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ABSTRACT

Traditional model adaptation framework assumes the same vocabulary across pre-
training and downstream datasets, which often struggles with limited transfer flex-
ibility and efficiency while handling downstream datasets with different vocab-
ularies. Inspired by recent vision-language models (VLMs) that enable visual
recognition defined by free-form texts via reasoning on both images and texts,
we study vision-language model adaptation (VLMA), a new unsupervised model
adaptation framework that positions a pre-trained VLM as the source model and
transfers it towards various unlabelled downstream datasets. To this end, we pro-
pose a Hough voting-based Self-Training (HoughST) technique that introduces a
multimodal Hough voting mechanism to exploit the synergy between vision and
language to mitigate the distribution shift in image and text modalities simultane-
ously. Specifically, HoughST makes use of the complementary property of differ-
ent types of features within and across vision and language modalities, which en-
ables joint exploitation of vision and language information and effective learning
of image-text correspondences in the unlabelled downstream datasets. Addition-
ally, HoughST captures temporal information via temporal Hough voting which
helps memorize and leverage previously learnt downstream dataset information.
Extensive experiments show that HoughST outperforms the state-of-the-art con-
sistently across 11 image recognition tasks. Codes will be released.

1 INTRODUCTION

Deep learning-based vision models He et al. (2016); Dosovitskiy et al. (2020) have achieved great
success in myriad image recognition tasks but at the price of laborious annotation of large-scale
training images Deng et al. (2009). To circumvent the annotation constraint, model adaptation
(MA) Liang et al. (2020); Huang et al. (2021) has been explored to transfer a vision model pre-
trained in certain labelled pre-training datasets towards unlabelled downstream datasets by mitigat-
ing the distribution shift in image modality. However, traditional MA Liang et al. (2020); Huang
et al. (2021); Liang et al. (2021) assumes that pre-training and downstream datasets have the same
vocabulary. It struggles while handling downstream datasets with different vocabularies, limiting its
flexibility and efficiency greatly in unsupervised transfer.

Inspired by recent vision-language models (VLMs) Radford et al. (2021) that enable visual recog-
nition defined by free-form texts via reasoning on both images and texts, we study vision-language
model adaptation (VLMA), a new unsupervised model adaptation (UMA) framework that positions
a pre-trained VLM as the source model and transfers it towards various unlabelled downstream
datasets. VLMA requires a single pre-trained VLM only while transferring towards various down-
stream datasets of different vocabularies, instead of preparing multiple vocabulary-specific vision
models with respective source datasets, as illustrated in Fig. 1. In addition, VLMA allows un-
supervised transfer towards new downstream datasets with customized vocabulary, which greatly
mitigates the image annotation constraint and facilitates deep network training while handling var-
ious new visual recognition tasks. On the other hand, the shift from traditional model adaptation
toward VLMA comes with a new challenge, namely, the distribution shifts in both image modality
and text modality.

Drawing inspiration from Hough Voting Ballard (1981); Qi et al. (2019); Lee et al. (2021) that de-
tects a complex object by voting from its subregion information, we design Hough voting-based
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(a) Traditional Model Adaptation (b) Vision-Language Model Adaptation

Office 
(Amazon) Billions of 

Image-Text 
Pairs from Web

ImageNet: 1000-class WordNet object dataset
SUN397: 397-class scene dataset
Food101: 101-class food dataset
GTSRB: 43-class traffic sign dataset
Office: 31-class office object dataset
SVHN, MNIST: 0-to-9 digits dataset
VisDA: 12-class common object dataset
UCF101: 101-class human action dataset
……
New downstream datasets with customized vocabulary

Adapt to new datasets with customized vocabulary? 

Vision Model
Office
(Webcam)

Vision-
Language

Model

SVHN MNIST
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VisDA 
(Real)

SVHN ImageNet

Pre-Training Unsupervised Vision Adaptation

SVHN Office

Applicable and Inapplicable Adaptation

Vision Model

Vision Model

Vision Model

Vision Model

…… …

Unsupervised Vision-Language Adaptation

Figure 1: Traditional model adaptation typically transfers a vision model across datasets of the
same vocabulary, which struggles while handling downstream datasets with different vocabularies
or new datasets with customized vocabularies as illustrated in (a). Inspired by the recent open-
vocabulary vision-language models (VLMs), we study vision-language model adaptation, a new
unsupervised model adaptation framework that positions a single pre-trained VLM as the source
model and transfers it towards various unlabelled downstream datasets, offering greater transfer
flexibility and efficiency, as illustrated in (b).

Self-Training (HoughST) that introduces a multimodal Hough voting mechanism to exploit the syn-
ergy between vision and language to mitigate the distribution shift in both image and text modalities
simultaneously while self-training. HoughST makes use of the complementary property of different
types of features within and across vision and language modalities: it exploits VLMs to encode im-
ages Lüddecke & Ecker (2022); Zang et al. (2022) and texts Lüddecke & Ecker (2022); Zang et al.
(2022) into an aligned vision-language feature space and votes from the encoded visual and textual
features to regularize unsupervised self-training for denoising pseudo labels and more effective self-
training and vision-language model adaptation. This multimodal Hough voting mechanism enables
joint exploitation of vision and language information and effective learning of image-text correspon-
dences in the unlabelled downstream datasets. In addition, HoughST captures temporal information
via temporal Hough voting, which rectifies self-training via voting from the features encoded by the
intermediate models evolved along the adaptation process, ultimately helping memorize and utilize
previously learnt downstream dataset information.

The proposed HoughST can be viewed as a new type of self-training with Hough voting for the task
of VLMA. It has three desirable advantages: 1) it introduces visual Hough voting and textual Hough
voting and enables simultaneous mitigation of distribution shift in both image and text modalities
effectively; 2) it introduces temporal Hough voting along the adaptation process which allows har-
vesting previously learnt downstream dataset information effectively; 3) it works within an aligned
image-text feature space which allows Hough voting not only within but also across vision, language
and temporal dimensions, capturing their complementary advantages effectively.

In summary, the contributions of this work are threefold. First, we propose a novel vision-language
model adaptation framework that explores Hough voting upon self-training to learn effective image-
text correspondences over unlabelled downstream images. To the best of our knowledge, this is
the first work that explores Hough voting for VLMA. Second, we design Hough voting-based self-
training that introduces a multimodal Hough voting mechanism over vision, language and temporal
dimensions for simultaneous mitigation of image and text distribution shift in VLMA. Third, exten-
sive experiments show that the proposed Hough voting-based self-training outperforms the state-of-
the-art consistently across multiple image recognition tasks.

2 RELATED WORK

Model Adaptation (MA), a type of unsupervised transfer learning, aims to adapt a model pre-
trained on certain labelled pre-training datasets towards unlabelled downstream datasets. Most ex-
isting MA methods can be broadly grouped into two categories. The first category employs gener-
ative models to compensate for the unavailable pre-training datasets by reconstructing pre-training
features Li et al. (2020); Tian et al. (2021); Qiu et al. (2021) or images Du et al. (2021); Yeh et al.
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(2021); Kurmi et al. (2021); Liu et al. (2021). The second approach explores self-training that learns
from unlabelled downstream images with predicted pseudo labels Liang et al. (2020); Huang et al.
(2021); Liang et al. (2021); Xia et al. (2021); Yang et al. (2021); Ding et al. (2022b; 2023). De-
spite their great success, most existing methods assume the same vocabulary across the pre-training
and downstream datasets and cannot handle downstream datasets with different vocabulary or new
downstream dataset with customized vocabulary. This limits the flexibility and efficiency of MA
greatly. We study vision-language model adaptation in this work, a new framework that reasons
both images and texts and allows unsupervised transfer learning towards various unlabelled down-
stream datasets. We design Hough voting-based self-Training that introduces a multimodal Hough
voting mechanism to explore the synergy of vision and language to mitigate image and text distri-
bution shifts simultaneously in VLMA.

Vision Language Model (VLM) Radford et al. (2021); Jia et al. (2021); Yuan et al. (2021a); Yu
et al. (2022); Tschannen et al. (2022); Yao et al. (2021); Wu et al. (2021); Mu et al. (2022); Cui et al.
(2022); Li et al. (2021); Singh et al. (2022); Gao et al. (2022); Yang et al. (2022); Zhou et al. (2022a);
Shen et al. (2022); Alayrac et al. (2022); Huang et al. (2022); Lee et al.; Chen et al. (2022b;c); Geng
et al. (2023); Xu et al. (2022); Zhong et al. (2022); Li et al. (2022b); Zhao et al. (2022); Dou
et al.; Yao et al. aims to learn effective vision-language correlation from image-text pairs that are
almost infinitely available on the Web. It has demonstrated great potential in open-vocabulary visual
recognition by recognizing images with free-form texts. On the other hand, VLMs often suffer from
degraded performance due to distribution shifts with respect to various downstream datasets. Unlike
recent attempts Zhou et al. (2022c;b); Yao et al. (2023); Wu et al. (2023); Khattak et al. (2022);
Xing et al. (2022); Bulat & Tzimiropoulos (2022); Lu et al. (2022); Chen et al. (2022a); Ding et al.
(2022a); Pratt et al. (2022); Rao et al. (2022); Yu et al. (2023) that adapt VLMs by prompt tuning
with few-shot downstream dataset images, we focus on adapting VLMs towards various downstream
datasets by ingeniously exploiting the unlabelled images which are often off-the-shelf available in
abundance.

