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng
 602 Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
 603 ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanja Zhao,
 604 Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
 605 Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
 606 aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
 607 Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
 608 Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
 609 Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
 610 Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
 611 Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
 612 Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
 613 Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
 614 Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
 615 Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
 616 Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
<https://arxiv.org/abs/2412.19437>.
 617

618 Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
 619 minima of deep neural networks. In *International conference on machine learning*, pp. 1675–
 620 1685. PMLR, 2019.

621 David Steven Dummit and Richard M Foote. *Abstract algebra*, volume 3. Wiley Hoboken, 2004.

622 Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum.
 623 From data to functa: Your data point is a function and you can treat it like one. In *International
 624 Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*,
 625 volume 162 of *Proceedings of Machine Learning Research*, pp. 5694–5725. PMLR, 2022. URL
<https://proceedings.mlr.press/v162/dupont22a.html>.
 626

627 Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas Unger, and Anders Ynnerman. Classifying
 628 the classifier: Dissecting the weight space of neural networks. In *ECAI 2020 - 24th European
 629 Conference on Artificial Intelligence*, volume 325 of *Frontiers in Artificial Intelligence and Ap-
 630 plications*, pp. 1119–1126. IOS Press. URL <https://doi.org/10.3233/FAIA200209>.
 631

632 Ahmed A Elhag, T Konstantin Rusch, Francesco Di Giovanni, and Michael Bronstein. Relaxed
 633 equivariance via multitask learning. *arXiv preprint arXiv:2410.17878*, 2024.

634

635 Charles Fefferman and Scott Markel. Recovering a feed-forward net from its output. In *Advances
 636 in Neural Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA,
 637 1993]*, pp. 335–342. Morgan Kaufmann, 1993. URL <http://papers.nips.cc/paper/748-recovering-a-feed-forward-net-from-its-output>.
 638

639 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neu-
 640 ral networks. In *7th International Conference on Learning Representations, ICLR 2019, New
 641 Orleans, LA, USA, May 6-9, 2019*, 2018. URL <https://openreview.net/forum?id=rJ1-b3RcF7>.
 642

643 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
 644 networks. In *7th International Conference on Learning Representations (ICLR)*, New Orleans,
 645 LA, USA, 2019. OpenReview.net.

646

647 Elisenda Grigsby, Kathryn Lindsey, and David Rolnick. Hidden symmetries of relu networks. In
 648 *International Conference on Machine Learning*, pp. 11734–11760. PMLR, 2023.

648 Jean Harb, Tom Schaul, Doina Precup, and Pierre-Luc Bacon. Policy evaluation networks. *arXiv*
649 *preprint arXiv:2002.11833*, 2020.

650

651 Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
652 *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2015.
653 URL <https://api.semanticscholar.org/CorpusID:206594692>.

654 Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In *Ad-
655 vanced Neural Computers*, pp. 129–135. Elsevier, 1990.

656

657 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Comput.*, 9(8):
658 1735–1780, 1997. doi: 10.1162/NECO.1997.9.8.1735. URL <https://doi.org/10.1162/neo.1997.9.8.1735>.

659

660 Elyssa Hofgard, Rui Wang, Robin Walters, and Tess Smidt. Relaxed equivariant graph neural net-
661 works. In *ICML 2024 Workshop on Geometry-grounded Representation Learning and Generative
662 Modeling*, 2024. URL <https://openreview.net/forum?id=eVB1fn37Ay>.

663

664 Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Equivariant
665 graph mechanics networks with constraints. In *International Conference on Learning Repres-
666 entations*, 2022. URL <https://openreview.net/forum?id=SHbhHHfePhP>.

667

668 Yujia Huang, James Gornet, Sihui Dai, Zhiding Yu, Tan Nguyen, Doris Tsao, and Anima Anand-
669 kumar. Neural networks with recurrent generative feedback. *Advances in Neural Information
670 Processing Systems*, 33:535–545, 2020.

671

672 John M. Jumper, Richard O. Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
673 neberger, Kathryn Tunyasuvunakool, Russell Bates, Augustin Žídek, Anna Potapenko, Alex
674 Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
675 Romera-Paredes, Stanislav Nikolov, R. D. Jain, Jonas Adler, Trevor Back, Stig Petersen,
676 David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
677 Berghammer, Sebastian Bodenstein, David L. Silver, Oriol Vinyals, Andrew W. Senior, Koray
678 Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction
679 with alphafold. *Nature*, 596(7873):583–589, July 2021. doi: 10.1038/s41586-021-03819-2. URL
680 <https://lens.org/103-212-983-826-945>.

681

682 Sékou-Oumar Kaba and Siamak Ravanbakhsh. Symmetry breaking and equivariant neural networks.
683 *CoRR*, abs/2312.09016, 2023a. doi: 10.48550/ARXIV.2312.09016. URL <https://doi.org/10.48550/arXiv.2312.09016>.

684

685 Sékou-Oumar Kaba and Siamak Ravanbakhsh. Symmetry breaking and equivariant neural networks.
686 *arXiv preprint arXiv:2312.09016*, 2023b.

687

688 Ioannis Kalogeropoulos, Giorgos Bouritsas, and Yannis Panagakis. Scale equivari-
689 ant graph metanetworks. In *Advances in Neural Information Processing Systems
690 38*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/c13d5a10028586fdc15ee7da97b7563f-Abstract-Conference.html.

691

692 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
693 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural
694 information processing systems*, 30, 2017.

695

696 M. G. Kendall. A NEW MEASURE OF RANK CORRELATION. *Biometrika*, 30(1-2):81–93,
697 06 1938. ISSN 0006-3444. doi: 10.1093/biomet/30.1-2.81. URL <https://doi.org/10.1093/biomet/30.1-2.81>.

698

699 Boris Knyazev, Abhinav Moudgil, Guillaume Lajoie, Eugene Belilovsky, and Simon Lacoste-
700 Julien. Accelerating training with neuron interaction and nowcasting networks. *arXiv preprint
701 arXiv:2409.04434*, 2024.

702

703 Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves,
704 Cees G. M. Snoek, and David W. Zhang. Graph neural networks for learning equivariant repres-
705 entations of neural networks. In *The Twelfth International Conference on Learning Representations*,
706 2024. URL <https://openreview.net/forum?id=oO6FsMyDBt>.

702 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 703 Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

704

705 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems 25*, pp. 1106–1114, 2012. URL <https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>.

706

707 Vera Kurkova and Paul C Kainen. Functionally equivalent feedforward neural networks. *Neural Computation*, 6(3):543–558, 1994.

708

709

710 Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. In *Proceedings of the IEEE*, 2005. URL <https://api.semanticscholar.org/CorpusID:60282629>.

711

712 Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, and Luigi Di Stefano. Deep learning on implicit neural representations of shapes. In *The Eleventh International Conference on Learning Representations, ICLR 2023*. URL <https://openreview.net/forum?id=OoOIW-3uadi>.

713

714 Phuong Bui Thi Mai and Christoph Lampert. Functional vs. parametric equivalence of relu networks. In *8th International Conference on Learning Representations (ICLR)*, 2020.

