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Abstract

Transformers exhibit remarkable in-context learning capabilities, solving new tasks with-
out requiring explicit model weight updates. However, existing training paradigms for in-
context learners rely on vast, unstructured datasets, which are costly to use in training and
challenging to collect and analyze. Inspired by processes that drive human learning and
motivated by these limitations, we propose a paradigm shift: training on multiple smaller,
domain-specific datasets to improve generalization. We investigate this paradigm by lever-
aging meta-learning to train an in-context learner across diverse, small-scale datasets using
the Meta-Album benchmark. We further investigate realistic scenarios, including domain
streaming with curriculum learning strategies and settings where training data is entirely
unlabeled. Our experiments demonstrate that this multi-dataset approach promotes broader
generalization, enhances robustness in streaming scenarios, and achieves competitive per-
formance even under unsupervised conditions.

1 Introduction

In-context learning (ICL) has emerged as a transformative paradigm in artificial intelligence, particularly
with the development of large language models (LLMs). Unlike traditional machine learning approaches that
rely on explicit weight updates or fine-tuning for adapting to new tasks, ICL enables models to generalize
and solve tasks on the fly given only a few examples in the form of demonstrations (Brown et al., 2020).
These demonstrations act as contextual information that helps the model infer the objective of a given task
and make the right prediction without altering its internal parameters. This dynamic adaptability makes
ICL a powerful framework for few-shot and even zero-shot learning, positioning it as a versatile tool for
tackling diverse tasks in real time (Olsson et al., 2022).

Despite these advancements, the mechanisms underlying ICL remain an active area of investigation. Recent
work has sought to draw connections between ICL and meta-learning (Min et al., 2022a; Kirsch et al., 2022;
Fifty et al., 2024). Meta-learning approaches are explicitly trained to adapt to new tasks by leveraging
previously learned knowledge and information extracted from a small set of data (context) (Vettoruzzo
et al., 2024; Hospedales et al., 2021; Son et al., 2024; Finn et al., 2017). While meta-learning algorithms
are explicitly trained for this purpose, e.g., by meta-learning a generalizable feature extractor as in Snell
et al. (2017); Vinyals et al. (2016), in-context learners acquire this ability implicitly during the training phase
(Akyürek et al., 2022), relying on large-scale datasets and large architectures to uncover patterns that enable
generalization. Training such large models on vast, uncurated language corpora, such as the Common Crawl
dataset (Raffel et al., 2020), is prohibitively expensive, lacks interpretability, and deviates significantly from
how humans learn. Children are immersed in complex, unstructured environments from early on, but studies
have shown that their learning is initially focused and repetitive (Farzin et al., 2010; Barrett, 1985) —they
first observe a small set of familiar objects and faces before expanding to more diverse stimuli (Jayaraman
et al., 2017; Clerkin et al., 2017). The same applies while learning to read, where the brain first learns
to recognize and differentiate lines, curves, and strokes, before being able to generalize to single characters
and entire words (Smith, 2024; Vong et al., 2024; Dehaene, 2010). This structured, incremental exposure
supports the gradual development of generalization, mirroring how certain model training strategies may also
benefit from domain-specific focus (Maurer et al., 2007). This highlights an important difference between
human learning and traditional LLM training: while LLMs rely on vast amounts of unfiltered data to achieve
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Figure 1: Overview of GEOM. The left side illustrates two training paradigms: (a) a leave-one-out (LOO)
approach where the model is trained on all domains except one (e.g., Large Animals), and a dataset from
the excluded domain is used for evaluation; and (b) a sequential approach, where datasets are introduced to
the model in a sequential order and the model is evaluated on the test set of a previously seen dataset. The
right side depicts the model evaluation process. A new task Tnew is sampled from a dataset, either an entire
dataset from DLOO in (a) or the test split of a previously seen dataset in (b). This task is then organized
into a non-causal sequence as described in Sect. 3. An in-context learner processes this sequence, using the
context to infer and predict the query label.

generalization, a child can generalize with fewer, more meaningful examples (Smith, 2003). This suggests
that the key to generalization may depend less on the sheer volume of data and more on its quality and the
sequence in which it is presented (Bambach et al., 2018).

Motivated by these limitations, we propose an alternative perspective: training on multiple smaller,
domain-specific datasets to foster generalization. To investigate this, we analyze the performance
of an in-context learner trained on visual tasks sampled from Meta-Album, a multi-domain meta-dataset
designed specifically for few-shot image classification (Ullah et al., 2022). By evaluating performance across
distinct visual domains, we can assess whether ICL possesses an intrinsic ability to generalize beyond its train-
ing domain. More specifically, we adopt a meta-learning approach to train a transformer model from scratch,
reframing meta-learning as a sequence modeling problem. We organize tasks into non-causal sequences (Fifty
et al., 2024; Vettoruzzo et al., 2025), where each instance is concatenated with its corresponding label to form
the context, while query data is used for prediction. These sequences are fed into a transformer encoder,
which processes the task context to predict the query label. By leveraging this formulation, we aim to train a
model that favors generalization over memorization, a capability we emphasize in the name of our approach:
GEOM. Although this strategy does not universally outperform training on large, uncurated corpora, it can
match — and in some cases exceed — the performance of large-scale pre-training, while offering additional
benefits such as modularity, interpretability, and adaptability. Keeping datasets separate enables sequential
training and simplifies the integration of new data as it becomes available. Similar approaches have been
explored in recent work on language models (Xie et al., 2024; Chowdhery et al., 2023), showing that access
to more balanced and curated web data can enhance the learning process.

Beyond investigating ICL with multiple domain-specific datasets, we further explore how GEOM can emu-
late human learning processes through two complementary strategies: sequential learning and unsupervised
learning. Sequential learning mirrors the structured, incremental progression of human learning, where
knowledge is acquired over time in an ordered manner (Sheybani et al., 2024b; Wang et al., 2024b). This
paradigm introduces unique challenges related to dataset ordering such as how the order of datasets influ-
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ences learning and the risk of forgetting earlier tasks (Lopez-Paz & Ranzato, 2017; Wang et al., 2024b).
We employ curriculum learning strategies (Bengio et al., 2009; Soviany et al., 2022; Liu et al., 2024a) that
organize datasets based on increasing levels of difficulty, either using a transfer learning (TL)-based approach
(Faber et al., 2024) or optimal transport (OT) (Peyré et al., 2019; Chang et al., 2023; Alvarez-Melis & Fusi,
2020). These methods, together with our decision to use multiple, small datasets instead of having direct
access to the whole knowledge, enable the model to adapt gradually, improving its generalization and study
its resilience to forgetting. In addition, this confirms the generalization abilities of the model, as it acquires a
general knowledge, rather than memorizing previously seen examples. An illustration of this variant, which
we will refer to as GEOM-S (GEOM-Sequential), is presented in Fig. 1.

In contrast, unsupervised meta-learning reflects the human ability to derive meaningful patterns from raw,
unlabeled experiences (Bambach et al., 2018). To explore this, we experiment with an unsupervised meta-
learning approach, where tasks are generated through data augmentation and data mixtures, following
the method proposed in Vettoruzzo et al. (2025). The resulting variant, denoted as GEOM-U, achieves
remarkable generalization across tasks, further underscoring the benefits of leveraging small-scale datasets
from diverse domains.

To summarize, our study (1) highlights the advantages of training on multiple small-scale, domain-specific
datasets, emphasizing its practical relevance; (2) demonstrates that this approach fosters improved gener-
alization compared to training on a single, large-scale dataset; (3) it proves even more effective in ordered
sequential scenarios, achieving continuous improvement as additional datasets are introduced without catas-
trophic forgetting; (4) it showcases remarkable generalization across tasks, even in the absence of labeled
data. In conclusion, by revisiting the training process of in-context learners, we propose an approach that
draws inspiration from human learning processes, potentially bringing AI closer to natural and efficient
learning.

The remainder of this paper is organized as follows. We provide an overview of the existing literature in
Sect. 2 and we formally define the method and the datasets used in our experiments in Sect. 3 and Sect. 4,
respectively. We then present the results across three different multi-domain scenarios: the supervised
(offline) scenario in Sect. 5, the sequential scenario in Sect. 6, and the unsupervised scenario in Sect. 7.
Finally, Sect. 8 concludes the paper and outlines potential directions for future work.

2 Related Work

Meta-learning for in-context learning. The term “in-context learning”, introduced by Brown et al.
(2020), describes the ability of LLMs to solve tasks based solely on contextual examples provided during
inference, without requiring explicit weight updates or fine-tuning. Initially thought to be exclusive to
large-scale language models (Radford et al., 2019; Hendrycks et al., 2020), thus trained on vast datasets
(Raffel et al., 2020; Gao et al., 2020; Penedo et al., 2023), subsequent studies have shown similar behavior
could be achieved also in smaller models (Schaeffer et al., 2023; Du et al., 2024), trained on more compact
image datasets (Chan et al., 2022; Singh et al., 2023) like Omniglot (Lake et al., 2015). This capability
has been compared with meta-learning, which explicitly trains models to adapt to new tasks by leveraging
prior knowledge (Schmidhuber, 1987; Vettoruzzo et al., 2024; Hospedales et al., 2021). Unlike meta-learning,
where task generalization is explicitly encouraged during training, ICL emerges implicitly during the pre-
training stage. Recent studies have combined these paradigms by integrating meta-learning into ICL training,
improving few-shot performance and model generalization (Santoro et al., 2016; Min et al., 2022a; Chen
et al., 2022; Kirsch et al., 2022; Wang et al., 2024a; Fifty et al., 2024; Vettoruzzo et al., 2025). In particular,
CAML (Fifty et al., 2024) and CAMeLU (Vettoruzzo et al., 2025) reframe meta-learning as a non-causal
sequence modeling problem and demonstrate superior cross-domain performance, respectively in supervised
and unsupervised settings.

Multi-domain training paradigm. The training paradigm in LLMs usually relies on unstructured,
large-scale text corpora scraped from the entire web (Brown et al., 2020; Raffel et al., 2020; Gao et al., 2020;
Penedo et al., 2023). However, the sheer scale and lack of curation in these datasets introduce challenges
related to data quality, redundancy, and potential biases. To address these issues, recent efforts have focused
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on improving dataset quality by weighting different data sources based on their quality (Chowdhery et al.,
2023) or balancing model weights during training (Xie et al., 2024). These methods, though effective, diverge
from learning by analogy typical of humans (Winston, 1980), where learning occurs through analogies across
diverse domains—a concept tied to meta-learning principles. Multi-domain datasets (Triantafillou et al.,
2020; Bornschein et al., 2024; Zhai et al., 2019; Koh et al., 2021) provide a structured way to emulate such
processes facilitating the model adaptation and generalization to diverse tasks (Fifty et al., 2024; Vettoruzzo
et al., 2025). However, these benchmarks are constrained to relatively similar domains or suffer from overlaps
with commonly used datasets in transfer learning and meta-learning research. Meta-Album (Ullah et al.,
2022) overcomes these limitations by offering a well-curated collection of datasets, systematically organized
across ten distinct domains, with minimal overlap and balanced representation.