Hough Voting detects complex objects by aggregating votes from their subregions and surrounding
areas, leveraging spatially complementary information to enhance vision tasks. Existing methods
can be broadly classified into two categories. The first category is classical Hough voting, which
relies on traditional visual patterns. For example, Ballard (1981) detects the presence of complex ob-
jects by voting from image patches, Leibe et al. (2008) proposes the implicit shape model, Sun et al.
(2010) integrates depth information into Hough voting, Maji & Malik (2009) designs importance-
aware voting, and Gall et al. (2011); Gall & Lempitsky (2013) develop Hough forests. The second
category is deep Hough voting, which incorporates voting mechanisms into deep neural networks.
For instance, Kehl et al. (2016) uses deep features for 6D pose estimation, Milletari et al. (2017)
learns deep features to build codebooks, and Qi et al. (2019); Lee et al. (2021) apply Hough voting
within deep networks for 3D learning. In contrast to previous approaches, we propose HoughST that
works within an aligned image-text feature space which enables Hough voting not only within but
also across visual, language and temporal dimensions, effectively capturing their complementary
strengths for vision-language model adaptation.

3 METHOD

3.1 PRELIMINARIES OF VISION-LANGUAGE MODEL

Vision-language model (VLM) training. VLM Radford et al. (2021); Jia et al. (2021); Yuan et al.
(2021a); Yu et al. (2022); Tschannen et al. (2022) learns effective vision-language correlation from
image-text pairs that are almost infinitely available on the Web Radford et al. (2021); Schuhmann
et al. (2021). The training involves a VLM F = {F I , FT } where F I and FT denote an image en-
coder and a text encoder respectively, and an image-text dataset Ds = {(xI

n, x
T
n )}Nn=1 where xI

n and
xT
n stand for an image sample and its paired text sample. Given F and Ds, rich vision-language cor-

relation can be learnt with a vision-language training objective such as image-text contrast Radford
et al. (2021) as follows:

LVLM = −
N∑
i=1

log
exp (zIi · zTi /τ)∑N
j=1 exp(z

I
i · zTj /τ)

−
N∑
i=1

log
exp (zTi · zIi /τ)∑N
j=1 exp(z

T
i · zIj /τ)

, (1)
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Figure 2: Overview of HoughST. HoughST encodes texts and images into an aligned vision-
language feature space and votes from the encoded visual and textual features (i.e., Multimodal
Codebook) to regularize unsupervised self-training, enabling joint exploitation of vision and lan-
guage information and effective learning of image-text correspondences in the unlabelled down-
stream datasets. In addition, HoughST updates Multimodal Codebook online using the features en-
coded by the intermediate models evolved along the adaptation process, enabling temporal Hough
voting and helping memorize and utilize previously learnt downstream dataset information.

where the two terms on the right denote image-to-text and text-to-image contrastive losses respec-
tively. The notations zIi = F I(xI

i ) and zTi = FT (xT
i ) stand for the encoded image and text features

respectively, τ denotes a temperature parameter Wu et al. (2018), and “·” stands for the inner-product
that measures the cosine similarity between two features.

VLM inference. A pre-trained VLM can perform open-vocabulary image recognition on various
unlabelled downstream datasets by reasoning on both images and texts Radford et al. (2021). Given
an unlabelled downstream dataset D = {XI , XT }, XI = {xI

n}Nn=1 stands for N unlabelled images
and XT = {xT

m}Mm=1 denotes M class names of interest, e.g., XT = {car, bus, ..., bike, person}.
The pre-trained VLM predicts the probability of an image xI belonging to class xT by:

pxI→xT = zI · zT , (2)

where zI = F I(xI), zT = FT (xT ). Theoretically, VLMs can work with class names XT defined
by free-form texts and thus achieve open-vocabulary image recognition. Note XT = {xT

m}Mm=1
contains M downstream-dataset class names but provides no information of which image belongs
to which class name Radford et al. (2021).

Distribution shifts lead to degraded performance. VLMs often suffer from degraded performance
due to distribution shifts with respect to various downstream datasets Li et al. (2022a). For example,
for distribution shifts in text modalities, VLMs are largely pre-trained on the pre-training datasets
that consist of free-form sentences while the downstream datasets generally provide only raw class
names, where such distribution shifts between pre-training and downstream datasets often lead to
degraded performance. For distribution shifts in image modalities, VLMs are largely pre-trained on
normal images from the internet while downstream datasets may have quite different distributions,
e.g., images in synthetic, Clipart, Sketch styles etc., where such distribution shifts usually lead to
degraded performance. Previous works Radford et al. (2021); Zhou et al. (2022c); Li et al. (2022a);
Bahng et al. (2022) also show that there are little overlap between the VLM training data and the test-
ing downstream data, and properly tackle the gaps between them via text or visual prompt learning
or model finetuning could improve the performance on downstream datasets.

3.2 DEFINITION OF VISION-LANGUAGE MODEL ADAPTATION (VLMA)

This work focuses on the task of VLMA, a new unsupervised model adaptation (UMA) framework
that transfers a pre-trained VLM F = {F I , FT } towards an unlabelled downstream dataset D =
{XI , XT } with certain unsupervised training losses, i.e., LVLMA = Lunsupervised(X

I , XT ;F I , FT ).
Take self-training Zhu (2005); Zou et al. (2018) as an example. Given XI = {xI

n}Nn=1 and XT =
{xT

m}Mm=1, the unsupervised training loss on unlabelled downstream data can be formulated as the
following:
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ŷIn = argmax
m

zIn · zTm, LST = −
N∑

n=1

log

∑M
m=1 exp (z

I
n · zTm/τ)× 1(ŷIn == m)∑M

m=1 exp(z
I
n · zTm/τ)

, (3)

where zIn and zTm denote the encoded image and text features, i.e., zIn = F I(xI
n) and zTm = FT (xT

m).
ŷIn stands for the pseudo label of xI

n.

Note the unsupervised training is often unstable and susceptible to collapse if we optimize VLM
image encoder and text encoder concurrently Li et al. (2022a). Hence, we freeze the VLM text
encoder during unsupervised model adaptation for stable adaptation.

3.3 HOUGH VOTING-BASED SELF-TRAINING

We tackle the challenge of VLMA from a perspective of Hough Voting Ballard (1981); Qi et al.
(2019); Lee et al. (2021). As illustrated in Fig. 2, we design Hough voting-based Self-Training
(HoughST) that introduces visual Hough voting and textual Hough voting over self-training to mit-
igate the distribution shifts in image and text modalities simultaneously. In addition, HoughST cap-
tures temporal information via temporal Hough voting, which rectifies self-training via voting from
the features encoded by the intermediate models evolved along the adaptation process, ultimately
helping memorize and utilize previously learnt downstream dataset information.

Textual Hough voting gathers the text features encoded from different types of text descriptions
for Hough voting, aiming to leverage the complementary information of various text descriptions
(i.e., different types of text descriptions for a class Lüddecke & Ecker (2022); Zang et al. (2022)) to
mitigate the distribution shift in text modality. It employs a Large Language Model (LLM) Brown
et al. (2020); Wang & Komatsuzaki (2021) to generate different types of text descriptions for a
given class name and then encodes them by the VLM text encoder. The encoded text features are
then fused in a two-step manner: 1) uniformly average the multiple text features to acquire an initial
voting centroid; 2) calculate the final voting centroid by weighted average where the weight of each
feature is the distance between it and the initial voting centroid. This two-step voting operation
allows smooth feature fusion by weighting down the effect of corner cases, which is important for
textual Hough voting as the LLM-generated text descriptions are not always reliable (e.g., when
experiencing generation failures, LLM may generate only a full stop character “.” or a random
word).

Given a class name xT
m ∈ XT , we employ the Large Language Model Brown et al. (2020) to

generate K text descriptions {xT
(m,1), x

T
(m,2), ..., x

T
(m,K)} and then the VLM text encoder FT to

encode the generated text descriptions to acquire text features {zT(m,1), z
T
(m,2), ... , zT(m,K)} (i.e.,

zT(m,k) = FT (xT
(m,k))). The text features are then fused in a two-step voting manner to get the final

textual Hough voting centroid δTm:

δTinitial
m =

1

K

K∑
k=1

zT(m,k), δTm =

K∑
k=1

(zT(m,k) · δ
Tinitial
m )× zT(m,k), (4)

where “·” denotes inner-product and (zT(m,k)·δ
Tinitial
m ) measures the distance between zT(m,k) and δTinitial

m .

