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Abstract

Multi-parameter optimization (MPO) is a major challenge in new chemical entity

(NCE) drug discovery. Recently, promising results were reported for deep learning

generative models applied to de novo molecular design, but, to our knowledge, until

now no report was made of the value of this new technology for addressing MPO in

an actual drug discovery project. In this study, we demonstrate the benefit of apply-

ing AI technology in a real drug discovery project. We evaluate the potential of a

ligand-based de novo design technology using deep learning generative models to

accelerate the obtention of lead compounds meeting 11 different biological activity

objectives simultaneously. Using the initial dataset of the project, we built QSAR

models for all the 11 objectives, with moderate to high performance (precision

between 0.67 and 1.0 on an independent test set). Our DL-based AI de novo design

algorithm, combined with the QSAR models, generated 150 virtual compounds

predicted as active on all objectives. Eleven were synthetized and tested. The AI-

designed compounds met 9.5 objectives on average (i.e., 86% success rate) versus

6.4 (i.e., 58% success rate) for the initial molecules measured on all objectives. One of

the AI-designed molecules was active on all 11 measured objectives, and two were

active on 10 objectives while being in the error margin of the assay for the last one.

The AI algorithm designed compounds with functional groups, which, although being

rare or absent in the initial dataset, turned out to be highly beneficial for the MPO.
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1 | INTRODUCTION

Drug design is a challenging task. From hit identification to hit-to-lead

and lead optimization, the quest to discover a new chemical entity

(NCE) with desired properties is burdensome. Exploration of a nearly

infinite chemical space (1060 drug-like molecules is a low range fig-

ure)1,2 is required in order to solve a multi-parametric optimization

(MPO) challenge: identifying the rare compounds which satisfy all the

objectives of the project, such as biological activity, selectivity, (lack

of) toxicity, pharmacokinetics (i.e., DMPK), synthetic accessibility and

finally novelty.3,4 The average cost to develop a pre-clinically vali-

dated drug candidate is estimated around $50 million, and drug

design, more specifically lead optimization, represents the lion's share

(�70%) of the cost of preclinical research.5

Structure- and ligand-based computer aided drug design

(CADD) technologies (e.g. docking, QSAR, etc.), which have been
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developed to improve the productivity of the drug design process,

have brought notable progress over the last decades.6,7 Still, most

classical CADD approaches have focused on the prediction of

molecular properties rather than on the exploration of the chemi-

cal space to identify novel compounds with optimal properties.