715

716 Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury, Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned optimizers by scaling up. *arXiv preprint arXiv:2211.09760*, 2022.

717

718 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.

719

720 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast model editing at scale. In *The Tenth International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=0DcZxeWfOPT>.

721

722 Andreas Müller, Carlo Curino, and Raghu Ramakrishnan. Mothernet: A foundational hypernetwork for tabular classification. *arXiv preprint arXiv:2312.08598*, 2023.

723

724 Aviv Navon, Aviv Shamsian, Idan Achituv, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equivariant architectures for learning in deep weight spaces. In *International Conference on Machine Learning*, pp. 25790–25816. PMLR, 2023.

725

726 Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards understanding the role of over-parametrization in generalization of neural networks. *arXiv preprint arXiv:1805.12076*, 2018.

727

728 Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Sensitivity and generalization in neural networks: An empirical study. In *6th International Conference on Learning Representations (ICLR)*, Vancouver, BC, Canada, 2018. OpenReview.net.

729

730 Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, and Kostas Daniilidis. Improving equivariant model training via constraint relaxation. In *Advances in Neural Information Processing Systems*, volume 37, pp. 83497–83520. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/98082e6b4b97ab7d3af1134a5013304e-Paper-Conference.pdf.

731

732 M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378:686–707, 2019. ISSN 0021-9991. doi: <https://doi.org/10.1016/j.jcp.2018.10.045>. URL <https://www.sciencedirect.com/science/article/pii/S0021999118307125>.

756 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations
 757 by error propagation. 1986. URL [https://api.semanticscholar.org/CorpusID:
 758 62245742](https://api.semanticscholar.org/CorpusID:62245742).

759

760 Thomas Philip Runarsson and Magnus Thor Jonsson. Evolution and design of distributed learning
 761 rules. In *2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Net-
 762 works. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation
 763 and Neural Networks (Cat. No. 00), pp. 59–63. IEEE*, 2000.

764 Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learn-
 765 ing on neural network weights for model characteristic prediction. *Advances in Neural Infor-
 766 mation Processing Systems*, 34:16481–16493, 2021.

767

768 Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
 769 representations as generative models: Sampling unseen neural network weights. *Advances in
 770 Neural Information Processing Systems*, 35:27906–27920, 2022a.

771 Konstantin Schürholt, Diyar Taskiran, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth.
 772 Model zoos: A dataset of diverse populations of neural network models. *Advances in Neural
 773 Information Processing Systems*, 35:38134–38148, 2022b.

774

775 Anton Sinitzin, Vsevolod Plokhotnyuk, Dmitry V. Pyrkin, Sergei Popov, and Artem Babenko. Ed-
 776 itable neural networks. In *8th International Conference on Learning Representations*, 2020. URL
 777 <https://openreview.net/forum?id=HJedXaEtvS>.

778

779 Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and
 780 Gordon Wetzstein. Implicit neural representations with periodic activation functions.
 781 In *Advances in Neural Information Processing Systems 33: Annual Conference on
 782 Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
 783 virtual*, 2020. URL [https://proceedings.neurips.cc/paper/2020/hash/
 53c04118df112c13a8c34b38343b9c10-Abstract.html](https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html).

784

785 Samuel Sokota, Hengyuan Hu, David J Wu, J Zico Kolter, Jakob Nicolaus Foerster, and Noam
 786 Brown. A fine-tuning approach to belief state modeling. In *International Conference on Learning
 787 Representations*, 2021.

788

789 Kenneth O Stanley. Compositional pattern producing networks: A novel abstraction of development.
Genetic programming and evolvable machines, 8:131–162, 2007.

790

791 Hoang Tran, Thieu Vo, Tho Huu, An Nguyen The, and Tan Nguyen. Monomial
 792 matrix group equivariant neural functional networks. In *Advances in Neural In-
 793 formation Processing Systems*, volume 37, pp. 48628–48665. Curran Associates, Inc.,
 794 2024. URL [https://proceedings.neurips.cc/paper_files/paper/2024/
 file/577cd5863ec73be4e6871340be0936ae-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2024/file/577cd5863ec73be4e6871340be0936ae-Paper-Conference.pdf).

795

796 Hoang V. Tran, Thieu Vo, An Nguyen The, Tho Tran Huu, Minh-Khoi Nguyen-Nhat, Thanh Tran,
 797 Duy-Tung Pham, and Tan Minh Nguyen. Equivariant neural functional networks for transformers.
 798 In *The Thirteenth International Conference on Learning Representations, ICLR*, 2025.

799

800 Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predict-
 801 ing neural network accuracy from weights. *arXiv preprint arXiv:2002.11448*, 2020.

802

803 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 804 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information
 805 Processing Systems 30*, pp. 5998–6008, 2017. URL [https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fb053c1c4a845aa-Abstract.
 808 html](https://proceedings.neurips.

 806 cc/paper/2017/hash/3f5ee243547dee91fb053c1c4a845aa-Abstract.

 807 html).

809

810 Thieu Vo, Hoang V. Tran, Tho Tran Huu, An Nguyen The, Thanh Tran, Minh-Khoi Nguyen-Nhat,
 811 Duy-Tung Pham, and Tan Minh Nguyen. Equivariant polynomial functional networks. In *Forty-
 812 second International Conference on Machine Learning*, 2025. URL [https://openreview.net/forum?id=eTDgECpQ2I](https://openreview.

 813 net/forum?id=eTDgECpQ2I).

810 Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly sym-
811 metric dynamics. In *International Conference on Machine Learning*, pp. 23078–23091. PMLR,
812 2022.

813 Shih-Hsin Wang, Yung-Chang Hsu, Justin Baker, Andrea L. Bertozzi, Jack Xin, and Bao Wang. Re-
814 thinking the benefits of steerable features in 3d equivariant graph neural networks. In *The Twelfth*
815 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=mGHJAYR8w0>.

816

817 Zhiqiang Wu, Yingjie Liu, Licheng Sun, Jian Yang, Hanlin Dong, Shing-Ho J Lin, Xuan Tang,
818 Jinpeng Mi, Bo Jin, and Xian Wei. Relaxed rotational equivariance via g-biases in vision. In
819 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 8541–8549, 2025.

820

821 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
822 ing machine learning algorithms. *CoRR*, abs/1708.07747, 2017. URL <http://arxiv.org/abs/1708.07747>.

823

824 Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J Zico
825 Kolter, and Chelsea Finn. Permutation equivariant neural functionals. *Advances in Neural Infor-
826 mation Processing Systems*, 36, 2024a.

827

828 Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J Zico Kolter,
829 and Chelsea Finn. Neural functional transformers. *Advances in Neural Information Processing
830 Systems*, 36, 2024b.