Visual Hough voting gathers the image features encoded from different images of the same category
for Hough voting, aiming to utilize the complementary information of different types of images (i.e.,
various images as the visual descriptions for a class Lüddecke & Ecker (2022); Zang et al. (2022))
for mitigating the distribution shift in image modality. Given an image, it employs certain off-the-
shelf image augmentation policies Cubuk et al. (2020) to generate multiple image augmentations,
encodes them with the VLM image encoder, and fuses the encoded image features in a class-wise
manner. Since downstream images are unlabelled, we generated pseudo labels for class-wise image
feature fusion. The class-wise feature fusion allows category-wise image information consolidation,
which is crucial to visual Hough voting due to the abundance of downstream dataset images and the
encoded image features. In addition, it simplifies vision-language Hough voting greatly (described
in the later paragraphs) as textual Hough voting naturally works in a category-wise manner. Besides,
with temporal Hough voting (described in the later paragraphs), it allows to dynamically select
image features using pseudo labels along the adaptation process to describe each class visually.
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Given an image xI
n ∈ XI , we adopt the off-the-shelf image augmentation policies in Cubuk et al.

(2020) to generate K image augmentations {xI
(n,1), x

I
(n,2), ..., x

I
(n,K)} and then the VLM image

encoder F I to encode the generated image data to acquire image features {zI(n,1), z
I
(n,2), ..., z

I
(n,K)}

(i.e., zI(n,k) = F I(xI
(n,k))). Finally, the encoded features are fused in a class-wise voting manner to

get the visual Hough voting centroid δIm:

δIm =

∑N
n

∑K
k=1 z

I
(n,k) × 1(ŷ

I
(n,k) == m)∑N

n

∑K
k=1 1(ŷ

I
(n,k) == m)

, (5)

where 1(ŷI(n,k) == m) returns “1” if ŷI(n,k) = m else 0. Note ŷI(n,k) = argmaxm zI(n,k) · z
T
m

denotes the pseudo label of xI
(n,k). Note we employ the momentum update of F I in the vision

feature voting for stable feature encoding and better capturing of temporal information as in Fig. 2.

Temporal vision-language Hough voting exploits the synergy between vision and language by
gathering different types of text features and image features over an aligned vision-language feature
space. It employs the textual and visual Hough voting centroids as starting point and updates them
with the visual Hough voting centroids generated by the intermediate VLM image encoder evolved
along the adaptation process. This enables Hough voting not only within but also across vision
and language modalities, capturing the complementary advantages of vision and language informa-
tion effectively. In addition, the updating also achieves temporal Hough voting that gathers and
leverages previously learnt downstream dataset information effectively. Note we conduct temporal
Hough voting from image features only as the VLM text encoder is frozen during the adaptation
process.

Specifically, we use the textual and visual Hough voting centroids δTm and δIm to initialize the vision-
language Hough voting centroid δITm and keep updating δITm with δIm along the adaptation process
as follows:

δITinitial
m = δIm + δTm, δIT∗

m ← λδITm + (1− λ)δIm, (6)
where δITm and δIT∗

m denote the vision-language Hough voting centroid before and after one update,
respectively. λ is a coefficient that controls the update speed of temporal Hough voting. Note the first
part denotes vision-language Hough voting while the second part denotes temporal Hough voting.

Hough voting-based self-training. Given vision-language Hough voting centroid δITm , downstream
images, XI = {xI

n}Nn=1 and downstream class names XT = {xT
m}Mm=1, we employ δITm to vote to

regularize unsupervised self-training, which can be formulated as follows:

ỹIn = argmax
m

(zIn · zTm)× (zIn · δITm ), (7)

LHoughST = −
N∑

n=1

log

∑M
m=1 exp (z

I
n · zTm/τ)× 1(ỹIn == m)∑M

m=1 exp(z
I
n · zTm/τ)

, (8)

where zIn and zTm denote the encoded image and text features, i.e., zIn = F I(xI
n) and zTm = FT (xT

m).
ỹIn stands for the pseudo label of xI

n generated with δITm . The vision-language Hough voting centroid
δITm captures rich downstream image and text information. It is thus more invariant to visual and
textual distribution shifts and can vote from the captured information to regularize self-training to
generate more accurate pseudo labels.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We conduct experiments with three popular backbones, i.e., ResNet-50 He et al. (2016), ResNet-
101 He et al. (2016) and ViT-B Dosovitskiy et al. (2020) pre-trained by CLIP Radford et al. (2021).
In training, we employ AdamW optimizer Loshchilov & Hutter (2017) with a weight decay of 0.05,
and set the initial learning rate as 1e− 5 which is adjusted with a cosine learning rate schedule. We
use 2 GPUs with batch size 64 and the unsupervised adaptation training adds only a small amount of
computation overhead after VLM pre-training. We set input image size as 224×224 and employ data
augmentation policies of “RandomResizedCrop+Flip+RandAug” Cubuk et al. (2020) for image data
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Table 1: VLMA performance on multi-style datasets of Office, Office-Home and Adaptiope. For
fair comparisons, the results of all methods are based on the baseline CLIP.

ViT-B/16 Office Office-Home Adaptiope

A W D S Mean A C P R Mean P R S Mean

CLIP (baseline) 77.9 79.4 76.9 56.7 72.7 74.4 58.5 79.6 79.4 72.9 82.6 78.2 45.9 68.9

ST 78.6 81.1 78.3 68.6 76.6 77.8 62.5 81.3 80.3 75.4 86.7 82.0 49.5 72.7
CBST Zou et al. (2018) 79.1 80.7 78.5 68.9 76.8 77.3 62.8 81.7 80.7 75.6 86.9 83.2 50.1 73.4
CRST Zou et al. (2019) 78.8 81.2 79.1 69.0 77.0 78.1 63.1 81.4 81.1 75.9 87.1 83.9 50.7 73.9
SHOT Liang et al. (2020) 79.2 81.1 81.2 67.1 77.1 77.9 64.3 80.9 81.5 76.1 88.3 84.7 51.2 74.7
MUST Li et al. (2022a) 79.0 81.4 79.5 69.2 77.2 77.7 63.9 82.1 81.4 76.2 88.8 85.3 51.5 75.2
HoughST (Ours) 84.3 82.8 81.3 72.3 80.1 78.9 68.9 85.7 82.4 78.9 91.8 88.1 59.8 79.9

ResNet-50 Office Office-Home Adaptiope

A W D S Mean A C P R Mean P R S Mean

CLIP (baseline) 72.9 68.9 73.1 48.2 65.7 64.6 42.1 71.9 71.9 62.6 74.5 66.2 35.8 58.8

ST 75.2 66.8 71.3 44.1 64.3 66.7 38.6 72.0 73.8 62.7 75.7 70.7 26.7 57.7
CBST Zou et al. (2018) 75.2 67.8 72.2 51.1 66.5 68.1 41.5 73.6 74.5 64.4 77.2 71.1 34.3 60.8
CRST Zou et al. (2019) 76.4 67.4 74.5 52.3 67.6 68.3 42.3 74.8 75.3 65.1 78.3 71.2 36.2 61.9
SHOT Liang et al. (2020) 77.5 70.1 76.8 54.8 69.8 68.4 44.2 75.7 75.6 65.9 78.5 72.4 36.8 62.5
HoughST (Ours) 79.6 75.3 80.3 55.0 72.5 68.6 47.9 78.2 77.4 68.0 80.7 75.6 37.8 64.7

ResNet-101 Office Office-Home Adaptiope

A W D S Mean A C P R Mean P R S Mean

CLIP (baseline) 73.2 73.8 75.1 50.2 68.0 69.5 47.8 74.3 74.2 66.4 75.9 69.0 35.3 60.0

ST 74.4 74.2 73.8 54.3 69.1 71.4 43.2 74.9 75.0 66.1 78.4 71.8 37.8 62.6
CBST Zou et al. (2018) 74.6 75.9 72.9 58.1 70.3 72.3 44.9 77.7 76.2 67.7 79.5 73.3 41.5 64.7
CRST Zou et al. (2019) 75.3 76.6 73.4 58.5 70.9 73.4 45.9 78.4 76.8 68.6 80.1 75.2 43.7 66.3
SHOT Liang et al. (2020) 76.9 78.2 75.1 59.0 72.3 73.5 47.2 79.1 77.4 69.3 81.9 76.3 44.1 67.4
HoughST (Ours) 80.1 81.2 77.5 61.9 75.1 74.6 51.2 82.6 78.9 71.8 85.3 78.8 45.7 69.9

augmentation. The momentum VLM image encoder F I
m is updated with a momentum coefficient

of 0.99, i.e., θF I
m
← γ θF I

m
+ (1 − γ)θF I , and γ is a momentum coefficient. All results except on

ImageNet are obtained with above implementation details. For the large-scale ImageNet, we follow
the implementations in Li et al. (2022a) and use 16 GPUs with batch size 1024. During evaluation,
we simply use the center-cropped image.

