Under review as submission to TMLR

Are Population Graphs Really as Powerful as Believed?

Anonymous authors
Paper under double-blind review

Abstract

Population graphs and their use in combination with graph neural networks (GNNs) have
demonstrated promising results for multi-modal medical data integration and improving
disease diagnosis and prognosis. Several different methods for constructing these graphs
and advanced graph learning techniques have been applied and established to maximise the
predictive power of GNNs on population graphs. However, in this work, we raise the question
of whether existing methods are really strong enough by showing that simple baseline methods
—such as random forests or linear regressions—, perform on par with advanced graph learning
models on several population graph datasets for a variety of different clinical applications,
such as age regression or disease prediction. We utilise benchmark citation datasets as
well as the commonly used public population graph datasets TADPOLE and ABIDE, a
brain age estimation and a cardiac dataset from the UK Biobank, and a real-world in-house
COVID dataset. We investigate (a) the utility of GNNs for multi-modal data integration
in the context of population graphs and (b) the impact of the graph structure on GNN
performance. We conclude that GNNs are only beneficial for population graph studies if the
graph structure adds meaningful additional information to the node features and show that
the node features dominate the predictive power of GNNs in these studies.!

1 Introduction

Graphs can be used to model and represent various types of data. They allow for a suitable representation of
interconnected structures, such as social networks (Fan et al., 2019), molecules (Moreira-Filho et al., 2022),
or surface meshes (Mueller et al., 2023b). In order to perform deep learning on graph-like data structures,
graph neural networks (GNNs) have been introduced (Gori et al., 2005; Scarselli et al., 2008). GNNs follow a
message-passing scheme and collect information that is stored in nodes across a graph structure (Bronstein
et al., 2017) and have shown improved performance of various deep learning tasks (Parisot et al., 2017;
Ahmedt-Aristizabal et al., 2021; Bessadok et al., 2022; Pellegrini et al., 2022). Most of these tasks rely
on datasets that inherently provide a graph structure, such as social networks, or provide well-established
methods to construct the graph, such as point clouds (Wang et al., 2019).

In the medical domain, GNNs have been applied to improve disease diagnostics (Parisot et al., 2017; Cosmo
et al., 2020; Kazi et al., 2022), model biological structures (Chen et al., 2020), or temporal components of data
(Kim et al., 2021). They can be used to perform deep learning on surface meshes for fatty tissue quantification
(Mueller et al., 2023b), vessel structures (Paetzold et al., 2021) for vessel segmentation, or molecules for drug
discovery (Bonner et al., 2022). The respective datasets provide an inherent graph structure in the form of a
mesh, a vessel tree, or chemical bindings. In contrast to datasets that provide a clear graph structure, some
works study so-called population graphs. A population graph refers to a network of inter-connected subjects
encoding the medical information of all subjects in graph form. Usually, the subjects’ medical data, such as
imaging or clinical features, is used as node features in the graph and the edges are constructed in a way that
similar subjects are connected with each other. Figure 1 shows a schematic of a typical population graph.
Each subject considered as a node is represented by a data vector, which is usually extracted from medical
images. Additionally, non-imaging clinical data, such as demographics or lab results, can be used to define
the edges between subjects.

IThe source code for this work can be found at: https://anonymous.4open.science/r/population_graphs

https://anonymous.4open.science/r/population_graphs

Under review as submission to TMLR

Medical data Subject-specific features Population graph

[EmErrrrTs)
<> [EmErrTTm)
] \\ o
Q'\

]

S ——

3 \\‘ /

Figure 1: Overview of a typical population graph and its construction. Medical data is represented in the
form of a feature vector for each subject and saved as node features in the population graph. The most
frequently used setup uses imaging features as node features and non-imaging features for edge construction.

Several works have shown that population graphs for medical applications can improve downstream tasks
compared to graph-agnostic methods (Parisot et al., 2017; Kazi et al., 2019; Cosmo et al., 2020; Kazi et al.,
2022). However, population graphs come with a significant limitation: the graph structure needs to be
constructed from the dataset. This has led to different graph construction methods. Two branches of graph
construction have been established: static and dynamic graph construction. Static graph construction refers
to the creation of the graph structure prior to graph learning, while dynamic graph construction methods
adapt the graph structure during training (Cosmo et al., 2020). To date, both methods are used frequently.
What makes the choice of graph construction method so crucial, is the impact of the resulting graph structure
on the downstream performance of the GNN. It has been shown that a “poor” graph structure can lead to
GNNs under-performing graph-agnostic models (Luan et al., 2022; Zhu et al., 2020). Some methods have
been specifically designed to work on such challenging graph structures, one of them being neural sheaf
diffusion models (Hansen & Gebhart, 2020). We investigate their potential on population graph datasets,
which tend to have challenging graph structures.

So far, there are two commonly used arguments for using medical population graphs compared to graph-
agnostic models: (1) GNNs allow for meaningful multi-modal data integration, and (2) the message passing
across neighbourhoods improves model performance. In this work, we investigate how firm those claims are
and contradict those claims on several datasets. Our contributions can be summarised as follows:

e We compare static and dynamic state-of-the-art graph construction methods with GNNs, as well as
the usage of neural sheaf diffusion models for population graphs and show how simple graph-agnostic
baselines perform on par with them on several benchmark and population graph datasets.

e We show that GNNs can be superior to graph-agnostic models if the graph structure is provided with
the dataset but do not achieve performance boosts on the medical population graph datasets used
in this work. We hypothesise that in the latter case, the graph structure does not add additional
valuable information.

o We evaluate the impact of the graph structure on several different types of graph convolution, using
two different graph assessment metrics: homophily and cross-class neighbourhood similarity (CCNS)
distance.

e We discuss the question of whether population graph modelling techniques with GNNs are actually
beneficial compared to graph-agnostic methods.

Under review as submission to TMLR

Our results lead us to conclude that we need a discussion about whether population graphs are beneficial over
graph-agnostic methods and that the currently available graph construction methods are the performance
bottleneck of GNNs on population graphs. We see a requirement for “better” graph construction methods if
we want to improve the performance of GNNs on population graphs.

2 Background

In this section, we give some background on graphs, graph neural networks with different graph convolu-
tions, neural sheaf diffusion models, and two graph assessment metrics, namely homophily and cross-class
neighbourhood similarity.

2.1 Graph Structures

A graph G := (V, E) is defined as a set of n vertices/nodes V' and a set of edges E, where ¢;; = 1 and
e;; € I if there exists an edge from node 7 to node j. All edges can be summarised in an n x n adjacency
matrix A, where a;; =1 if e;; € E/ and 0 otherwise. In the context of graph deep learning, the graph’s nodes
usually hold node features of dimension r, that can be summarised in the node feature matrix X € R"*",
A neighbourhood of a node 4, N; is the set of all nodes j, for which there exists an edge e;; from j to 1.
Furthermore, in the setting of node classification, each node ¢ usually holds a label y;, and all labels can be
summarised in the label vector Y.

2.2 Graph Assessment Metrics

Several works have shown that the graph structure can have a significant impact on the performance of
GNNs (Luan et al., 2022; Zhu et al., 2020). In this line, different metrics have been introduced that assess
graph structures and have been shown to correlate with GNN performance. The metric most commonly
used is homophily. One can distinguish between three different types of homophily: class homophily (Lim
et al., 2021; Luan et al., 2021), edge homophily (Kim & Oh, 2022), and node homophily (Pei et al., 2020),
which all highlight slightly different aspects of the graph structure. They all evaluate the ratio between edges
that connect nodes with the same label and edges that connect nodes with different labels. The idea is that
since GNNs propagate node features across edges, the less similar the neighbours are, the less likely it is for
the GNN to learn representative node feature embeddings for this node, which can impact the network’s
performance. In the remaining parts of this work, we will use node homophily.

Definition 2.1 (Node homophily (Pei et al., 2020)) A graph G := (V,E) with node labels Y :=
{yu;u € V} has the following node homophily:

1 |{U|UENU,Yu:Yv}|
hom(G,Y) := — , (1)
>]
where N, is the set of neighbouring nodes of v and | - | the cardinality of a set.

We speak of “high homophily” or a “homophilic” graph, when hom(G, Y) — 1 and of “low homophily” or a
“heterophilic” graph, when hom (G, Y) — 0. A graph’s homophily can also be defined for regression tasks by
taking the distance between node feature labels among neighbourhoods into account (Mueller et al., 2023a):

Definition 2.2 (Homophily for regression (Mueller et al., 2023a)) The node homophily of a graph
G with labels Y (defined as above) that indicate a regression task is defined as follows:

1 1
homreg(G,Y) =1- <|V|U€ZV (M Z ”yv - ynl))) (2)

nE./\/v

where ||-||1 indicates the L1 norm.

Under review as submission to TMLR

Another metric, that does not only focus on the ratio of edges connecting same-labelled or differently-labelled
nodes, is cross-class neighbourhood similarity (CCNS) (Ma et al., 2021). Here, the overall similarity of
neighbourhoods of nodes with the same label is evaluated, irrespective of whether the neighbours share the
same label as the node of interest.

Definition 2.3 (Cross-class neighbourhood similarity (Ma et al., 2021)) Let G := (V,E), Y, and
N, be defined as above. In addition, let C be the set of all possible classes of node labels, and V. the set of
vertices of a specific class c. Then the CCNS of two classes ¢, and cs can be derived as follows:

CCNS(c,,cs) = W Z cossim(d(u), d(v)), (3)

where d(v) indicates the histogram of a node v’s neighbours’ labels and cossim(-,) the cosine similarity.