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 TABLE OF NOTATION
865

867	Θ	Parameter space of the network
868	W_i	Weight of feed forward neural network in layer i
869	b_i	Bias of feed forward neural network in layer i
870	\mathcal{G}_n	Monomial matrix of size n
871	h	Number of head of Attention module
872	d	Hidden dimension of the model
873	d_h	Hidden dimension of a head in the model
874	D_k	Dimension of key/query vector in Attention module
875	W_i^Q	Weight of query matrix of head i
876	W_i^K	Weight of key matrix of head i
877	W_i^V	Weight of value matrix of head i
878	W_i^O	Weight of out projection matrix of head i
879	G	Symmetric group of the weight space
880	$\sigma()$	Relu activation
881	S_h	Head permutation group action in Attention module
882	$E()$	Equivariant layer
883	$I()$	Invariant layer
884	\mathbb{R}^d	d -dimensional Euclidean space
885	$\langle \cdot, \cdot \rangle$	standard dot product
886	\sqcup	disjoint union
887	g	element of group
888	$\text{GL}(d_h)$	General linear group of invertible $d_h \times d_h$ matrices over \mathbb{R}
889	$\alpha()$	Quasi-equivariant map
890	$\beta()$	Equivariant map

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 Supplement to “Quasi-Equivariant Metanetworks” 919

920 Table of Contents

922	A Quasi-Equivariant Metanetworks	18
923	A.1 On the Well-Definedness of the Quasi-Equivariance Property	18
924	A.2 Proof of Proposition 3.3	20
925		
926		
927	B Additional Details of Experiments	21
928	B.1 Details on Group Action Learning	21
929	B.2 Predicting CNN Generalization	22
930	B.3 Classifying implicit neural representations of images	23
931	B.4 Predicting Transformers Generalization	24
932	B.5 Ablation on the MLP network for Group Action Learning	25
933	B.6 Experiments on Augmented AGNews-Transformers dataset	26
934	B.7 Analysis on the learned scaling	26
935	B.8 Sensitivity of ϵ	27
936	B.9 Weight space style editing	28
937		
938		
939		
940		
941		

942 A QUASI-EQUIVARIANT METANETWORKS

944 We provide theoretical guarantees together with rigorous proofs for the results stated in the main
945 paper.

947 A.1 ON THE WELL-DEFINEDNESS OF THE QUASI-EQUIVARIANCE PROPERTY

949 We now examine the well-definedness of the quasi-equivariance property, as stated in Remark 3.2.
950 Although the construction of quasi-equivariant maps discussed in this section is not used in our
951 implementation due to its inefficiency, we include the following analysis for completeness and for
952 potential future work, where one may wish to construct quasi-equivariant maps using this approach.

953 **Setup.** Let a group G act on a set Θ . Let a (possibly the same) group H act on a set \mathcal{X} . A map
954 $F: \Theta \rightarrow \mathcal{X}$ is called α -quasi-equivariant if there exists

$$955 \quad \alpha: G \times \Theta \rightarrow H \quad (11)$$

956 such that for all $g \in G$ and $\theta \in \Theta$,

$$957 \quad F(g\theta) = \alpha(g, \theta) \cdot F(\theta). \quad (12)$$

958 When $H = G$ and the group action of H on \mathcal{X} is the given group action of G , this reduces to our
959 original formulation on quasi-equivariance.

960 **Well-definedness across different representatives.** The relation $g_1\theta_1 = g_2\theta_2$ gives two represen-
961 tations of the same point in Θ . Thus Equation (13) must produce the same value of F . A necessary
962 and sufficient condition on α is presented as follows.

963 **Proposition A.1** (Normalized 1-cocycle condition). *The following statements are equivalent:*

- 964 1. For every choice of a section $S \subset \Theta$ meeting each G -orbit exactly once, and for every seed
965 map $s: S \rightarrow \mathcal{X}$ satisfying the stabilizer constraint (see Proposition A.2), there exists a
966 unique map $F: \Theta \rightarrow \mathcal{X}$ obeying the quasi-equivariance relation

$$967 \quad F(g\theta) = \alpha(g, \theta) \cdot F(\theta), \text{ for all } g \in G, \theta \in \Theta, \quad (13)$$

968 such that F is independent of the choice of representative of a point in Θ .

972 2. The function $\alpha : G \times \Theta \rightarrow H$ satisfies, for all $g_1, g_2 \in G$ and $\theta \in \Theta$,

973

$$\alpha(e, \theta) = e_H, \tag{14}$$

974

$$\alpha(g_1 g_2, \theta) = \alpha(g_1, g_2 \theta) \alpha(g_2, \theta). \tag{15}$$

975

976 *Proof.* The proof proceeds as follows.

977

978 *Necessity.* Fix g_1, g_2, θ . Using Equation (13) twice,

979

$$F(g_1 g_2 \theta) = \alpha(g_1, g_2 \theta) \cdot F(g_2 \theta) = \alpha(g_1, g_2 \theta) \alpha(g_2, \theta) \cdot F(\theta). \tag{16}$$

980

981 On the other hand, applying Equation (13) once with $g_1 g_2$ gives

982

$$F(g_1 g_2 \theta) = \alpha(g_1 g_2, \theta) \cdot F(\theta), \tag{17}$$

983

984 so Equation (15) of 1-cocycle follows. Setting $g = e$ in Equation (13) yields Equation (14) of

985

986 Normalization.

987 *Sufficiency.* Given any representative $g\theta_0$ of a point in the orbit of θ_0 , define $F(g\theta_0)$ by Equation

988

989 (13). If $g_1\theta_0 = g_2\theta_0$, then $g_2^{-1}g_1 \in G_{\theta_0}$ and the cocycle identity implies the two definitions

990

991 coincide provided the stabilizer constraint in Proposition A.2 holds. \square

992

993 **Stabilizers and orbit descent.** Denote $G_\theta = \{h \in G : h\theta = \theta\}$. The values of α on G_θ control

994 whether F is well-defined from orbit data alone.

995

996 **Proposition A.2** (Stabilizer constraints). *Assume Equations (14) and (15). Then for each θ and*

997 *h* *in G_θ , one has*

998

$$F(\theta) = F(h\theta) = \alpha(h, \theta) \cdot F(\theta). \tag{18}$$

999

1000 *Hence $F(\theta)$ must lie in the fixed-point set*

1001

$$\text{Fix}_{\mathcal{X}}(\alpha(G_\theta, \theta)) = \{x \in \mathcal{X} : \alpha(h, \theta) \cdot x = x \text{ for all } h \in G_\theta\}. \tag{19}$$

1002 *In particular:*

1003

- If F is required to be definable independently of any additional constraints on its values (i.e., to descend to Θ/G without restricting the image), then a necessary and sufficient condition is

1004

$$\alpha(h, \theta) = e_H \text{ for all } h \in G_\theta, \theta \in \Theta. \tag{20}$$

1005

- More generally, $F(\theta)$ is allowed to live in the moving fixed-point set above; then triviality on stabilizers is not required, but the image of F is constrained.

1006

1007 **Gauge/coboundary equivalence.** Two quasi-equivariant structures related by a change of variables

1008

1009 in \mathcal{X} are equivalent.