4.2 HOUGHST ON MULTI-STYLE DATASETS

Tables 1-3 report the image classification results on 4 representative multi-style datasets. The exper-
iments were conducted with 3 representative backbones, i.e., ResNet-50, ResNet-101 and ViT-B/16.
It can be seen that our HoughST achieves superior performance consistently over various styles
as compared with state-of-the-art methods. Besides, HoughST outperforms CLIP substantially on
Office (S)ynthetic style, Office-Home (C)lipart style and Adaptiope (S)ynthetic style with 15.6%,
10.4% and 13.9% accuracy improvement, respectively, showing that HoughST can well handle the
downstream datasets with large distribution shifts, i.e., Synthetic and Clipart styles.

4.3 HOUGHST ON TASK-SPECIFIC DATASETS

Table 4 reports the image classification over 5 popular task-specific datasets as in prior work Li et al.
(2022a). The experiments were conducted with 3 representative backbones, i.e., ResNet-50, ResNet-
101 and ViT-B/16 (the results with ResNet-101 are provided in the appendix). We can observe that
HoughST outperforms the state-of-the-arts by large margins consistently over different task-specific
datasets, demonstrating that it can effectively handle various new visual recognition tasks by using
unlabelled data. In addition, HoughST brings substantial improvements upon CLIP over SUN397
(e.g., +11.0% on ViT-B/16) and GTSRB (e.g., +16.8% on ViT-B/16), showing that HoughST can
well tackle new image classification tasks with very specific objectives, e.g., indoor/outdoor scene
and German traffic sign recognition.

4.4 VLMA ON GENERAL DATASET IMAGENET

Table 5 presents ImageNet results. It can be seen that HoughST achieves superior performance as
compared with state-of-the-art unsupervised methods, demonstrating its effectiveness over the very
diverse and large-scale ImageNet. Besides, introducing our HoughST into 16-shot supervised meth-
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Table 2: VLMA performance on large-scale multi-style dataset VisDA. For fair comparisons, the
results of all methods are based on the baseline CLIP.

VisDA Synthesis Style
ViT-B/16 plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

CLIP (baseline) 98.5 99.7 64.6 92.5 99.7 96.8 85.3 98.4 99.8 79.4 66.4 73.4 87.8

ST 97.2 99.9 60.4 84.5 99.8 98.6 92.5 99.7 99.9 79.3 74.2 84.4 89.2
CBST Zou et al. (2018) 98.4 99.7 67.3 85.2 99.8 99.1 95.3 99.9 99.4 83.4 83.4 87.4 91.5
CRST Zou et al. (2019) 98.1 98.2 70.5 86.5 98.6 98.7 94.3 98.8 97.8 86.7 88.7 86.1 91.9
SHOT Liang et al. (2020) 99.6 99.1 74.6 86.3 98.3 99.3 96.4 96.1 99.7 87.5 90.1 87.3 92.2
MUST Li et al. (2022a) 98.7 99.2 76.3 86.4 99.6 99.2 95.3 99.3 99.8 89.2 89.9 82.6 92.9
HoughST (Ours) 99.7 99.7 78.9 86.6 99.9 99.3 96.4 99.4 99.8 91.9 90.8 93.2 94.6

VisDA Real Style
ViT-B/16 plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

CLIP (baseline) 98.9 91.0 90.5 65.7 98.6 89.1 95.3 56.5 90.2 96.8 93.8 75.8 86.8

ST 99.4 87.3 92.5 68.3 98.1 90.4 94.6 69.3 91.2 96.7 94.5 66.4 87.3
CBST Zou et al. (2018) 99.3 89.2 91.3 76.9 98.2 89.5 95.4 68.1 88.4 96.4 94.1 64.2 87.5
CRST Zou et al. (2019) 99.1 90.7 91.4 64.5 99.1 93.4 95.1 68.2 91.3 96.8 95.3 67.2 87.6
SHOT Liang et al. (2020) 99.3 92.8 91.9 65.3 98.7 95.2 94.5 67.7 92.1 96.9 95.4 67.9 88.1
MUST Li et al. (2022a) 99.2 95.7 92.6 56.9 99.1 98.6 96.0 67.0 93.5 98.8 96.9 68.1 88.5
HoughST (Ours) 99.2 95.9 92.1 66.1 99.2 97.8 96.7 70.8 92.7 98.4 96.2 74.6 90.0

Table 3: VLMA performance on multi-style datasets of DomainNet. For fair comparisons, the
results of all methods are based on the baseline CLIP.

Method ViT-B/16 ResNet-50
Clipart Info Paint Quick Real Sketch Mean Clipart Info Paint Quick Real Sketch Mean

CLIP (baseline) 69.7 47.8 65.0 14.5 82.0 62.4 56.9 51.9 39.1 52.1 6.4 74.7 47.4 45.3

ST 72.5 51.3 68.7 12.4 83.7 64.3 58.8 55.4 40.5 54.8 4.3 76.2 48.3 46.5
CBST Zou et al. (2018) 74.3 56.8 69.8 13.4 83.1 67.1 60.7 56.3 40.7 56.2 5.6 77.4 48.1 47.3
CRST Zou et al. (2019) 75.6 56.9 71.3 14.8 83.3 68.2 61.7 57.9 41.8 57.1 6.2 78.2 49.5 48.4
SHOT Liang et al. (2020) 75.9 57.4 71.5 15.1 83.3 68.8 62.0 60.3 45.8 60.5 5.1 78.9 54.1 50.8
MUST Li et al. (2022a) 76.1 57.5 71.6 14.2 84.4 68.9 62.1 - - - - - - -
HoughST (Ours) 77.6 59.0 73.1 18.2 86.1 70.1 64.0 62.7 47.2 61.3 7.2 80.2 54.4 52.2

ods further improves the performance clearly, showing that 16-shot supervised and our unsupervised
methods are complementary to each other as they focus on exploring different types of data.

4.5 DISCUSSION

Ablation study. We conduct ablation studies with ViT-B/16 on Office as shown in Table 6. As the
core of the proposed HoughST, we examine how our designed visual Hough voting, textual Hough
voting and temporal Hough voting contribute to the overall performance of vision-language model
adaptation. As shown in Table 6, including either visual Hough voting or textual Hough voting
above self-training improves performance clearly, showing that voting from different types of im-
age/text features help mitigate distribution shifts in image modality/text modality and can regularize
unsupervised self-training with more accurate pseudo label prediction. In addition, combining vi-
sual and textual Hough voting performs clearly better, indicating that the two types of Hough voting
complement each other by working from orthogonal vision and language perspectives. Furthermore,
including temporal Hough voting upon vision-language Hough voting, i.e., HoughST in the last row,
performs the best. It demonstrates the importance of temporal Hough voting that helps memorize
and leverage previously learnt downstream datasets information along the training process.

Parameter study. The parameter λ in Eq. 6 controls the update speed of temporal information
fusion and voting. We investigate λ by varying it from 0.9 to 0.9999 progressively, as shown in
Table 8. It can be seen that varying λ does not affect HoughST clearly. The performance drops a bit
while λ = 0.9, largely because a fast update may lead to unstable temporal information fusion and
voting which only captures local information within each training batch.

Comparison with other voting methods. We compare HoughST with other voting strategies that
explore complementary advantages of different features via uniform voting Jiang et al. (2020);
Schick & Schütze (2020); Yuan et al. (2021b), weighted voting Jiang et al. (2020); Qin & Eis-
ner (2021); Schick & Schütze (2020), majority voting Lester et al. (2021); Hambardzumyan et al.
(2021). As Table 7 shows, existing voting methods do not perform well, largely because they were
designed for a single data modality without considering (1) the joint exploitation of vision and lan-
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Table 4: VLMA performance on task-specific datasets of various image recognition tasks. For fair
comparisons, the results of all methods are based on the baseline CLIP.

Method ViT-B ResNet-50
SUN397 Food101 GTSRB DTD UCF101 Mean SUN397 Food101 GTSRB DTD UCF101 Mean

CLIP (baseline) 60.8 85.6 32.5 44.5 64.1 57.5 54.0 73.1 25.0 39.8 56.0 49.5

ST 65.8 88.2 32.8 45.0 67.0 59.7 59.0 74.4 20.5 35.8 56.4 49.2
CBST Zou et al. (2018) 63.2 89.5 37.6 44.3 68.1 60.5 63.7 78.2 27.4 38.7 59.5 53.5
CRST Zou et al. (2019) 64.7 89.1 39.7 45.3 68.6 61.4 64.2 76.5 30.1 39.4 61.3 54.3
SHOT Liang et al. (2020) 66.1 89.6 41.2 46.3 69.4 62.5 65.1 77.3 34.6 41.2 62.7 56.1
MUST Li et al. (2022a) 67.7 89.4 42.7 46.5 70.6 63.3 - - - - - -
HoughST (Ours) 71.8 91.1 49.3 52.7 73.9 67.7 65.7 79.5 39.6 49.4 65.6 59.9

Table 5: Comparison with few-shot supervised adaptation methods and unsupervised adaption meth-
ods on ImageNet. All methods use the same CLIP ViT-B/16 model as the baseline.