Such in silico exploration of the chemical space has mostly been

performed through the virtual screening of pre-existing or virtual

compound libraries, with the exploration being intrinsically

restricted to the initial compound library.8,9 Graph-based genetic

algorithms, sometimes used for in silico chemical optimization,

have had limited success and are mostly limited by transformation

rules.10 More recently, the development of artificial intelligence

(AI) approaches to drug discovery, and more specifically de novo

drug design through the use of deep generative models, has trig-

gered a lot of interest in the CADD community.11

Generative models for molecular design can be characterized

by three main features: (1) which molecular representation they

use; (2) how they generate molecules; and (3) how they perform

property optimization. Many methods have been reported, each

with different approaches regarding those features: (i) The molecu-

lar representation can be either text (SMILES,12,13 SELFIES,14,15

DeepSMILES16), a graph or a set of fragments.17–19 (ii) The genera-

tion strategy can use a simple policy, for instance: add or remove

atoms or bonds.17 It can also rely on deep generative models such

as recurrent neural networks (RNNs), auto-encoders (AEs) or gen-

erative adversarial networks (GANs).20,21 (iii) The property optimi-

zation strategy can be based on reinforcement learning,17,22,23

continuous optimization,20 Bayesian optimization,24 genetic algo-

rithms15 or particle swarm optimization.25

Despite the amount of research in generative modeling and its

potential to allow an efficient exploration of the chemical spaces to

identify new molecules with the desired in silico properties, evidence

of the benefit of such AI-based approaches to solve MPO issues in

complex real-life cases is still elusive, and AI-based drug design is per-

ceived as overhyped by a significant part of the chemists' and chemo-

informaticians' community.26

As previously stated, MPO is a major challenge in NCE drug

discovery projects, and the inability to identify molecules meeting

the Target Product Profile (TPP) in LO is an important cause of

NCE project failure or delay. Some recent works were conducted

in order to generate new molecules in MPO projects, leading to

interesting results,25,27 however, none of them used real project

datasets. Herein, we describe the application of a ligand-based de

novo design AI technology based on deep generative models in a

real-life LO stage drug discovery project and its impact on foster-

ing the discovery of optimized lead compounds meeting the pro-

ject's TPP criteria. This study was conducted in 2017 and used a

Long Short-Term Memory (LSTM) neural network trained on

ChEMBL using teacher forcing with a multi-objective reward func-

tion. Since then, works from many research groups have led to the

development of more sophisticated generative AI methods for

drug design, however this work provides evidence of prospective

real-life validation of this technology.

2 | METHODS, DATA AND SOFTWARE
STATEMENT

2.1 | Project dataset

The dataset was provided by Servier from an internal and real drug

discovery project at LO stage that had been running for several years.

The project dataset consisted in a library of 881 molecules with asso-

ciated bioactivity measurements from 11 biological assays: one pri-

mary activity assay (undisclosed phenotypic assay: % of activation at

30 nM), 6 off-target activity assays (selectivity criteria on 5-HT2A,

5-HT2B, alpha1, D1, Nav1.2, hERG: % of inhibition) and 4 ADME

assays (microsomal stability on human (HLM) and rat (RLM): % of sta-

bility; permeability and efflux Caco2 assays: % of absorption and

efflux ratio). For each objective, a threshold value was defined

according to the Target Product Profile (TPP) designed by the project

team. A summary of the thresholds, percentage of compounds mea-

sured and percentage of compounds meeting the required threshold

for each assay is reported in Table 1.

The best molecule from the initial dataset and the 11 AI-

generated molecules synthesized and tested are provided as SMILES

in the Supplementary material.

2.2 | Software availability

The following software packages were used to perform this work:

(1) The QSAR models were built using Scikit-learn;28 (2) Hyperopt was

used to optimize the hyperparameters for model selection;29 (3) Train-

ing and optimization of the LTSM was performed using Tensorflow;30

(4) Rdkit was used to prepare SMILES, calculate similarities, finger-

prints and descriptors.31 All the software packages are freely

available.

2.3 | QSAR models development

Bioactivity data were binned according to TPP thresholds (i.e., 1 if

meeting the TPP specification, else 0). Eleven independent QSAR

models were developed using ridge logistic regression based on Mor-

gan fingerprint molecular representations (2048 bits and radius 3).32

The Morgan fingerprint was built without including chirality (two ste-

reoisomers have an identical fingerprint) as most of the molecules in

the dataset were achiral and the stereochemistry was known. This

choice was based on the fact that racemates are easily obtained, and

the Supplementary information about the eutomer could be accessed

after the enantiomeric purification of the active racemates. No spe-

cific processing of tautomers was performed (different tautomers of

the same molecule have different fingerprints and likely different

scores).

Model selection was performed using k-fold (k = 4) cross-valida-

tion. It concerned two parameters: the penalty parameter and the

operating threshold probability. The penalty parameter was selected
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to maximize the ROC AUC.33 Once the penalty parameter selected,

the operating threshold probability to predict conformity to the TPP

(noted as 1 in Figure S1) was selected on the former k-folds to maxi-

mize precision to the detriment of recall, in order to reduce the risk of

false positives. The best model, trained on 80% of the data

(i.e., training set) was subsequently tested on the remaining 20% of

the initial dataset (i.e., test set).

Classification models were selected rather than regression models

due to their higher performances (results not shown).