1010

1011 **Proposition A.3** (Gauge transform and trivial class). *Let $\beta : \Theta \rightarrow H$. Define*

1012

$$\alpha^\beta(g, \theta) := \beta(g\theta) \alpha(g, \theta) \beta(\theta)^{-1}, \quad F^\beta(\theta) := \beta(\theta) \cdot F(\theta). \tag{21}$$

1013

1014 *Then F satisfies Equation (13) with α if and only if F^β satisfies Equation (13) with α^β . In particular,*

1015

1016 *if α is a coboundary, i.e.*

1017

$$\alpha(g, \theta) = \beta(g\theta) \beta(\theta)^{-1}, \tag{22}$$

1018

1019 *then with $F'(\theta) := \beta(\theta)^{-1} \cdot F(\theta)$ one has the strict equivariance:*

1020

$$F'(g\theta) = F'(\theta) \quad \text{if } H \text{ acts trivially, or} \tag{23}$$

1021

$$F'(g\theta) = g \cdot F'(\theta) \quad \text{if } \beta \text{ is valued in } G \text{ and } H = G. \tag{24}$$

1022

1023 *Thus, normalized cocycles modulo coboundaries classify quasi-equivariant structures up to gauge*

1024

1025 *(a H^1 of the transformation groupoid $G \ltimes \Theta$ with coefficients in H).*

1026 **Regularity (topological/smooth settings).** If Θ, \mathcal{X} are topological (or smooth) spaces and the group
 1027 actions are continuous (or smooth), then to ensure F is continuous (or smooth) whenever the seed s
 1028 is, one additionally asks $\alpha(\cdot, \cdot)$ to be continuous (or smooth) and the group actions to be continuous
 1029 (or smooth). The results above remain valid verbatim.

1030 **Conclusion.** We have the following observations.

1031

- 1032 **Strict equivariance.** If $\alpha(g, \theta) \equiv g$ (and $H = G$ with the given action), then Equation (15)
 1033 is automatic and we recover the standard G -equivariance $F(g\theta) = g \cdot F(\theta)$.
- 1034 **Homomorphic twist.** If $\alpha(g, \theta) = \psi(g)$ for a homomorphism $\psi : G \rightarrow H$, then Equation
 1035 (15) holds. To descend to orbits without image constraints one needs $\psi(h) = e_H$ for
 1036 all $h \in G_\theta$ and all θ (i.e., ψ trivial on all stabilizers).
- 1037 **Coboundary (gauge) case.** If $\alpha(g, \theta) = \beta(g\theta)\beta(\theta)^{-1}$, one can *gauge* to a strictly equiv-
 1038 ariant F' as in Proposition A.3.

1039 To make sense of the quasi-equivariance relation $F(g\theta) = \alpha(g, \theta) \cdot F(\theta)$ independently of how a
 1040 point of Θ is represented, the essential structural requirement is that α be a *normalized 1-cocycle* on
 1041 the transformation groupoid $G \ltimes \Theta$ with values in H (Equations (14) and 15). Descent to the orbit
 1042 space without restricting the image of F additionally demands *triviality on stabilizers*. Up to gauge,
 1043 quasi-equivariant structures are classified by the corresponding first cohomology set; coboundaries
 1044 are precisely those that can be turned into strict equivariance by a change of variables.

1045 **Remark A.4.** The three conclusions regarding the conditions on α serve as necessary requirements
 1046 for the existence of a map F satisfying

$$1047 \quad F(g\theta) = \alpha(g, \theta)F(\theta). \quad (25)$$

1051 A.2 PROOF OF PROPOSITION 3.3

1052 In this section, we provide the proof for Proposition 3.3.

1055 *Proof of Proposition 3.3.* We provide a proof of each part of the proposition.

1056 *Part 1.* Assume φ and ψ are G -quasi-equivariant.

$$1057 \quad \forall h \in G, \forall \theta \in \Theta, \exists h_1 \in G : \varphi(h\theta) = h_1\varphi(\theta). \quad (26)$$

1059 Then

$$1060 \quad \forall h_1 \in G, \forall \theta \in \Theta, \exists h_2 \in G : \psi(h_1\theta) = h_2\psi(\theta). \quad (27)$$

1061 Taking $\vartheta = \varphi(\theta)$,

$$1062 \quad \forall h \in G, \forall \theta \in \Theta, \exists h_2 \in G : \psi(\varphi(h\theta)) = \psi(h_1\varphi(\theta)) = h_2\psi(\varphi(\theta)). \quad (28)$$

1064 Hence

$$1065 \quad \forall h \in G, \forall \theta \in \Theta, \exists h_2 \in G : (\psi \circ \varphi)(h\theta) = h_2(\psi \circ \varphi)(\theta), \quad (29)$$

1067 so $\psi \circ \varphi$ is G -quasi-equivariant.

1068 *Part 2.* Assume φ is G -quasi-equivariant and ψ is G -invariant:

$$1069 \quad \forall h \in G, \forall \theta \in \Theta, \exists h_1 \in G : \varphi(h\theta) = h_1\varphi(\theta), \quad (30)$$

1071 and

$$1072 \quad \forall k \in G, \forall \theta \in \Theta : \psi(k\theta) = \psi(\theta). \quad (31)$$

1073 Taking $k = h_1$ and $\vartheta = \varphi(\theta)$,

$$1074 \quad \forall h \in G, \forall \theta \in \Theta : \psi(\varphi(h\theta)) = \psi(h_1\varphi(\theta)) = \psi(\varphi(\theta)). \quad (32)$$

1076 Therefore

$$1077 \quad \forall h \in G, \forall \theta \in \Theta : (\psi \circ \varphi)(h\theta) = (\psi \circ \varphi)(\theta), \quad (33)$$

1078 so $\psi \circ \varphi$ is G -invariant.

1079 The proof is complete. □

1080 **B ADDITIONAL DETAILS OF EXPERIMENTS**
1081
1082
1083
1084
1085

B.1 DETAILS ON GROUP ACTION LEARNING

1086 We provide more details on building the process to learn group actions for two cases: MLP/CNN
1087 and Transformers.

1088 Our quasi-equivariant layer is designed in two stages: feature selection and group action learning.
1089 The goal is to learn a group action (α) from network weights and biases, and then apply it to the
1090 outputs of existing equivariant layers.

1092 **• Feature Selection:** A straightforward approach is to flatten and concatenate weights and
1093 biases, but this introduces excessive parameters and becomes infeasible for large networks.
1094 To address this, inspired by STATNET (Unterthiner et al., 2020), we instead compute sta-
1095 tistical features: mean, variance, and five quantiles (0, 0.25, 0.5, 0.75, 1) of weights and
1096 biases. These features are concatenated into a compact representation that scales consis-
1097 tently with network size while retaining essential information.

1098 **• Group Action Learning:** We adopt a MLP to model the group action, tailored to the
1099 underlying MLP or Transformer weight space. To encourage stability, the action is learned
1100 around the identity. Inspired by Fourier analysis, where sine functions form basic signal
1101 components, we introduce a structured noise mechanism: $\tilde{a} = \sin(W_{\text{scale}}x + b_{\text{scale}}) \cdot \epsilon +$
1102 $\{1_n, I_n\}$, where W_{scale} and b_{scale} are parameters of MLP, and ϵ is a small learnable factor.
1103 This generates mild oscillations centered at unity, preserving the base equivariant behavior
1104 while providing flexibility for improved learning.