Sequential learning. Sequential learning, also called continual, lifelong, or streaming learning, represents
a more human-like learning process, where concepts are introduced to a model sequentially, and each of them
is available to the model only for a limited time before it progresses to the next (Wang et al., 2024b). A
significant challenge in sequential learning is balancing two competing goals: ensuring robust generalization
to future tasks by reusing prior knowledge and mitigating catastrophic forgetting of previously learned in-
formation (Lopez-Paz & Ranzato, 2017). To address these challenges, various methods have been proposed
in the literature. These include memory-based methods (Buzzega et al., 2020; Rebuffi et al., 2017; Lopez-
Paz & Ranzato, 2017), architectural-based methods (Sokar et al., 2021; Hemati et al., 2023; Kang et al.,
2022), regularization-based methods (Kirkpatrick et al., 2017; Zenke et al., 2017), and meta-learning-based
approaches (Gupta et al., 2020; Javed & White, 2019; Son et al., 2024; Irie et al., 2022; Lee et al., 2023). How-
ever, these strategies typically evaluate model performance using hand-crafted task streams, often derived
by splitting a single dataset into subsets or applying manually designed data augmentations. Such synthetic
streams fail to capture the complexity of real-world scenarios and suffer from issues such as poorly defined
domain separation, arbitrary task orders, and an absence of structured progression. Curriculum learning
offers a promising solution to these limitations by organizing tasks in a structured manner, typically based
on increasing difficulty (Soviany et al., 2022; Bengio et al., 2009). Studies like Faber et al. (2024); Sheybani
et al. (2024b); Chang et al. (2023); Liu et al. (2024b) propose various techniques for ordering datasets by
complexity level.

3 Method

In this section, we begin by defining the concepts of meta-learning and ICL, highlighting their key differences
in a comparative table (Tab. 1). As the former is well-known and extensively studied Schmidhuber (1987),
the latter has been formally introduced in recent years Brown et al. (2020). To better align with the objectives
of our study, firstly we revise both concepts to make their own purpose more evident; secondly, we describe
GEOM as a meta-trained in-context learner specifically designed to adapt to diverse tasks by leveraging
context examples during inference, and outline the training details used in our experiments.

3.1 Definitions

Meta-learning, often referred to as “learning-to-learn” explicitly utilizes the task’s context (also referred to as
support set in meta-learning) in a structured and well-defined manner. It explicitly encodes how the context
is leveraged, typically through a dedicated adaptation step. This step systematically adapts the model to
the task by enforcing specific algorithms for utilizing and “learning from” the context information.

In-context learning (ICL), on the other hand, involves providing the task context as part of the input (e.g.,
concatenated context examples and queries). However, it does not explicitly define or enforce how the context
should be used to learn from it and produce task-specific outputs. Instead, the model exploits the broad
and diverse knowledge accumulated during the training phase and only leverages the attention mechanism
during inference.

Therefore, although both ICL and meta-learning utilize demonstration contexts for task adaptation, they
differ fundamentally in their approach (see Tab. 1). ICL arises implicitly during the pre-training phase of
attention-based models, requiring no additional design to enable adaptation, while meta-learning is a strategy
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Table 1: Differences between in-context learning (ICL) and meta-learning.

Aspect In-context learning Meta-learning

Training data Trained on vast datasets, often leading
to broad generalization.

Relies on tasks sampled from meta-
datasets for simulating adaptation.

Training objective Emerges implicitly from standard ob-
jectives (e.g., next-token prediction or
classification).

Explicitly optimized for task adapta-
tion during meta-training.

Adaptation process Adapts during inference solely through
task context; no parameter updates re-
quired.

May require task-specific adaptation
(e.g., gradient updates) during infer-
ence.

Generalization Relies on patterns learned during pre-
training.

Optimized to generalize quickly across
tasks.

Applications Commonly used in LLMs. Widely applied in scenarios requiring
rapid task adaptation (e.g., robotics,
reinforcement learning, few-shot classi-
fication).

aimed at designing models that rapidly adapt to new tasks or domains through explicit task conditioning
and optimization. Given these distinctions, our approach meta-learns an in-context learner to combine
the learning to learn strategy typical of meta-learning with the implicit task inference and generalization
capabilities of ICL, resulting in a flexible yet systematic framework for generalization across diverse tasks.

3.2 GEOM

In this section, we provide a general overview of GEOM. The architecture will be further expanded in the
coming sections to fit the specific setting. Specifically, in Sect. 5, GEOM is trained with a leave-one-out
(LOO) approach, where one domain is excluded from the training pipeline, to evaluate cross-domain general-
ization. In Sect. 6, sequential training is performed on the training split of each dataset, and performance is
evaluated on the test split. Finally, Sect. 7 discusses an unsupervised scenario where no labels are available
during training. An illustration of our approach both in the LOO and sequential setting is presented in
Fig. 1.

We formalize the general pipeline for GEOM by following the same principle of several ICL methods (Brown
et al., 2020; Kirsch et al., 2022; Chan et al., 2022) and inheriting the non-causal nature of the transformer
encoder as in Fifty et al. (2024) and Vettoruzzo et al. (2025). Let D = {Da | a = 1, . . . , A} be the set of all
available datasets containing image-label pairs. Following the common rationale of meta-learning, we split
each dataset into two parts Da = {Dtrain

a , Dtest
a } such that the classes in the training set do not overlap

with those in the test set, i.e., {ytrain} ∩ {ytest} = ∅. At training time, we sample a task Ti from a randomly
chosen dataset Dtrain

a . Each task corresponds to a data generating distribution Ti ≜ {pi(x), pi(y|x)} and
consists of data from N distinct classes. We reserve a small number of K labeled examples per class to
form the task context or demonstrations, while the remaining Q examples are used as queries to evaluate
the predictions. As a result, for each task, we construct Q sequences as the concatenation of the full context
and a single unlabeled query xq. This sequence is defined as follows:

Si,q = ((x1, y1), . . . , (xNK , yNK), xq) q = 1, . . . , Q, (1)

where NK is the total number of context examples. It is worth noting that this sequence is permutation
invariant, or non-causal, as the order of context examples does not affect the query classification. This
property is inherent in visual meta-learners (Fifty et al., 2024; Garnelo et al., 2018; Müller et al., 2022) and
differs from the causal sequence model typical of LLMs.
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To enable the model to learn from these non-causal sequences, GEOM consists of three components: (1)
a feature extractor fψ that maps each image into an embedding space; (2) a single-layer linear class en-
coder gϕ that maps the value of each label yk ∈ {1, . . . , N} to a high-dimensional space; and (3) a
non-causal transformer encoder Mθ with a classification layer on top that performs the classification. In
particular, each sequence is formed by concatenating the output of the feature extractor for each image
with its corresponding encoded label. Since the class of the query image is unknown, a randomly ini-
tialized learnable vector is appended to each query representation. This results in the following sequence
Si,q = ((fψ(x1), gϕ(y1)), . . . , (fψ(xNK), gϕ(yNK)), fψ(xq)) , q = 1, . . . , Q, which resembles the format in Eq. 1.
This sequence is fed into the transformer encoder, and only the output corresponding to the query sample
is selected and passed through a classification layer to predict the query label. This process iterates for all
queries in the task, and the aggregated loss is employed for model training. The resulting training objective
is formulated as follows:

min
θ,ϕ

ESi

[
1
Q

Q∑
q=1

L(Mθ(Si,q), yq)
]

(2)

where Si = {Si,q}Qq=1 represents the set of sequences associated to each task Ti ∼ Dtrain
a , L is the cross-

entropy loss function, and yq ∈ {1, . . . , N} is the true label of the query xq within the context window.

During evaluation, a new task Tnew with N classes is sampled from a dataset Dtest
a (with a ∈ {1, . . . , A}),

and the task context, consisting of K labeled examples per class, is used to guide the classification of each
query sample into one of the N classes.

3.3 Training details

For all our experiments, we build each training episode as an N -way K-shot classification task, where N and
K are fixed to 5. Following the same model architecture as in Vettoruzzo et al. (2025), we use a ResNet-50
(He et al., 2016) feature extractor fψ pre-trained on ImageNet-1k and a class encoder gϕ consisting of a
single learnable layer that maps the N class labels to a dimensionality of 256. The non-causal transformer
consists of eight encoder layers, each incorporating a multi-head self-attention block with eight attention
heads, an MLP, and a single-layer classifier that maps the transformer output to the predicted category.
The episodic training is performed for 300 000 iterations with Adam optimizer, an initial learning rate set at
10−5, and a warmup cosine scheduler. For future evaluation, the best-performing model is saved as the one
resulting in the highest validation accuracy across 50 000 new tasks, sampled from Dtest

a , a = 1, . . . , A. The
code is written in Python and the experiments are run on an NVIDIA GeForce RTX 3070 Ti Laptop GPU
and on an NVIDIA A100-SXM4 GPU with 40GB of VRAM, to speed up the execution. More details about
the training settings can be found in Appendix A.2, while the code will be released upon acceptance of the
paper.

4 Dataset
Table 2: Dataset IDs in Meta-Album Mini.

Domain name First Second Third
release release release

Large Animals 44285 44298 44305
Small Animals 44282 44292 44306
Plants 44283 44293 44302
Plant Diseases 44286 44299 44303
Microscopy 44281 44297 44308
Remote Sensing 44290 44300 44307
Vehicles 44289 44295 44309
Manufacturing 44288 44294 44304
Human Actions 44284 44291 44301
OCR 44287 44296 44310

Meta-Album (Ullah et al., 2022) serves as the primary
benchmark for this study. Although this approach could
be expanded to other collections, we chose Meta-Album
as it offers a diverse and comprehensive suite of datasets
tailored for few-shot learning, transfer learning, and meta-
learning research, in addition to its well-curated na-
ture, wide range of domains included and balance across
datasets. It includes 30 image classification datasets (as
of writing), spanning ten distinct domains. Each domain
comprises three datasets made available in three succes-
sive releases, as outlined in Tab. 2. The datasets are
uniformly preprocessed and are available in three sizes
(Micro, Mini, and Extended) to accommodate varying
computational requirements. For our experiments, we
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primarily focus on the Mini size, which includes all original classes from the 30 datasets (up to 706 classes
per dataset), and 40 examples per class. We refer to the datasets by their dataset IDs, detailed in Tab. 2,
unless otherwise stated.