Method CLIP Supervised with 16 Labels per Class Unsupervised

CoCoOp CoOp CoOp + HoughST CoCoOp + HoughST ST MUST HoughST (Ours)

ImageNet 68.3 71.0 71.5 79.6 79.8 76.5 77.7 78.7

Table 6: Ablation studies of HoughST with ViT-B/16 on Office dataset.

Method Vision-Language Hough voting Temporal Hough voting Office (Mean)
Visual Hough voting Textual Hough voting

CLIP (baseline) 72.7
ST 76.6

✓ 77.5
✓ 78.2

✓ ✓ 78.7
HoughST ✓ ✓ ✓ 80.1

Table 7: Comparison with other voting methods with ViT-B/16 on Office.
Method Office (Mean)

ST + Importance-aware Voting Maji & Malik (2009) 77.3
ST + Uniform Voting Jiang et al. (2020) 77.2
ST + Weighted Voting Qin & Eisner (2021) 77.4
ST + Majority Voting Lester et al. (2021) 77.0
HoughST (Ours) 80.1

Table 8: Parameter ablations with ViT-B/16 on Office. The default is marked in gray .

Parameter λ 0.9 0.99 0.999 0.9999

Office (Mean) 79.6 80.1 80.1 80.0

guage modalities and (2) the information memorization during unsupervised transfer. HoughST
instead learns and memorizes effective image-text correspondences in the unlabelled downstream
datasets via joint exploitation of vision and language information, which are essential to vision-
language model adaptation.

Pseudo label accuracy. Fig. 3 shows the pseudo label accuracy along the unsupervised adapta-
tion process. HoughST generates much more accurate pseudo labels than the vanilla self-training
(ST) and the state-of-the-art MUST. The superior pseudo label accuracy is largely attributed to the
proposed multimodal Hough voting which helps capture rich downstream dataset image and text
information that is more invariant to visual and textual distribution shifts and can better regularize
unsupervised self-training.

Visualization of multimodal Hough voting. We analyze how our proposed multimodal Hough
voting mechanisms work by visualizing the feature distribution, as shown in Figure 4. From Figure 4
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Figure 3: Pseudo label accuracy along the unsupervised adaptation process (with ViT-B/16).

(a) Textual Hough voting (b) Visual Hough voting (c) Vision-language (VL) Hough voting (d) Temporal VL Hough voting

Figure 4: Visualization of multimodal Hough voting. It shows that all three voting mechanisms in
our HoughST can capture different types of image and text features, which build an informative, up-
to-date and accurate multimodal codebook for Hough voting, ultimately voting together to produce
better voting centroids (i.e., closer to ground-truth centroids) and VLMA performance.

(a), (b) and (c), we can observe that textual Hough voting and visual Hough voting can capture
different types of image and text features respectively, which complement each other and provide
orthogonal vision and language information for more comprehensive voting. In addition, Figure 4
(d) shows that including temporal Hough voting further enriches the distribution of vision-language
feature, which helps build an informative, up-to-date and accurate multimodal codebook for Hough
voting, leading to better voting centroids that are closer to ground-truth centroids and facilitating
vision-language model adaptation.

Due to the space limit, we provide more dataset details, experiments and discussions in the appendix.

5 CONCLUSION

This paper presents HoughST, a novel vision-language model adaptation framework that explores
Hough voting to learn effective image-text correspondences over unlabelled downstream dataset im-
ages. HoughST introduces a multimodal Hough voting mechanism over vision, language and tempo-
ral dimensions for simultaneous mitigation of image and text distribution shifts in VLMA. It requires
merely a single pre-trained VLM but achieves effective and efficient unsupervised model adaptation
towards various unlabelled downstream datasets, demonstrating its superiority in facilitating deep
network training while handling various new visual recognition tasks and styles. Extensive exper-
iments show that HoughST achieves superb recognition performance consistently across different
backbones and image recognition tasks and styles. Moving forward, we will explore HoughST for
other vision tasks such as segmentation and detection.
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Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust object detection with interleaved catego-
rization and segmentation. International journal of computer vision, 77:259–289, 2008.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Junnan Li, Silvio Savarese, and Steven CH Hoi. Masked unsupervised self-training for zero-shot
image classification. arXiv preprint arXiv:2206.02967, 2022a.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Li-
juan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10965–10975, 2022b.

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model adaptation: Unsuper-
vised domain adaptation without source data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9641–9650, 2020.

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu,
and Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-image pre-
training paradigm. In International Conference on Learning Representations, 2021.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning, pp. 6028–6039. PMLR, 2020.

Jian Liang, Dapeng Hu, Yunbo Wang, Ran He, and Jiashi Feng. Source data-absent unsupervised
domain adaptation through hypothesis transfer and labeling transfer. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2021.

Hong Liu, Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Qiang Yang. Separate to adapt: Open
set domain adaptation via progressive separation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2927–2936, 2019.

Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain adaptation for semantic segmentation.
arXiv preprint arXiv:2103.16372, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yuning Lu, Jianzhuang Liu, Yonggang Zhang, Yajing Liu, and Xinmei Tian. Prompt distribution
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5206–5215, 2022.
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A APPENDIX

We provide dataset details in Section B, full comparisons with the state-of-the-art methods in Sec-
tion C and pseudo codes of the proposed HoughST in Section D. In addition, we provide more
discussion experiments, including the analysis of our proposed Textual Hough voting in Sections E-
G and parameter studies in Section H. We also provide more qualitative results in Sections I and J,
and analysis with error bars in Section K. At the end, we provide more discussions of the related
works in Sections L, and broader impacts in Section M.

B DATASET DETAILS

We benchmark our proposed HoughST extensively over 11 widely adopted image recognition
datasets. As Table 9 shows, the 11 datasets have rich diversity, spanning multi-style datasets with
object images captured from several styles (e.g., real-world, synthetic, art, product and clipart styles)
to task-specific datasets with real-world images for some specific visual task (e.g., the recognition
of common objects, indoor and outdoor scenes, foods, traffic signs, natural textures and human
actions). Below please find the detail of each dataset.

Office Saenko et al. (2010) includes 31-class images collected from Amazon (A), Webcam (W) and
DSLR (D) styles which have 2817, 795 and 498 images, respectively. In addition to the original
three styles in Office dataset, we further include an office Synthetic (S) style for benchmarking our
HoughST comprehensively. The Synthetic (S) style is provided by Ringwald & Stiefelhagen (2021)
and consists of 3100 images.

Office-home Venkateswara et al. (2017) consists of 65-class images collected from Art (A), Cli-
part (C), Product (P) and Real-World (R) styles which include 2496, 4464, 4503 and 4450 images,
respectively.

Adaptiope Ringwald & Stiefelhagen (2021) has 123-class images collected from 3 styles, i.e., Prod-
uct (P), Real-World (R) and Synthetic (S), where each style has 12300 images.

VisDA Peng et al. (2017) has over 280K images of 12 classes from Synthetic (S) style and Real-
World (R) style, which contain 152397 and 127760 images, respectively.

DomainNet Peng et al. (2019) includes 345-class images from Clipart, Infograph, Painting, Quick-
Draw, Real-World and Sketch styles which include 48129, 51605, 72266, 172500, 172947 and
69128 images, respectively.

ImageNet Deng et al. (2009) includes about 1.2M images that are uniformly distributed across
the one thousand categories. The category annotation of ImageNet follows WordNet hierarchy and
every image is annotated with one category label.

SUN397 Xiao et al. (2010) has been proposed for scene recognition, which contains 39700 images
covering 397 well-sampled scene categories, including indoor scenes and outdoor scenes.
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Food101 Bossard et al. (2014) is a real-world food dish dataset for fine-grained image recognition.
The dataset consists of 101K images that cover 101 classes. Specifically, each class includes 250
cleaned test images and 750 purposely uncleaned training images.

GTSRB Stallkamp et al. (2011) is a real-world dataset for traffic signs recognition, which includes
50K images collected from various street scenes in Germany. These images have been labelled into
43 categories, including a training subset with 39209 images and a testing subset with 12630 images.

Describable Textures (DTD) Cimpoi et al. (2014) is a collection of textural images for texture
recognition. This dataset consists of 5640 images with 47 categories, which have been uniformly
separated into training, validation, and test subsets, where each subset contains 40 images per class.
For each image, a main category and a list of the joint attributes are provided.

UCF101 Soomro et al. (2012) has been proposed for benchmarking human action recognition with
videos. It includes about 13K video clips of 101 actions, which are collected from YouTube. The
video clips in the dataset have a resolution of 320x240 pixels and a frame rate of 25 FPS.

