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ABSTRACT

Deep neural network classifiers naturally partition input space into regions belong-
ing to different classes. The geometry of these class manifolds (CMs) is widely
studied and is intimately related to model performance; for example, the margin
is defined via boundaries between these CMs. We present a simple technique to
estimate the effective dimension of CMs as well as boundaries between multiple
CMs, by computing their intersection with random affine subspaces of varying
dimension. We provide a theory for the technique and verify that our theoretical
predictions agree with measurements on real neural networks. Through extensive
experiments, we leverage this method to show deep connections between the ge-
ometry of CMs, generalization, and robustness. In particular we investigate how
CM dimension depends on 1) the dataset, 2) architecture, 3) random initialization,
4) stage of training, 5) class, 6) ensemble size, 7) label randomization, 8) training
set size, and 9) model robustness to data corruption. Together a picture emerges
that well-performing, robust models have higher dimensional CMs than worse
performing models. Moreover, we offer a unique perspective on ensembling via
intersections of CMs. Our core code is available on Github.

1 INTRODUCTION

Training neural networks to classify data is a ubiquitous and classic problem in deep learning. InK-
way classification, trained networks naturally partition the space of inputs intoK regions, Sk ⊂ RD,
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Figure 1: An illustration of finding a point in the intersection between a random cutting plane of
dimension dcut and a high-confidence manifold of effective dimension dmanifold. If the dcut '
Dinput − dmanifold, there likely exists an intersection between the two. We use optimization from
a random point (image) ~X0 on the dcut affine subspace to find a point in the intersection using
gradient descent. The panels on the right show an example of the dependence of the probability and
loss at the optimized point based on the dcut. The higher dimensional the cut, the less constrained
the available images ~X are, and the more likely we are to find one of high class confidence.

containing points that the network confidently predict have class k. We call these regions class
manifolds (CMs) of the neural network. In this paper, we analyze the high-dimensional geometry of
these CMs, focusing primarily on their effective dimensionality.
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To estimate the dimension of these CMs, we employ optimization on random d-dimensional sec-
tions of inputs space to beat the curse of dimensionality (Bellman, 1957) in order to seek out high-
confidence regions that would be unlikely to be discovered at random with other diagnostic tech-
niques. Through a theoretical analysis of high-dimensional geometry we link the success of such
constrained optimization to the dimension of the target CM. Also, through extensive experiments,
we leverage this method to show deep connections between the geometry of CMs, generalization,
and robustness. In particular we investigate how CM dimension depends on 1) the dataset, 2) ar-
chitecture, 3) random initialization, 4) stage of training, 5) class, 6) ensemble size, 7) training set
size, and 8) model robustness to data corruption. Together a picture emerges that well-performing,
robust, models have CMs that have higher dimension than inferior models. Moreover, we offer a
unique perspective on ensembling via intersections of CMs.
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Figure 2: Maximum probability of single classes of CIFAR-10 reached on cutting planes of dimen-
sion d. The figure shows the dependence of the probability of a single class of CIFAR-10 (y-axes)
reached on random cutting hyperplanes of different dimensions (x-axes). The results shown are for
a well-trained (> 90% test accuracy) ResNet20v1 on CIFAR-10. Each dimension d is repeated 10×
with random planes and offsets, and d∗50% is extracted using a fit. The d∗50% � 3072, which implies
that the class manifolds are surprisingly high dimensional (3072 − d∗50%). Indeed their dimensions
are all in excess of 3000.

Related work. There has been a lot of research into understanding linear regions of neural networks,
both trained and untrained. Montúfar et al. (2014) studied the number of linear regions in deep neural
networks, Raghu et al. (2016) looked at their expressive power with depth, while Serra et al. (2017)
tried to bound and count them. Hanin & Rolnick (2019b) showed that deep ReLU networks have
surprisingly few activation patterns, and Hanin & Rolnick (2019a) did the same for the linear regions
in the input space. The spectral properties of neural nets were studied in Rahaman et al. (2018), and
the stiffness of the functional approximations defined through gradient alignment was coined in Fort
et al. (2019). While revealing interesting aspects of neural network input space and activations space
behavior, the methods used so far have not been able beat the curse of dimensionality – they have
stayed local, and analyzed either one- or two-dimensional sections of input space.

The exploration of constrained optimization on random, d-dimensional planes in the weight space
was employed successfully in Li et al. (2018) to estimate the intrinsic dimension of loss landscapes.
Fort & Scherlis (2019) extended this analysis geometrically, and Fort & Jastrzebski (2019) used this
and several other insights to build a geometric model of the low-loss basins weight-space basins.