1105 **Implementation of Quasi-Equivariant Layer for MLP/CNN weights.** In MLPs and CNNs, our
1106 goal is to learn a positive scale vector for each layer. The group action is applied to the output
1107 dimensions of the weights and biases by scaling all neurons in the output dimension, while cor-
1108 respondingly scaling the input dimension of the subsequent layer with the reciprocal value of the
1109 scale.

1110 To construct this, we first extract the weights and biases from the input network. For each layer,
1111 we compute seven statistical features: the mean, variance, and five quantiles (0, 0.25, 0.5, 0.75, 1).
1112 Features from weights and biases are concatenated, yielding a 14-dimensional representation per
1113 layer. Aggregating across all layers produces a feature vector of size $14 \cdot L$, where L is the total
1114 number of layers in the network.

1115 The group action for each layer is parameterized as a positive scale vector of size N_{out} , where
1116 N_{out} denotes the layer’s output dimension. We learn this vector using a Gated-MLP with hidden
1117 dimension 32, assigning a separate network to each layer. To ensure stability and positivity, we
1118 incorporate the structured noise mechanism described above. The resulting scale is then applied to
1119 the final equivariant layer of the metanetwork (specifically, Monomial-NFN).

1120 **Implementation of Quasi-Equivariant Layer for Transformer weights.** In Transformers, our
1121 objective is to learn two invertible matrices, M and N , for each layer, representing the GL group
1122 action applied to W_q, W_k, W_v , and W_o . Specifically, M is applied to the query and key matrices,
1123 yielding $W_q M^T$ and $W_k M^{-1}$. This ensures that the attention score remains unchanged, since

$$(W_q M^T)(W_k M^{-1})^T = W_q W_k^T.$$

1124 Similarly, N is applied to the value and output projection matrices, transforming them into $W_v N$
1125 and $N^{-1} W_o$.

1126 To construct these transformations, we extract all weights and biases from the input network:
1127 $W_q, W_k, W_v, W_o, W_A, b_A, W_B, b_B$. For each layer, we compute seven statistical features—the
1128 mean, variance, and five quantiles (0, 0.25, 0.5, 0.75, 1). Concatenating features from all weights
1129 and biases gives a 56-dimensional representation per layer. Aggregating across L layers results in a
1130 feature vector of size $56 \cdot L$.

1134 The group action for each layer is parameterized as two invertible matrices of shape (D, D) , where
 1135 D denotes the hidden dimension in attention, and each attention head has its own pair (M, N) . To
 1136 learn these matrices, we employ an MLP with hidden dimension 32, assigning one network per layer.
 1137 The MLP maps the feature vector to $n_h \cdot D \cdot D$, which is then reshaped into (n_h, D, D) . To guarantee
 1138 stability and numerical soundness, we apply the structured noise mechanism described above. This
 1139 procedure produces matrices that are invertible almost everywhere, allowing stable training. The
 1140 learned transformations are finally applied to the last equivariant layer of the metanetwork (specific-
 1141 ally, Transformer-NFN).

1142
1143

1144 **On the design of quasi-equivariant layer.** In the MLP/CNN case, the map α consists of two
 1145 parts: a constant map for the group \mathcal{P}_n and a map for the group $\mathbb{R}_{>0}^n$. To learn the latter map, we
 1146 construct a network that can translate from the weight space to a diagonal matrix in $\mathbb{R}_{>0}^n$, which can
 1147 also be represented as a vector in \mathbb{R}^n with all positive entries. We compute statistical features of
 1148 the weights, with shape D , to serve as input to the network. Therefore, the introduced network is
 1149 basically a MLP $\{W_{\text{scale}}, b_{\text{scale}}\}$ that maps from $D \rightarrow n$.

1150 The formula $\sin(W_{\text{scale}}x + b_{\text{scale}}) \cdot \epsilon + 1_n$ naturally relaxes the strict equivariance typically imposed in
 1151 metanetworks. By introducing a sine function, we allow the transformation to gently oscillate around
 1152 the identity, creating a smooth, controlled variation. This approach is inspired by Fourier analysis,
 1153 where sine waves naturally introduce periodic fluctuations, offering flexibility without disrupting
 1154 the overall structure. The small learnable parameter ϵ simply scales these oscillations, determining
 1155 how much relaxation to apply. This design provides a natural way to balance stability and flexibility,
 1156 enabling the model to remain expressive while avoiding the constraints of strict equivariance.

1157

1158 B.2 PREDICTING CNN GENERALIZATION

1159
1160
1161

1162 **Dataset.** The Small CNN Zoo provides a ReLU subset containing 6,050 samples for training and
 1163 1,513 for testing. To enlarge the dataset, we apply data augmentation with a factor of 2, generating
 1164 one additional variant for every original instance. This procedure yields an augmented ReLU subset
 1165 with 12,100 training examples and 3,026 test examples.

1166
1167

Baselines. We evaluate our model against five established baselines:

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

- **STATNN** (Unterthiner et al., 2020): extracts statistical features from network weights and biases.
- **Graph-NN** (Kofinas et al., 2024): models network parameters as graphs and applies Graph Neural Networks for processing.
- **NP and HNP** (Zhou et al., 2024a): integrate neuron permutation symmetries into neural functional networks.
- **Monomial-NFN** (Tran et al., 2024): generalizes the action on weights from permutation matrices to monomial matrices, incorporating scaling and sign-flip symmetries.

1178
1179
1180
1181
1182

Model Configurations. Our Monomial-NFN Quasi extends Monomial-NFN, which follows the architecture of Zhou et al. (2024a). The base model consists of three equivariant Monomial-NFN layers with 16, 16, and 5 channels, each followed by a ReLU activation. In our variant, the final Monomial-NFN layer is replaced with a Monomial-NFN Quasi layer, where a learned scale is applied to the output of the standard Monomial-NFN layer.

1183
1184
1185
1186
1187

The resulting weight-space features are then fed into an invariant Monomial-NFN layer with Monomial-NFN pooling, which contains learnable parameters. This pooling layer normalizes the weights along the hidden dimension and computes averages across rows (first layer), columns (last layer), or both (intermediate layers). The pooled output is flattened and projected to \mathbb{R}^{200} , followed by an MLP with two hidden layers and ReLU activations. Finally, the output is linearly mapped to a scalar and passed through a sigmoid function.

1188

1189

Table 4: Number of parameters of all models for predicting generalization task.

1190

1191

Model	STATNN	NP	HNP	Monomial-NFN	Monomial-NFN large	Monomial-NFN Quasi
Number of parameters	1.06M	2.03M	2.81M	0.25M	0.43	0.26M

1192

1193

Table 5: Hyperparameters for Monomial-NFN and Monomial-NFN an on predicting generalization task.