Since ImageNet-1k (Deng et al., 2009) has been widely used when pre-training model backbones for visual
recognition and identification tasks, it is crucial to assess the potential overlap between Meta-Album and
ImageNet-1k. Such overlap could lead to data leakage, where models trained on ImageNet-1k may inadver-
tently benefit from prior exposure to similar data, resulting in enhanced performance on Meta-Album. To
ensure a fair evaluation, we perform an analysis to identify any overlaps, both in terms of class names and
underlying concepts, between Meta-Album and ImageNet-1k. We use two complementary approaches for
this investigation:

1. Label matching: Class names in Meta-Album and ImageNet-1k are compared by identifying
matching words. A pre-processing step is applied to remove special characters and convert all
names to lowercase, ensuring consistency in the comparison.

2. Concept similarity: Using CLIP (Radford et al., 2021) embeddings, we calculate cosine similarity
scores between Meta-Album and ImageNet-1k labels to identify overlapping concepts. Scores above
a certain threshold are considered indicative of overlap. The threshold is computed considering
the distribution of cosine similarity values for each dataset, identifying the 90th percentile of the
distribution, and calculating the median value across all datasets. The resulting global threshold is
set to 0.83. Fig. 3 illustrates the cosine similarity distributions for all datasets.

Three domains—Small Animals, Microscopy, and OCR—are excluded from the concept similarity analysis
due to their unique characteristics and label formats, which make a direct comparison with ImageNet-1k
impractical. Specifically, Microscopy and OCR feature concepts differ significantly from those in natural
images (as in ImageNet-1k), while Small Animals, with its reliance on Latin names, introduces ambiguity
and confusion in the matching process, leading to unreliable results. The results, illustrated in Fig. 2, reveal
a substantial degree of similarity, exceeding 50%, for the Large Animals datasets (with dataset IDs 44285,
44289, 44305). Significant similarities with ImageNet-1k are identified also in the Remote Sensing and Human
Actions domains, highlighting the possibility of data leakage when models pre-trained on ImageNet-1k are
evaluated on these datasets. More details about this analysis and the other datasets used in this work are
described in Appendix A.2.

5 Supervised (offline) learning

In this section, we investigate whether training on multiple small-scale datasets across diverse domains can
improve model generalization when tested on an entirely different domain. This setting offers practical
advantages as small datasets are easy to curate, update, and maintain allowing individual datasets to be
replaced or excluded without disrupting the overall training pipeline. This modular approach ensures flexi-
bility in handling potentially biased or outdated data (Bourtoule et al., 2021; Menon et al., 2020), making it
easier to refine and adapt the dataset composition over time. To address this question, we consider a stan-
dard supervised learning scenario where all training data are accessible at the start of the training phase,
and evaluation is performed cross-domain, on a domain excluded from training. We adopt a LOO approach,
where datasets from nine randomly selected domains are used for training, while the remaining domain is
reserved for evaluation. Specifically, we define the evaluation datasets as DLOO = {DLOO

l | l = 1, 2, 3},
representing the three datasets from the left-out domain and the training datasets as {D\DLOO}, which
include all other datasets. As the focus here is on cross-domain evaluation, datasets are not split into Dtrain

a

and Dtest
a , but all data are used during meta-training if they belong to {D\DLOO}, or during evaluation if

they are part of DLOO. Depending on the baseline used, tasks may consist of examples from a single dataset
or a mixture of datasets, as described in the subsequent section. All other methodological aspects align with
those described in Sect. 3.
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is evaluated on the datasets from the left-out domain. (Right) Corresponding class overlapping between
ImageNet-1k and Meta-Album as shown in Fig. 2.
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5.1 Multi-dataset training

Building on the cross-domain LOO scenario described earlier, we evaluate the generalization performance
of three distinct baselines. The goal of this section is to determine whether training on multiple, distinct
small-scale datasets from different domains provides greater benefits for model generalization than relying
on a single large-scale dataset. The baselines analyzed are as follows:

• GEOM: each Meta-Album dataset is treated as a distinct entity, and each training task consists
exclusively of images sampled from a single dataset.

• GEOM-M (GEOM-Merged): all Meta-Album datasets are combined to resemble a large-scale
dataset, where each training task can include samples from multiple datasets and domains.

• GEOM-IN (GEOM-ImageNet-1k): training tasks are sampled from ImageNet-1k (Deng et al.,
2009), a large-scale benchmark widely used in computer vision.

Both GEOM and GEOM-M are trained across ten distinct combinations of Meta-Album domains, ensuring
all possible LOO scenarios are covered. The performance for all baselines is evaluated on the left-out domain,
and the results are summarized in Fig. 4. Overall, GEOM performs comparably or even better than GEOM-
M across the Meta-Album benchmark, although tasks in GEOM can be considered more challenging as they
usually involve a fine-grained classification. One possible explanation for this is the burstiness of GEOM’s
training data (Chan et al., 2022; Singh et al., 2023; Zhao et al., 2024; Chan et al., 2025). In GEOM, tasks
are sampled within domain-specific datasets, leading to naturally clustered, or bursty, task distributions. In
contrast, tasks in GEOM-M are constructed by uniformly sampling from the merged Meta-Album datasets,
resulting in “less bursty” distribution. While the differences in performance are not always substantial,
GEOM offers several advantages, including improved modularity and adaptability to new domains without
requiring a large-scale, merged dataset. This highlights the benefit of preserving domain-specific boundaries
during training, rather than merging datasets into a single corpus. These findings contrast with the common
training paradigm for LLMs, where massive, unstructured datasets, often combining text from a wide variety
of domains, are leveraged to improve generalization (Brown et al., 2020). Our results suggest that focusing on
domain-specific training can yield comparable or improved cross-domain generalization, providing additional
benefits. This aligns with human learning, which often benefits from focused task-level learning before
generalizing across domains (O’hearn, 2005; Feldman, 2003; Gagné, 1985). Additional evidences supporting
this principle is presented in Tab. 12 in Appendix A.6, where results are reported for the 5-way 1-shot
scenario and in Sect. 6.3, where structured curricula further improve performance and generalization.

To further investigate the generalization capabilities of GEOM, we visualize the relative validation accuracy
curve in Fig. 18 in Appendix A.9. Consistently with the findings of Kirsch et al. (2022) and Vettoruzzo
et al. (2025) three learning phases can be recognized during the model learning. In the memorization
phase the model simply memorizes the training data and the cross-domain accuracy does not improve, the
learning-to-learn phase, where the model learns to solve new, unseen tasks, and the final generalization phase
where the model generalize out of distribution. These finding supports our hypothesis that GEOM leverage
generalization over memorization for cross-domain predictions.

GEOM-IN is included primarily as a reference point, due to the widespread use of ImageNet-1k in the vision
community. When comparing GEOM to GEOM-IN, GEOM achieves superior or comparable performance in
datasets with minimal class overlap between Meta-Album and ImageNet-1k. In domains with significant class
overlap, such as Large Animals and Human Actions, GEOM-IN benefits from the knowledge acquired during
training, relying on memorization rather than true generalization. However, in domains like Remote Sensing,
where a notable overlap with ImageNet-1k exists but is accompanied by a significant distribution shift
(e.g., images acquired through a GPS system vs. a normal camera), GEOM-IN struggles to adapt to these
differences and to match GEOM’s performance. This suggests that memorization alone may not be sufficient
when concepts are represented through significantly different modalities or contexts. Another domain where
GEOM-IN prevails over GEOM is Manufacturing. This behavior can be attributed to the reliance of its
datasets on low-level features for classification, which are better captured by the large-scale ImageNet-1k
(1 281 167 images) compared to the smaller Meta-Album Mini collection (163 200 images). This assumption
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Figure 5: Comparison of GEOM training only on datasets from the first release (First, 9 datasets), on
datasets from the first and second releases (Second, 18 datasets), and on datasets from all three releases
(Third, 27 datasets) of Meta-Album Mini. The training is performed following the LOO setting described in
Sect. 5, and the performance is evaluated on the datasets from the left-out domain (represented with blue,
orange, and green colors). Results are reported only for three exemplary scenarios, while the complete set
of results can be found in Fig. 17 (Appendix A.6). In particular, (a) and (b) show increased generalization
as more out-of-domain datasets are added to the training pipeline, while (c) shows a modest performance
improvement due to its reliance on low-level features.

is further corroborated by results obtained with the Extended size of Meta-Album (1 384 616 images), where
GEOM performance in the Manufacturing domain improves significantly. As shown in Tab. 9 in Appendix
A.6, accuracy increases by 26.1%, 9.4%, and 10.9% for the three datasets in the Manufacturing domain. To
further confirm that the results of GEOM vs GEOM-IN, in particular that the performance of GEOM-IN are
not influenced by the frozen feature extractor pre-trained on ImageNet-1k, we replace ResNet50 with CLIP
(Radford et al., 2021). Tab. 11 in Appendix A.6 evidences comparable relative performance between GEOM
and GEOM-IN when a different feature extractor is used. Finally, we evaluate the performance of GEOM
vs. GEOM-M when the test tasks are created following the task creation of GEOM-M (Tab. 13): despite
GEOM has never experienced tasks that contain classes from mixed domains, the advantage of GEOM-M
is still negligible and, surprisingly, the overall highest result is achieved by GEOM when trained excluding
OCR. Since this domain is much larger than all the others, it may introduce a significant bias in the final
performance.

For detailed accuracy results of Fig. 4, please refer to Tab. 10 in Appendix A.6.

5.2 Impact of number of datasets

To investigate whether the generalization ability of the model improves progressively with the number of
datasets used during training, we evaluate three distinct scenarios: training exclusively on datasets from the
first release, on datasets from the first and second releases, and on datasets from all three releases of Meta-
Album. These configurations allow us to examine the relationship between generalization and knowledge
accumulation, drawing parallels with the progressive learning process observed in humans (Sheybani et al.,
2024b). We refer to these three scenarios as First, Second, and Third, highlighting the usage of all datasets
available up to a certain release. In line with the LOO setting described in Sect. 5, training is conducted
on datasets spanning nine domains, with evaluations performed cross-domain on the left-out domain. As
illustrated in Fig. 5, and in Fig. 17 in Appendix A.6, incorporating additional datasets consistently enhances
generalization across all domains. This improvement can be attributed to the increased variability of training
tasks, which has been shown to promote robust learning (Chan et al., 2022; Singh et al., 2023; Wang et al.,
2024a; Raparthy et al., 2024; Raventós et al., 2023; Panwar et al., 2024). However, such improvement
varies across domains. For instance, in Microscopy, Manufacturing, and OCR, the performance gains remain
relatively modest compared to other domains. We conjecture that this is due to the reliance of these domains
on simple, low-level features, which benefit more from an increased number of images per class, rather than
the increased diversity that a higher number of classes introduces. In contrast, domains characterized by
greater complexity benefit significantly from the inclusion of additional datasets, as the broader diversity
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Table 3: Results using the three sizes of Meta-Album: Micro, Mini, Extended. The training is performed
following the setting described in Sect. 5, with all Meta-Album domains, but OCR, included in the training
phase. The performance is then evaluated on datasets that do not belong to the Meta-Album benchmark,
such as CIFAR-fs (Bertinetto et al., 2019), CUB (Wah et al., 2011), Aircraft (Maji et al., 2013), Meta-iNat
(Wertheimer & Hariharan, 2019), EuroSat (Helber et al., 2018), and ISIC (Codella et al., 2018). GEOM-IN
is trained using ImageNet-1k. Results show the average across three complete runs of the algorithms.