We note that in this work, we only utilise a dynamic graph learning pipeline, that reduces the continuous
adjacency matrix back to a static one by sampling (Kazi et al., 2022). However, both metrics can be extended
to continuous adjacency matrices, if other dynamic graph construction methods are used (Mueller et al.,
2023a). This allows an evaluation of these graph assessment metrics also in the case of dynamic graph
learning, which requires a continuous adjacency matrix. Mueller et al. (2023a) also introduce a reduction of
CCNS to a single-valued parameter, they call CCNS distance, which defines the L; distance between the
CCNS matrix and the identity matrix:

Definition 2.4 (CCNS distance (Mueller et al., 2023a)) Let G := (V, E), C, and CCNS be defined as
above. Then the CCNS distance of the whole graph G is:

1
D == CCNS 1|4, 4
CONS nZH (Ft (4)
where ||-||1 is the L1 norm and I the identity matriz.

2.3 Graph Neural Networks

GNNSs have been introduced with the aim of enabling deep learning on non-Euclidean spaces, such as graphs,
manifolds, or meshes (Bronstein et al., 2017). They all follow a so-called message-passing scheme, which
propagates the information, that is stored in the node features of the graph (or mesh or manifold) to its
neighbouring nodes. The GNN then learns a node feature embedding, based on the original node features
as well as the propagated node features of the neighbouring nodes. GNNs make use of graph convolutions,
which specify the concrete message-passing scheme that is applied during training and inference. There exist
several different types of graph convolution, all varying slightly in their methodology. We here summarise the
definitions of four commonly used graph convolutions.

Definition 2.5 (Graph Convolutional Networks (GCN) (Kipf & Welling, 2016)) Graph convolu-
tional networks (GCNs) were one of the first GNNs introduced by Kipf & Welling (2016). They were
originally defined in a spectral manner, using the graph Laplacian. The PyTorch Geometric implementation

follows the following definition:
1
z; =T Z — 1, (5)

where d; = L4+ en L

Definition 2.6 (Graph SAGE (Hamilton et al., 2017)) In 2017, Hamilton et al. (2017) introduced a
novel graph convolution that was originally designed for large graphs and inductive training, which is called
GraphSAGE. Here, the new feature representation of a node i is defined as follows:

Z‘; = Wll‘i + WQ . EjENi (6)

Under review as submission to TMLR

Definition 2.7 (Higher-order Graph Neural Networks (GraphCONYV) (Morris et al., 2019))
Morris et al. (2019) introduced so-called higher-order GNNs, where the node feature embedding x of node i is
defined as follows:

.13; = Wiz; + Wy Z ;. (7)
JEN;

Definition 2.8 (Graph Attention Networks (GAT) (Velickovié et al., 2017)) Velickovi¢ et al.
(2017) introduced a graph neural network, that learns attention weights for edges in the graph. The new node
feature embedding of a node i is defined as:

JJ; = ;;Ox; + Z aij@xj, (8)
JEN;

where o;; is the attention coefficient between two nodes i and j and is defined as follows:

_ exp(¢(a” (O || ©17)))
> kensos P (6 (a7 (Oz; || 1))

where ¢ is commonly the LeakyReLU function and || indicates a concatenation of the values.

Olij

2.4 Neural Sheaf Diffusion Models

With a rising discussion on how GNNs perform on low-homophily graph structures, different approaches to
graph learning have been established that target these more challenging settings for graph learning. One
of these methods is neural sheaf diffusion models, originally introduced by Hansen & Gebhart (2020) and
extended by Bodnar et al. (2022). They use the topological concept of cellular sheaves, which assign vector
spaces to all nodes and edges and linear mappings between them for all node-edge connections. Traditional
GNNs are designed in a way that they assume a graph structure with a trivial underlying sheaf. Hansen &
Gebhart (2020) and Bodnar et al. (2022) introduce an alternative approach to graph deep learning that is
based on the concept of cellular sheaves, where different sheaf representations are learned for nodes and edges
of the graph. They show that with this method, they can provide a graph learning technique that is less
impacted by heterophilic graphs and over-smoothing - two commonly known limitations of GNNs. Sheaf
neural networks (Hansen & Gebhart, 2020; Bodnar et al., 2022) are a generalisation of GCNs (Kipf & Welling,
2016) and leverage the sheaf Laplacian (Hansen & Ghrist, 2019), an extension of the graph Laplacian. This
allows for an expression of more complex relationships between nodes rather than “similarity”. Bodnar et al.
(2022) furthermore show how these sheaves can be learned from the data at hand, using neural networks.

Definition 2.9 (Sheaf Convolution) Let F be a sheaf on a graph G with feature matriz X € R agnd
sheaf lapacian Ax. A sheaf convolutional model is then defined as follows:

Y=0 ((Ind — A]:) (In ® Wl) XWQ) , (10)

where o is a non-linearity, ® denotes the Kronecker product, W, € R4*% and Wy € R**? are two weight
matrices, and a and b define the number of input and output channels, respectively.

The authors introduce different versions of neural sheaf networks, such as GeneralSheaf, BundleSheaf, and
DiagSheaf. For more details about sheaf networks, we refer to Hansen & Gebhart (2020) and Bodnar et al.
(2022). In this work, we utilise neural sheaf diffusion models on all classification datasets in order to investigate
their potential on potentially low-homophily graph structures of medical population graphs.

3 Related Work

In general GNN research, several works have investigated the impact of the graph structure on model
performance. Zhu et al. (2020) address the issue of the impact of the graph structure, measured by homophily
(see Section 2.2), on different graph convolutional networks on citation networks. Several metrics have been

Under review as submission to TMLR

Random Linear
Forest Regression
> Baselines ‘ T T MLP
) | !
Ridge Logistic
Classifier Regression

— —» Original edges |

| e GCN
() Graph contruction SAGE
——> Static GC }7 ”””””
Random graph GraphConv

Initial edges

Dynamic GC
GAT

k-NN graph
Euclidean
k-NN graph
Cosine

Figure 2: Overview of the conducted experiments. We tune different baselines. We perform static or dynamic
graph construction, then pick one of the blue methods (second column) to construct either the static graph
structure or the initial edges for the dynamic graph construction pipeline. We then use four different graph
convolutions: GCN, SAGE, GraphConv, and GAT, or Neural Sheaf Diffusion Models. The original edges are
only used if available.

Neural Sheaf

established, that allow for an assessment of the graph structure and show correlation with the performance of
GNNs. Luan et al. (2022) introduce two metrics called normalised total variation and normalised smoothness
value, that measure the effect of edge bias. Xie et al. (2020) measure the graph structure with two metrics
called neighbourhood entropy and centre-neighbourhood similarity. Ma et al. (2021) utilise the above-
mentioned metric called cross-class neighbourhood similarity, which assesses how similar all neighbourhoods
of all nodes with the same label are and show their correlation with GNN performance. Most of these works
assess their metrics on benchmark datasets, such as citation networks, that come with a ground truth graph
structure. In this work, we want to take these experiments one step further and investigate the impact of
graph construction methods on population graph studies with GNNs and investigate the benefit of using
GNNs over baseline methods.

There is little work investigating the impact of different graph construction methods and different graph
learning schemes on the performance of population graphs. Bintsi et al. (2023b), for instance, evaluate
different static graph construction methods on an age regression dataset, but do not evaluate dynamic graph
construction methods. To the best of our knowledge, this is the first work specifically addressing the challenge
of graph construction in population graph studies in combination with different graph learning methods and
with a detailed comparison to baseline models.

4 Methods and Training Setup

In this section, we provide an overview of the utilised methods for this work. We introduce the different
static and dynamic graph construction methods, summarise the utilised GNN models and the training setup,
and introduce the datasets that were used to perform the experiments. A summary of the different learning
and graph construction pipelines is visualised in Figure 2.

4.1 Datasets

We perform our experiments on three benchmark classification datasets: CORA, CITESEER, PUBMED
(Yang et al., 2016), and five medical population graph datasets: TADPOLE (Yu et al., 2020), ABIDE
(Di Martino et al., 2014), a cardiac dataset from the UKBB (Sudlow et al., 2015), and an in-house dataset of
COVID patients for classification and a brain age dataset also extracted from the UKBB for a regression
task. An overview of the datasets is summarised in Table 1.

Under review as submission to TMLR

Table 1: Overview of all utilised datasets with the respective number of nodes, number of samples/nodes in
the train, test, and validation sets, the number of node features (Nr. features), and the number of classes.

Dataset Nr. nodes Train samples Val. samples Test samples Nr. features Nr. classes
CORA 2708 1708 500 500 1433 7
CITESEER 3327 2327 500 500 3703 6

PUBMED 19717 18717 500 500 500 3
TADPOLE 564 468 48 57 30 3

ABIDE 871 609 41 221 6105 2

UKBB Cardiac 2900 2320 58 522 89 2

COVID 65 45 4 16 29 2

UKBB Brain Age 6406 4811 1276 319 88 Regression

CORA, CITESEER, PUBMED In order to evaluate the impact of the graph construction method and
the resulting graph structure on the performance of the GNN, we utilise commonly used benchmark citation
datasets CORA (2708 nodes), CITESEER (3327 nodes), and PUBMED (19 717 nodes) (Yang et al., 2016).
These datasets come with a pre-defined graph structure, which we can use as the ground truth graph. We
compare the model performance on the ground truth graph structure to the performance on graphs that were
generated with different graph construction methods. All datasets are classification datasets.