2.4 | Generative model

As explained above, many architectures of molecular deep generative

models have been reported to date. At the time this study was con-

ducted (it was initiated in 2017), fewer architectures had been publi-

shed. Molecule generation and property optimization strategies were

inspired by Segler et al. which uses a deep RNN generator.13

2.4.1 | Molecule generation strategy

A deep RNN, and more precisely a deep LSTM of three hidden layers

of size 512, was used to generate molecules represented as

SMILES.12,34 The LSTM was first trained on the ChEMBL database,

using teacher forcing,33 to build a character-based language model for

generating SMILES strings.13

It is reminded that the role of a language model p is to model the

next character probability distribution given the sequence of previous

characters:

p xtþ1jx1x2…xtð Þ¼ LSTM xtþ1jx1x2…xtð Þ

SMILES are generated by iteratively sampling the next character from

its inferred past conditioned distribution p xtþ1jx1x2…xtð Þ. Generating a

SMILES starts and ends, respectively, with the special tokens of the

vocabulary “START” and “END.”
The SMILES in the ChEMBL database were transformed into their

canonical achiral RDKIT version. No data augmentation by enumerat-

ing the different ways of writing a SMILES, nor by enumerating the

tautomeric forms of the same compound was performed. Thus

trained, the LSTM language model generates achiral SMILES. Iden-

tical compounds can be generated with different writings of their

SMILES. Tautomers of the same compound are generated as dis-

tinct molecules. Scheme 1 represents the architecture of molecule

generation.

2.4.2 | Project dataset distribution learning

The LSTM trained on ChEMBL database has learnt to generate mole-

cules belonging to ChEMBL chemical space. In order to be scored,

generated molecules should stay near the applicability domain of the

QSAR models. This applicability domain can be approximated by

the structural similarity to the molecules of the initial dataset. Thus,

the previous LSTM model was re-trained in teacher forcing on the

project dataset.35 This second training allows to zoom in the chemical

space studied so that QSAR models can be applied.

2.4.3 | Molecule optimization strategy

The molecule optimization strategy that was used is named

“Hillclimb-MLE.”13,23 It is an iterative process where the LSTM gener-

ative model is fine tuned in teacher forcing on an optimal set of

SMILES that evolves over time as follows: at each step, this set of

SMILES is updated by retaining the top 10% of compounds generated

at the previous step (Figure 1).

The optimality ranking was established using a scalar reward

function that combines 13 targets:

+ Eleven probabilities of activity pið Þ1≤ i≤11 returned by the classi-

fiers described above (QSAR models built on the training data set):

+ Similarity to the project dataset D, computed as:

S molð Þ¼max Tanimoto_Similarity mol,molj
� �

;molj �D
� �� �

+ QED.36

Denoting xið Þ1≤ i≤13 and Tið Þ1≤ i≤13, respectively, the vector of our

13 targets of interest and their thresholds for being in the blueprint,

the reward function used in this project was the following:

TABLE 1 Statistical outlook of the initial dataset (each column represents an assay and the concentration at which compounds were tested)

Objectives Activity 5-HT2A 5-HT2B α1 D1

Nav

1.2 hERG RLM HLM

Caco-2

Fabs

Caco-2

efflux

Concentration 30 nM 10 μM 10 μM 10 μM 10 μM 10 μM 10 μM – – – –

Filled %a 29% 28% 26% 33% 28% 30% 59% 90% 90% 87% 77%

Blueprint

thresholdb
≥30% ≤50% ≤50% ≤50% ≤50% ≤50% ≤30% ≥50% ≥50% ≥90% ≤15

In blueprint ratec 59% 29% 35% 33% 53% 68% 45% 49% 35% 61% 80%

a“Filled %” describes the % of molecules in the dataset which have data in the assay.
bBlueprint threshold is the value set as the objective to achieve in each assay.
cIn blueprint rate is the percentage of molecules meeting each objective individually.

694 PERRON ET AL.
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Reward xið Þ1≤ i≤13
� �¼�

X13
i¼1

log
xi
Ti

� �

Thresholds of QSAR scores (i.e., Tið Þ1≤ i≤11) are their corresponding

probability operating thresholds. The selected thresholds for similarity

to the project dataset (i.e., T12) and QED (i.e., T13) are 0.5 and 0.4,

respectively.

We could have relied on similarity as part of the reward function

to learn the distribution of the initial dataset without re-training in

teacher forcing. However, the generator would have needed more

time to learn the initial distribution and the generated compounds in

early steps of optimization would have been assigned predictions out

of the applicability domain of the models.

Results are seed dependent and thus, many runs were con-

ducted (10 runs), each one leading to new propositions to solve

the problem.