CIFAR-fs CUB Aircraft Meta-iNat EuroSat ISIC
GEOM (Micro) 60.47 ± 4.98 62.17 ± 2.51 29.26 ± 0.62 58.38 ± 6.39 63.70 ± 1.20 25.69 ± 1.93
GEOM (Mini) 79.01 ± 0.95 88.94 ± 0.70 39.73 ± 1.32 74.10 ± 0.12 78.40 ± 0.84 31.38 ± 1.33
GEOM (Extended) 76.25 ± 1.03 90.39 ± 0.30 40.88 ± 0.84 75.15 ± 0.28 79.31 ± 0.82 31.70 ± 0.56

GEOM-IN 85.27 ± 1.08 79.64 ± 1.01 38.24 ± 1.20 76.10 ± 0.32 56.70 ± 2.32 27.90 ± 1.41

helps the model generalize to unseen data more effectively. These findings raise an important question of
whether this improvement is driven by the increased number of images or by the broader representation of
classes, a question explored in detail in the next section. The numerical evidence of these experiments can
be found in Tab. 14 in Appendix A.6.

5.3 Number of classes vs. number of images

To better understand the factors driving the improved performance of GEOM as more datasets are included
during training, we analyze whether the key determinant is an increase in the number of classes or the
number of images in the training set. Previous research (Singh et al., 2023; Chan et al., 2022) suggests that
increasing the number of classes plays a more significant role in enhancing the generalization capabilities
of in-context learners than simply increasing the total number of images. However, these studies are often
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Figure 6: Validation performance of GEOM
while trained on the Mini and Extended
size of Meta-Album. The Mini size achieves
peak performance early but declines due to
overfitting, while the Extended size shows
steady improvement over longer training
periods, indicating the impact of increased
image quantities in mitigating overfitting.
The validation accuracy at each epoch
is calculated on 50 tasks per dataset
(1500 tasks in total) and both the origi-
nal (shaded) and the smoothed (saturated)
curves are represented.

limited to in-domain settings, and especially restricted to train-
ing and test tasks that are both drawn from the same dataset
(specifically, Omniglot (Lake et al., 2015)). Our work seeks to
validate and extend these claims to a more challenging cross-
domain setting. To achieve this, we considered three differ-
ent versions of Meta-Album with varying sizes: Micro, Mini,
and Extended. Since Extended does not include the OCR do-
main, we remove the three datasets associated with OCR also
in Micro and Mini. We then evaluate the model on external
datasets outside the Meta-Album benchmark, such as CIFAR-
fs (Bertinetto et al., 2019), CUB (Wah et al., 2011), Air-
craft (Maji et al., 2013), Meta-iNat (Wertheimer & Hariharan,
2019), EuroSat (Helber et al., 2018), and ISIC (Codella et al.,
2018). This allows us to train the model following the same ap-
proach described in Sect. 5, but incorporating all datasets from
the nine Meta-Album domains, after excluding OCR. The main
differences between the three Meta-Album sizes are that Mi-
cro and Mini have the same number of images per class, but
the number of classes per domain in Mini can be significantly
higher than the 20 classes used in Micro. The Extended size,
instead, has the same number of classes as Mini when remov-
ing the OCR dataset, but the number of images per class may
notably increase for some domains. From Tab. 3, we observe
that the larger performance improvement occurs when moving
from the Micro to the Mini size of Meta-Album, compared to
moving from the Mini to the Extended size. These results sug-
gest that the most significant performance improvements arise
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from increasing the number of classes, which enriches task vari-
ability and broadens the model’s capacity for generalization. On the other hand, the substantial increase in
the number of images in the Extended size does not yield a proportional performance boost, highlighting the
greater importance of class diversity compared to an increase in the number of images per class. This con-
clusion is further supported by the performance comparison between GEOM and GEOM-IN. Despite having
access to a consistently high number of images per class, GEOM-IN does not achieve the same performance
as GEOM (Mini). Even in datasets like CIFAR-fs (Bertinetto et al., 2019) and Meta-iNat (Wertheimer &
Hariharan, 2019), where we expect higher performance for GEOM-IN due to the presence of significant over-
lap with ImageNet-1k classes, GEOM-IN exhibits performance that is only comparable with GEOM (Mini)
and GEOM (Extended). While class diversity emerges as the dominant factor, the dataset size, i.e., the
total number of images, plays a non-negligible role. In the case of Micro, an insufficient number of images
leads to high variance in performance (see Tab. 3). In addition, when comparing the validation accuracy of
Mini and Extended, as in Fig. 6, GEOM on Mini achieves a peak validation accuracy within 200 epochs but
subsequently declines, likely due to overfitting. A possible explanation is that after the model has explored
all possible combinations of the training data, it starts memorizing specific examples rather than learning
generalizable patterns, which may reduce its ability to generalize to unseen classes. Conversely, training on
Extended, which contains approximately five times the number of images in Mini, requires a longer time to
converge but continues improving. These findings lead to two considerations: while longer training times for
a given dataset size may not always enhance performance, a sequential scenario, where datasets and classes
evolve over time, can result in significant performance gains. This is explored further in Sect. 6.

6 Sequential learning

In this section, we investigate a more realistic scenario where datasets are presented to the model sequentially
as a stream of tasks rather than being available all at once during training. Following the task definition in
Sect. 3, each dataset Da ∈ D is divided into Dtrain

a and Dtest
a , ensuring no class overlap between the two sets.

During training, each dataset is available for a fixed duration (measured in training epochs), and tasks are
sampled from it proportionally to the allocated time. Once the allocated time elapses, the stream advances to
the next dataset, and previously seen data becomes inaccessible. Importantly, we do not incorporate model
rehearsal techniques (Buzzega et al., 2020; Rebuffi et al., 2017; Gupta et al., 2020), requiring GEOM to rely
solely on its meta-learned knowledge to generalize effectively to new tasks that may involve both previously
seen and novel concepts. To distinguish this scenario from the supervised (offline) setting (Sect. 5), where
all the datasets are available simultaneously during training, we refer to the sequential model as GEOM-S
(GEOM-Sequential). We define this scenario as “sequential” to highlight the progression of training datasets
ordered with some specific heuristic, e.g., with a domain-based order or with an increasing complexity. This
terminology reflects a key distinction from traditional continual learning approaches. Our method does not
involve training until convergence on each dataset before advancing to the next, and it aims to evaluate the
model on completely new tasks with different classes from those observed during training. This scenario
aligns more closely with the meta-learning literature and the human learning process.

More formally, at time T , with T ≤ A, the model has observed the datasets Dtrain
1 , . . . , Dtrain

T , possibly
corresponding to different domains. The evaluation is performed by sampling new, unseen tasks Tnew ∼
Dtest
t , t < T from datasets observed earlier in the sequence to assess performance on previously encountered

domains. To better manage computational resources, GEOM-S is evaluated only at the end of the training
stream, after all datasets in the Meta-Album Mini benchmark have been processed sequentially. Additionally,
we investigate the model’s ability to retain knowledge by measuring catastrophic forgetting on previously
seen domains (Sect. 6.2).

An important consideration in the sequential paradigm is the order in which datasets are presented. One
straightforward approach is to organize the datasets in domains and present a sequence of domains to the
model. This ensures a gradual shift in concepts, as each domain comprises three related datasets, and it is
evaluated in Sect. 6.1. However, this method does not account for the progressive structuring of information,
which can facilitate more effective learning (Sheybani et al., 2024b). To explore alternative dataset ordering,
we evaluate curriculum-based approaches (Bengio et al., 2009; Soviany et al., 2022). These include a TL-
based curriculum (Faber et al., 2024), which balances similarity and difficulty in the dataset presentation to
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Figure 7: Relative performance of GEOM-S using a static and proportional approach for assigning training
epochs to each dataset compared to the offline baseline, where all the datasets are available simultaneously.
The relative accuracy is calculated as the difference between the accuracy achieved with the static (propor-
tional) approach and the offline baseline, which is set as the reference point at zero.

create a structured learning path, and an OT-based curriculum (Alvarez-Melis & Fusi, 2020; Chang et al.,
2023), where datasets are ordered based on their relevance to previously acquired knowledge. These strategies
are detailed in Sect.6.3.1 and Sect.6.3.2, respectively.

6.1 Domain-based sequential scenario

To begin, we evaluate GEOM-S in a domain-based sequential scenario, where datasets are ordered according
to their respective domains as defined in the Meta-Album benchmark: Large Animals, Small Animals,
Plants, Plant Diseases, Microscopy, Remote Sensing, Vehicles, Manufacturing, Human Actions, OCR. Given
the difference in dataset sizes across these domains, we evaluate the performance of GEOM-S using two
approaches. In the static approach each dataset is assigned an equal number of training epochs (20),
irrespective of its size, while in the proportional approach, the number of training epochs is allocated in
proportion to the size of each dataset. Additionally, the results are compared with an offline baseline, similar
to GEOM, where all the datasets are simultaneously available during training. This baseline, considered as
an oracle, represents an idealized scenario where all the available knowledge is present upfront. While less
realistic, it helps establish an upper bound for model performance when data accessibility is unconstrained.
Importantly, this baseline is trained exclusively on tasks sampled from Dtrain

a and evaluated on new tasks
from Dtest

a , to have fair results with the streaming scenario. Therefore, unlike the GEOM model introduced
in Sect. 5, the offline baseline does not assess cross-domain generalization; instead, it measures the model’s
ability to “adapt” to new tasks from known domains, as typical in in-domain meta-learning.

Fig. 7 illustrates the performance of GEOM-S using the static and proportional approach relative to the
offline baseline, where all the datasets are available simultaneously. The relative accuracy is computed as
the difference between the accuracy achieved with each approach and the accuracy of the offline baseline,
which is set as the reference point at zero. More quantitative results can also be found in Tab. 17 in Appendix
A.7. As expected, the proportional approach results in an overall better performance compared to static,
particularly for the final three datasets, in the OCR domain. These datasets are significantly larger in terms
of both images and classes, and the static approach allocates an insufficient number of epochs to achieve
even partial convergence. In contrast, the proportional approach addresses this limitation by assigning a
more appropriate number of training epochs based on dataset size. Despite its advantages, the proportional
approach presents challenges in real-world scenarios. It assumes prior knowledge of the size of incoming
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datasets to appropriately distribute training time/epochs, which is often unrealistic. Furthermore, when a
new dataset is introduced, it is impossible to retroactively adjust the epochs allocated to previous datasets,
as no information from them is retained. A more practical alternative might involve training the model until
convergence on each dataset, as commonly done in continual learning applications (Wang et al., 2024b).
However, determining the convergence point remains a challenging task (Han et al., 2023), and with a large
number of datasets, this approach can be prohibitively time-consuming and computationally expensive.
Considering these constraints, we adopt the static approach for the remainder of this paper. While it may
not achieve optimal performance in all cases, it provides a consistent and practical framework for evaluating
GEOM-S in streaming scenarios.