Another closely related area of research concerns adversarial examples and robustness. Goodfel-
low et al. (2014) first noted that there exist points in input space very close to test examples that
are mispredicted by neural networks, suggesting CMs of different classes can come very close to
each other. Gilmer et al. (2018) showed that the existence of adversarial examples is related to the
dimensionality of input space and the accuracy of the classifier. Ford et al. (2019) further link this
interplay between dimensionality, generalization, and adversarial robustness to more general corrup-
tion robustness. In a similar spirit Salman et al. (2019) produce more robust models by convolving
neural networks with Gaussian noise in input space. Whereas these studies are local, the techniques
discussed in this paper are primarily concerned with global properties of CMs.
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2 METHODS

We seek to determine the effective dimensionality of CMs. To that end, consider neural networks
whose last layer is a softmax yielding normalized probabilities for a given input, ~p( ~X). Typically
these networks have been trained using a cross entropy loss,

L(p( ~X), p̂) = −p̂ · log[~p( ~X)]. (1)

We define a class manifold for class k as the pre-image, Sk = ~p−1({pk > pthreshold}). We seek to
identify the effective dimension of Sk by introducing a the cutting plane method (see also Fig. 1):

The Cutting Plane Method: For a neural network (NN) mapping input ~X ∈ RD into probabilities
~p( ~X) ∈ RC , take a random d-dimensional affine hyperplane defined by orthonormal basis vectors
given by rows of M ∈ Rd×D and a point ~X0 ∈ RD. Inputs in this hyperplane are parametrized by
~θ ∈ Rd as ~X(~θ) = ~θM+ ~X0. Given a target probability vector ~ptarget, we seek to optimize the cross
entropy loss, L(~p( ~X(~θ)), ~ptarget) with respect to ~θ. This will identify points constrained to the affine
subspace (M, ~X0) that have probabilities as close as possible to ptarget. We study the dependence of
Lmin and ~pmin (the loss and probability following optimization) on the dimension d. We show this
analysis estimates the effective codimension of the preimage of ptarget: { ~X s.t. ~p( ~X) = ~ptarget}.

We use Adam (Kingma & Ba, 2017) to minimize L with respect to ~θ, starting from ~θ0 = ~0, which
corresponds to an initial random input ~X(~θ0) = ~X0. Through optimization, we take ~θ0 → ~θmin.
The ~θmin defines an optimized input ~Xmin = ~θminM + ~X0 and corresponding output ~pfinal( ~X)

that is as close as possible to ~ptarget while confining ~X to the random affine hyperplane defined by
(M, ~X0). We discuss the weak effect of sparsity of M in 11.

The optimization thus starts with a tuple (NN, d,M, ~X0) and maps it to the final probability vector
~pfinal and the associated Lfinal. By analyzing the dependence of ~pfinal and Lfinal on the dimension
d of the random hyperplane we can access information about the effective dimensionality of the
pre-image in input space of a region around ~ptarget in output space (Fig. 1).

2.1 CLASS MANIFOLDS (CMS) AND MULTI-WAY CLASS BOUNDARY MANIFOLDS (CBMS)

There are several interesting choices of ~ptarget. Consider ~ptarget = (0, 0, . . . , 1, . . . , 0), or a 1-hot
vector on a single class k. Then the pre-image of ~ptarget is the CM Sk. The cutting plane method
enables us to estimate the effective co-dimension of Sk by computing the dimension d∗ at which we
reliably obtain a pfinal whose k’th component is close to 1 within some tolerance (Fig. 2).

The formulation in Equation 1 allows us to also study regions that lie in between classes. For
example, by setting ~ptarget = (1

2 ,
1
2 , 0, . . . , 0), our optimization finds regions of input space that

lie on a class boundary manifold (CBM) between classes 0 and 1. We can even find multi-way
CBMs. For example, a three-way CBM between classes 0,1, and 2 corresponds to ~ptarget =
( 1

3 ,
1
3 ,

1
3 , 0, . . . , 0). We can also study the region where all classes have equal probability by set-

ting ~ptarget = ( 1
C ,

1
C , . . . ,

1
C ), where C is the number of classes. Thus our method opens the door

to study the intertwined geometry of multiple CMs and their boundaries. See Fig. 6 for results on
multi-way CBMs.