2.5 | Assessment and ranking of generated
compounds

Virtual candidates were ranked on their overall probability of being in

the TPP, their Quantitative Estimate of Druglikeness (QED),36 and

their similarity to the initial dataset (i.e., Tanimoto distance). The appli-

cability domain of the QSAR models is a critical point and must be

carefully monitored to avoid false positives.

SCHEME 1 Generative model architecture

F IGURE 1 Hill climbing procedure for
optimizing the generator
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To help chemists assess the novelty and risk associated with the

proposed molecules, a specific visualization was developed, by

adapting the similarity map visualization.37 This visualization, which

we have named “applicability map” (Figure S2, Supplementary),

enables to highlight, for each proposed molecule, the atoms which are

either present or absent in the initial dataset, as follows: (a) in green,

the atoms which are very well known because they appear very often

in the same chemical environment in the initial dataset (i.e., the lead

scaffold for instance); (b) in red, the new atoms or atoms already

known but appearing in a new position; and (c) not highlighted: the

atoms which have been seen before in the same position, but only a

few times.

2.6 | Compound selection

From the newly generated library, the designed molecules were

selected for synthesis and test based on their algorithmic ranking,

structural novelty, synthetic accessibility, and consistency of the

ADME predictions with those provided by global predictive models

available at Servier.

3 | RESULTS

3.1 | Initial dataset analysis

The initial dataset, containing 881 molecules evaluated for 11 objectives,

was sparse, with 10–70% missing data rates depending on the objectives.

Due to the specificity of the primary assay, a complex ex vivo phenotypic

assay, the ADME assays were very well documented, whereas only

251 compounds had been measured in the primary activity and selectivity

assays. The dataset was well balanced, with >50% compounds meeting

individually most objectives, with lower rates (�30–35%) observed for

5-HT2A, 5-HT2B, alpha 1, and HLM.

The evolution of the percentage of compounds meeting each objec-

tive during the chronology of the project is displayed in Figure 2. It shows

that the project team had been able to substantially increase the perfor-

mance across iterations for Nav1.2, hERG, RLM, HLM, with 80–90% of

designed molecules meeting the required goal at the end of the program.

Conversely, performance had strikingly dropped on 5-HT2A, alpha 1, D1,

and permeability assays. As an example, only 6% of the last 50 molecules

synthesized met the 5-HT2A selectivity objective. The colors in Figures 1

plot give an idea of the timeline of the project: (1) light gray for values

found in molecules evaluated in the beginning of the project, molecules

1–780; (2) medium gray, for molecules developed based on the SAR for

the preliminary results, molecule 781–830; (3) dark gray for late-stage

molecules, expected to have the best profile based on the knowledge of

more than 800 synthesized molecules, molecules 831–881.

In the subset of 48 molecules out of 881 which had been mea-

sured against all 11 objectives, the average number of objectives met

was 6.4 out of 11. Among these, 6 molecules appeared to have a

promising profile, meeting 9 objectives out of 11 (Figure 3). Molecule

F IGURE 2 % of molecules in
the initial project dataset meeting
the different objectives along the
chronology of the project (light
gray: molecule 1–780; medium
gray: molecule 781–830; dark
gray: molecule 831–881)

F IGURE 3 Structure and biological profiles of the most promising
lead molecule in the initial project dataset. The values in green
correspond to the molecules active with the optimal threshold, the
values in yellow correspond to the molecules active with the tolerated
threshold; and the values in red correspond to the inactive molecules
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732 (mol 732) was the best compound in the whole dataset, meeting

all objectives except absorption, which was nearly met, and efflux.

It is worth noting that the 1,2-benzisoxazole in mol 732 was also

found in 61% of the project's compounds, and in 78% of the last

50 compounds made by the project team, indicating the importance

that had been given by the medicinal chemistry team to that substruc-

ture, as a seemingly promising avenue for achieving a good balance

between all desired properties. Only a couple of piperidine and piper-

azine linkers were used throughout the project, while more variability

had been introduced in the East part heterocycles.