6.2 Analysis of forgetting

To evaluate the model’s ability to retain previously learned knowledge, we adopt the backward transfer
(BWT) metric, which is widely used in the continual learning literature (Wang et al., 2024b; Lopez-Paz &
Ranzato, 2017). BWT provides insight into how well the model maintains performance on earlier tasks as
new ones are introduced. In this work, we modify the traditional use of BWT to focus on domain-based
forgetting, rather than merely task-level forgetting. Specifically, we compute BWT as follows:

BWT = 1
A − 1

A−1∑
a=1

RA,a − Ra,a, (3)

where A is the total number of datasets (30 in Meta-Album) and Ra,b (with b < a) is the average classification
accuracy of the model on tasks sampled from Dtest

b after training on Dtrain
a . While the BWT is commonly

used to measure forgetting in traditional continual learning setups, where tasks typically belong to the
same domain, in our case, the dataset Db belongs to domains that are different from the domain of Da.
This distinction allows us to evaluate domain-based forgetting, which is the focus of our analysis. To
calculate the BWT, we follow the same domain-based sequential order described in the previous section.
After training on all datasets from a particular domain in the sequence, we save the model checkpoint and
evaluate its performance on test tasks sampled from datasets belonging to previously encountered domains.
The resulting accuracies are then used to calculate the average BWT as in Eq. 3. Unlike in typical continual
learning settings (Lopez-Paz & Ranzato, 2017), where models are trained until convergence on each dataset,
we restrict the training time on each dataset to 20 epochs, following the static approach outlined in Sect. 6.1.
Moreover, we evaluate the model on entirely new tasks that are distinct from those used for training. In this
context, the BWT metric captures the model’s ability to leverage previously learned knowledge to generalize
to new tasks that represent previously encountered domains. The results, reported in Fig. 8 and in Tab. 4,
indicate that early in training, when the model has not yet developed a strong internal representation of the
datasets, the model tend to forget, as represented by the negative BWT. However, as training progresses and
the model refines its representations, the BWT increases, reflecting improved retention and generalization.
This is particularly surprising considering the length of the sequence (30 diverse datasets) and the fact that
forgetting is a common challenge in continual learning approaches. Interestingly, the model’s performance on
previously seen domains even improves as it encounters datasets from new domains, leading to positive BWT
values. This supports the findings in Sect. 5.2, which show that an increased number of classes enables the
model to generalize more effectively to unseen tasks. This approach aligns well with real-world applications,
where new data becomes available over time and seamlessly integrates into the learning process, showcasing
the practicality and effectiveness of GEOM-S in diverse, dynamic environments.

6.3 Curriculum learning

To emulate how humans build knowledge over time, we propose ordering the datasets based on their level
of difficulty. However, the literature lacks a clear consensus on how to effectively quantify dataset difficulty
(Soviany et al., 2022; Faber et al., 2024). In this work, we address this gap by utilizing two metrics: a
TL-based technique in Sect. 6.3.1 and an OT computation in Sect. 6.3.2. These metrics provide a measure
of similarity between datasets, enabling us to establish an order and construct various curricula.

14



Under review as submission to TMLR

44
28

5

44
28

2

44
28

3

44
28

6

44
28

1

44
29

0

44
28

9

44
28

8

44
28

4

44
28

7

Dataset ID

LA

+SA

+P

+PD

+MI

+RS

+V

+MA

+HA

+OCR

Tr
ai

ni
ng

 d
om

ai
ns

0.00

0.45 0.00

-1.05 -2.85 0.00

-1.13 -2.02 -1.00 0.00

-3.00 -5.11 -5.16 -5.01 0.00

-0.35 -0.86 -0.12 4.19 3.89 0.00

0.21 1.59 0.18 3.87 6.72 -7.07 0.00

1.00 3.32 2.76 9.36 13.20 -0.77 0.49 0.00

1.46 5.09 3.43 10.87 15.10 0.44 1.12 0.74 0.00

1.30 4.90 2.86 10.11 12.85 1.20 0.84 0.50 -0.35 0.00
5.0

2.5

0.0

2.5

5.0

7.5

10.0
12.5
15.0

Re
la

tiv
e 

Ac
cu

ra
cy

Figure 8: Heatmap showing the performance difference, used to compute
the BWT, on datasets from the first release of Meta-Album Mini (one per
domain), training GEOM-S with the static approach and the domain-based
streaming scenario described in Sect. 6.1. Each entry er,c represents the
difference in accuracy on tasks sampled from dataset Dc, (column), when
the model is trained on all datasets up to domain r (row) versus when
the model is trained on all datasets up to the domain that Dc belongs to.
The sequence order of domains is as follows: Large Animals (LA), Small
Animals (SA), Plants (P), Plant Diseases (PD), Microscopy (MI), Remote
Sensing (RS), Vehicles (V), Manufacturing (MA), Human Actions (HA),
OCR. Higher values in the lower part of the heatmap indicate the model’s
ability to leverage knowledge from previously observed domains to improve
performance as more domains are introduced.

Table 4: Average BWT values
computed using a domain-based
ordered sequence, as described
in Sect. 5. For each domain (de-
noted in the rows), the model
is trained on all datasets from
the previous domains, up to that
point, and the BWT value is cal-
culated by evaluating the model
on test tasks sampled from all
previously encountered datasets.
The calculation is performed as
detailed in Eq. 3 using only
datasets from the first release of
Meta-Album Mini for simplicity
and consistency with the results
in Fig. 8.

BWT
LA −
+ SA 0.45
+ P −1.9
+ PD −1.15
+ MI −4.57
+ RS 1.37
+ V 0.92
+ MA 4.19
+ HA 4.78
+ OCR 3.80
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For simplicity and to optimize computational resources, all curricula are built considering the Micro size of
Meta-Album, which comprises 31 920 images with a balanced distribution of classes and images per class
across all datasets. This is particularly important as unbalanced datasets could skew the computation and
affect the results (Mundt et al., 2023; Schouten, 2024). Once the curricula are defined, the dataset indices
are replaced with those corresponding to Meta-Album Mini. The full training and evaluation pipeline is
then executed using the datasets in Meta-Album Mini to maintain consistency with prior experiments and
to avoid the overfitting problem described in Sect. 5.3.

6.3.1 Transfer learning-based curriculum
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Figure 9: Relative accuracy of the E2H and H2E curricula compared to the domain-based order baseline.
The relative accuracy is computed as the difference in performance between each curriculum and the domain-
based approach, which is set as the reference point at zero. Datasets in E2H and H2E are ordered according
to a TL-based approach and the results are obtained with Meta-Album Mini. The last column reflects the
average relative accuracy across all datasets.

As one of the two approaches proposed for constructing curricula, we apply a TL-based strategy to evaluate
the dataset difficulty. This method is grounded in the hypothesis that datasets where a model achieves high
performance after fine-tuning are inherently less challenging, compared to others with lower performance. By
ranking datasets based on their difficulty using this approach, we establish a curriculum that can influence
training order and model performance. Specifically, we use the same pre-trained feature extractor employed
in GEOM-S, a ResNet-50 (He et al., 2016) model pre-trained on ImageNet-1k (Deng et al., 2009), and we
fine-tune a simple projection head with ReLU non-linearity and batch normalization to classify the 20 classes
of each dataset. We optimize the cross-entropy loss with Adam optimizer for 100 epochs, starting from a
learning rate of 10−4 and smoothly reducing it with a cosine annealing scheduler. We then evaluate the
performance of the fine-tuned model on the test split of each dataset and use this value as a metric to rank
datasets. Applying this TL-based approach resulted in the following dataset order:

• TL-based order: [44304, 44299, 44288, 44305, 44283, 44284, 44285, 44298, 44300, 44286, 44291,
44282, 44301, 44294, 44281, 44307, 44290, 44295, 44306, 44293, 44292, 44289, 44303, 44287, 44309,
44297, 44302, 44310, 44296, 44308]

where datasets are ordered from easiest (highest accuracy) to most difficult (lowest accuracy). For our
experiments, we evaluate the following baselines:

• Easy-to-Hard (E2H): a curriculum learning baseline where datasets are presented from the easiest
to the most difficult (increasing difficulty, from dataset ID 44304 to 44308).
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• Hard-to-Easy (H2E): a curriculum learning baseline where datasets are presented from the most
difficult to the easiest (decreasing difficulty, from dataset ID 44308 to 44304). It is sometimes
referred to as anti-curriculum (Soviany et al., 2022) in the literature.

• Domain-based: the dataset order as presented in Meta-Album, where datasets are grouped into
domains, as explained in Sect. 6.1.

The results, illustrated in Fig. 9 and, more extensively, in Tab. 18 in Appendix A.7 confirm that or-
dering the datasets based on their level of difficulty can improve model performance in the sequential
setting. This approach provides a more realistic alternative than simply using a random dataset or-
der, or simply grouping datasets into domains. Interestingly, the best performance is achieved with
the H2E configuration, as demonstrated by the average performance gain in the last column of Fig. 9.
While this might seem counterintuitive (Sheybani et al., 2024a; Bengio et al., 2009), the H2E configu-
ration may benefit the model by exposing it to challenging datasets early in training. This early ex-
posure allows the model to explore the parameter space more extensively, reducing the risk of over-
fitting to simpler datasets and fostering greater generalization (Soviany et al., 2022). This behav-
ior is further illustrated in Fig. 10, which shows the learning trend for the E2H and H2E scenarios.
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Figure 10: Comparison of learning trends for E2H and
H2E TL-based curricula with GEOM-S.

In the E2H setting, the model initially achieves
high accuracy on the easiest datasets, but its per-
formance deteriorates as more challenging datasets
are introduced. This fact raises some interesting
considerations. Firstly, building a sequence that
only takes into account the distribution shift from
the pre-acquired knowledge of the feature extrac-
tor may hamper the model’s ability to generalize to
harder datasets. Secondly, this highlights the im-
portance of the first phase of training, as observing
only simpler datasets at the beginning of the train-
ing time could saturate the knowledge of the model
and make it less flexible to adapt to new, harder
datasets later. Lastly, progressively increasing the
difficulty of a dataset at time T , without accounting
for the knowledge acquired up to that point, may re-
quire longer training times when moving to harder
datasets. However, allocating sufficient training epochs for more challenging ones remains a significant chal-
lenge, due to a lack of precise metrics for quantifying dataset complexity and the inherent difficulties in
estimating the time required for convergence, as discussed in Sect. 6.1. Finally, Appendix A.3 demonstrates
the effectiveness of the H2E strategy over E2H when the feature extractor is jointly trained with the rest of
the model. This ensures that no pre-acquired knowledge influences the curricula.