Table 9: Image recognition datasets used for vision-language model adaptation benchmark.
Dataset Classes Images Styles Description

Office Saenko et al. (2010) 31 4,110 4 Office objects from Amazon, DSLR, Webcam and Synthetic styles.
Office-home Venkateswara et al. (2017) 65 15,588 4 Office and Home objects from Art, Clipart, Product and Real-World styles.
Adaptiope Ringwald & Stiefelhagen (2021) 123 36,900 3 Class-balanced object dataset with Product, Real-Life and Synthetic styles.
VisDA Peng et al. (2017) 12 207,785 2 A large-scale common object dataset with synthetic and real styles.
DomainNet Peng et al. (2019) 345 586,575 6 Common objects from Clipart, Infograph, Painting, Quickdraw, Real and Sketch styles.

ImageNet Deng et al. (2009) 1,000 1,281,167 1 A large-scale real-world object dataset with a wide range of categories.
SUN397 Xiao et al. (2010) 397 76,129 1 A real-world indoor and outdoor scenes dataset for scene understanding.
Food101 Bossard et al. (2014) 101 75,750 1 A real-world food dish dataset for food recognition.
GTSRB Stallkamp et al. (2011) 43 26,640 1 A real-world german traffic sign dataset for sign recognition.
DTD Cimpoi et al. (2014) 47 3,760 1 A real-world describable texture image dataset for texture perception.
UCF101 Soomro et al. (2012) 101 9,537 1 A real-world human action video dataset for action recognition.

C EXPERIMENTS WITH DIFFERENT BACKBONES

In the main manuscript, we study the generalization of our proposed HoughST by assessing it with
three popular image recognition backbones, including two CNNs (i.e., ResNet-50 and ResNet-101)
and one Transformer (i.e., ViT-B/16). Table 1 in the main manuscript provides the full results of
the three backbones on multi-styles datasets Office, Office-Home and Adaptiope. Due to the space
limit, Tables 2-4 the main manuscript only provide partial results for VisDA, DomainNet and other
5 task-specific datasets.

Here we provide the full result versions of the Tables 2-4 in the main manuscript, as shown in
Tables 10-12, which further demonstrate that our HoughST works effectively and consistently over
different image recognition backbones.
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Table 10: VLMA performance (with three widely adopted backbone networks) on large-scale
multi-style dataset VisDA. For fair comparisons, the results of all methods are based on the baseline
CLIP.

ViT-B/16 VisDA Synthesis Style
plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

CLIP (baseline) 98.5 99.7 64.6 92.5 99.7 96.8 85.3 98.4 99.8 79.4 66.4 73.4 87.8

ST 97.2 99.9 60.4 84.5 99.8 98.6 92.5 99.7 99.9 79.3 74.2 84.4 89.2
CBST Zou et al. (2018) 98.4 99.7 67.3 85.2 99.8 99.1 95.3 99.9 99.4 83.4 83.4 87.4 91.5
CRST Zou et al. (2019) 98.1 98.2 70.5 86.5 98.6 98.7 94.3 98.8 97.8 86.7 88.7 86.1 91.9
SHOT Liang et al. (2020) 99.6 99.1 74.6 86.3 98.3 99.3 96.4 96.1 99.7 87.5 90.1 87.3 92.2
MUST Li et al. (2022a) 98.7 99.2 76.3 86.4 99.6 99.2 95.3 99.3 99.8 89.2 89.9 82.6 92.9
HoughST (Ours) 99.7 99.7 78.9 86.6 99.9 99.3 96.4 99.4 99.8 91.9 90.8 93.2 94.6

ViT-B/16 VisDA Real Style
plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

CLIP (baseline) 98.9 91.0 90.5 65.7 98.6 89.1 95.3 56.5 90.2 96.8 93.8 75.8 86.8

ST 99.4 87.3 92.5 68.3 98.1 90.4 94.6 69.3 91.2 96.7 94.5 66.4 87.3
CBST Zou et al. (2018) 99.3 89.2 91.3 76.9 98.2 89.5 95.4 68.1 88.4 96.4 94.1 64.2 87.5
CRST Zou et al. (2019) 99.1 90.7 91.4 64.5 99.1 93.4 95.1 68.2 91.3 96.8 95.3 67.2 87.6
SHOT Liang et al. (2020) 99.3 92.8 91.9 65.3 98.7 95.2 94.5 67.7 92.1 96.9 95.4 67.9 88.1
MUST Li et al. (2022a) 99.2 95.7 92.6 56.9 99.1 98.6 96.0 67.0 93.5 98.8 96.9 68.1 88.5
HoughST (Ours) 99.2 95.9 92.1 66.1 99.2 97.8 96.7 70.8 92.7 98.4 96.2 74.6 90.0

ResNet-50 VisDA Synthesis Style
plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

CLIP (baseline) 96.0 99.1 43.4 92.4 98.5 94.5 69.6 92.1 99.1 46.6 53.0 41.5 77.1

ST 94.2 99.3 38.9 75.2 97.4 93.7 78.5 94.6 99.3 63.4 57.8 88.2 81.7
CBST Zou et al. (2018) 95.7 99.6 37.2 73.3 98.6 95.6 84.5 96.8 99.2 68.7 59.2 89.4 83.1
CRST Zou et al. (2019) 96.6 99.9 30.1 71.3 99.9 99.1 92.8 99.9 99.4 75.0 61.1 97.2 85.1
SHOT Liang et al. (2020) 97.3 99.9 43.7 73.4 98.6 98.6 91.9 99.7 99.1 77.3 68.9 84.4 86.0
HoughST (Ours) 97.6 99.8 57.2 84.7 99.9 98.7 91.7 99.8 100 79.2 74.5 83.1 88.8

ResNet-50 VisDA Real Style
plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

CLIP (baseline) 97.3 82.1 83.0 55.4 96.7 73.4 91.1 59.9 86.6 93.4 91.8 73.8 82.0

ST 97.6 78.1 99.7 65.9 96.2 79.3 90.1 62.8 82.9 94.2 89.1 74.3 84.1
CBST Zou et al. (2018) 95.8 83.2 80.3 54.5 96.8 92.2 92.1 78.8 91.6 88.8 89.8 76.0 84.9
CRST Zou et al. (2019) 96.9 86.9 83.1 71.1 93.4 91.9 91.7 80.3 90.2 89.4 88.5 65.6 85.7
SHOT Liang et al. (2020) 96.5 85.4 85.4 59.6 96.3 94.8 92.7 80.3 92.4 90.5 90.4 75.4 86.6
HoughST (Ours) 97.2 87.2 88.2 78.1 97.2 95.1 93.0 81.5 92.1 91.2 92.7 65.6 88.2

ResNet-101 VisDA Synthesis Style
plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

CLIP (baseline) 96.8 99.4 24.2 87.5 98.9 96.7 83.1 58.2 99.3 61.2 47.1 72.4 77.0

ST 95.2 99.6 26.7 84.3 99.1 97.2 84.2 91.3 99.5 68.4 57.6 81.2 82.0
CBST Zou et al. (2018) 96.7 99.8 27.3 74.5 99.9 99.5 93.8 99.9 100 73.1 62.3 97.0 85.3
CRST Zou et al. (2019) 96.9 99.9 42.0 78.6 99.9 98.9 93.5 99.9 99.9 73.0 72.0 94.4 87.4
SHOT Liang et al. (2020) 98.5 99.7 39.9 83.1 100 98.5 97.8 99.1 100 79.3 81.7 91.3 89.0
HoughST (Ours) 97.8 99.8 47.5 85.5 100 98.8 96.6 99.9 100 81.1 83.2 92.2 90.2

ResNet-101 VisDA Real Style
plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

CLIP (baseline) 97.8 83.7 87.9 76.2 97.4 77.9 93.8 53.7 84.3 90.7 91.0 67.2 83.4

ST 97.4 84.7 86.6 75.2 97.1 80.5 94.1 69.7 89.6 91.1 92.3 68.7 85.5
CBST Zou et al. (2018) 97.3 86.5 87.7 70.6 97.3 93.8 93.3 74.5 91.7 89.1 91.5 69.1 86.8
CRST Zou et al. (2019) 97.5 82.9 86.3 82.2 97.8 93.1 95.4 68.5 94.4 91.3 93.2 66.8 87.4
SHOT Liang et al. (2020) 97.3 88.6 88.6 69.8 97.3 94.2 92.9 80.4 91.8 92.7 92.3 69.2 87.9
HoughST (Ours) 97.8 89.1 88.3 78.3 97.3 94.5 94.7 82.1 92.8 93.6 93.8 69.5 89.3

Table 11: VLMA performance (with three widely adopted backbone networks) on task-specific
datasets of various image recognition tasks. For fair comparisons, the results of all methods are
based on the baseline CLIP.