2.2 EXTRACTING THE CRITICAL CUTTING PLANE DIMENSION AND CM CO-DIMENSION d∗50%

Given a particular class target vector ~ptarget (i.e. ~ptarget = (1, 0, . . . , 0) corresponding to the CM
Sk with k = 1), we perform the cutting plane experiment multiple times for random ~X0 and M for
a sweep of different values of d. We obtain a final probability vectors ~pmin as a function of cutting
plane dimension d, as shown in Figures 1 and 2. For CMs for a single class manifold Sk we plot
the k’th component ~pmin. For small values of d the affine cutting plane will not often intersect Sk
and ~pmin will be far from ~ptarget. For large dimensions, e.g. d = D, the subspace is now the full
space of inputs, and we can therefore always find a point on the plane such that ~pmin ≈ ~ptarget. For
intermediate values of d, the k’th component of ~pmin will gradually increase with d. To extract a
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single cutting plane dimension from this data we 1) fit an empirical curve to the data (Equation 6;
typically a good fit), 2) use the resulting distribution of fit parameters’ mean and covariance to get a
set of valid fitting functions, and 3) extracting the range of values of d∗ where these functions cross
p = 50%. We call this value d∗50%. (In some cases, we use other probability thresholds (25% and
75%) and we note that in the figures.) This cutting plane dimension is the effective co-dimension of
the CM Sk. Thus the effective dimension of the CM Sk is D − d∗ (as derived in Section 3).

3 A THEORY FOR ESTIMATING CM DIMENSION THROUGH CUTTING PLANES
Here we provide justification for the idea that d∗50% obtained through the cutting plane method actu-
ally estimates the effective co-dimension of the CM Sk (or of multiway CBMs), by analyzing what

Figure 3: An illustration of the way two affine subspaces of dimensions dA and dB can intersect
each other. If the dimension of the space dA + dB ≥ D, the subspaces will likely intersect, while
otherwise they typically do not intersect. If we know D and dA, we can use the existence of an
intersection as a tool to bound dB ≥ D − dA.

the cutting plane method would yield for a simple model of the CM as an affine hyperplane itself.
To understand the relationship between the cutting plane dimension d∗50% and the CM hyperplane
dimension, we need to review the intersection theory of random affine hyperplanes.

3.1 INTERSECTION THEORY OF TWO RANDOM HYPERPLANES

For two hyperplanes (affine subspaces) of dimensions dA and dB that are randomly oriented and
offset in an ambient vector space of dimension D, what is the condition on their dimensionalities
that would make it highly likely that they intersect? The answer is

dA + dB ≥ D . (2)

In algebraic geometry, this statement is known as dimension counting, and is equivalent to the state-
ment that the co-dimensions of hyperplanes are at most additive under intersection (Bourbaki, 1998)
(recall that the co-dimension of a hyperplane of dimension d in a space of ambient dimension D is
D − d). More precisely,

max(codim(A), codim(B)) ≤ codim(A ∩B) ≤ codim(A) + codim(B) . (3)
Rewritten in dimensions, this means that D − dim(A ∩ B) lies between D − min(dA, dB) and
D − (dA + dB). For the subspaces A and B intersecting transversally, which happens generically,
the codimensions add exactly, satisfying the upper bound and therefore leading to Equation 2. An
illustration of what such intersections can look like for D = 2 and D = 3 are shown in Figure 3.

In the cutting plane method, we control the dimension dA of a randomly chosen cutting hyperplane
and use constrained optimization to find an intersection of this hyperplane with a CM in order to
estimate its dimension dB . The dimension dA = d∗50% where we can first reliably find a high
confidence image of the target class will be the codimension of such a CM. The dimension of the
CM will therefore be dB = D − d∗50%. Based on the intersection theory of random hyperplanes,
these results yield the exact dimension dB of the CM when it is a hyperplane of dimension dB .
However for more general CM’s, the estimated dB = D − d∗50% is to be interpreted as an effective
dimension of the CM and so d∗50% itself is the effective co-dimension of the CM.

3.2 THEORY VS NUMERICAL EXPERIMENT

In Section A.2 we analytically derive the expected closest distance between two such
affine subspaces. The result is the for dA + dB ≥ D it is 0 (they itersect),
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while for dA + dB < D the E [l(A,B)] ∝ (
√
D − dA − dB)/

√
D. To compare

this analytic result to reality, we ran a numerical experiment using automatic differentia-
tion in JAX (Bradbury et al., 2018) where we generated random affine subspaces of dif-
ferent dimensions and measured their closest approach using optimization to locate the
place. The numerical results presented in Figure 4 match the analytic predictions well.
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affine subspaces – numerical experi-
ments vs theory from Eq. 4. The fig-
ure compares the distance between two
subspaces of dimensions d & n in a D-
dimensional space. The numerical ex-
periment in JAX is in blue, theory in
red, and numerical fit in yellow.