6.3.2 Optimal transport curriculum

While the TL-based approach provides an intuitive measure of dataset difficulty relative to a pre-trained
model, it does not account for difficulty among datasets, and how the knowledge acquired from the previously
seen dataset might influence the current. This limitation motivates the use of an OT-based approach (Chang
et al., 2023), which quantifies dataset similarity by computing the minimal cost required to transform one
probability distribution into another (Peyré et al., 2019). However, applying OT to different datasets presents
challenges, as their label sets are often disjoint and unrelated. To overcome this issue, the Optimal Transport
Dataset Distance (OTDD) metric in (Alvarez-Melis & Fusi, 2020) proposes to represent a label-induced
distribution αy as a Gaussian N (µ̂y,

∑̂
y) and compute the distance between datasets as follows:

dOT (DA, DB) = minπ∈Π(α,β)

∫
ZxZ

dZ(z, z′)pϕ(z, z′). (4)
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Figure 11: Relative accuracy of the E2E, H2H, and Switch curricula compared to the domain-based order
baseline. The relative accuracy is computed as the difference in performance between each curriculum and
the domain-based approach, which is set as the reference point at zero. The datasets are ordered based on
OTDD (Alvarez-Melis & Fusi, 2020) and the results are obtained with Meta-Album Mini. The last column
reflects the average relative accuracy across all datasets.

where z ≜ (x, y) represents a pair of feature-label and Z ≜ X × Y. Therefore, we can define

dZ(z, z′) = dZ((x, y), (x′, y′)) ≜ (dX(x, x′)p + W p
p (αy, αy′))1/p.

as the p-Warssertein distance between feature-label pairs. Representing αy as a Gaussian is possible after
embedding the data with a non-linear mapping (e.g., a neural network) (Seddik et al., 2020). In our experi-
ments, we embed the datasets using a ResNet-50 architecture pre-trained on ImageNet-1k, and we compute
the OOTD distance in this embedding space. The similarities between the datasets are visualized in Fig. 14
and in Fig. 15 (Appendix A.7). Notably, datasets from Microscopy, Remote Sensing, and Plant Diseases are
the most dissimilar from all others, appearing at the top of the similarity figure. This observation aligns with
expectations, as these datasets belong to domains that are significantly different from the rest. Their images
are acquired using specialized devices, such as microscopes or GPS systems, and have distinct resolutions
and characteristics.

Due to the high computational cost of computing OTDD for large datasets (Alvarez-Melis & Fusi, 2020), we
build the curricula using the Micro size of Meta-Album, although we train and evaluate the model using the
corresponding datasets in Meta-Album Mini, as previously described. The first step in constructing an OT-
based curriculum is identifying a starting dataset. Intuitively, the dataset most similar to ImageNet-1k should
be the easiest for our model, as the feature extractor in GEOM-S is pre-trained on ImageNet-1k. However,
directly identifying this dataset using OTDD is impractical due to the imbalance between ImageNet-1k and
Meta-Album datasets and the wide domain coverage of ImageNet-1k compared to the specific domains in
Meta-Album. Instead, we set the first dataset in the TL-based curriculum (dataset ID 44304) as the starting
point for all OT-based curricula. From this starting point, we construct three distinct curricula1:

• Easy-to-Easy (E2E): a curriculum learning baseline where each dataset is the easiest (most similar)
with respect to the previous one.

• Hard-to-Hasy (H2H): a curriculum learning baseline where each dataset is the most difficult (most
dissimilar) with respect to the previous one.

• Switch: a curriculum learning baseline where the order is decided by switching from the easiest to
the most difficult dataset, iteratively.

1The detailed order of dataset IDs can be found in Appendix A.2.
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It is worth noting that these dataset orders are inherently different from those derived using the TL-based
method in Sect. 6.3.1. Unlike the TL-based approach, which calculates similarity relative to ImageNet-1k,
OTDD measures pairwise distances between Meta-Album datasets directly. Additionally, always beginning
with the dataset closest to ImageNet-1k could potentially replicate the shortcomings observed in the E2H
curriculum from Sect. 6.3.1. For this reason, the results of OT-based and TL-based curricula should be
viewed as complementary rather than directly comparable.

For consistency and clarity with the results in Sect. 6.3.1, we report the relative accuracy of each curriculum
against the domain-based order inherent in Meta-Album. The results, shown in Fig. 11, reaffirm that
employing a curriculum strategy yields superior performance compared to simply grouping datasets by
domain. Furthermore, it appears that the best-performing curriculum across all datasets is E2E. This
aligns with our expectations, as gradual changes in the observed data encourage the model to accumulate
knowledge over time, avoid forgetting, and build upon prior learning incrementally. Such an approach mirrors
the natural learning processes, which are characterized by steady progress through increasingly challenging
tasks that foster both retention of knowledge and generalization.

7 Unsupervised training
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Figure 12: Relative accuracy of GEOM-U compared to CAMeLU (Vettoruzzo et al., 2025) in the unsupervised
scenario computed as the performance difference between the two approaches, where CAMeLU is set as the
reference point at zero. GEOM-U is trained on an unsupervised version of Meta-Album following the task
creation mechanism of CAMeLU and using the LOO approach described in Sect. 5. CAMeLU is trained on
ImageNet-1k (Deng et al., 2009), after removing the labels. The evaluation is performed on few-shot tasks
sampled from the Meta-Album datasets from the left-out domain.

In many real-world scenarios, collecting a large amount of labeled data to train a model is challenging and
impractical. Instead, it is more common to encounter smaller datasets collected from various environments
or domains, often without labels. Motivated by this real-world setting, we extend our analysis to the
unsupervised scenario, investigating whether training on a collection of small-scale, unlabeled datasets can
improve the performance over unsupervised training on a large-scale dataset. We adopt the same rationale
proposed in CAMeLU (Vettoruzzo et al., 2025), which generates training tasks from unlabeled data and uses
these tasks to train an in-context learner similar to GEOM. During evaluation, we assume the availability of
standard few-shot tasks, where the context is fully labeled. We refer to this variant of GEOM as GEOM-U
(GEOM-Unsupervised). The main difference between GEOM-U and CAMeLU is the training data. While
GEOM-U is trained with tasks sampled from the Meta-Album datasets across diverse domains, CAMeLU is
trained on ImageNet-1k (Deng et al., 2009), a large-scale benchmark that represents a wide data distribution.

To construct tasks, we follow the process outlined in CAMeLU (Vettoruzzo et al., 2025). Let Ti be the
task we want to construct. As detailed in Sect. 3, it consists of K × N context examples and Q query
images. The context samples are generated by randomly sampling N images from an unlabeled training
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dataset Dtrain
a = {xj}. Each sampled image is augmented K times with distinct augmentation functions,

and all augmented versions of a sample xn are assigned the same pseudo-label n ∈ {1, . . . , N}. Queries
are created using a two-step process. For each query, a random augmentation is applied to an image xn,
yielding x̃n,j , and a strategy inspired by mixup (Zhang et al., 2018) is used to generate the query image
as xq = λzj + (1 − λ)x̃n,j , where λ ∼ Beta(α, β) and zj is a random example from Dtrain

a = {xj}. The
same label n as the context sample xn used for the generation is then assigned to the resulting query xq.
Additional details can be found in the original CAMeLU paper (Vettoruzzo et al., 2025).

We compare the performance of GEOM-U against CAMeLU, using the architectures described in Sect. 3.3
and the LOO configuration in Sect. 5, where datasets from an entire domain are excluded during training to
prevent the leakage of information during evaluation. The results, shown in Fig. 12 and detailed in Tab. 20
(Appendix A.8), indicate that training an in-context learner on diverse small-scale datasets outperforms
training on a single large-scale dataset like ImageNet-1k, even in the unsupervised scenario. This performance
improvement likely stems from the diversity introduced by the smaller datasets across different domains. The
resulting variability in tasks encourages the model to learn domain-invariant features, rather than simply
associating images and classes. Additionally, since GEOM-U is trained on small-scale datasets, there is a
high chance that multiple images from the same class appear within a single task. Without explicit class
labels, the model is forced to treat these instances as distinct entities, rather than grouping them together,
increasing task complexity. This, in turn, encourages the development of a more flexible and robust learner
capable of handling diverse and unseen data. The only cases where GEOM-U underperforms CAMeLU are
in the Large Animals domain. Due to significant overlap with ImageNet-1k (see Fig. 2), this domain suffers
from data leakage, giving CAMeLU a significant advantage.

8 Conclusions and future work

This work explored the generalization capabilities of ICL within a meta-learning framework, by shifting
from reliance on vast, unstructured datasets to a more focused, human-inspired approach using multiple
smaller, domain-specific datasets. We demonstrated significant improvements in the ability of ICL mod-
els to generalize across tasks. This paradigm not only fosters broader generalization but also enhances
interpretability, modularity, and adaptability. The smaller datasets allow for greater control over training
dynamics, enabling targeted adjustments to the learning process and facilitating the integration of new
data. By presenting datasets sequentially, we observed that in-context learners accumulate knowledge over
time, improving their performance without erasing prior learning, a phenomenon akin to lifelong learning
in humans. Curriculum strategies based on dataset difficulty proved particularly effective, highlighting the
importance of structured exposure to tasks rather than random ordering in fostering adaptive learning. Since
real-world data is often noisy, mislabeled, or entirely unlabeled, we also evaluated the model’s robustness
to label noise (Appendix A.5) and found that it maintains strong performance despite such imperfections.
Additionally, our experiments with unsupervised meta-learning demonstrated that the model can generalize
effectively even when trained on pseudo-labeled data derived from augmentations. This approach opens av-
enues for deploying in-context learners in resource-constrained or data-scarce environments, further bridging
the gap between artificial systems and natural learning processes. These findings altogether highlight the
crucial role of data diversity, task design and learning sequence in unlocking robust generalization across
different domains.