TADPOLE We use the commonly used subset of the TADPOLE dataset (Yu et al., 2020) that is for
example used in Kazi et al. (2022). The task of this dataset is to distinguish between patients with Alzheimer’s
disease (AD), ones with mild cognitive impairment (MCI), and healthy control groups (NC). The dataset
consists of 30 imaging features of 564 subjects.

ABIDE A second public and frequently used dataset for population graph studies is the Autism Brain
Imaging Data Exchange (ABIDE) dataset (Di Martino et al., 2014). It contains brain imaging features and
clinical features such as age of 871 subjects and has been used in the context of population graphs in several
works (Parisot et al., 2017; Kazi et al., 2019; 2022). The task of this dataset is a binary classification task,
discriminating between autism patients and healthy controls.

COVID We use a small real-world medical dataset of CoViD patients, that has also been used before in
population graph settings (Keicher et al., 2021), however in a slightly different version of the dataset. The
task is a binary classification of whether a subject is predicted to require intensive care or not. The dataset
consists of image-derived features and clinical features of 65 subjects.

UKBB Brain Dataset We use a larger population graph dataset from the UK Biobank (UKBB) (Sudlow
et al., 2015) that consists of features extracted from brain magnetic resonance (MR) images. To extract
the features, we follow the approach from Cole (2020), resulting in 68 imaging features and 20 non-imaging
features for each subject. We use a set of 6406 subjects and perform a regression task for age prediction on
this dataset. The mean age of this dataset is 62.86 years. We use this dataset to explore the difference in
model performance when only using the imaging features compared to using all features. If not specifically
specified, we only use the 68 imaging features.

UKBB Cardiac Dataset We extract another dataset from the UKBB (Sudlow et al., 2015) containing
imaging features from cardiac MRIs as well as clinical features, on which we perform a binary classification
of whether a subject suffers from cardiovascular diseases or not. We extract 6 non-imaging features and 86
imaging features using the pipeline from Bai et al. (2020) and create a population graph with 2900 subjects.

4.2 Graph Construction Methods

We use distinct graph construction methods for population graphs and compare their impact on the
performance of different GNNs. We note that the here utilised methods are not extensive but we picked the
most representative and most frequently used and well-established methods for static and dynamic graph
construction.

Under review as submission to TMLR

4.2.1 Static Graph Construction

Using static graph construction methods refers to constructing a graph structure for the population graph that
stays constant over the course of GNN training. There are several methods to construct a static population
graph structure, while the most commonly used one utilises a k-nearest neighbour approach (Cunningham &
Delany, 2021).

Self-loops Only To get an intuition about the impact of the graph structure on the GNN, we evaluate a
GNN on a graph that is not really a graph but only contains self-loops. The adjacency matrix of a graph that
only contains self-loops is equivalent to the identity matrix. In this setting, no message passing among nodes
is performed since there are no connections between nodes. We use this setting to simulate a transductive
learning setting without using a graph structure.

Random Graph Secondly, we construct a random graph structure by generating an Erdos-Rényi Graph
with an edge probability of 0.001. We choose to evaluate all methods applied to a graph with a random graph
structure in order to investigate the impact of the graph structure on model performance.

k-Nearest Neighbour Graph The most frequently used approach of graph construction for population
graphs is the k-Nearest Neighbour (k-NN) approach. Here, k is a hyperparameter and defines the number
of neighbours each node has. For this approach, different distance measures can be used, for example, the
Euclidean distance or the cosine similarity. We use the implementation of knn__graph from Pytorch Geometric
(Fey & Lenssen, 2019) and refer to the usage of the Euclidean distance as “k-NN Eucl.” and the usage of the
cosine similarity as “k-NN Cosine” in the tables below.

4.2.2 Dynamic Graph Construction

Dynamic graph construction refers to the learning of the graph structure in an end-to-end manner in parallel
to the model training. There exist a few dynamic graph construction methods; however, for population
graphs, mostly the approach from Kauzi et al. (2022) is used. We here use the dDGM method, which uses a
differentiable graph construction method that allows for an end-to-end learning of the graph structure during
GNN training. In their work, Kazi et al. (2022) propose two differentiable graph learning modules: ¢cDGM
and dDGM. We here only use the dDGM implementation, since both in their work and in our preliminary
results and related works like (Mueller et al., 2023a), dDGM resulted in better performance. The dDGM
module can be applied to arbitrary initial graph structures. We evaluate the impact of the initial graph
structure on the model performance by using different graphs as a starting point. For the CORA dataset,
we evaluate dDGM starting off with (a) no edges, (b) only self-loops, (c¢) a random graph structure, (d) a
kE-NN graph, and (e) the original edges of the dataset, if available.

4.3 Graph Assessment

In order to gain insights into the constructed graph structures and investigate their “quality”, we evaluate two
graph assessment metrics: node homophily (Pei et al., 2020) and cross-class neighbourhood similarity (CCNS)
(Ma et al., 2021). We follow the approach from Mueller et al. (2023a) and evaluate the CCNS distance, the
there-defined homophily for regression tasks, and split the evaluation of all metrics into train and test nodes.
The latter can be useful to investigate how differently the graph structure impacts training and test nodes.

4.4 Model Architectures and Training

We use two different model architectures in our experiments. For all dynamic graph construction experiments
we use the architecture proposed by Kazi et al. (2022), which consists of two graph convolutional networks: a
graph embedding function f and a diffusion function g. Following the results from the original paper (Kazi
et al., 2022), we use the respective graph convolutions for both modules. For the static graph construction
experiments, we use a GNN with 1, 2, or 3 graph convolutional layers (e.g. GCN or GraphSAGE), followed
by an MLP. We use two sets of hyperparameters regarding the layers of these networks that can be found in
the Appendix. During preliminary experiments, we noticed that using the same architecture for static graph

Under review as submission to TMLR

construction results in strong over-fitting of the models to the training sets. We, therefore, use a different
architecture for the static graph construction experiments than for the dynamic ones. More details about all
architectures can be found in the appendix. In all architectures, we utilise four different frequently used graph
convolutions, namely graph convolutional networks (GCNs) (Kipf & Welling, 2016), graph SAGE networks
(Hamilton et al., 2017), higher-order GNNs (GraphConv) (Morris et al., 2019), and graph attention networks
(GATS) (Velickovié et al., 2017). They all differ in the methodology of how the message-passing scheme is
performed and their formal definitions can be found in Section 2.3. For the neural sheaf diffusion models, we
utilise the setup of the original work, varying between the following sheaf models: BundleSheaf, DiagSheaf,
and GeneralSheaf.

All models are trained in a transductive setting, where all nodes are available during training. We define a fixed
set of hyperparameters for all experiments and run a hyperparameter search for at least 200 runs using sweeps
from Weights and Biases (Biewald, 2020). We then pick the run with the best validation accuracy/MAE and
evaluate its performance over 5 random seeds and report the mean test accuracy with the standard deviation.
All trainings are performed on an Nvidia Quadro RTX 8000 GPU, using Pytorch lightning and Pytorch
Geometric (Fey & Lenssen, 2019). All hyperparameters can be found in the appendix.

5 Experiments and Results

In this section, we summarise the experiments on all eight datasets with different graph construction methods,
including static and dynamic graph construction and Neural Sheaf Diffusion models. We (1) summarise the
overall best-performing GNNs for all datasets and compare them to three different baselines, (2) compare our
results to different state-of-the-art (SOTA) population graph studies, (3) report the results of extensive studies
on different SOTA graph learning methods for population graph datasets, (4) evaluate the method of GNNs
for multi-modal data integration, and (5) evaluate the impact of the graph structure on the performance
of GNNs for population graphs. The most noteworthy finding of our work is possibly the fact that simple
baseline methods outperform more complex graph learning techniques on all tested population graph datasets.

5.1 Baselines Achieving Comparable Performance to GNNs

During an extensive evaluation of the performance of GNNs on medical population graphs, we found that
most of the baselines reported in previous works are reported to have lower performance compared to the
same or the best-performing baselines in our experiments. In fact, when optimally tuning three baseline
models (random forest, linear/logistic regression, and ridge classifier /regression), we found that they perform
competitively on all datasets (see Table 2). We compare their results to the performance of the best GNN as
well as a Neural Sheaf Diffusion model —either trained by ourselves or reporting the results from the respective
works (indicated by the reference in Table 2). All results are summarised in Table 2, where the best model
for each dataset is highlighted in bold. For the benchmark citation network datasets (CORA, CITESEER,
PUBMED), we use only the node features of the original graph for the evaluation of the baseline models.

It is noteworthy that for all population graph datasets apart from the UKBB Brain Age dataset, at least
one of the baseline methods outperforms the best GNN model. On the UKBB brain age dataset, the GNN
slightly outperforms the ridge regression (best baseline) by an MAE of 0.066. However, a two-sided t-test
between the results of the best GNN and the strongest baseline (ridge regression) did not show a significant
difference in performance with a p-value of 0.06. These results raise the main question of this work: “Are
population graphs really as powerful as believed?” Our results indicate the contrary and we investigate the
discrepancy between our work and related works in the following sections, discussing potential reasons for
this gap between (a) reported baselines in different works and ours and (b) baseline algorithms and GNNs on
population graphs in general.

5.2 Comparison to Other Published Results

In order to validate the results of these findings, we compare our results to published results in the most closely
related works, investigating the different performances of baseline models and GNNs on different datasets.
We compare the benchmark citation networks and TADPOLE, ABIDE, and UKBB brain age datasets.