Method ViT-B/16 ResNet-50
SUN397 Food101 GTSRB DTD UCF101 Mean SUN397 Food101 GTSRB DTD UCF101 Mean

CLIP (baseline) 60.8 85.6 32.5 44.5 64.1 57.5 54.0 73.1 25.0 39.8 56.0 49.5

ST 65.8 88.2 32.8 45.0 67.0 59.7 59.0 74.4 20.5 35.8 56.4 49.2
CBST Zou et al. (2018) 63.2 89.5 37.6 44.3 68.1 60.5 63.7 78.2 27.4 38.7 59.5 53.5
CRST Zou et al. (2019) 64.7 89.1 39.7 45.3 68.6 61.4 64.2 76.5 30.1 39.4 61.3 54.3
SHOT Liang et al. (2020) 66.1 89.6 41.2 46.3 69.4 62.5 65.1 77.3 34.6 41.2 62.7 56.1
MUST Li et al. (2022a) 67.7 89.4 42.7 46.5 70.6 63.3 - - - - - -
HoughST (Ours) 71.8 91.1 49.3 52.7 73.9 67.7 65.7 79.5 39.6 49.4 65.6 59.9

Method ResNet-101
SUN397 Food101 GTSRB DTD UCF101 Mean

CLIP (baseline) 51.5 82.3 27.5 37.8 58.3 51.4
ST 56.5 79.9 23.6 35.4 60.2 51.1
CBST Zou et al. (2018) 65.7 81.5 28.3 37.3 60.5 54.6
CRST Zou et al. (2019) 61.4 80.7 31.4 37.3 63.0 54.7
SHOT Liang et al. (2020) 63.7 81.4 33.9 42.5 64.3 57.1
MUST Li et al. (2022a) - - - - - -
HoughST (Ours) 67.5 83.4 38.2 48.1 66.2 60.6

D PSEUDO CODES OF HOUGH VOTING-BASED SELF-TRAINING

We provide the pseudo codes of our proposed Hough voting-based self-training (HoughST), as
shown in Algorithm 1. Note Algorithm 1 describes the unsupervised adaptation process in a epoch-
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Table 12: VLMA performance (with three widely adopted backbone networks) on multi-style
datasets of DomainNet. For fair comparisons, the results of all methods are based on the baseline
CLIP.

Method ViT-B/16 ResNet-50
Clipart Info Paint Quick Real Sketch Mean Clipart Info Paint Quick Real Sketch Mean

CLIP (baseline) 69.7 47.8 65.0 14.5 82.0 62.4 56.9 51.9 39.1 52.1 6.4 74.7 47.4 45.3

ST 72.5 51.3 68.7 12.4 83.7 64.3 58.8 55.4 40.5 54.8 4.3 76.2 48.3 46.5
CBST Zou et al. (2018) 74.3 56.8 69.8 13.4 83.1 67.1 60.7 56.3 40.7 56.2 5.6 77.4 48.1 47.3
CRST Zou et al. (2019) 75.6 56.9 71.3 14.8 83.3 68.2 61.7 57.9 41.8 57.1 6.2 78.2 49.5 48.4
SHOT Liang et al. (2020) 75.9 57.4 71.5 15.1 83.3 68.8 62.0 60.3 45.8 60.5 5.1 78.9 54.1 50.8
MUST Li et al. (2022a) 76.1 57.5 71.6 14.2 84.4 68.9 62.1 - - - - - - -
HoughST (Ours) 77.6 59.0 73.1 18.2 86.1 70.1 64.0 62.7 47.2 61.3 7.2 80.2 54.4 52.2

Method ResNet-101
Clipart Info Paint Quick Real Sketch Mean

CLIP (baseline) 58.8 41.5 58.0 8.9 77.4 53.8 49.8
ST 61.4 47.5 61.7 6.1 78.9 55.2 51.8
CBST Zou et al. (2018) 63.2 48.3 62.5 6.7 79.4 56.1 52.7
CRST Zou et al. (2019) 64.3 49.4 63.2 6.9 80.2 57.8 53.6
SHOT Liang et al. (2020) 66.4 49.4 65.4 7.9 80.8 59.2 54.9
MUST Li et al. (2022a) - - - - - - -
HoughST (Ours) 69.6 50.8 65.9 9.5 82.5 60.4 56.4

wise manner for simple illustration and presentation. In experiments, we implement Algorithm 1 in
a iteration-wise manner with mini-batches. Besides, Lines 7-8 in Algorithm 1 can be skipped in the
first training iteration as the model has not been updated at that time.

Our HoughST introduces Hough voting into self-training, where the voting centroids and the model
are alternatively updated as illustrated in Line 8 and Line 10 in Algorithm 1. In this way, HoughST
captures temporal information via temporal Hough voting, which helps memorize previously learnt
downstream dataset information via voting from the features encoded by the intermediate models
evolved along the adaptation process.

Algorithm 1 Hough Voting-based Self-training.
Require: Target images XI , target class descriptions XT and a pre-trained vision-language model

F = {F I , FT }
Ensure: Adapted vision-language model F

1: Initialization:
2: Calculate textual Hough voting centroid δTm using XT and F via Eq. 4
3: Calculate visual Hough voting centroid δIm using XI and F via Eq. 5
4: Initialize vision-language Hough voting centroid δITm using δTm and δIm as in the left part of Eq.

6
5: for epoch = 1 to Max Epoch do
6: Pseudo Label Generation:
7: Calculate new visual Hough voting centroid δIm using XI and the updated F using Eq. 5
8: Update vision-language Hough voting centroid δITm with new visual Hough voting centroid

δIm as in the right part of Eq. 6
9: Generate pseudo labels Y I with the updated vision-language Hough voting centroid δITm via

Eq. 7
10: Network Optimization with Pseudo Labels:
11: Optimize F using pseudo labels Y I via Eq. 8
12: end for
13: return F

E HOW LLM-GENERATED TEXT DESCRIPTIONS AFFECT OTHER METHODS

As described in Section 3, our proposed HoughST adopts GPT-3 Brown et al. (2020) as the large
language model (LLM) to generate multiple text descriptions for a given class for mitigating distri-
bution shifts in text modality. For comprehensively benchmarking HoughST, we provide the results
of the state-of-the-art methods using the same LLM-generated text descriptions as those used in
HoughST. Table 13 presents the results on dataset Office with backbone ViT-B/16. We can observe
that directly using LLM-generated text descriptions for these methods improves the performance
slightly. Beside, it can be seen that our HoughST still outperforms the state-of-the-arts that used
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LLM-generated text descriptions, largely because HoughST conducts Hough voting-based learning
that filters out noisy textual information, fuses and updates the textual information, and utilize them
to denoise pseudo labels.

Table 13: Results of the state-of-the-art methods with the text descriptions generated from Large
Language Models Brown et al. (2020). For fair comparisons, the results of all methods are based on
the baseline CLIP.

ViT-B/16 Office
A W D S Mean

ST 78.6 81.1 78.3 68.6 76.6
ST + LLM Brown et al. (2020) 79.2 82.0 78.9 70.1 77.5

CBST Zou et al. (2018) 79.1 80.7 78.5 68.9 76.8
CBST Zou et al. (2018) + LLM Brown et al. (2020) 80.1 81.4 79.3 70.3 77.7

CRST Zou et al. (2019) 78.8 81.2 79.1 69.0 77.0
CRST Zou et al. (2019) + LLM Brown et al. (2020) 79.1 82.1 80.3 70.2 77.9

SHOT Liang et al. (2020) 79.2 81.1 81.2 67.1 77.1
SHOT Liang et al. (2020) + LLM Brown et al. (2020) 80.7 81.9 81.7 68.9 78.3

MUST Li et al. (2022a) 79.0 81.4 79.5 69.2 77.2
MUST Li et al. (2022a) + LLM Brown et al. (2020) 81.2 82.1 80.7 70.2 78.5

HoughST (Ours) 84.3 82.8 81.3 72.3 80.1

F HOUGHST WITH DIFFERENT LLMS

As described in the main manuscript, our proposed HoughST employs GPT-3 Brown et al. (2020) as
the large language model (LLM) to generate multiple text descriptions for a given class. Specifically,
for all datasets, we query the large language model with the following input:

”Describe what a/an [class name], a type of [dataset name], looks like.”

In this section, we study how the adoption of LLM affects HoughST by implementing HoughST
with different LLMs, including GPT-3 Brown et al. (2020), GPT-2 Radford et al. (2019) and GPT-
J-6B Wang & Komatsuzaki (2021). Experimental results in Table 14 show that the change of LLM
does not affect HoughST clearly, demonstrating that HoughST can work effectively and consistently
with different qualities of text descriptions (generated by different LLMs).

Table 14: HoughST with different large language models. Experiments are conducted with ViT-
B/16 on dataset Office. The default implementation is highlighted in gray .