1194

1195

1196

1197

1198

	Monomial-NFN dim	MLP dim	Loss	Optimizer	Learning rate	Batch size	Epoch
Monomial-NFN	[16,16,5]	200	Binary cross-entropy	Adam	0.001	8	50
Monomial-NFN large	[20,20,5]	200	Binary cross-entropy	Adam	0.001	8	50
Monomial-NFN Quasi	[16,16,5 (quasi layer)]	200	Binary cross-entropy	Adam	0.001	8	50

1199

1200

Training. We train the model with Binary Cross Entropy (BCE) loss for 50 epochs, applying early stopping based on a validation threshold τ . On an A100 GPU, the full training process requires approximately 35 minutes.

1201

1202

1203

Other Baselines. For Graph-NN, we adopt the official implementation provided in (Kofinas et al., 2024) (<https://github.com/mkofinas/neural-graphs>). The implementations of NP, HNP, and Monomial-NFN follow the setups in (Zhou et al., 2024a) (<https://github.com/AllanYangZhou/nfn>) and (Tran et al., 2024). For these models, we use three equivariant layers with channel sizes of 16, 16, and 5. The features extracted are processed through average pooling, and subsequently passed into three MLP layers, each with a hidden size of 200. We provide the number of parameters and hyperparameters in Table 4 and Table 5

1211

1212

B.3 CLASSIFYING IMPLICIT NEURAL REPRESENTATIONS OF IMAGES

1213

1214

1215

Dataset. We employ the original INRs dataset, which includes three subsets: CIFAR-10, MNIST, and Fashion-MNIST. Each image in these datasets is represented using a single SIREN model, as described in Zhou et al. (2024a). Following the setup in Tran et al. (2024), no data augmentation is applied. The numbers of training, validation, and test samples for each dataset are summarized in Table 6.

1220

1221

Baselines. Follow (Zhou et al., 2024a; Tran et al., 2024), we compare our method against MLP, NP, HNP, and Monomial-NFN. For baselines, we follow the architecture in Zhou et al. (2024a), with a reduced hidden dimension ($512 \rightarrow 256$) to mitigate overfitting. All baseline models and our base model use a hidden dimension of 256. The hyperparameters of Monomial-NFN and the tuned version is given in Table 7

1226

1227

Model Configurations. In these experiments, our architecture consists of two Monomial-NFN layers with sine activations, followed by one Monomial-NFN Quasi layer with absolute activation. The hidden dimensions for Monomial-NFN Quasi layers vary by dataset and are listed in Table 8. We also provide the parameters count for all models in Table 9

1231

1232

1233

1234

1235

1236

1237

The subsequent design follows the NP and HNP models of Zhou et al. (2024a). Specifically, we apply a Gaussian Fourier transformation to encode the input with sine and cosine components, expanding from one dimension to 256 dimensions. When using NP as the base layer, the features are further processed by IOSinusoidalEncoding—a positional encoding tailored for NP—with a maximum frequency of 10 and six frequency bands. The encoded features are then passed through three NP or HNP layers with ReLU activations, followed by average pooling. The pooled output is flattened and fed into an MLP with two hidden layers of 1000 units each, also with ReLU activations. Finally, the output is linearly projected to a scalar.

1238

1239

1240

1241

For the MNIST dataset, we insert a Channel Dropout layer (after each HNP ReLU activation) and a Dropout layer (after each MLP ReLU activation), both with a dropout rate of 0.1. Training uses Binary Cross Entropy (BCE) loss for 200,000 steps, which takes approximately 1 hour 50 minutes on an A100 GPU.

1242 Table 6: Dataset size for Classifying INRs task.
1243

	Train	Validation	Test
CIFAR-10	45000	5000	10000
MNIST	45000	5000	10000
Fashion-MNIST	45000	5000	20000

1244 Table 7: Hyperparameters of Monomial-NFN and Monomial-NFN tuned (in parentheses) for each
1245 dataset in Classify INRs task.
1246

	MNIST	Fashion-MNIST	CIFAR-10
Monomial-NFN hidden dim	64 (128)	64 (128)	16 (64)
Base model	HN P	NP	HN P
Base model hidden dim	256	256	256
MLP hidden neurons	1000	500	1000
Dropout value	0.1	0	0
Learning rate	0.000075	0.0001	0.0001
Batch size	32	32	32
Number of training steps	200000	200000	200000
Loss function	Binary cross-entropy	Binary cross-entropy	Binary cross-entropy

1247 Table 8: Hyperparameters of Monomial-NFN Quasi for each dataset in Classify INRs task.
1248

	MNIST	Fashion-MNIST	CIFAR-10
Scale network hidden dim	32	32	32
Scale network weight initialization	Xavier	Xavier	Xavier
Scale network ϵ initialization	0.01	0.01	0.01
Monomial-NFN hidden dim	64	64	16
Base model	HN P	NP	HN P
Base model hidden dim	256	256	256
MLP hidden neurons	1000	500	1000
Dropout value	0.1	0	0
Learning rate	0.000075	0.0001	0.0001
Batch size	32	32	32
Number of training steps	200000	200000	200000
Loss function	Binary cross-entropy	Binary cross-entropy	Binary cross-entropy

1249 Table 9: Number of parameters of all models for classifying INRs task.
1250

	CIFAR-10	MNIST	Fashion-MNIST
MLP	2M	2M	2M
NP	16M	15M	15M
HN P	42M	22M	22M
Monomial-NFN	16M	22M	20M
Monomial-NFN tuned	16.3M	22.3M	20.7M
Monomial-NFN Quasi (ours)	16.3M	22.2M	20.5M

1251 B.4 PREDICTING TRANSFORMERS GENERALIZATION

1252 **Dataset.** We use the Small Transformer Zoo dataset (Tran et al., 2025), which includes two sub-
1253 sets: MNIST-Transformer and AGNews-Transformer. These datasets are generated by training
1254 Transformer models on MNIST image classification and AGNews text classification tasks, while
1255 varying key hyperparameters such as training fraction, dropout rate, learning rate, and weight ini-
1256 tialization. In total, the zoo contains 62,756 models for MNIST-Transformer and 63,796 models for
1257 AGNews-Transformer. Following the experimental setup in (Tran et al., 2025), we use the check-
1258 points at epoch 75, corresponding to 15,689 models in MNIST-Transformer and 15,949 models in
1259 AGNews-Transformer. The ratio of train, validation and test set is 0.7, 0.15, and 0.15, respectively.
1260

1261 **Baselines.** The baselines are implemented following (Tran et al., 2025). More specifically:
1262

1263 • **MLP.** For the MLP baseline, each network component is treated independently. The corre-
1264 sponding weights are flattened and passed through dedicated MLPs: a single hidden layer
1265

1296

Table 10: Number of parameters for all models

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Model	MNIST-Transformers	AGNews-Transformers
Transformer-NFN	1.812M	1.804M
Transformer-NFN large	2.857M	2.857M
Transformer-NFN quasi	1.894M	1.887M
MLP	0.933M	0.896M
STATNN	0.203M	0.168M

Table 11: Performance measured by Kendall’s τ of all models on AGNews-Transformers dataset. Uncertainties indicate standard error over 5 runs.