Under review as submission to TMLR

Table 2: Summary of results of different baseline methods and the and ,
either from our training evaluated on 5 random seeds or from literature ([1]: Kazi et al. (2022), [1]: Parisot
et al. (2017), [3]: Bodnar et al. (2022)). CORA, CITESEER, and PUBMED are benchmark citation networks,
the remaining datasets are medical population graphs. For the citation network datasets, we evaluate GNNs
on graphs with original edges (orig. edges) and on graphs constructed using k-NN (GNN k-NN). All reported
values are the accuracy on the test set, apart from the regression dataset UKBB Brain Age, here we report
the MAE.

Method CORA CITESEER PUBMED TADPOLE Brain Age Cardiac COVID ABIDE
Random forest 0.7788 £ 0.00 0.7480 + 0.01 0.7286 + 0.01 0.9474 +£ 0.00 3.7913 £ 0.01 0.7061 £+ 0.01 0.8250 £ 0.02 0.7046 + 0.01
Ridge 0.7860 + 0.00 0.7720 £ 0.00 0.7350 £+ 0.00 0.7368 + 0.00 3.4185 £ 0.00 0.6935 £ 0.00 0.8750 + 0.00 0.7014 £ 0.00
Linear /Logistic 0.5750 £ 0.00 0.5600 % 0.00 0.7310 &+ 0.00 0.8421 + 0.00 3.4287 £ 0.00 0.6858 £ 0.00 0.8125 £+ 0.00 0.6290 + 0.00
0.7692 + 0.01 0.6908 + 0.01 0.6908 + 0.01 0.9404 £ 0.02 3.3524 £ 0.06 0.6970 £ 0.02 0.7875 + 0.03 0.695 [2]
0.8540 + 0.01 0.7548 + 0.01 0.8760 + 0.01 [1] - - - -
0.8730 + 0.01 [3] 0.7714 + 0.02 (3] 0.8949 + 0.00 [3] 0.9368 + 0.02 0.6904 + 0.01 0.8000 + 0.03 0.5448 + 0.01

The related works we pick for comparison are works introducing the concept of population graphs Parisot
et al. (2017), as well as new graph learning techniques, that have been applied to or designed for population
graph studies Kazi et al. (2019; 2022); Bintsi et al. (2023a). The results are summarised in Table 3. All our
baselines outperform the published baselines in the related works, while our GNN implementations match the
performances reported in the respective works. This corroborates our hypothesis that our implementation is
on par with previously reported works, while these works seem to underestimate the baseline performance.

The discrepancy in baseline performance can partially be due to different models, different hyperparameters,
or the utilisation of only a subset of the features for the evaluation of the baselines. Some works, for example,
only use the node features of the GNN as input for the baseline, while using additional features for the edge
construction of the population graph. We deem this to be an unfair comparison and always use all features
that we use for graph construction and as node features as input for the baseline. For the evaluation of the
baseline methods on the benchmark citation network datasets, we use only the node features of the graphs
since the edges cannot be incorporated in the same feature vector in a straightforward way. Some works do
not specify on which features the baseline is evaluated Parisot et al. (2017).

Table 3: Comparison of our results to results from related works Parisot et al. (2017) ([1]), Kazi et al. (2022)
(12]), Kazi et al. (2019) ([3]), and Bintsi et al. (2023a) ([4]). The overall best result for each dataset is
underlined. The baseline for the UKBB Brain Age dataset is a ridge regression for our work and a linear
regression for the results from Bintsi et al. (2023a); for the TADPOLE dataset: Linear classifier for results
from Kauzi et al. (2022), random forest for our results; for ABIDE: Ridge regression for results from Parisot
et al. (2017), random forest for our results. All our baselines outperform reported baselines in other works,
while our GNN implementations match performance.

Dataset Score Method Convolution Other reported results Our results

; GCN 0.8240 £ 0.01 [2] 0.8372 + 0.01

CORA Accuracy dDGM [2] GAT 0.8130 £ 0.03 [2] 0.8388 £ 0.04

GCN 0.7480 £ 0.01 [2] 0.7548 + 0.01

CITESEER Accuracy T dDGM [2] GAT 0.7400 % 0.01 [2] 0.7396 £ 0.01

Baseline - 0.7022 £ 0.06 [2] 0.9474 + 0.00

TADPOLE Accuracy T dDGM [2] GCN 0.9414 + 0.02 [2] 0.9333 + 0.01
InceptionGCN [3] InceptionGCN 0.8435 £ 0.07 [3] -

Baseline - 3.82 [4] 3.5063 + 0.00

) dDGM [2] GON 3.72 [4] 3.8287 + 0.03

UKBB Brain Age MAE | dDGM [2] SAGE - 3.5034 + 0.06
adaptive [4] GCN 3.62 [4] -

Baseline - 0.668 [1] 0.7040 + 0.01
ABIDE Accuracy 1 Similarity Score [1] GCN 0.695 [1] -

InceptionGCN [3]

InceptionGCN

0.6923 + 0.07 [3]

10

Under review as submission to TMLR

5.3 Benchmark Citation Network Datasets

We first evaluate commonly used graph construction methods for population graph studies on frequently used
benchmark citation datasets CORA, CITESEER, and PUBMED (Yang et al., 2016). They provide a “ground
truth” graph structure, which we can evaluate in comparison to the graphs resulting from graph construction
methods used for population graph studies. This allows us to investigate how the different graph construction
methods perform compared to a given “ground-truth” adjacency matrix. The results of the best-performing
GNNSs and baselines on all three datasets are summarised in Table 2. We exemplarily summarise the results of
more extensive studies on the CORA dataset in Table 4. We here only use three graph construction methods:
random, k-NN with Euclidean distance, and the original edges. Further experiments can be found in the
Appendix. We compare the graph learning-based methods to simple baselines (blue): a random forest, a
ridge classifier, and a multi-layer perceptron (MLP). The ridge classifier achieves a test accuracy of 78.60%.
All methods that outperform the best baseline are underlined and the overall best performance for static
and dynamic graph construction methods are highlighted in bold. The performance of the different graph
convolutional models and under static and dynamic graph construction are furthermore visualised in Figures
3a and 3b. We can see that using the original graph structure leads to the best model results, both under
static and dynamic graph construction. The method of generating a k-NN graph, which is most frequently
used for population graphs performs on pair with the baseline and often even under-performs the baseline.
Using a random graph structure or a k-NN graph negatively impacts model performance, both in the static
and dynamic cases. We attribute this to the fact that the homophily of the constructed k-NN graphs is close
to 0.5, which is a highly challenging graph structure for graph learning (Zhu et al., 2020). Also, the CCNS
distance of these graphs is comparably high and improves further when applying dynamic graph construction
methods, where the graph structure can be adapted to the learning task. However, in some cases, the dynamic
graph construction method leads to a large difference between the homophily and CCNS distance of the
training nodes and the test nodes. This can, for example, be seen in the case of an initialised graph without
edges and the GCN model. Here, the train homophily of the resulting learned graph is very high at 0.987,
while the test homophily stays comparably low at 0.749. This is one of the potential pitfalls of dynamic graph
construction methods, that the model only optimises the graph structure for the training nodes, disregarding
the graph structure of the test nodes. We furthermore observe that GCN and GAT networks are highly
sensitive to the graph structure, while GraphSAGE and GraphConv still achieve comparable results, even on
a random graph structure.

The overall best score on the CORA dataset is achieved with the static graph construction and the original
edges of the dataset, using SAGE and GraphConv. When using neural sheaf diffusion models instead of
commonly used GNNs, these results can even be improved. The authors of Bodnar et al. (2022) report
an accuracy of 0.8730 4+ 0.01 on the CORA dataset. The experiments on all benchmark citation network
datasets have shown that GNNs can improve performance compared to simple baseline methods. However,
even for the CITESEER dataset (see Table 2), a ridge classifier outperforms all GNN methods and neural
sheaf diffusion networks.

5.4 Medical Population Graphs

The results on the TADPOLE dataset are summarised in Table 5 and visualised in Figures 3c and 3d. None
of the GNNs outperform the best baseline method, which in this case is a random forest. This is even the
case in settings where the homophily of the test set is very high like, for example, for the static k~-NN graph
construction and the GAT convolution. However, we recall that the methods we use here match performance
to related works such as Kazi et al. (2019; 2022); Parisot et al. (2017). We observe similar results on the
UKBB brain age dataset. We here perform age regression on the imaging features only and report the MAE
as model performances. The results are summarised in Table 6 and visualised in Figures 3e and 3f. We do
not report the CCNS values for this dataset, since CCNS is not defined for regression tasks. SAGE and
GraphConv networks do not seem to be influenced by the randomness of the graph structure and are still
able to learn meaningful representations of the node features and make accurate predictions. The homophily
of the k-NN graphs generated for the UKBB dataset is also quite high, similar to the TADPOLE dataset.
The same holds for its low CCNS distance score. We furthermore observe that GCN models tend to perform
better at a lower number of neighbours. Interestingly, here the best-performing model is still the SAGE GNN,

11

Under review as submission to TMLR

== Self loops == Random k-NN == Orig. edges mm Self loops m® Random k-NN mm No edges mm Orig. edges
0.9 0.9
0.8 0.8
0.7 0.7
g)
o6 © 0.6
e 3
o 1)
©0.5 3 0.5
g 7
Foa 0.4
0'3 0-3
0.2 0.2
0.1
1
0 GCN SAGE GraphConv GAT GraphConv
Model Model
(a) Static graph construction on CORA (b) Dynamic graph construction on CORA
mm Self loops =® Random k-NN mm Self loops m® Random k-NN == No edges
0.95 F === e e 0.95
0.90 I | 0.90
0.85 0.85
> >
1% o
©0.80 ©0.80
3 =1
(9] [}
2075 I 2075
a @
2 0.70 2 0.70
0.65 0.65
0.60 0.60
055 GeN SAGE CONV GAT 0-35 GCN SAGE CONV GAT
Model Model
(c) Static graph construction on TADPOLE (d) Dynamic graph construction on TADPOLE
mm Self loops = Random k-NN mm Self loops == Random k-NN == No edges

2.0

GCN SAGE GraphConv GAT 2.0 GCN SAGE GraphConv GAT
Model Model

(e) Static graph construction on UKBB Brain Age (f) Dynamic graph construction on UKBB Brain Age

Figure 3: Results of the experiments on all datasets with static graph construction (left column) and
dynamic graph construction (right column). First row: CORA, second row: TADPOLE, third row: UKBB
brain age. For the classification dataset CORA and TADPOLE, we report the test accuracy (higher is
better); For the regression task on the UKBB brain age, we report the test MAE (lower is better). The mean
performance of the baseline is indicated by the dashed blue lines.