Also worthy of note, as shown in Table 2, a compound with a

promising profile, mol 435, meeting 9 out of 11 objectives but missing

absorption and efflux, quite close to mol 732 in terms of biological

profile, had been obtained much earlier in the project. Two hundred

and ninety-seven additional molecules were needed to partially

improve the overall compound profile. During the design process from

mol 435 to mol 732, permeability objectives were met in three mole-

cules (mol 555, mol 559, and mol 663), but only to the detriment of

5-HT2A/B selectivity or metabolic stability.

3.2 | QSAR models

On average, the QSAR predictive models performed well with high

precision in the test sets, except for 5-HT2B (precision 67%). Inter-

pretability of the results was difficult for activity, alpha 1 and 5-HT2A

due to the small number of positive compounds in the test set (confu-

sion matrices are provided in Figure S1, ROC AUC plots are provided

in Figure S3). The selected models were then trained on the whole

dataset before switching to the generative phase of our work.

3.3 | AI-designed molecules

The generative algorithm designed 150 virtual compounds predicted

to be optimal with regards to the project's TPP (i.e., predicted to meet

the required threshold for all targets), and with reasonable complexity

as assessed by a chemist (at the time of the study, no satisfying syn-

thetic accessibility scoring tool was available to help prioritize com-

pounds). Among the 150 generated molecules, 20 were selected. In

the 3-week timeframe allowed for compound synthesis: 11 com-

pounds were successfully synthesized and tested on all the project's

assays, whereas 9 molecules failed to be synthesized. Figure 4 shows

an overview of the number of molecules filtered in each step, from

generation to synthesis, and the molecules which were synthesized

are represented in Figures 5 and 6.

After synthesis and test, the AI-generated candidates were found

to outperform the initial library, including the last 50 compounds

made within the project. The average number of objectives met

by the AI-designed compounds was 9.5 (i.e., 86% success rate) versus

6.4 (i.e., 58% success rate) previously. Moreover, the AI-generated

TABLE 2 Biological profiles of the most promising lead molecules in the initial project dataset

Molecule ID Ac�vity 5-HT2A 5-HT2B α1 D1 Nav 1.2 hERG RLM HLM Caco-2 
FAbs 

Caco-2 
Efflux 

mol 732 194.0 20.0 18.0 1.0 4.0 0.0 19.0 82.85 63.35 88.99 26.2 

mol 663 83.0 69.0 –25.0 45.0 6.0 13.0 6.4 69.04 31.93 97.6 1.96 

mol 559 46.0 46.0 69.0 14.0 14.0 –14.0 25.8 60.28 25.43 98.86 0.75 

mol 555 48.0 71.0 48.0 12.0 14.0 39.0 25.0 68.83 33.58 99.37 0.39 

mol 550 115.0 76.0 15.0 37.0 –3.0 –13.0 5.4 80.82 83.54 72.24 12.3 

mol 435 46.0 6.0 44.0 29.0 –11.0 20.0 12.4 93.11 78.36 73.8 34.1 

Note: The colors correspond to the range of activity of the molecules. The values in green correspond to the molecules active with the optimal threshold,

the values in yellow correspond to the molecules active with the tolerated threshold; and the values in red correspond to the inactive molecules.

F IGURE 4 Pipeline of filtering AI generated molecules, from
generation to synthesis
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molecules reversed the decreasing trend in TPP conformity observed

in the last molecules of the library (Figure 7A). Analysis shown in

Figure 7B illustrates that, compared to the initial dataset, novel mole-

cules were better on activity (i.e., in the blueprint 65% of the time)

and excellent for all selectivity and permeability criteria (i.e., over 90%

of the time in the blueprint). Metabolic stability, however, was lower,

with a 55% conformity rate. More importantly, from the 11 new com-

pounds, one met simultaneously all 11 objectives of the TPP

(Figure 5) and two compounds met 10/11 objectives (Figure 6), while

being just below the required threshold, within the error margin of the

assay, for the missed objective.

The best AI-designed compound (mol 885), meeting all objectives,

is represented in Figure 5. Notably, this compound contains a [1,2,3]

triazolo[1,5-a]piperidine moiety which was very rare in the initial data

set, appearing in only six molecules, and always correlated to poor

permeability and efflux, which had led the project team to stop inves-

tigating this motif. It is remarkable that the AI algorithm retained that

substructure, combining it with a 3-fluoropyridine in the East part,

which had never been tried before. Surprisingly, the association of this

discarded substructure with an unexplored heterocycle turned out to

be a winning combination for solving the MPO objective of the

project.