Quasi dim	No threshold	Accuracy threshold			
		20%	40%	60%	80%
Transformer-NFN	-	0.910 \pm 0.001	0.908 \pm 0.001	0.897 \pm 0.001	0.896 \pm 0.001
Transformer-NFN Quasi	8	0.911 \pm 0.002	0.909 \pm 0.001	0.897 \pm 0.001	0.897 \pm 0.002
Transformer-NFN Quasi	16	0.913 \pm 0.002	0.911 \pm 0.001	0.901 \pm 0.001	0.902 \pm 0.002
Transformer-NFN Quasi	32	0.914 \pm 0.001	0.913 \pm 0.002	0.901 \pm 0.001	0.903 \pm 0.002
Transformer-NFN Quasi	64	0.913 \pm 0.001	0.911 \pm 0.001	0.899 \pm 0.002	0.903 \pm 0.002

with 50 units is used for both the transformer block and the embedding, while the classifier is modeled by a two-layer MLP with 50 units per layer. The outputs from these modules are concatenated and further processed by a final MLP that produces the prediction.

- **STATNN** (Unterthiner et al., 2020). To adapt STATNN to transformer architectures, we first compute statistical summaries from the weights of the query, key, value, and output projections, together with the weights and biases of the two feedforward layers. These features are concatenated and given as input to a one-layer MLP with 256 hidden units. For the classifier, we retain the original STATNN feature extraction scheme, followed by another MLP with 256 hidden units. The embedding is handled separately with a one-layer MLP of 64 hidden units. The outputs from all three components are merged and passed through a final single-layer MLP to obtain the prediction.
- **XGBoost** (Chen & Guestrin, 2016), **LightGBM** (Ke et al., 2017), and **Random Forest** (Breiman, 2001). For tree-based approaches, we directly flatten all component weights and use them as input features. Across all three models, we set the hyperparameters to a maximum tree depth of 10, a minimum child weight of 50, and at most 256 leaves.

Model Configurations. Our approach is built on the Transformer-NFN backbone, with the Transformer-NFN Quasi model consisting of three modules that process the weights of a transformer network. The embedding and classifier components are modeled as MLPs with ReLU activations, each applied independently to their respective inputs. The transformer block is handled separately using an invariant architecture: several equivariant Transformer-NFN Quasi layers with ReLU activations are applied to the two MLP submodules of the block, and their outputs are passed through an invariant polynomial Transformer-NFN layer. The resulting vectors from all components are concatenated and processed by a final MLP with Sigmoid activation to produce the prediction.

In our experiments, the embedding module is implemented as a one-layer MLP with 10 hidden units, while the classifier is a two-layer MLP, each with 10 hidden units. For the transformer block, we use an equivariant Transformer-NFN Quasi layer with 10 hidden channels, followed by an invariant Transformer-NFN layer and an MLP that generates a 10-dimensional output vector. These outputs are concatenated and fed into a classification head to yield the final prediction.

B.5 ABLATION ON THE MLP NETWORK FOR GROUP ACTION LEARNING

Experiment Setup. To assess the robustness of the scale network, we conduct experiments by systematically varying the hidden dimension of the MLPs. Our evaluation is carried out using the Transformer-NFN Quasi architecture on the AGNews-Transformers dataset. In particular, we investigate the capacity of the model to learn the two invertible matrices M and N under different hidden dimensions, specifically 8, 16, 32, and 64.

1350 **Results.** Table 11 reports the performance of Transformer-NFN Quasi under different hidden dimensions of the scale network. Incorporating the quasi-equivariant layer consistently improves performance, with gains increasing as the hidden dimension grows, and reaching the highest score at 32 dimensions. Based on this observation, we select a hidden dimension of 32 for the final model.

1354 **B.6 EXPERIMENTS ON AUGMENTED AGNEWS-TRANSFORMERS DATASET**

1355 **Experiment Setup.** We evaluate the robustness of Transformer-NFN Quasi under strong group actions in weight space, testing whether the quasi layer compromises architectural symmetry. Following the setup in (Tran et al., 2025), we conduct experiments on the AGNews-Transformers dataset augmented with the group action \mathcal{G}_U . Both training and test sets are 2-fold augmented: the original weights are retained, and additional weights are generated by applying permutations and scaling transformations to Transformer modules. The elements of M and N are uniformly sampled from $[-1, 1]$, $[-10, 10]$, and $[-100, 100]$.

1364 **Results.** Table 12 summarizes the results. Transformer-NFN shows stable Kendall’s τ values across all ranges of scaling, with a consistent score of 0.914. While our model does not gain from increasingly large augmentation scales, its performance remains steady, highlighting the balanced trade-off of Transformer-NFN Quasi: it enhances the expressiveness of the base model while preserving its inherent symmetry.

1370 Table 12: Performance measured by Kendall’s τ of all models on augmented AGNews-Transformers dataset using the group action \mathcal{G}_U . Uncertainties indicate standard error over 5 runs.

	Original	$[-1, 1]$	$[-10, 10]$	$[-100, 100]$
XGBoost	0.859 ± 0.001	0.799 ± 0.003	0.800 ± 0.001	0.802 ± 0.003
LightGBM	0.835 ± 0.001	0.785 ± 0.003	0.784 ± 0.003	0.786 ± 0.004
Random Forest	0.774 ± 0.003	0.714 ± 0.001	0.715 ± 0.002	0.716 ± 0.002
MLP	0.879 ± 0.006	0.830 ± 0.002	0.833 ± 0.002	0.833 ± 0.005
STATNN	0.841 ± 0.002	0.793 ± 0.003	0.791 ± 0.003	0.771 ± 0.013
Transformer-NFN	0.910 ± 0.001	0.912 ± 0.001	0.912 ± 0.002	0.913 ± 0.001
Transformer-NFN Quasi	0.914 ± 0.001	0.914 ± 0.002	0.914 ± 0.002	0.914 ± 0.002

1381 **B.7 ANALYSIS ON THE LEARNED SCALING**

1384 **Experiment Setup.** To analyze the sensitivity of ϵ and the learned scaling $(\sin(\gamma(\theta)) \cdot \epsilon + 1_n)$ in MLP/CNN case, we conduct experiments on the task of Predicting CNN Generalization. We introduce learned scale layers (with corresponding ϵ) on top of Monomial-NFN equivariant layers and explore two cases: one with a fixed ϵ and one with a learnable ϵ . The results are presented in Table 13. The table reports the following values:

- Initial ϵ : The initial value of ϵ
- Learnable/Fixed: How ϵ changes during training
- Final ϵ : The final value of the first layer ϵ after training
- Learned scale: The first layer learned scaling $(\sin(W_{\text{scale}}x + b_{\text{scale}}) \cdot \epsilon + 1_n)$
- Kendall’s τ : Evaluation metric (Higher is better)

1398 **Results.** When ϵ is fixed at a small value, the learned scaling slightly deviates from the identity, resulting in marginal performance gains. However, when ϵ is learnable, the learned scaling can deviate further from the identity, leading to a broader scaling range that enhances performance. Additionally, when ϵ is learnable, the final ϵ values tend to converge, regardless of their initial values. For larger values of ϵ , instability may arise due to significant deviations in the early steps. Consequently, in our study, we choose a learnable ϵ with an initial value of 0.01 to ensure training stability.