12

Under review as submission to TMLR

Table 4: Results of the experiments on the CORA dataset. BL: baselines, k: number of neighbours.
GNNs out-performing the baseline are underlined, and the best performances of static and dynamic graph
constructions, highest homophily, and lowest CCNS distance are bold.

eps Homophily 1 CCNS distance |
Initial edges Model k Test acc Train Tost Train Tost
- Random Forest - 0.7788 + 0.00 - - - -
5 Ridge classifier - 0.7860 = 0.00 - - - -
MLP - 0.6030 + 0.00 - - - -
g Random GCN - 0.3068 + 0.02 0.171 £+ 0.26 0.201 + 0.29 0.373 0.356
e SAGE - 0.6224 + 0.02 0.171 £ 0.26 0.201 £ 0.29 0.373 0.356
g GraphConv - 0.5388 + 0.03 0.171 £ 0.26 0.201 £ 0.29 0.373 0.356
he} GAT - 0.3208 + 0.02 0.171 £ 0.26 0.201 £ 0.29 0.373 0.356
n
g k-NN Euclidean GCN 20 0.7336 + 0.01 0.498 + 0.23 0.495 + 0.22 0.378 0.396
© SAGE 20 0.6836 + 0.02 0.498 £+ 0.23 0.495 £ 0.22 0.378 0.396
i GraphConv 20 0.7692 + 0.01 0.498 £+ 0.23 0.495 £ 0.22 0.378 0.396
2 GAT 20 0.7288 + 0.01 0.498 + 0.23 0.495 + 0.22 0.378 0.396
&0
o Orig edges GCN - 0.8372 + 0.01 0.830 + 0.29 0.860 + 0.29 0.101 0.084
'a:-uv' SAGE - 0.8540 + 0.01 0.830 + 0.29 0.860 + 0.29 0.101 0.084
5 GraphConv - 0.8540 + 0.01 0.830 £ 0.29 0.860 + 0.29 0.101 0.084
GAT - 0.8420 + 0.00 0.830 + 0.29 0.860 + 0.29 0.101 0.084
No edges GCN 2 0.6900 + 0.03 0.987 + 0.10 0.749 £ 0.42 0.072 0.181
g SAGE 2 0.7000 £ 0.02 0.589 £ 0.38 0.510 £ 0.37 0.232 0.267
e} GraphConv 2 0.6904 + 0.01 0.880 + 0.21 0.769 £ 0.25 0.085 0.144
g GAT 2 0.6532 + 0.03 0.921 £ 0.20 0.652 £ 0.43 0.050 0.208
-
" Random GCN 2 0.3240 + 0.02 0.663 £+ 0.28 0.230 £ 0.38 0.201 0.351
5 SAGE 10 0.6960 + 0.01 0.674 £ 0.25 0.534 £ 0.32 0.206 0.323
© GraphConv 2 0.7052 + 0.01 0.831 £ 0.24 0.719 £ 0.25 0.101 0.180
'ﬁ_ GAT 10 0.4252 + 0.02 0.405 + 0.23 0.252 £ 0.23 0.436 0.544
]
g‘n k-NN Euclidean GCN 5 0.7192 + 0.01 0.581 £ 0.31 0.533 £ 0.30 0.314 0.363
) SAGE 5 0.7264 + 0.01 0.838 £ 0.23 0.676 £ 0.35 0.097 0.222
é GraphConv 5 0.7284 + 0.01 0.884 + 0.21 0.801 £ 0.24 0.073 0.129
g GAT 20 0.6388 + 0.06 0.419 + 0.27 0.415 + 0.28 0.429 0.446
5’ Orig edges GCN 20 0.8372 + 0.01 0.861 £ 0.24 0.813 + 0.31 0.086 0.133
SAGE 10 0.7832 + 0.01 0.958 £ 0.10 0.780 £ 0.32 0.019 0.138
GraphConv 2 0.7576 £ 0.02 0.819 £ 0.25 0.780 £ 0.29 0.115 0.149
GAT 2 0.8388 + 0.04 0.885 £ 0.21 0.807 £ 0.29 0.071 0.131

which is trained on a random graph structure and under static graph construction, followed by the SAGE
model with random graph initialisation and dynamic graph construction. We also cannot see a clear benefit
of using dynamic graph construction methods on all datasets. While the best dynamic result outperforms the
best static result on the TADPOLE dataset, static methods achieve higher results on the UKBB brain age
dataset.

In these experiments, we can see again that SAGE and GraphConv are less impacted by the graph structure
and that the dynamic graph construction helps in improving the graph structure from an initial random
graph (with low homophily) to one with higher homophily. The latter happens especially for GCN and GAT
models, which are highly sensitive to the graph structure and therefore benefit most from a graph structure
with higher homophily.

5.5 Population Graphs for Multi-Modal Data Integration

One highly emphasised advantage of population graphs is their utilisation for multi-modal data integration
(Parisot et al., 2017; Zheng et al., 2022; Keicher et al., 2021). In one of the first utilisations of population
graphs (Parisot et al., 2017), for instance, a graph construction method is introduced that uses clinical
features to generate the edges between subjects, while image-derived features are used as node features in
the graph. In later approaches, especially for dynamic graph construction, methods moved away from a
clear separation between clinical and image-derived features (Kazi et al., 2022). We scrutinise this claimed
advantage of population graphs and argue that all available features can easily be appended and therefore
incorporated into the node features. The only exception to this is when images are used directly as node
features —not only extracted image features. However, this setup comes with large memory requirements and
has not been studied in detail.

13

Under review as submission to TMLR

Table 5: Results of the experiments on the TADPOLE dataset. GC: graph construction, BL: baselines, k:
number of neighbours. The best performance for each method is bold.

Initial edges Model k Test acc T Test homophily 1 Test CCNS distance |
A - Majority vote - 0.5674 + 0.00 - -
m - Random forest - 0.9474 + 0.00 - -
- Logistic regression - 0.8597 £ 0.00 - -
Random GCN - 0.7965 + 0.04 0.426 4+ 0.49 0.348
0 SAGE - 0.8877 £ 0.01 0.426 4+ 0.49 0.348
O GraphConv - 0.8842 + 0.01 0.426 £+ 0.49 0.348
o GAT - 0.7930 £ 0.04 0.426 + 0.49 0.348
@ k-NN Euclidean GCN 5 0.7439 + 0.03 0.775 + 0.24 0.213
i SAGE 5 0.8982 + 0.03 0.775 4+ 0.24 0.213
GraphConv 5 0.9088 + 0.01 0.775 + 0.24 0.213
GAT 2 0.7895 £ 0.04 0.904 £ 0.20 0.094
No edges GCN 20 0.9263 + 0.03 0.919 £ 0.19 0.073
SAGE 20 0.9053 + 0.02 0.806 + 0.21 0.183
GraphConv 2 0.9228 + 0.02 0.798 4+ 0.34 0.190
8 GAT 20 0.9018 + 0.06 0.908 £+ 0.15 0.101
Q Random GCN 2 0.8421 + 0.06 0.851 4+ 0.27 0.177
g SAGE 10 0.9228 + 0.02 0.423 £+ 0.22 0.616
g GraphConv 5 0.8947 + 0.03 0.411 4+ 0.25 0.594
5> GAT 5 0.8632 + 0.02 0.895 4+ 0.20 0.119
k-NN Euclidean GCN 2 0.9333 + 0.01 0.793 + 0.28 0.204
SAGE 20 0.9368 + 0.01 0.461 £+ 0.63 0.632
GraphConv 10 0.8947 + 0.02 0.777 + 0.29 0.219
GAT 10 0.9123 + 0.03 0.775 + 0.29 0.206

Table 6: Results of the experiments on the UKBB Brain Age imaging dataset. BL: baselines, k: number
of neighbours, GC: graph construction. The best performance for static and dynamic graph construction and
the respective highes homophily is bold.