As a matter fact, the 11 AI-designed compounds that were syn-

thesized and tested displayed functional groups that were either rare

in the initial dataset or never tried earlier in the project (see Figure 6).

It suggests that this method can propose significant innovations, by its

ability to identify favorable modifications, even with few data to

learn from.

One striking example is mol 886, where an aliphatic group was

introduced in replacement of an aryl moiety, where only aromatic

moieties had been used before at this specific position.

The AI algorithm was also able to optimize ADME properties in

sub-series with specific issues. For example, it was able to design per-

meable compounds within the 6,7-dihydro-4H-triazolo[5,1-c][1,4]

oxazine sub-series while maintaining safety and stability, when all

compounds in that sub-series had permeability issues. Likewise, within

the pyrido-isoxazole series, compounds with reduced efflux were

identified while maintaining safety and stability (Figure 8).

An analysis of the drug-likeness profile of the compounds based

on their property forecast index (PFI), molecular weight (MW) and sp3

fraction was performed.39 The plot of PFI vs MW is presented in

Figure 9. Ten out of 11 AI-designed compounds were found to have a

very favorable profile with low PFI, low MW, and high sp3 fraction,

compared to the molecules from the initial data set.

To provide insights about structural diversity and chemical space

features of both the initial dataset and AI designed compounds, a prin-

cipal component analysis (PCA) was computed on the Morgan finger-

prints (i.e., extended connectivity fingerprints [ECFP] of 1024 bits,

radius 2) of the molecules in the dataset.38 First, a representation of

the 251 compounds from the initial library that were measured in the

primary activity assay is provided (Figure 10). This plot reveals the

absence of a probability gradient or narrow area of activity since

active molecules can be found in all areas of the explored chemical

space. Conversely, a display of the number of objectives met by these

251 molecules allows to delineate an area where the MPO score is

the highest (i.e., the upper left corner of the plot in Figure 9).

Strikingly (Figure 10), the AI algorithm did not design any mol-

ecule in that seemingly promising chemical space. All AI-designed

structures are indeed located in a distinct yet specific area, demon-

strating the capacity of this algorithm to come up with non-trivial

solutions.

4 | DISCUSSION

A typical hurdle of MPO is that optimization of some objectives leads

to a drop of performance in others, but the present method allowed

the design of compounds that were simultaneously optimized on

11 parameters.

Yet, several features of the initial dataset were key to enable

achieving such performance.

Overall, the performances of the models built to predict bioactiv-

ity on each assay were good, thereby validating the approach of pro-

ject data-guided optimization. This requires enough data to build a

decent model (in our case, the least documented assay had �250 data

points) and a reasonably well-balanced data set with enough com-

pounds meeting each objective individually. Also, the generative

model was able to find theoretical solutions to the MPO challenge

within the chemical space of the project, meaning that based on the

available data, there were indeed ways to solve the apparent anti-

correlations between the objectives.

This favorable configuration may not be present in all cases, and

the potential of the method to solve MPO challenges in more complex

cases remains to be demonstrated. Several approaches could be

envisaged to circumvent the lack of balanced data on some objectives,

such as using generic models trained on large and diverse legacy data,

that is, for ADME properties prediction, or using structure-based

modeling to guide optimization on target or anti-targets if such struc-

tural information is available. To address the tricky issue of the inabil-

ity to identify structures solving the MPO challenge within the

project's chemical space, adding an active learning component to the

F IGURE 5 MPO profile of the best AI-designed molecule, mol
885. The values in green correspond to the molecules active with the
optimal threshold
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SAR models to guide the optimization and/or using more generic

molecular representations (2D or 3D pharmacophore-based) to build

the QSAR predictive models could be considered.