3.3 LONG AND SHORT
DIRECTIONS – RELATING THEORY TO EXPERIMENTS

A hyperplane of dimension d has d infinitely extended
directions and D − d directions of size 0. Among the
d extended dimensions, we can move arbitrarily far and
still find ourselves in the hyperplane. Conversely moving
even infinitesimally in the remainingD−d directions will
strictly lead to leaving the plane. In our experiments, this
will be the case only approximately. In case of class man-
ifolds, no directions will be infinitely thin or long, how-
ever, many will be much thinner than others. What we are
measuring is therefore not strictly a dimension (the man-
ifold will always have the full dimension D) but rather
effective dimension (Vershynin, 2015). However, our hy-
perplane model works well in practice.

4 EXPERIMENTS
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Figure 5: Left panel: Comparison of the cutting
plane dimension needed to get 50% of the target
class (d∗50%) for two independently initialized and
trained ResNets on CIFAR-10, showing the stabil-
ity of our method. Right panel: Comparison of
the d∗50% for SimpleCNN and ResNet on CIFAR-
10 and CIFAR-100 with real and randomized la-
bels.

We now describe experiments validating our
random cutting plane method of identifying
the dimension of CMs and connections be-
tween these measurements, generalization, and
robustness. The details of the architectures,
datasets and precise training procedures are de-
tailed in the Appendix Section A.1. The major-
ity of our experiments are done with a standard
ResNet20v1 on CIFAR-10 and CIFAR-100.

4.1 RE-INITIALIZATION
AND RE-TRAINING STABILITY

For our technique to have predictive power, cut-
ting plane results should be stable under reini-
tialization and retraining of a model. Given
a fully trained model, running a sweep over
cutting plane dimension d several times should
produce consistent results. We verified that our method is stable, as shown in Figure 5 where we
compare the d∗50% dimensions extracted from single class regions of CIFAR-10, as well several
regions between 2, 3 and 4 classes. The results are consistent between the two runs.

4.2 SINGLE CLASS MANIFOLDS

The main object of interest for us are the high-confidence single class manifolds. We present our
results for a well-trained ResNet20v1 on CIFAR-10 in Figure 2, and for CIFAR-100 in Figure 18.
We also show results for a SimpleCNN on CIFAR-10 in Figure 17. The results show that the d∗50%
is very small compared to the dimension of the input, suggesting that the class manifold dimension
is actually very high, close to the full 3072 dimensions for CIFAR-10. The connection between d∗
and the manifold dimension is derived in Section A.2.

5



Under review as a conference paper at ICLR 2021

4.3 CLASS BOUNDARY MANIFOLDS BETWEEN MULTIPLE CLASSES

As described in Section 2.1, our method allows us to study the dimensionality of boundary manifolds
in between multiple classes as well. We show results for a well trained ResNet20v1 on CIFAR-10
(> 91% test accuracy) for several selected sets of classes in Figure 6. In particular, we look at the
region in between all 10 classes, where the network is equally uncertain about all classes. There, we
primarily focus on the loss (as described in Equation 1) in the bottom row of Figure 6
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Figure 6: Maximum probability and minimum loss (y-axes) of in-between-classes regions of
CIFAR-10 reached on cutting planes of dimension d (x-axes). The results shown are for a well-
trained (> 90% test accuracy) ResNet20v1 on CIFAR-10. Each dimension d is repeated 10× with
random planes and offsets. The last column shows the results for the 10-class region where the
network assigns equal probability to each class.

4.4 TRAINING ON RANDOM LABELS

Due to the structure of the training data and the neural network prior, we expect the learned class
manifolds to inherit a lot of structure from both. To disentangle the role of the class label, we trained
a ResNet20v1 on CIFAR-10 with randomly reshuffled labels. As shown in Zhang et al. (2017), we
can reach 100% training accuracy on random labels. However, as shown in Figure 5 and 12 the CMs
learned in such way have a significantly higher d∗50% and therefore smaller dimension. Since these
models completely fail to generalize, this result is consistent with the hypothesis that generalization
and class manifold dimension are intimately related.

4.5 THE EFFECT OF TRAINING SET SIZE

During the course of training, a neural network has to learn to partition the D-dimensional space of
inputs into generalizable regions of high class confidence that contain both the training points (by
training) and the test points (by generalization). To see the role of training set size, we repeated
our cutting plane experiments for networks trained to 100% training set accuracy on subsets of
CIFAR-10 of size 250, 500, 1,500, 5,000, 15,000, and 50,000 images (=full training set) and added
a final point where we used data augmentation on top of the full training set. The bigger the training
set, the smaller the d∗50%, and therefore the larger the dimension of the CMs, as shown in Fig. 7.
This trend held across all classes, and continued from the full training set to the training set and
augmentation. Thus again, better generalization is associated with higher CM dimensionality. We
hypothesize that the larger number of training points might allow the learned partitioning of the
input space to connect previously disconnected and lower dimensional CMs through interpolation,
thereby effectively increasing CM dimensions with training set size.