Initial edges Model k Test MAE | Test homophily 1
A - Mean prediction - 6.4090 + 0.00 -
M - Random Forest - 4.1424 + 0.01 -
- Linear Regression - 3.7545 4+ 0.00 -
Random GCN - 6.2158 + 0.07 0.742 + 0.10
o SAGE - 3.8764 + 0.08 0.742 + 0.10
0 GraphConv - 4.2029 £+ 0.16 0.742 + 0.10
© GAT - 6.4034 + 0.07 0.742 + 0.10
2 k-NN Euclidean GCN 2 4.3351 4+ 0.07 0.916 + 0.07
i SAGE 10 4.1780 + 0.17 0.844 + 0.06
GraphConv 2 4.1979 4+ 0.04 0.916 + 0.07
GAT 20 4.2888 + 0.01 0.834 + 0.06
No edges GCN 2 4.0257 £+ 0.06 0.865 + 0.10
SAGE 5 3.8882 + 0.03 0.754 + 0.10
GraphConv 5 3.9741 + 0.05 0.840 + 0.08
8 GAT 2 4.1071 + 0.07 0.843 + 0.11
9 Random GCN 2 5.1712 + 0.20 0.834 + 0.13
g SAGE 10 3.8811 + 0.04 0.780 + 0.09
g GraphConv 10 4.1248 + 0.30 0.768 + 0.09
5; GAT 2 5.7138 &+ 0.10 0.831 + 0.14
k-NN Euclidean GCN 2 4.1109 £+ 0.07 0.849 + 0.11
SAGE 20 3.9226 + 0.13 0.842 + 0.07
GraphConv 2 3.9560 + 0.09 0.831 + 0.11
GAT 2 4.1603 £+ 0.04 0.837 + 0.11

We perform several experiments investigating whether GNNs are useful for multi-modal data integration for
population graphs. We take the two UKBB datasets and evaluate the performance of GNNs with different
combinations of imaging and non-imaging features for graph construction and as node features. The results
are summarised in Table 7. Given that the graph convolutions SAGE and GraphConv performed best
in our previous experiments on population graphs, we limit these results to those two convolutions. The

14

Under review as submission to TMLR

best performing GNN is highlighted in bold, the second best in purple, and the third best in green. The
corresponding homophily values for each graph structure for both datasets are summarised in Table 8. For
these experiments with static graph construction, we experiment with a different model architecture consisting
of only one graph convolutional layer, followed by an MLP.

We can see that for the brain age dataset, the best GNN is the one that uses all available features as node
features and for edge construction. The second and third-best GNNs also use all features as node features.
For the cardiac dataset, the best and second-best models also use all features as node features, however,
the third-best model uses only the imaging features as node features and the non-imaging features for edge
construction. Furthermore, on the UKBB brain age dataset, some GNNs outperform the respective baseline
(which only uses the node features) by small margins. This is not the case for the cardiac dataset. Here none
of the GNNs outperform the respective baselines. Interestingly, on the UKBB brain age dataset, the static
graph construction results in better performance than dynamic graph construction, which is the opposite for
the cardiac dataset. We can also see that the node features slightly dominate the prediction, such that the
performance of the GNN somewhat matches the performance of the baseline that uses the node features only.
This is reasonable since the specific features that are used for edge construction are reduced into a simple
“measure of similarity”. However, overall the baselines perform on par with the GNNs.

Table 7: Results of different combinations of image-derived and non-imaging features as node features and
for graph construction on the UKBB brain age and cardiac datasets. For the age prediction dataset, the
baseline is a ridge regression, for the cardiac dataset a random forest. GNN outperforms their corresponding
node-feature-baseline are underlined. Best GNN: bold, second best GNN: purple, third best GNN: green.

UKBB Brain Age UKBB Cardiac
Features Model Test MAE | Test accuracy 1
g - Naive baseline 6.4090 0.5000
E Non-imaging Best baseline 4.6509 + 0.00 0.6678 4 0.00
[} Imaging 3.5063 + 0.00 0.6969 + 0.01
A All 3.4185 + 0.00 0.7046 + 0.01
Node Features (Initial) Edges Model dDGM test MAE | Static test MAE | dDGM test acc. 1 Static test acc. 1
All All SAGE 3.5034 + 0.06 3.4351 £ 0.00 0.6816 + 0.01 0.6609 + 0.02
@ GraphConv 3.5407 £ 0.04 3.3524 + 0.06 0.6785 + 0.01 0.6705 £+ 0.01
<
5 Al Imaging SAGE 3.5471 £ 0.02 3.4249 £+ 0.00 0.6839 + 0.01 0.6739 + 0.01
E GraphConv 3.5221 £ 0.03 3.3758 £ 0.05 0.6690 + 0.01 0.6743 + 0.01
5]
4 All Non-imaging SAGE 3.5317 £+ 0.04 3.4175 £+ 0.00 0.6724 4+ 0.01 0.6632 + 0.01
= GraphConv 3.6792 £ 0.25 3.4330 + 0.01 0.6751 £ 0.01 0.6644 £ 0.02
o
5 Imaging Imaging SAGE 3.9226 + 0.13 3.7716 £+ 0.04 0.6743 £+ 0.01 0.6705 + 0.00
zZ GraphConv 3.9560 + 0.09 3.8368 £ 0.00 0.6632 + 0.01 0.6628 + 0.01
'ﬁ Imaging Non-imaging SAGE 3.9130 £ 0.05 3.6791 + 0.01 0.6567 + 0.01 0.6785 % 0.00
o GraphConv 3.9835 + 0.01 3.7099 +£ 0.04 0.6805 £ 0.01 0.6483 £ 0.01
© Non-imaging Imaging SAGE 4.6767 £+ 0.06 4.9382 £+ 0.00 0.6755 £+ 0.01 0.6521 £ 0.01
GraphConv 4.0376 £+ 0.12 5.0410 £ 0.02 0.6579 + 0.01 0.6452 + 0.01

5.6 Impact of the Graph Structure on Model Performance

Several works have shown that the “quality” of the graph structure has a significant impact on the performance
of graph neural networks (Luan et al., 2022; Zhu et al., 2020). We investigate this in the context of population
graphs with two specific graph assessment metrics: node homophily and cross-class neighbourhood similarity.
The graph metrics for the experiments in the former sections are in the Tables 4, 5, and 6. The homophily
values of the graph structures constructed from different combinations of image and non-image features for
the UKBB brain age and cardiac dataset are summarised in Table 8. We can see that for both datasets, all
graph structures have similar homophily values, which might be the reason why the performance of all graph
structures is very similar when using all node features.

Different Types of Graph Convolution Zhu et al. (2020) have shown interesting correlations between
homophily and different graph convolutions. They showed that the separate handling of node features of the
node of interest (x;) and its neighbouring nodes (N;) improves the performance of GNNs on heterophilic graphs.
The same accounts for networks that evaluate the k-hop neighbourhoods separately. Graph convolutional
networks (GCNs) (Kipf & Welling, 2016) do not separate node features of ¢ and A, but average the message

15

Under review as submission to TMLR

Table 8: Homophily values of the UKBB brain age and cardiac datasets with £ = 5 and the k-NN graph
construction, when using all features, only imaging, or only non-imaging features for graph construction.

Dataset Features Homophily
All 0.8571 £+ 0.07

Brain Age Imaging 0.8619 + 0.07
Non-imaging 0.8237 £+ 0.08
All 0.6404 + 0.22

Cardiac Imaging 0.6396 £ 0.22

Non-imaging 0.6649 + 0.23

GCN =—e— GraphSAGE =—e= GraphConv =—e= GAT ==== Baseline GCN =e= GraphSAGE =—e= GraphConv =—e= GAT ===- Baseline
1.0 1.0 s
oof g [TTTTSSLT . Ty
0.9
0.8
> >
807 308
3
®06 =
ki Bos

o
n

0.4 0.6
0.3 0.5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Homophily Homophily
(a) CORA dataset (b) TADPOLE dataset
GCN =e= GraphSAGE =—e= GraphConv =—e= GAT ===- Baseline GCN =e= GraphSAGE =—e= GraphConv =—e= GAT ===- Baseline

1.0

1.0

0.9

o
©

o

©
o
©

o

~
e
N

Test accuracy
Test accuracy

o
o

0.6

0.5
0.5

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Homophily Homophily

(c) ABIDE dataset (d) UKBB Cardiac dataset

Figure 4: Performance of different graph convolutions on synthetic graph structures with different homophily
values on (a) the CORA dataset, (b) the TADPOLE dataset, (¢) the ABIDE dataset, and (d) the UKBB
Cardiac dataset. The dashed blue line indicates the mean performance of the best baseline for each dataset.

passing over both in one step (see Equation 5). SAGE and GraphConv on the other hand distinguish between
z; and z;,j € N; (Equations 6 and 7). GAT (Equation 8) learns different attention coefficients for z;
and z;,j € N;. However, the weights of the network are shared for both, which might negatively impact
performance on graphs with low homophily.

Our experiments support these findings. We see that GCN and GAT seem to be strongly affected by the
graph structure whereas SAGE or GraphConv networks perform more consistently across different graph
structures.