Method Office (Mean) Office-home (Mean) Adaptiope (Mean)

ST 76.6 75.4 72.7
HoughST (GPT-2 Radford et al. (2019)) 79.3 77.5 78.3
HoughST (GPT-J-6B Wang & Komatsuzaki (2021)) 79.2 77.9 78.8
HoughST (GPT-3 Brown et al. (2020)) 80.1 78.9 79.9

G MORE DISCUSSION OF TEXTUAL HOUGH VOTING

As described in the main manuscript, the proposed textual Hough voting fuses text features in a two-
step manner: 1) uniformly average the multiple text features to acquire an initial voting centroid;
2) calculate the final voting centroid by weighted average where the weight of each feature is the
distance between it and the initial voting centroid. This two-step voting operation allows smooth
feature fusion by weighting down the effect of corner cases, which is important for textual Hough
voting as the LLM-generated text descriptions are not always reliable (e.g., when experiencing gen-
eration failures, LLM may generate only a full stop character “.” or a random word).
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In this section, we conduct experiments with ViT-B/16 on ImageNet to investigate the effect of this
two-step feature fusion strategy on our proposed Hough voting. Table 15 shows that the two-step
feature fusion strategy brings about 0.4% performance improvement on ImageNet, largely because
it allows smooth feature fusion by down-weighting the effect of corner cases.

Table 15: Textual Hough Voting (THV) with and without the two-step feature fusion strategy.
Experiments are conducted with ViT-B/16 on ImageNet. The default implementation is highlighted
in gray .

Method ImageNet

CLIP (baseline) 68.3
THV (w/o two-step feature fusion strategy) 69.4
THV (w/ two-step feature fusion strategy) 69.8

H MORE PARAMETER STUDIES

As described in the main manuscript, our proposed HoughST employs the large language model to
generate K text descriptions for each class for achieving textual Hough voting. We investigate K
by varying it from 10 to 25, as shown in Table 16. It can be seen that varying K does not affect the
proposed HoughST clearly, demonstrating that our HoughST is quite tolerant to the hyper-parameter
K.

Table 16: Parameter study for the number of text descriptions K with ViT-B/16 on Office. The
default value is marked in gray .

Parameter K 10 15 20 25

Office (Mean) 79.9 80.1 80.1 80.0

As described in the main manuscript, our proposed HoughST introduces visual Hough voting that
employs the off-the-shelf image augmentation policies in Cubuk et al. (2020) to generate K aug-
mentations for all images respectively, which are then selectively fused using pseudo class labels to
describe each class. We investigate K by varying it from 10 to 25, as shown in Table 17. It can be
seen that varying K does not affect the proposed HoughST clearly, demonstrating that our HoughST
is quite tolerant to the hyper-parameter K.

Table 17: Parameter study for the number of augmented image data K with ViT-B/16 on dataset
Office. The default value is marked in gray .

Parameter K 10 15 20 25

Office (Mean) 80.0 80.1 80.1 79.9

I MORE PSEUDO LABEL ACCURACY FIGURES

In the main manuscript, we provide the pseudo label accuracy along the unsupervised adaptation
process for Office datasets.

In this section, we provide the pseudo label accuracy figures over more datasets, i.e., Office-home,
Adaptiope, VisDA, SUN397, Food101, GTSRB, DTD, UCF101, and ImageNet. Fig. 5 shows the
pseudo label accuracy along the unsupervised adaptation process with the backbone ViT-B/16. It can
be seen that our proposed HoughST generates much more accurate pseudo labels than the vanilla
self-training (ST) and the state-of-the-art MUST consistently over various datasets. The superior
pseudo label accuracy is largely attributed to the proposed Hough voting-based self-training which
helps capture rich target image and text information that is more invariant to visual and textual
distribution shifts and can lead to better unsupervised self-training.
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Figure 5: Pseudo label accuracy along the unsupervised adaptation process in VLMA: The experi-
ments were conducted over 10 widely adopted datasets and all use ViT-B/16. The results on dataset
Office are provided in the main manuscript.

J QUALITATIVE RESULTS

We illustrate our proposed HoughST qualitatively by providing class activation map Selvaraju et al.
(2017) (CAM) visualization on dataset Office with ViT-B/16. Fig. 6 provides the CAMs of ST (2nd
column), MUST Li et al. (2022a) (3rd column) and our HoughST (4th column). We can observe that
our proposed HoughST preforms image recognition based on more diverse image regions, leading
to robust and accurate visual recognition under large distribution shifts. For example, in the recog-
nition of backpack, HoughST tends to rely on more image regions (e.g., various local regions with
zippers) which together form a holistic representation of this backpack, ultimately leading to a robust
prediction under large distribution shifts. As a comparison, ST and MUST Li et al. (2022a) make
predictions largely according to a single image region and pay less attentions on other image regions,
which may lead to performance degradation when experiencing large distribution shifts. The CAMs
of Mountain Bike and Helmet shown in the second and third rows respectively are consistent with
the above observation.

K ANALYSIS WITH ERROR BARS

In experiments, we observe negligible variance on the results between multiple random runs. Nev-
ertheless, we provide the error bar with 5 random runs to analyze the proposed HoughST with
ViT-B/16 on Office dataset, as shown in Table 18. It shows that our proposed HoughST performs
well consistently over multiple random runs.

Table 18: Analysis of our proposed HoughST with error bars. Experiments are conducted with ViT-
B/16.

Method Office (Mean) Office-home (Mean) Adaptiope (Mean)

HoughST 80.1 ± 0.1 78.9 ± 0.1 79.9 ± 0.2
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Figure 6: Qualitative comparisons with class activation maps Selvaraju et al. (2017) (CAM)
on dataset Office with ViT-B/16. The 4 columns from left to right show Input Images and the
corresponding CAMs by ST, MUST Li et al. (2022a) and our HoughST, respectively. It can be
observed that HoughST preforms image recognition based on more diverse image regions, leading
to more robust and accurate visual recognition under various cross-dataset scenarios.

L RELATIONS TO OPEN-SET, CLASS-INCREMENTAL AND PARTIAL DOMAIN
ADAPTATION

Different from traditional domain adaptation that assumes the same vocabulary across source and
downstream datasets, this work studies vision-language model adaptation (VLMA), a new unsuper-
vised model adaptation (UMA) framework that positions a pre-trained VLM as the source model
and transfers it towards various unlabelled downstream datasets.

We note that there are several other adaptation frameworks which also aim to handle the situation
where the pre-training and downstream datasets have different vocabularies. In this section, we
briefly introduce their frameworks and clarify the difference between them and the studied VLMA.

Specifically, open-set domain adaptation Panareda Busto & Gall (2017); Saito et al. (2018); Liu et al.
(2019), class-incremental domain adaptation Kundu et al. (2020); Xu et al. (2021) and partial domain
adaptation Cao et al. (2018; 2019); Zhang et al. (2018), are proposed to handle the situation where
the source and downstream datasets have different vocabularies. However, all these frameworks
have certain limitations as compared the studied VLMA.

For example, open-set domain adaptation Panareda Busto & Gall (2017); Saito et al. (2018); Liu
et al. (2019) adds an extra class called “unknown” to both source and downstream datasets such
that it allows open-set adaptation by treating all the classes that are not shared between source and
downstream datasets as the “unknown” class. However, open-set domain adaptation can merely
classify all new target classes/concepts as a single “unknown” class even in an ideal case, which
fails to respectively recognize new classes/concepts, limiting its flexibility and efficiency greatly in
unsupervised transfer. Differently, VLMA allows to respectively recognize various new downstream
categories/concepts, which is much more flexible.
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Class-incremental domain adaptation Kundu et al. (2020); Xu et al. (2021) integrates domain
adaptation and class-incremental learning (using one-shot or few-shot labelled downstream images)
such that it allows to recognize new target classes/concepts during adaptation. However, it generally
requires one-shot or few-shot labelled downstream images for each new class as a prerequisite, while
VLMA is unsupervised and can work for new classes without requiring labelled target images.

Partial domain adaptation Cao et al. (2018; 2019); Zhang et al. (2018) assumes that the label set
of downstream dataset is a subset of the label set of source dataset. Differently, the studied VLMA
does not have this constraint as it can work with various downstream classes Radford et al. (2015).

M BROADER IMPACTS AND LIMITATIONS

We envision that this work will promote more studies on VLMA, a new unsupervised model adap-
tation framework that mitigates the image annotation constraint and facilitate deep network training
while handling new visual recognition tasks. Furthermore, as our work is built upon open-source
pre-trained vision-language models, it adds only a small amount of computation overhead after VLM
pre-training and therefore reduces the carbon footprint. Currently, we do not foresee clear undesir-
able impacts of this work from both ethical and social aspects. At the other hand, the investigated
techniques in this work are still at a very early stage and thus the proposed approach could be used
as an assistant tool in computer vision applications instead of the critical decision and hard control
systems that may lead to severe and harmful consequences.
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