4.6 THE EFFECT OF DATA CORRUPTION

We measure the effect of cutting plane dimension on out-of-domain robustness of neural networks.
Robustness to Gaussian noise was found to be a useful predictor for general robustness as well as
adversarial robustness (Ford et al., 2019; Yin et al., 2019). For this reason, we first measure the ro-
bustness of Wide-ResNet models to Gaussian noise applied at test time, where noise is sampled from
a Gaussian with 0.05 standard deviation for each pixel independently. Left panel of Fig. 8 shows the
correlation between the cutting plane dimension and error due to Gaussian noise, calculated as the
accuracy on corrupted data minus the accuracy on clean data. We see that the models with smaller
cutting plane dimension, and therefore higher CM dimension, are more robust to this type of noise.
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Figure 7: Comparison of the cutting plane dimension needed to get 50% of the target class for
ResNet trained to 100% training accuracy on subsets of the training set of CIFAR-10 (mean and
standard deviation of two networks). The bigger the training set, the smaller the d∗50%, meaning that
its easier to find high confidence images, and that their manifolds increase in dimension. The trend
continues with the addition of data augmentation (aug).

Next, we calculate the correlation between the cutting plane dimension and the accuracy on CIFAR-
10-C (Hendrycks & Dietterich, 2018), which includes 15 different corruption types applied at test
time (right panel of Fig. 8). These results together show that the cutting plane dimension of neural
networks is correlated with their robustness to a variety of test-time distortions. Again, higher class
CM dimension leads to better performance in terms of robustness.
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Figure 8: The effect of cutting plane dimension on model robustness to test-time distortions. The left
panel shows the error due to Gaussian noise applied at test time vs. cutting plane dimension needed
to get 50% of the points to target classes 0 and 1. The right panel shows the effect of the cutting plane
dimension on error due to corruptions in CIFAR-10-C. Models with lower cutting plane dimension
are more robust to both Gaussian noise and to distortions in the Common Corruptions Benchmark.

4.7 EVOLUTION OF DIMENSION WITH TRAINING

We study the effect of training on the high confidence manifolds in Figure 9. The early epochs
are heavily influenced by the initialization. After a small amount of training, there seems to be
an intermediate stage when it is very hard to find high confidence class manifolds (d∗25% is high,
and therefore the manifold dimension is low). Towards the end of training, d∗25% goes down for
all classes (detailed Figures 16, 18 and 17). The non-monotonic behavior of the dimension points
towards something unusual happening in the intermediate stages of training, and it could be related
to the host of phenomena pointing towards the high impact of early stages of training.

4.8 MODEL ENSEMBLING

We found that model ensembling (taking N independently trained models, giving them the same in-
put, and averaging their predicted probabilities) leads to class manifolds of lower dimension, as well
as between-class regions of lower dimension. The bigger the ensemble, the lower the dimension, as
shown in a summary plot in Figure 10. This is atypical, as all other methods of improving perfor-
mance (e.g. larger training set, more training (towards the end)) correlated with higher dimensional
CMs. This suggests that ensembles might be doing something geometrically distinct from the other
methods. This could be related to the observation that, unlike other techniques, deep ensembles
combine models from distinct loss landscape basins Fort et al. (2020).
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Figure 9: The effect of training on the dimension of cutting plane necessary to reach a particular
probability. The two left panels show the maximum probability of class 0 reached for cutting planes
of different dimensions (y-axes) for different stages of training of a ResNet20v1 on CIFAR-10 (x-
axes). The probability 25% level is highlighted. The right panel shows d∗25%, d∗50% and d∗75% for
the average of all single class regions. We can see an intermediate stage of training when high
confidence regions become hard to find. Towards the end of training, the dimension of the manifolds
grows. The breakdown by classes is shown in Figure 16.
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Figure 10: The effect of model ensembling on the dimension d∗50% needed to reach 50% accuracy
averaged over all CIFAR-10 classes (individual results in Fig. 13) for ResNet20 trained for 50
epochs. Across all classes, the larger the ensemble, the higher the d∗50% and therefore the lower the
class manifold dimension. A naive model of addition of codimensions between models is overlayed,
showing a surprisingly good fit for small ensembles. The right panels show a section of the input
space for 3 single models (top row) and 3 ensemble sizes (bottom). The colors indicate 4 different
classes > 50%. The elongated high-probability structures disappear with ensembling.