16

Under review as submission to TMLR

Different Datasets The impact of the homophily on the model performance is not only dependent on the
graph convolution but also varies depending on the dataset, probably related to the number of classes in the
dataset as well as class imbalance. In order to investigate this, we perform experiments with synthetic graph
structures on the TADPOLE dataset (3 classes), the CORA dataset (7 classes), the UKBB cardiac dataset (2
classes), and the ABIDE dataset (2 classes) at different synthetically generated homophily values. Figure 4
shows the performance of different graph convolutions on 3-layer GNNs using static graph construction on
the different datasets. For the CORA dataset (Figure 4a), all models perform worse than the baseline with
homophily values lower than 0.8. While all graph convolutions are impacted similarly and perform worse than
the baseline for low-homophily graphs, SAGE and GraphConv reach better performance than GAT and GCN.
The low-homophily graphs do not allow the model to learn meaningful node feature embeddings, since during
the course of training, node features of differently labelled nodes are averaged and shared, interfering with
the model’s goal to distinguish different classes. Interestingly, the performance for the TADPOLE dataset
(Figure 4b) looks different. We observe see similar differences between the graph convolutions. However, we
also observe that only at very high and very low homophily values, the GNN can outperform the baseline.
Everything in between either matches the performance of the baseline or reaches a worse performance.
When we now compare the homophily values of the generated graph structures in our experiments on the
TADPOLE dataset above, we can see that most of them have a homophily of around 0.7 or 0.8. The other
two datasets —ABIDE and UKBB cardiac— require a graph structure with lower homophily to outperform the
baseline, however, the same pattern holds that all population graphs constructed in our experiments reached
at homophily values in the range where the GNNs under-perform or perform on par with the baselines. This
potentially explains why the population graphs do not outperform the graph-agnostic baseline models.

Furthermore, the high performance of the GNNs at low homophily values for the population graphs is highly
different from that on the CORA dataset. We attribute this to the capability of the GNNs to learn the
opposite labels from the majority of the neighbour labels, which we deem impossible for datasets with more
classes. We investigate this further in the next section.

Attention Evaluation We attribute the relatively good performance of all models at low homophily
values on the TADPOLE dataset (Figure 4b) to the learning of opposite labels for specific node features. If
most of the neighbouring nodes share a different label than the one the node of interest holds, but this is
consistent across the graph —the graph has a low CCNS distance—, then the network can still learn to make
the correct predictions. We show this by evaluating the attention values of GAT networks of four synthetic
graph structures with different homophily values, shown in Table 9. We always report the normalised sum
of all attention heads of the GAT. At homophily 0.9 (where most neighbours share the same label as the
node of interest), the attention from the neighbours with the same label is the highest. On the other hand,
at hom = 0.5, all nodes receive the highest attention from neighbours with class label “MCI”. This makes
it very difficult for the network to distinguish between nodes of different labels, and therefore to make the
correct predictions. At very low homophily (hom = 0.1), the attention of the neighbours with the same label
is 0, which again, makes it possible for the network to distinguish nodes by their neighbourhood, enabling
correct predictions. Three examples of 2-hop neighbourhoods at the different homophily values are visualised
in Figure 5. The label is indicated by the node colour and the distance between two nodes indicates the
attention value of this edge. While at hom = 0.9, most neighbours share the same label, at a low homophily
value of 0.1 (c), most neighbours have a different label and the attention values are similar across them. At
an in-between homophily of 0.4, several nodes share the same label, for others do not.

6 Discussion

In this work, we evaluate the performance of medical population graphs on three benchmark datasets and
five population graph datasets and compare state-of-the-art graph learning techniques to well-tuned baseline
models. We consistently observe the following three findings:

1. GCN and GAT are poorly suited for population graph studies. GNNs using GraphSAGE
and GraphConv convolutions consistently outperform GCN and GAT models, which leads to the
conclusion that the latter methods are not suitable for GNNs in population graph studies. We

17

Under review as submission to TMLR

Table 9: Mean and standard deviation of normalised attention values from all neighbours with respective
labels of a graph structure with high and low homophily. The highest attention values for each node label
class are highlighted in bold. NC: normal control, MCI: mild cognitive impairment, AD: Alzheimer’s disease.

Homophily Node label Attention from NC Attention from MCI Attention from AD
NC 1.919 + 1.08 0.532 £ 0.56 0.091 £ 0.21

0.9 MCI 0.198 £ 0.31 1.881 £+ 1.06 0.083 + 0.22
AD 0.158 £ 0.29 0.777 £ 0.66 1.961 + 1.14
NC 0.978 + 0.75 2.002 + 1.05 0.255 £+ 0.34

0.4 MCI 0.556 + 0.59 0.972 + 0.74 0.243 £ 0.36
AD 0.676 £ 0.68 1.743 £ 0.97 0.940 £ 0.71
NC 0.000 £ 0.00 3.106 + 1.47 0.415 £ 0.48

0.1 MCI 0.985 + 0.74 0.000 + 0.00 0.461 £ 0.57
AD 1.038 £+ 0.88 3.013 + 1.35 0.000 £ 0.00

[N
\\///. \;
e ®

AV

F e

S0\

(a) Homophily 0.9 (b) Homophily 0.4 (¢) Homophily 0.1

Figure 5: Visualisation of a random node (centre node) from the TADPOLE dataset with synthetically
generated graph structures and its two-hop neighbourhood. The node colours indicate node labels and the
distance is proportional to the summed attention weight of the edges to the respective neighbouring node.

attribute this to the fact that GCN and GAT networks are highly affected by the graph structure,
whereas GraphSAGE and GraphConv networks are more robust in this regard. This also manifests
in the fact that GCN and GAT networks benefit more from dynamic graph construction than the
other two convolutions and that GraphSAGE and GraphConv models can perform equally well on
random graph structures.

2. The utilisation of population graphs with the goal of multi-modal data integration might
not be as promising as believed. We show that using all available features for edge construction
and as node features might lead to better results and argue that a concatenation of all features is
easily doable —except when using images as node features.

3. None of the state-of-the-art GNN methods significantly outperform well-tuned baseline
methods (see Table 2). This raises the question of whether population graphs have any benefit over
graph-agnostic models. In Section 5.6 we investigate the interplay of the graph structure and the
performance of the GNNs on a population graph dataset and conclude that only a nearly perfect
graph structure leads to a better performance of GNNs compared to baseline models, which has not
been possible with the current graph construction methods in this research area.

Given that even a random graph structure can lead to comparable GNN performance to using a “meaningful”
graph structure that is constructed using the k-NN approach, we conclude that creating a population graph
with k-NN does not result in a “good-enough” graph structure. Especially for networks like SAGE and
GraphConv, where the graph structure has comparably little impact on the model performance, the choice of
the graph construction method does not show a strong influence on the results. We furthermore note that
all baseline models are easy to implement using standard libraries such as scikit-learn (Pedregosa et al.,
2011), are significantly faster to fit than the training of GNNs, and do not require extensive hyperparameter
tuning.

18

Under review as submission to TMLR

7 Conclusion and Future Work

Medical population graphs were first introduced in 2017 by Parisot et al. (2017) for the purpose of a
population-wide representation of a cohort of patients. They have since then been combined with GNNs and
used on multiple medical datasets. Most works utilise population graphs as a method for multi-modal data
integration (Parisot et al., 2017; Kazi et al., 2019; Cosmo et al., 2020; Bintsi et al., 2023a). Here, a subset of
the features are used as node features (usually imaging features), while other features (usually non-imaging)
are used to generate the graph structure (the edges).

In this work, we perform an extensive study on how GNNs are used in the context of population graphs
and compare different graph learning methods to graph-agnostic baseline models. We use three benchmark
citation network datasets (CORA, CITESEER, PUBMED) and five medical population graph datasets. We
utilise state-of-the-art (a) static graph construction methods, (b) dynamic graph construction methods, and
(c) neural sheaf diffusion models. The latter have been designed in order to address two of the most dominant
problems of GNNs: over-smoothing and performance on low-homophily graphs. We investigate the usage of
neural sheaf diffusion models since the graph construction methods for population graphs seem to result in
unideal graph structures, which might benefit from the use of neural sheaf diffusion models.

Even though we reach comparable results to related works on population graphs with GNNs for all methods,
none of the GNNs significantly outperform the strongest baseline method. This raises the question of how
powerful population graphs indeed are and whether they are a suitable data representation in combination
with GNNs. We conclude that currently available graph construction methods are the performance bottleneck
of GNNs on population graphs compared to graph-agnostic methods. Using synthetically generated graph
structures, we observe that only a nearly perfect graph structure, where almost all neighbours have the same
label, results in better performance of GNNs than using the node features of the graph combined with a
properly tuned non-neural network method such as a random forest or linear regression (Figure 4). Therefore
the question arises whether this is possible to achieve at all. Even a dynamic graph construction method,
which optimises the graph structure during training, does not reach a “good enough” graph structure. Also,
models that have been designed for “low-quality” graph structures (e.g. neural sheaf diffusion models) do
not improve performance on population graphs. The fact that our baseline models outperform the results
reported in related works emphasises the importance of appropriate tuning of baseline methods in general
and shows that the currently available graph construction methods for population graphs are not sufficient.

There are a few more graph construction methods that we did not evaluate in this work, such as Similarity
Scores. The first one was introduced by Parisot et al. (2017) and followed by several extensions and
modifications (Ghorbani et al., 2022; Vivar et al., 2021; Pellegrini et al., 2022; Peng et al., 2022; Lu et al.,
2022). In this work, we focus on the usage of k-NN graphs, since this method has been shown to achieve the
best results in related works (Bintsi et al., 2023b) and preliminary experiments. Furthermore, an investigation
of other graph assessment metrics (Luan et al., 2021; Xie et al., 2020; Luan et al., 2022) could be interesting
since homophily and CCNS are not the only metrics that quantify the quality of a graph structure.

We see two future directions for population graph studies. Either (a) new and better graph construction
methods need to be developed for population graphs to bring benefits to medical downstream tasks, or (b)
the usage of population graphs in combination with GNNs does not seem valuable for the performance of
medical downstream tasks. For better graph construction methods we see the requirement of increasing the
information content of the graph structure compared to the node features alone. This could potentially be
achieved by encoding information in the graph structure that cannot be trivially added to the node features,
such as genetic similarity between subjects or the risk groups in survival analysis.