Despite the promising outcomes of this study, some open questions remain. For instance, determining the
minimum number of classes or the optimal class-to-sample ratio required for effective learning could refine
dataset design. Addressing dataset imbalance is another key challenge, especially in streaming scenarios
where data availability may vary. Integrating methods that dynamically weigh datasets during training
could mitigate these challenges and further enhance performance. Exploring adaptive curriculum strategies
that align task difficulty with the model’s learning progress may offer a more dynamic and effective training
paradigm. Another compelling direction for future research is extending our approach to causal transformers.
GEOM is currently based on a meta-learning formulation that assumes permutation invariance within tasks,
which naturally aligns with the use of non-causal transformers. Investigating how GEOM training translates
to a causal architecture, and whether similar generalization benefits can be retained, represents an important
step toward broader applicability and alignment with recent trends in the field.
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In conclusion, this work proposes a paradigm inspired by human processes of learning for training in-context
learners, emphasizing the importance of structured, diverse, and incremental learning processes. By bridging
the gap between artificial and natural learning paradigms, we take a meaningful step toward developing AI
systems capable of more efficient, robust, and generalizable learning.

9 Broader impact statement

This work advances ICL by leveraging meta-learning and structured, domain-specific datasets for training,
enhancing generalization, adaptability, and modularity. Although GEOM relies on Meta-Album, a collection
designed to ensure balance across diverse domains, it does not prevent the potential misuse of other datasets
during training. In Sect. 5, we highlight the advantage of using small datasets, as they are easier to update
and replace. However, this approach may introduce strong distribution biases and unintended side effects
during inference (Menon et al., 2020). Furthermore, despite their ease of maintenance, small datasets may
suffer from labeling inaccuracies and fail to fully capture the diversity of the training distribution. These
could lead to some categories to be underrepresented. Additionally, reliance on pseudo-labeling and aug-
mentation techniques in unsupervised training introduces potential vulnerabilities. While our experiments in
Appendix A.5 demonstrate that the model is robust to label noise, adversarial attacks remain a concern and
warrant further investigation. Future work should focus on strengthening robustness against such threats
while ensuring ethical and responsible deployment of in-context learners.

References
Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm

is in-context learning? investigations with linear models. In The Eleventh International Conference on
Learning Representations, 2022.

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances in Neural
Information Processing Systems, 33:21428–21439, 2020.

Sven Bambach, David Crandall, Linda Smith, and Chen Yu. Toddler-inspired visual object learning. Ad-
vances in neural information processing systems, 31, 2018.

Martyn D. Barrett. Names for things: a study of human learning. cambridge, mass.: M.i.t press, 1982. pp.
xii + 275. Journal of Child Language, 12(1):233–238, 1985. doi: 10.1017/S0305000900006371.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pp. 41–48, 2009.

L Bertinetto, J Henriques, P Torr, and A Vedaldi. Meta-learning with differentiable closed-form solvers. In
International Conference on Learning Representations (ICLR), 2019. International Conference on Learn-
ing Representations, 2019.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel Lang,
Rafael Gomes Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. Openml: A benchmarking layer
on top of openml to quickly create, download, and share systematic benchmarks. NeurIPS, 2021. URL
https://openreview.net/forum?id=OCrD8ycKjG.

Jörg Bornschein, Alexandre Galashov, Ross Hemsley, Amal Rannen-Triki, Yutian Chen, Arslan Chaudhry,
Xu Owen He, Arthur Douillard, Massimo Caccia, Qixuan Feng, Jiajun Shen, Sylvestre-Alvise Rebuffi,
Kitty Stacpoole, Diego De las Casas, Will Hawkins, Angeliki Lazaridou, Yee Whye Teh, Andrei A. Rusu,
Razvan Pascanu, and Marc’Aurelio Ranzato. Nevis’22: a stream of 100 tasks sampled from 30 years of
computer vision research. J. Mach. Learn. Res., 24(1), March 2024. ISSN 1532-4435.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159, 2021. doi: 10.1109/SP40001.2021.00019.

21

https://openreview.net/forum?id=OCrD8ycKjG


Under review as submission to TMLR

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for
general continual learning: a strong, simple baseline. Advances in neural information processing systems,
33:15920–15930, 2020.

Bryan Chan, Xinyi Chen, András György, and Dale Schuurmans. Toward understanding in-context vs.
in-weight learning. In The Thirteenth International Conference on Learning Representations, 2025.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 18878–18891. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf.

Wanxing Chang, Ye Shi, and Jingya Wang. Csot: Curriculum and structure-aware optimal transport for
learning with noisy labels, 2023. URL https://arxiv.org/abs/2312.06221.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language model
in-context tuning. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
719–730, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.53. URL https://aclanthology.org/2022.acl-long.53.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Elizabeth M Clerkin, Elizabeth Hart, James M Rehg, Chen Yu, and Linda B Smith. Real-world visual
statistics and infants’ first-learned object names. Philosophical Transactions of the Royal Society B:
Biological Sciences, 372(1711):20160055, 2017.

Noel CF Codella, David Gutman, M Emre Celebi, Brian Helba, Michael A Marchetti, Stephen W Dusza,
Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, et al. Skin lesion analysis toward
melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi),
hosted by the international skin imaging collaboration (isic). In 2018 IEEE 15th international symposium
on biomedical imaging (ISBI 2018), pp. 168–172. IEEE, 2018.

Stanislas Dehaene. Reading in the brain: The new science of how we read. Penguin, 2010.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of language
models from the loss perspective. arXiv preprint arXiv:2403.15796, 2024.

Kamil Faber, Dominik Zurek, Marcin Pietron, Nathalie Japkowicz, Antonio Vergari, and Roberto Corizzo.
From mnist to imagenet and back: benchmarking continual curriculum learning. Machine Learning, pp.
1–28, 2024.

Faraz Farzin, Susan M Rivera, and David Whitney. Spatial resolution of conscious visual perception in
infants. Psychological science, 21(10):1502–1509, 2010.

Jacob Feldman. The simplicity principle in human concept learning. Current directions in psychological
science, 12(6):227–232, 2003.

22

https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://arxiv.org/abs/2312.06221
https://aclanthology.org/2022.acl-long.53


Under review as submission to TMLR

Christopher Fifty, Dennis Duan, Ronald Guenther Junkins, Ehsan Amid, Jure Leskovec, Christopher Re,
and Sebastian Thrun. Context-aware meta-learning. In The Twelfth International Conference on Learning
Representations, 2024.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1126–1135. PMLR, 06–11
Aug 2017. URL https://proceedings.mlr.press/v70/finn17a.html.

Robert Mills Gagné. The conditions of learning and theory of instruction. 1985.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027, 2020.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In International
conference on machine learning, pp. 1704–1713. PMLR, 2018.

Xiaohui Guo, Richong Zhang, Yaowei Zheng, and Yongyi Mao. Robust regularization with adversarial la-
belling of perturbed samples. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, pp. 2490–2496. International Joint Conferences on Artifi-
cial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/343. URL https://doi.org/10.24963/
ijcai.2021/343. Main Track.

Gunshi Gupta, Karmesh Yadav, and Liam Paull. Look-ahead meta learning for continual learning. Advances
in Neural Information Processing Systems, 33:11588–11598, 2020.

Seungyub Han, Yeongmo Kim, Taehyun Cho, and Jungwoo Lee. On the convergence of continual learning
with adaptive methods. In Uncertainty in Artificial Intelligence, pp. 809–818. PMLR, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. In IGARSS 2018-2018
IEEE International Geoscience and Remote Sensing Symposium, pp. 204–207. IEEE, 2018.

Hamed Hemati, Vincenzo Lomonaco, Davide Bacciu, and Damian Borth. Partial hypernetworks for continual
learning. In 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song. Pretrained
transformers improve out-of-distribution robustness, 2020.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural networks:
A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):5149–5169, 2021.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. A modern self-referential weight
matrix that learns to modify itself. In International Conference on Machine Learning, pp. 9660–9677.
PMLR, 2022.

Khurram Javed and Martha White. Meta-learning representations for continual learning. Advances in neural
information processing systems, 32, 2019.

Swapnaa Jayaraman, Caitlin M Fausey, and Linda B Smith. Why are faces denser in the visual experiences
of younger than older infants? Developmental psychology, 53(1):38, 2017.

Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jaehong Yoon, Mark Hasegawa-
Johnson, Sung Ju Hwang, and Chang D. Yoo. Forget-free continual learning with winning subnetworks.
In Proceedings of the 39th International Conference on Machine Learning, pp. 10734–10750, 2022.

23

https://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.24963/ijcai.2021/343
https://doi.org/10.24963/ijcai.2021/343


Under review as submission to TMLR

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context learning
by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of
in-the-wild distribution shifts. In International conference on machine learning, pp. 5637–5664. PMLR,
2021.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015. doi: 10.1126/science.aab3050. URL
https://www.science.org/doi/abs/10.1126/science.aab3050.

Soochan Lee, Jaehyeon Son, and Gunhee Kim. Recasting continual learning as sequence modeling. Advances
in Neural Information Processing Systems, 36:70433–70452, 2023.

Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, Yong Huang, and Wei Lu. Let’s learn step by step:
Enhancing in-context learning ability with curriculum learning. arXiv preprint arXiv:2402.10738, 2024a.

Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, Yong Huang, and Wei Lu. Let’s learn step by step:
Enhancing in-context learning ability with curriculum learning. arXiv preprint arXiv:2402.10738, 2024b.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. Advances in
neural information processing systems, 30, 2017.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Daphne Maurer, Catherine J Mondloch, and Terri L Lewis. Sleeper effects. Developmental Science, 10(1):
40–47, 2007.

Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. Pulse: Self-supervised photo
upsampling via latent space exploration of generative models. In Proceedings of the ieee/cvf conference on
computer vision and pattern recognition, pp. 2437–2445, 2020.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in context.
In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 2791–2809, 2022a.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. Rethinking the role of demonstrations: What makes in-context learning work? In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 11048–11064, 2022b.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Transformers
can do bayesian inference. In International Conference on Learning Representations, 2022.

Martin Mundt, Yongwon Hong, Iuliia Pliushch, and Visvanathan Ramesh. A wholistic view of continual
learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning.
Neural Networks, 160:306–336, 2023.

S O’hearn. Overloaded circuits: why smart people underperform. Harvard Business Review, 83(4):130–130,
2005.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads. arXiv preprint
arXiv:2209.11895, 2022.

24

https://www.science.org/doi/abs/10.1126/science.aab3050


Under review as submission to TMLR

Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-context learning through the bayesian prism. In The
Twelfth International Conference on Learning Representations, 2024.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon
llm: outperforming curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116,
2023.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PMLR,
2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Generalization
to new sequential decision making tasks with in-context learning. In International Conference on Machine
Learning, pp. 42138–42158. PMLR, 2024.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the emergence
of non-bayesian in-context learning for regression. Advances in neural information processing systems, 36:
14228–14246, 2023.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 2001–2010, 2017.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-learning
with memory-augmented neural networks. In International conference on machine learning, pp. 1842–1850.
PMLR, 2016.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language mod-
els a mirage? In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 55565–55581. Curran
Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: the
meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Coen Schouten. Investigating task order in online class-incremental learning. Master’s thesis, Department of
Mathematics and Computer Science, AutoML Group, Eindhoven University of Technology, Netherlands,
August 2024.