5 CONCLUSION

We propose a new method for estimating the dimension of both class manifolds and multi-way
class boundary manifolds in the space of inputs for deep neural neural networks. To circumvent
the curse of dimensionality, we use optimization constrained to randomly chosen affine subspaces
(hyperplanes) of varying dimension. This allows us to extract the effective dimension of the class
manifolds as well regions between classes. We study the manifold dimension as a function of 1)
architecture, 2) dataset, 3) the amount of training, 4) dataset size, 5) data augmentation, 6) label
randomization, 7) robustness to noise and perturbations, and 8) ensemble size. The ubiquitous
correlation between higher class manifold dimension and better performance and robustness along
the many axes tested points towards an intimate link between the geometry of the input space class
partitioning and generalization. Ensembling, on the other hand, both increases performance and
decreases the manifold dimension, and is the only technique amongst the ones we explored that
does so, suggesting that its beneficial effects might be geometrically distinct from other ways of
improving performance.

Overall the development of a full theory of deep learning poses a difficult intermediate theoretical
problem: understanding the shape and evolution over training of complex nonlinear maps from high
D-dimensional input spaces to high C-dimensional class probability spaces. By slicing, dicing and
optimizing such high dimensional nonlinear maps using our cutting plane method, we hope our work
opens the door to developing a more veridical geometric perspective on the nature of nonlinear maps
learned by deep neural network classifiers.
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A APPENDIX

A.1 DETAILS OF NETWORKS, DATASETS AND TRAINING

In this paper we use two architectures: 1) SimpleCNN, which is a simple 4-layer CNN with 32, 64,
64 and 128 channels, ReLU activations and maxpool after each convolution, followed by a fully-
connected layer, and 2) ResNet20v1 as described in He et al. (2015) with batch normalization
on (Ioffe & Szegedy, 2015). We use 5 datasets: MNIST (LeCun & Cortes, 2010), Fashion MNIST
(Xiao et al., 2017), CIFAR-10 and CIFAR-100 (Krizhevsky et al.), and ImageNet Deng et al. (2009).
The ResNet is trained for 200 epochs using SGD+Momentum at learning rate 0.1, dropping to 0.01
at epoch 80 and 0.001 at epoch 120. The L2 norm regularization is 10−4. In one experiment, we
use data augmentation as described in 1. For our robustness experiments, we used the Wide-ResNet
models (Zagoruyko & Komodakis, 2016) available in 2. We trained 11 different sizes of Wide-
ResNet models (WRN-28-2 to WRN-28-12) with AutoAugment. Each model was trained from 15
different random weight-initializations for better statistics. We used the following hyperparameters
to train each model: a learning decay of 0.1, weight decay of 5e-4, cosine learning rate decay in 200
epochs, and AutoAugment (Cubuk et al., 2018) for data augmentation.

A.2 DETAILED DERIVATION OF THE CLOSEST APPROACH OF TWO AFFINE SUBSPACES

Let us consider a situation in which in a D-dimensional space we have a randomly chosen d-
dimensional affine subspace A defined by a point ~X0 ∈ RD and a set of d orthonormal basis
vectors {v̂i}di=1 that we encapsulate into a matrix M ∈ Rd×D. Let us consider another random
n-dimensional affine subspace B. Our task is to find a point ~X∗ ∈ A that has the minimum L2

distance to the subspace B, mathematically ~X∗ = argmin ~X∈A

∣∣∣ ~X − argmin ~X′∈B

∣∣∣ ~X − ~X ′
∣∣∣∣∣∣. In

words, we are looking for a point in the d-dimensional subspace A that is as close as possible to its
closest point in the n-dimensional subspace B. A point within the subspace A is parametrized by a
d-dimensional vector ~θ ∈ Rd by ~X(θ) = ~θM + ~X0 ∈ A. This parametrization ensures that for all
choices of ~θ the resulting ~X ∈ A.

Without loss of generality, let us consider the case where the n basis vectors of the subspace B are
aligned with the dimensions D − n,D − n + 1, . . . , D of the coordinate system. Let us call the
remaining axes s = D− n the short directions of the subspace B. A distance from a point ~X to the
subspace B now depends only on its coordinates 1, 2, . . . , s. Therefore l2( ~X,B) =

∑s
i=1X

2
i . This

is the case because of our purposeful choice of coordinates.

Given that the only coordinates influencing the distance are the first s values, let us, without loss
of generality, consider a Rs subspace of the original RD only including those. Then the distance

between a point within the subspace A parametrized by the vector ~θ is l2( ~X(θ), B) =
∣∣∣~θM + ~X0

∣∣∣2.