All in all, it is still uncertain to which extent AI-guided optimiza-

tion can bring benefit to Lead Optimization in terms of reduction of

number of compounds and number of iterations needed to identify a

F IGURE 6 Structures and biological
features of original compounds sampled
by the DL algorithm. Borderline
compounds have been measured below
the desired activity threshold but within
the error margin of the assay while active
and inactive molecules were measured,
respectively, above and below the
threshold
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F IGURE 7 (A) Number of objectives satisfied according to project's chronology (vertical axis: number of objectives satisfied /horizontal axis:
chronologic numbering of compound/please note initial data was sparse with only 48 compounds tested on all criteria. (B) Hit rate comparison
between AI-designed candidates and initial molecules for each TPP objective. (light gray: molecule 1–780; medium gray: Molecule 781 to 830;
dark gray: molecule 831 to 881; red: 11 AI-designed molecules)

F IGURE 8 Permeability (A) and efflux (B) properties of AI-designed vs original dataset compounds in the (A) 6,7-dihydro-4H-triazolo[5,1-c]
[1,4]oxazine series (left) and (B) pyrido-isoxazole series (right)
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new molecular entity, and it would be of high interest to test such

approach along several design-make-test cycles, starting early in the

Lead Optimization phase, to assess the magnitude of the benefit

brought by AI. Ideally, this should be conducted as a comparative

“blind” study comparing the AI approach to a traditional approach to

enable to draw strong conclusions.

Also, worthwhile mentioning, the selection process of the AI-

designed molecules was not only based on pure data-driven ranking.

Molecules were selected based on their scores on the predictive

models, but also based on their synthetic accessibility and the expert

input of medicinal chemists and computational chemists using their

expertise as well as specific data visualization tools to remove poor

F IGURE 9 Plot of MW in function of PFI for initial molecules and AI-designed compounds

F IGURE 10 (A) PCA of the same 251 active compounds with correlation to the TPP criteria hit rates. (B) PCA of the 251 active compounds
from the initial dataset. (C) Plot of the AI-designed molecules
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quality compounds or potential false positives. This selection process

associating human expertise and data visualization to rank and select

AI-driven ideas was probably an important success factor in this pro-

ject. Indeed, although not addressed in this paper, issues with syn-

thetic accessibility, complexity, structural alerts issues, or sheer

meaninglessness of certain AI propositions did occur in this project,

although they remained minor in this context. These issues currently

prevent a fully automated compound selection and rather advocate

for a collaboration between chemists and AI, enabling to get the best

of both worlds. Recently, notable progress has been made in the

development of efficient methods for high throughput synthetic

accessibility scoring39–42 which opens the perspective of an increased

automation of the process.

Besides accelerating the discovery of active molecules with a

good MPO profile, another value of the approach was to open up

new chemical space, in a phase when the project team apparently had

already “homed in” on a fairly well-defined scaffold. The association

of the [1,2,3]triazolo[1,5-a]piperidine moiety, very rare in the initial

data set and correlated to poor permeability and efflux, with a

3-fluoropyridine, never tried before, was the answer to solve the

MPO problem.

5 | CONCLUSION

Exploiting a sparse dataset of 881 molecules measured on 11 bioactiv-

ity assays, a DL-based AI de novo design algorithm was able to gener-

ate 150 virtual compounds with optimal in silico profiles against all

desired characteristics of the project's TPP. Among those, 11 com-

pounds were synthesized and measured on all 11 criteria of the TPP.

The AI-designed molecules outperformed the ones designed by tradi-

tional medicinal chemistry approaches, achieving superior MPO

scores. More importantly, three of those were found to meet the pro-

ject's TPP, one of them strictly meeting all MPO objectives, the other

two matching 10 objectives and being in the error margin of the assay

for the last one. The AI algorithm came up with functional groups,

which, although being rare or absent in the initial dataset, turned out

to be highly beneficial for the MPO.

To our knowledge, this is the first report of a successful applica-

tion of deep learning to de novo design for solving an MPO issue in

an actual drug discovery project, moreover on a large number of

objectives. This brings unequivocal evidence of the potential of this

technology to bring substantial improvements to medicinal chemistry.

The use of such an approach in earlier stages of drug discovery

(i.e., hit discovery, hit to lead and early LO) is under investigation.

Improvement needs have been identified and are being addressed,

notably regarding synthetic accessibility, compound complexity and

domain of applicability of the predictive models.
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