References

David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and Lars Petersson.
Graph-based deep learning for medical diagnosis and analysis: past, present and future. Sensors, 21(14):
4758, 2021.

Wenjia Bai, Hideaki Suzuki, Jian Huang, Catherine Francis, Shuo Wang, Giacomo Tarroni, Florian Guitton,
Nay Aung, Kenneth Fung, Steffen E Petersen, et al. A population-based phenome-wide association study

19

Under review as submission to TMLR

of cardiac and aortic structure and function. Nature medicine, 26(10):1654-1662, 2020.

Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Graph neural networks in network neuroscience.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb. com/. Software
available from wandb.com.

Kyriaki-Margarita Bintsi, Vasileios Baltatzis, Rolandos Alexandros Potamias, Alexander Hammers, and
Daniel Rueckert. Multimodal brain age estimation using interpretable adaptive population-graph learning.
arXiv preprint arXiw:2307.04639, 2023a.

Kyriaki-Margarita Bintsi, Tamara T. Mueller, Sophie Starck, Vasileios Baltatzis, Alexander Hammers, and
Daniel Rueckert. A comparative study of population-graph construction methods and graph neural networks
for brain age regression, 2023b.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and Michael Bronstein. Neural
sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns. Advances in Neural
Information Processing Systems, 35:18527—-18541, 2022.

Stephen Bonner, Ian P Barrett, Cheng Ye, Rowan Swiers, Ola Engkvist, Andreas Bender, Charles Tapley
Hoyt, and William L Hamilton. A review of biomedical datasets relating to drug discovery: a knowledge
graph perspective. Briefings in Bioinformatics, 23(6), 2022.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18-42, 2017.

Li Chen, Thomas Hatsukami, Jenq-Neng Hwang, and Chun Yuan. Automated intracranial artery labeling
using a graph neural network and hierarchical refinement. In Medical Image Computing and Computer
Assisted Intervention—-MICCAI 2020: 23rd International Conference, Lima, Peru, October 48, 2020,
Proceedings, Part VI 23, pp. 76-85. Springer, 2020.

James H Cole. Multimodality neuroimaging brain-age in uk biobank: relationship to biomedical, lifestyle,
and cognitive factors. Neurobiology of aging, 92:34—42, 2020.

Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael Bronstein. Latent-graph learning
for disease prediction. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 643—653. Springer, 2020.

Padraig Cunningham and Sarah Jane Delany. k-nearest neighbour classifiers-a tutorial. ACM computing
surveys (CSUR), 54(6):1-25, 2021.

Adriana Di Martino, Chao-Gan Yan, Qingyang Li, Erin Denio, Francisco X Castellanos, Kaat Alaerts,
Jeffrey S Anderson, Michal Assaf, Susan Y Bookheimer, Mirella Dapretto, et al. The autism brain imaging
data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular
psychiatry, 19(6):659-667, 2014.

Wengi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for
social recommendation. In The world wide web conference, pp. 417-426, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1905.02428, 2019.

Mahsa Ghorbani, Anees Kazi, Mahdieh Soleymani Baghshah, Hamid R Rabiee, and Nassir Navab. Ra-gcn:
Graph convolutional network for disease prediction problems with imbalanced data. Medical Image Analysis,
75:102272, 2022.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE international joint conference on neural networks, volume 2, pp. 729-734, 2005.

20

https://www.wandb.com/

Under review as submission to TMLR

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks. arXiv preprint arXiv:2012.06533, 2020.

Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. Journal of Applied and
Computational Topology, 3:315-358, 2019.

Anees Kazi, Shayan Shekarforoush, S Arvind Krishna, Hendrik Burwinkel, Gerome Vivar, Karsten Kortiim,
Seyed-Ahmad Ahmadi, Shadi Albarqouni, and Nassir Navab. Inceptiongcn: receptive field aware graph
convolutional network for disease prediction. In Information Processing in Medical Imaging: 26th Interna-
tional Conference, IPMI 2019, Hong Kong, China, June 2-7, 2019, Proceedings 26, pp. 73-85. Springer,
2019.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein. Differentiable
graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(2):1606-1617, 2022.

Matthias Keicher, Hendrik Burwinkel, David Bani-Harouni, Magdalini Paschali, Tobias Czempiel, Egon
Burian, Marcus R Makowski, Rickmer Braren, Nassir Navab, and Thomas Wendler. U-gat: Multimodal
graph attention network for covid-19 outcome prediction. arXiv preprint arXiv:2108.00860, 2021.

Byung-Hoon Kim, Jong Chul Ye, and Jae-Jin Kim. Learning dynamic graph representation of brain
connectome with spatio-temporal attention. Advances in Neural Information Processing Systems, 34:
4314-4327, 2021.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with
self-supervision. arXiv preprint arXiv:2204.04879, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on non-homophilous
graphs. arXiv preprint arXiv:2104.01404, 2021.

Siyuan Lu, Ziquan Zhu, Juan Manuel Gorriz, Shui-Hua Wang, and Yu-Dong Zhang. Nagnn: classification of
covid-19 based on neighboring aware representation from deep graph neural network. International Journal
of Intelligent Systems, 37(2):1572-1598, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, and
Doina Precup. Is heterophily a real nightmare for graph neural networks to do node classification? arXiv
preprint arXiv:2109.05641, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, and Doina Precup. When do we need
gnn for node classification? arXiv preprint arXiv:2210.16979, 2022.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural networks?
arXi preprint arXiv:2106.061534, 2021.

José Tebfilo Moreira-Filho, Meryck Felipe Brito da Silva, Joyce Villa Verde Bastos Borba, Arlindo Rodrigues
Galvao Filho, Eugene Muratov, Carolina Horta Andrade, Rodolpho de Campos Braga, and Bruno Junior
Neves. Artificial intelligence systems for the design of magic shotgun drugs. Artificial Intelligence in the
Life Sciences, pp. 100055, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pp. 4602-4609, 2019.

Tamara T. Mueller, Sophie Starck, Leonhard F. Feiner, Kyriaki-Margarita Bintsi, Daniel Rueckert, and
Georgios Kaissis. Extended graph assessment metrics for graph neural networks, 2023a.

21

Under review as submission to TMLR

Tamara T Mueller, Siyu Zhou, Sophie Starck, Friederike Jungmann, Alexander Ziller, Orhun Aksoy, Danylo
Movchan, Rickmer Braren, Georgios Kaissis, and Daniel Rueckert. Body fat estimation from surface meshes
using graph neural networks. arXiv preprint arXiv:2308.02493, 2023b.

Johannes C Paetzold, Julian McGinnis, Suprosanna Shit, Ivan Ezhov, Paul Biischl, Chinmay Prabhakar,
Mihail I Todorov, Anjany Sekuboyina, Georgios Kaissis, Ali Ertiirk, et al. Whole brain vessel graphs: a
dataset and benchmark for graph learning and neuroscience (vesselgraph). arXiv preprint arXiv:2108.13233,
2021.

Sarah Parisot, Sofia Ira Ktena, Enzo Ferrante, Matthew Lee, Ricardo Guerrerro Moreno, Ben Glocker, and
Daniel Rueckert. Spectral graph convolutions for population-based disease prediction. In International
conference on medical image computing and computer-assisted intervention, pp. 177-185. Springer, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Chantal Pellegrini, Nassir Navab, and Anees Kazi. Unsupervised pre-training of graph transformers on patient
population graphs. arXiv preprint arXiv:2207.10603, 2022.

Liang Peng, Nan Wang, Nicha Dvornek, Xiaofeng Zhu, and Xiaoxiao Li. Fedni: Federated graph learning
with network inpainting for population-based disease prediction. IEEE Transactions on Medical Imaging,
2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey, Paul
Elliott, Jane Green, Martin Landray, et al. Uk biobank: an open access resource for identifying the causes
of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3):€1001779, 2015.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Gerome Vivar, Anees Kazi, Hendrik Burwinkel, Andreas Zwergal, Nassir Navab, Seyed-Ahmad Ahmadi,
et al. Simultaneous imputation and classification using multigraph geometric matrix completion (mgmc):
Application to neurodegenerative disease classification. Artificial Intelligence in Medicine, 117:102097,
2021.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Aem Transactions On Graphics (tog), 38(5):1-12, 2019.

Yiqing Xie, Sha Li, Carl Yang, Raymond Chi-Wing Wong, and Jiawei Han. When do gnns work: Understanding
and improving neighborhood aggregation. In IJCAI’20: Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence,{IJCAI} 2020, number 1, 2020.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pp. 40-48. PMLR, 2016.

Shuangzhi Yu, Shuqgiang Wang, Xiaohua Xiao, Jiuwen Cao, Guanghui Yue, Dongdong Liu, Tianfu Wang,
Yanwu Xu, and Baiying Lei. Multi-scale enhanced graph convolutional network for early mild cognitive
impairment detection. In Medical Image Computing and Computer Assisted Intervention-MICCAI 2020:
23rd International Conference, Lima, Peru, October 4—8, 2020, Proceedings, Part VII 23, pp. 228—-237.
Springer, 2020.

Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Zhenyu Guo, Yang Liu, Yuchen Yang, and Yao Zhao. Multi-modal
graph learning for disease prediction. IEEE Transactions on Medical Imaging, 41(9):2207-2216, 2022.

22

Under review as submission to TMLR

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily
in graph neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33:7793-7804, 2020.

23