Given our restrictions, now the θ ∈ Rd, M ∈ Rd×s and ~X0 ∈ Rd. The distance l attains its
minimum for ∂~θl

2 =
(
~θM + ~X0

)
MT = ~0, producing the minimality condition ~θ∗M = − ~X0.

There are now 3 cases:

1. The overdetermined case, d > s. In case d > s = D − n, the optimal θ∗ = − ~X0M
−1 belongs

to a (d − s = d + n −D)-dimensional family of solutions that attain 0 distance to the plane B. In
this case the affine subspaces A and B intersect and share a (d+ n−D)-dimensional intersection.

2. A unique solution case, d = s. In case of d = s = D − n, the solution is a unique
θ∗ = − ~X0M

−1. After plugging this back to the distance equation, we obtain ~θ is l2( ~X(~θ∗), B) =∣∣∣− ~X0M
−1M + ~X0

∣∣∣2 =
∣∣∣− ~X0 + ~X0

∣∣∣2 = 0. The square (in this case) matrix M and its inverse

M−1 cancel each other out.

1https://github.com/keras-team/keras/blob/master/examples/cifar10_
resnet.py

2https://github.com/tensorflow/models/tree/master/research/autoaugment
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3. An underdetermined case, d < s. In case of d < s, there is generically no intersection
between the subspaces. The inverse of M is now the Moore-Penrose inverse M+. Therefore the

closest distance is ~θ is l2( ~X(~θ∗), B) =
∣∣∣− ~X0M

+M + ~X0

∣∣∣2. Before our restriction from D → s

dimensions, the matrix M consisted of d D-dimensional, mutually orthogonal vectors of unit length
each. We will consider these vectors to be component-wise random, each component with variance
1/
√
D to satisfy this condition on average. After restricting our space to s dimensions, M ’s vectors

got reduced to s components each, keeping their variance 1/
√
D. They are still, in expectation,

mutually orthogonal, however, their length got reduced to
√
s/
√
D. The (transpose) of the inverse

M+ consists of vectors of the same directions, with their lengths scaled up to
√
D/
√
s. That means

that, in expectation, MM+ is a diagonal matrix with d diagonal components set to 1, and the
remainder being 0. The matrix (I −M+M) contains (s − d) ones on its diagonal. The projection
| ~X0(I −M+M)|2 is therefore of the expected value of |X0|2(s − d)2/D. The expected distance
between the d-dimensional subspace A and the d-dimensional subspace B is, in expectation

E [d(A,B)] ∝

{√
D−n−d√

D
n+ d < D ,

0 n+ d ≥ D .
(4)

We ran a numerical experiment using automatic differentiation in JAX (Bradbury et al., 2018) where
we generated random affine subspaces of different dimensions and measured their closest approach
using optimization to locate the place. The numerical results presented in Figure 4 match the analytic
predictions in Equation 4 well.

A.3 EMPIRICAL FIT FUNCTION

The empirical fit function we use to extract the critical dimension of the cutting hyperplane d∗50% is
shown in 6.

p(d;A,B,C,D) = A+
B

1 + exp (− log(d/C)/D)
. (5)

It is a sigmoid function that depends logarithmically on the dimension d and can be offset from
p = 0 at for low d and from p = 1 for high d. That is the case as sometimes the neural networks
we analyzed would not have any regions of a particular class reaching all the way to 100%. In
other cases, even optimization in a line d = 1 would be able to get to a p > 10% (for 10 class
classification).

For fitting the loss L(d), we utilized the fact that the cross-entropy loss depends logarithmically on
p, and therefore used

L(d;A,B,C,D) = − log

[
A+

B

1 + exp (− log(d/C)/D)

]
. (6)

In both casesA, B, C andD are free fit parameters. We used SciPy optimizer (Virtanen et al., 2020)
to find the parameters and their covariance.

A.4 CUTTING PLANE AXIS-ALIGNMENT – THE EFFECT OF SPARSITY

When choosing the matrix M that defines the span of the subspace in which we are optimizing, we
can choose to make the rows of M sparse. On one end, each basis vectors might generically be non-
zero in each of its components, while on the other end, a single non-zero element per basis vector
is allowed. Geometrically, this corresponds to the alignment of the subspace with the axes (pixels
and their channels for images) of the input space. Figure 11 shows the effect of the sparsity of M
on the resulting d∗25%, d∗50%, d∗75% and d∗90%. The sparser the M , the higher the dimension needed
to reliably reach the 25%, 50%, 75%, and 90% class confidence region respectively. The effect of
sparsity is visible, however, it is 1) not very significant (changing the dimension by a small part of
the total D = 3072 for CIFAR-10), and 2) its effect disappears for even small amounts of non-zero
elements in M .