Table 13: Analysis on the learned scaling with varying ϵ

Initial ϵ	Learnable/Fixed	Final ϵ	Learned scale	Kendall's τ
0 (Baseline)	-	-	-	0.922
0.001	Fixed	0.001	1.000 ± 0.001	0.922
0.01	Fixed	0.01	0.999 ± 0.007	0.923
0.1	Fixed	0.1	1.003 ± 0.079	0.923
0.2	Fixed	0.2	0.933 ± 0.135	0.923
0.4	Fixed	0.4	0.972 ± 0.378	0.924
0.001	Learnable	0.966	0.796 ± 0.668	0.925
0.01	Learnable	0.970	0.941 ± 0.710	0.926
0.1	Learnable	0.971	0.918 ± 0.758	0.926
0.2	Learnable	0.946	0.743 ± 0.626	0.925
0.4	Learnable	0.988	0.762 ± 0.624	0.925

B.8 SENSITIVITY OF ϵ

Experiment Setup. We present an ablation study on the sensitivity of ϵ by conducting the "Predict Transformer Generalization" experiment on the MNIST-Transformer dataset. Specifically, we analyze two cases: when ϵ is learnable versus fixed, and report the performance alongside statistics of learned noises ($\sin(\gamma(\theta)) \cdot \epsilon$) for the matrices M and N , which represent the two GL group actions applied to the weights of the MHA layer. For each noise, we compute the mean and standard deviation of the diagonal and off-diagonal elements. The results are summarized in Table 14. The table reports the following values:

- Initial ϵ : The initial value of ϵ for both M and N .
- Learnable/Fixed: Whether ϵ is changed during training.
- Final ϵ_M, ϵ_N : The final value of ϵ after training.
- Diagonal M, N : Mean and standard deviation of the learned noises $\sin(\gamma(\theta)) \cdot \epsilon$ for M and N , computed for diagonal elements.
- Off-diagonal M, N : Mean and standard deviation of the learned noises $\sin(\gamma(\theta)) \cdot \epsilon$ for M and N , computed for off-diagonal elements.
- Kendall's τ : Evaluation metric (higher is better).

Table 14: Ablation study on ϵ with metrics for M and N .

Initial ϵ	Type	Final ϵ_M	Final ϵ_N	Diagonal M	Off-diagonal M	Diagonal N	Off-diagonal N	Kendall's τ
Baseline	-	-	-	-	-	-	-	0.905
0.001	Fixed	0.001	0.001	0.000 ± 0.000	0.062 ± 0.242	0.000 ± 0.000	0.063 ± 0.242	0.909
0.01	Fixed	0.01	0.01	0.001 ± 0.002	0.062 ± 0.242	-0.001 ± 0.005	0.062 ± 0.242	0.909
0.1	Fixed	0.1	0.1	0.005 ± 0.020	0.062 ± 0.245	-0.038 ± 0.065	0.061 ± 0.244	0.907
0.2	Fixed	0.2	0.2	0.010 ± 0.040	0.061 ± 0.249	-0.002 ± 0.144	0.059 ± 0.285	0.910
0.4	Fixed	0.4	0.4	0.021 ± 0.080	0.060 ± 0.265	-0.055 ± 0.221	0.073 ± 0.323	0.909
0.001	Learnable	0.001	-0.187	0.000 ± 0.000	0.063 ± 0.242	-0.068 ± 0.117	0.059 ± 0.260	0.908
0.01	Learnable	0.010	0.182	0.001 ± 0.002	0.062 ± 0.241	-0.056 ± 0.084	0.061 ± 0.244	0.911
0.1	Learnable	0.099	0.234	0.005 ± 0.020	0.062 ± 0.245	-0.085 ± 0.114	0.060 ± 0.250	0.910
0.2	Learnable	0.200	0.290	0.010 ± 0.040	0.061 ± 0.249	-0.011 ± 0.218	0.062 ± 0.316	0.909
0.4	Learnable	0.400	0.298	0.021 ± 0.079	0.060 ± 0.265	-0.011 ± 0.179	0.065 ± 0.298	0.909

Results. When the GL group is learned through our quasi-equivariant layers, the off-diagonal elements provide additional flexibility, leading to a noticeable improvement in performance even with a fixed ϵ . With a learnable ϵ , the range of values for N expands and become more stable, resulting in better predictive performance. Overall, this study suggests that increasing the relaxation

1458 through ϵ can enhance performance. For our experiments, we select a learnable ϵ with an initial
 1459 value of 0.01 to ensure the training stability.
 1460

1461 **B.9 WEIGHT SPACE STYLE EDITING**
 1462

1463
 1464
 1465 **Experiment Setup.** In this experiment, we focus on modifying the image content encoded in each
 1466 SIREN model (Sitzmann et al., 2020) by adjusting its weights. Specifically, we leverage pretrained
 1467 models from (Zhou et al., 2024a), which encode images from the CIFAR-10 and MNIST datasets.
 1468 The experimental setup follows the approach described in (Zhou et al., 2024a; Tran et al., 2024).
 1469 Our main goal is to explore two tasks that involve altering the embedded information within the
 1470 SIREN model: first, enhancing the contrast of CIFAR-10 images, and second, applying dilation to
 1471 MNIST images.
 1472

1473 To evaluate the effectiveness of these modifications, we compute the mean squared error (MSE) loss
 1474 between the images encoded by the modified SIREN network and the corresponding ground truth
 1475 images, which have undergone contrast enhancement for CIFAR-10 and dilation for MNIST. The
 1476 baseline for comparison is the Monomial-NFN model (Tran et al., 2024), which is already a highly
 1477 optimized version. In this case, further increasing the parameters does not lead to a noticeable
 1478 improvement in performance, serving as a useful benchmark for our experiments. The results from
 1479 these tasks are summarized in Table 15.
 1480

Table 15: Weight space style editing (INRs editing)

Model	Contrast (CIFAR-10)	Dilate (MNIST)
MLP	0.031 ± 0.001	0.306 ± 0.001
HNP (Zhou et al., 2024a)	0.021 ± 0.001	0.071 ± 0.001
NP (Zhou et al., 2024a)	0.020 ± 0.002	0.068 ± 0.002
Monomial-NFN (Tran et al., 2024)	0.020 ± 0.001	0.069 ± 0.002
Monomial-NFN Quasi (1% params ++)	0.019 ± 0.001	0.066 ± 0.001

1490 **Results.** In this task, Monomial-NFN model initially underperforms compared to the NP model.
 1491 However, by incorporating our newly introduced Quasi layer, which adds only 1% more param-
 1492 eters, we are able to significantly improve the performance of the Monomial-NFN model. This
 1493 enhancement allows it to surpass the performance of the NP baseline in both tasks, demon-
 1494 strating the effectiveness of our approach with minimal increase in model complexity.
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511