A.5 TRAINING ON RANDOMLY PERMUTED LABELS

For training on randomly permuted labels of the training set, we observe the critical dimension d∗50%
to rise significantly, meaning that a much higher dimensional cutting plane is needed to reliably
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Figure 11: The effect of axis alignment of the cutting planes. The figure shows the cutting plane
dimension necessary to reach 4 thresholds levels (the 4 data lines) of class 0 probability (y-axis)
from a random starting point for a well trained ResNet20v1 on CIFAR-10. We vary the number of
non-zero elements of the basis vectors of the random cutting plane (x-axis). For a small number
of non-zero elements, single pixels are varied, while for a 3072 non-zero elements (the maximum
value), all pixels are varied jointly. The axis-aligned random cuts require higher dimensions to hit
the same accuracy regions of class 0.

intersect a class manifold. The breakdown by class for ResNet20v1 on CIFAR-10 and CIFAR-100
is shown in Figure 12. The comparison to semantically meaningful labels is shown in Figure 5.

A.6 ENSEMBLING

The effect of ensembling on the critical dimension d∗50% broken down by class is shown in Figure 13.
For each of the 10 CIFAR-10 classes, the d∗50% grows with ensemble size, which is unlike any other
performance-improving techniques (such as data augmentation, and more training) we experimented
with. A simple model predicting the resulting d∗50% for an ensemble of size n by assuming that the
class manifold codimensions add works surprisingly well for small ensemble sizes in Figure 13. The
intuition for why that might be the case is illustrated in Figure 10.

A.7 ADDITIONAL CUTTING CURVES FOR CIFAR-10 AND CIFAR-100

Two additional detailed cutting plane results can be found in this subsection: SimpleCNN on
CIFAR-10 in Figure 14, and ResNet20v1 on CIFAR-100 in Figure 15.

A.8 DIMENSION AS A FUNCTION OF TRAINING STAGE

While Figure 9 shows the aggregate effect of training epoch on the the critical cutting plane dimen-
sion averaged over all single-class regions, the detailed per-class results can be found in Figure 16
for ResNet20v1 on CIFAR-10 (two indepdently initialized and trained models), in Figure 17 for
SimpleCNN on CIFAR-10, and in Figure 18 for ResNet20v1 on CIFAR-100.
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Figure 12: Maximum probability reached on cutting planes of different dimensions for all 10 target
classes of CIFAR-10 (top row) and CIFAR-100 (bottom row) for a ResNet20v1 trained to 100%
training accuracy on randomly permuted class labels. The d∗50% is consistently higher and therefore
the dimension of the high confidence manifolds is lower than for semantically meaningful labels
(Figure 2), suggesting geometrically a very different function being learned.
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Figure 13: The effect of model ensembling on the dimension d∗50% needed to reach 50% accuracy
of all 10 CIFAR-10 classes. The results shown are for ResNet20v1 trained for 50 epochs each. Uni-
versally across all classes, the larger the ensemble, the higher the d∗50% and therefore the lower the
high confidence manifold dimension. A naive model of addition of codimensions between models
is overlayed, showing a surprisingly good fit for small ensembles.
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Figure 14: Maximum probability of single classes of CIFAR-10 reached on cutting planes of dimen-
sion d. The figure shows the dependence of the probability of a single class of CIFAR-10 (y-axes)
reached on random cutting hyperplanes of different dimensions (x-axes). The results shown are for
a well-trained (> 76% test accuracy) SimpleCNN on CIFAR-10. Each dimension d is repeated 10×
with random planes and offsets.
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Figure 15: Maximum probability of selected single classes of CIFAR-100 reached on cutting planes
of dimension d. The figure shows the dependence of the probability of a single class of CIFAR-
100 (y-axes) reached on random cutting hyperplanes of different dimensions (x-axes). The results
shown are for a well-trained (> 67% test accuracy) ResNet20v1 on CIFAR-100. Each dimension d
is repeated 10× with random planes and offsets.
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Figure 16: The cutting plane dimension needed to reach 25% probability for the 10 classes of
CIFAR-10 as a function of training stage for a ResNet20v1, averaged over two initializations and
runs.
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Figure 17: The cutting plane dimension needed to reach 25% probability for the 10 classes of
CIFAR-10 as a function of training stage for a SimpleCNN.
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Figure 18: The cutting plane dimension needed to reach 25% probability for 10 randomly selected
classes of CIFAR-100 as a function of training stage for a fully trained ResNet20v1.
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