Mohamed El Amine Seddik, Cosme Louart, Mohamed Tamaazousti, and Romain Couillet. Random matrix
theory proves that deep learning representations of gan-data behave as gaussian mixtures. In International
Conference on Machine Learning, pp. 8573–8582. PMLR, 2020.

S Sheybani, LB Smith, Z Tiganj, SS Maini, and A Dendukuri. Modelvsbaby: a developmentally motivated
benchmark of out-of-distribution object recognition. 2024a.

25

https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf


Under review as submission to TMLR

Saber Sheybani, Himanshu Hansaria, Justin Wood, Linda Smith, and Zoran Tiganj. Curriculum learning
with infant egocentric videos. Advances in Neural Information Processing Systems, 36, 2024b.

Aaditya Singh, Stephanie Chan, Ted Moskovitz, Erin Grant, Andrew Saxe, and Felix Hill. The transient
nature of emergent in-context learning in transformers. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp.
27801–27819. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/58692a1701314e09cbd7a5f5f3871cc9-Paper-Conference.pdf.

Linda B Smith. Learning to recognize objects. Psychological Science, 14(3):244–250, 2003.

Linda B Smith. Can lessons from infants solve the problems of data-greedy ai?, 2024.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances in
neural information processing systems, 30, 2017.

Ghada Sokar, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Spacenet: Make free space for continual
learning. Neurocomputing, 439:1–11, 2021.

Jaehyeon Son, Soochan Lee, and Gunhee Kim. When meta-learning meets online and continual learning: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey. Interna-
tional Journal of Computer Vision, 130(6):1526–1565, 2022.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-dataset: A dataset of
datasets for learning to learn from few examples. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rkgAGAVKPr.

Ihsan Ullah, Dustin Carrion, Sergio Escalera, Isabelle M Guyon, Mike Huisman, Felix Mohr, Jan N van
Rijn, Haozhe Sun, Joaquin Vanschoren, and Phan Anh Vu. Meta-album: Multi-domain meta-dataset
for few-shot image classification. In Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2022. URL https://meta-album.github.io/.

Anna Vettoruzzo, Mohamed-Rafik Bouguelia, Joaquin Vanschoren, Thorsteinn Rognvaldsson, and KC San-
tosh. Advances and challenges in meta-learning: A technical review. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

Anna Vettoruzzo, Lorenzo Braccaioli, Joaquin Vanschoren, and Marlena Nowaczyk. Unsupervised meta-
learning via in-context learning. In International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=Jprs1v2wPA.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. Advances in neural information processing systems, 29, 2016.

Wai Keen Vong, Wentao Wang, A Emin Orhan, and Brenden M Lake. Grounded language acquisition
through the eyes and ears of a single child. Science, 383(6682):504–511, 2024.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-
200-2011 dataset. California Institute of Technology, 2011.

Fan Wang, Chuan Lin, Yang Cao, and Yu Kang. Benchmarking general-purpose in-context learning. arXiv
preprint arXiv:2405.17234, 2024a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024b.

Davis Wertheimer and Bharath Hariharan. Few-shot learning with localization in realistic settings. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6558–6567,
2019.

26

https://proceedings.neurips.cc/paper_files/paper/2023/file/58692a1701314e09cbd7a5f5f3871cc9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/58692a1701314e09cbd7a5f5f3871cc9-Paper-Conference.pdf
https://openreview.net/forum?id=rkgAGAVKPr
https://meta-album.github.io/
https://openreview.net/forum?id=Jprs1v2wPA


Under review as submission to TMLR

Patrick H Winston. Learning and reasoning by analogy. Communications of the ACM, 23(12):689–703, 1980.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V Le,
Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model pretraining.
Advances in Neural Information Processing Systems, 36, 2024.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
International conference on machine learning, pp. 3987–3995. PMLR, 2017.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip
Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A large-scale study of repre-
sentation learning with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In International Conference on Learning Representations, 2018.

Yu Zhao, Yuanbin Qu, Konrad Staniszewski, Szymon Tworkowski, Wei Liu, Piotr Miłoś, Yuxiang Wu, and
Pasquale Minervini. Analysing the impact of sequence composition on language model pre-training. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 7897–7912, 2024.

27



Under review as submission to TMLR

A Appendix

A.1 Default notation

General terms

ICL In-context learning

LLM Large language model

LOO Leave-one-out evaluation

BWT Backward transfer

TL Transfer learning

OT Optimal transport

OTDD Optimal transport dataset distance metric (Alvarez-Melis & Fusi,
2020)

Curriculum learning strategies

Domain-based Sequence of datasets ordered as in Meta-Album

E2H Easy-to-hard curriculum

H2E Hard-to-easy curriculum

E2E Easy-to-easy curriculum

H2H Hard-to-hard curriculum

GEOM training variants

GEOM-IN GEOM trained on ImageNet-1k

GEOM-M GEOM trained on a fully merged version of Meta-Album

GEOM-S GEOM trained sequentially

GEOM-U GEOM trained in an unsupervised manner

Dataset and task

D The set of available datasets D = {Da | a = 1, . . . , A}

DLOO The set of datasets used for evaluation in the LOO scenario

Dtrain
a A dataset split used during training

Dtest
a A dataset split used during evaluation

Ti A task sampled for training the model

Tnew A new task sampled for evaluation

Si A sequence generated from the task Ti
N -way K-shot Few-shot classification with K examples for each of the N classes

Q Number of queries per task

xj An image, or sample

yj A label associated to sample xj
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Model components

fψ The image encoder (i.e., feature extractor)

gϕ The label encoder

Mθ The non-causal transformer encoder with linear classification layer

L The cross-entropy loss

Meta-Album benchmark

Meta-Album A benchmark consisting of 30 datasets spanning ten domains

LA Large Animals domain

SA Small Animals domain

P Plants domain

PD Plant Diseases domain

MI Microscopy domain

RS Remote Sensing domain

V Vehicles domain

MA Manufacturing domain

HA Human Actions domain

OCR OCR domain

Meta-Album sizes The three different sizes of Meta-Album (Micro, Mini, Extended)

(Meta-Album) Micro The size called “Micro” in Meta-Album

(Meta-Album) Mini The size called “Mini” in Meta-Album

(Meta-Album) Extended The size called “Extended” in Meta-Album

Meta-Album releases Batches of 10 datasets from distinct domains progressively added to
the benchmark

(Meta-Album) First First release of Meta-Album (10 datasets overall)

(Meta-Album) Second The combined set of datasets from the first and second Meta-Album
releases (20 datasets overall)

(Meta-Album) Third The combined set of datasets from the first, the second, and the third
Meta-Album releases (30 datasets overall)

Sequential

t A timestamp in 1, . . . , T

Dtrain
t A train dataset sampled at timestamp t

Dtest
t A test dataset sampled at timestamp t

Ra,b Model accuracy on Dtest
b after training on Dtrain

a
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Unsupervised

xn An image with pseudo-label n ∈ {1, . . . , N}

zj A randomly sampled image from the training dataset

λ A hyperparameter sampled from a Beta(α, β) distribution

x̃n,j An augmented version of image xj with pseudo-label n

xq A query image

A.2 Experimental details

Datasets. In our experiments, we use the Meta-Album benchmark (Ullah et al., 2022)2, which consists
of a collection of datasets spanning 10 different domains. Compared to other benchmark collections, such
as Meta-Dataset (Triantafillou et al., 2020) or NEVIS (Bornschein et al., 2024), Meta-Album offers a more
balanced dataset distribution while ensuring clear domain separation. The original Meta-Album paper (Ullah
et al., 2022) defines a total of 40 datasets, but at the time of writing and experimental setup, only three
releases are available, reducing the number of accessible datasets to 30. Each Meta-Album dataset consists
of RGB images with a fixed resolution of 128 × 128 pixels. For our experiments, we upscale theses images
to 224 × 224 pixels to match the input requirements of a ResNet-50 pre-trained feature extractor.

Meta-Album datasets are organized into releases and sizes. Each release introduces 10 new datasets, one
for each domain. Therefore, when mentioning the First release, we indicate the set of 10 datasets that
originally composed Meta-Album, while Second and Third refer to the collection comprising 10 additional
datasets, each, that were introduced by each release (20 and 30 overall, respectively). The datasets also
vary in size, with three available configurations: Micro, Mini, and Extended. Micro ensures a balanced
distribution, where each dataset consists of 20 classes (with the exception of dataset IDs 44313 and 44312
which have 19 classes), with 40 images per class. Therefore, the total number of images for the 30 datasets
that compose the Third release of Micro is 31 920. Instead, Mini is the ideal size for few-shot learning
scenarios as it contains a balanced number of images per class (40), while allowing for a greater number
of classes, reaching up to 706 classes per dataset. This increases task diversity, leading to a total number
of 163 200 images in the Third release. Extended is the largest configuration, containing 1 384 616 images,
although it contains fewer classes than Mini, as the OCR domain is not included. Table 5 summarizes these
details, while a comparison between the number of classes and images between Mini and Extended for each
dataset of the Third release is provided in Tab. 6.

The dataset splits used in our experiments depend on the specific learning scenario. When evaluating the
generalization on unseen domains, as in Sect. 5 and Sect. 7, training and test datasets do not overlap, thus
the entire dataset can be used either for training or evaluation purposes. In streaming scenarios (Sect. 6.1)
we allocate 80% of dataset classes for training the model and the remaining 20% for the evaluation phase.
If a dataset is too small, i.e., the 20% split results in fewer than five classes, we increase the evaluation set
size to ensure at least one example per class, allowing us to create a 5-way classification task.

Table 5: Statistics of the Meta-Album collection for Micro, Mini, and Extended sizes, based on the three
available releases. The dataset details are obtained using Python’s pip package openml==0.14.2.

Size #domains #datasets #images min/max #classes min/max #images per class
Micro 10 30 31 920 19 / 20 40 / 40
Mini 10 30 163 200 19 / 706 40 / 40
Extended 9 27 1 384 616 19 / 315 1 / 187 384

2Meta-Album datasets are downloaded using the openml==0.14.2 version of the OpenML library (Bischl et al., 2021) via
the Python pip package.
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Table 6: Dataset information for Mini and Extended splits. For every dataset ID, the overall number of
images and the number of classes used for training/evaluation are defined.

(a) Size Mini of Meta-Album.

Dataset Images Train Evaluation
44285 12600 252 63
44298 4800 96 24
44305 2000 40 10
44282 3440 69 17
44292 4080 82 20
44306 4160 84 20
44283 4080 82 20
44293 1000 20 5
44302 1000 20 5
44286 1520 31 7
44299 1000 20 5
44303 1080 22 5
44281 1320 27 6
44297 760 14 5
44308 840 16 5
44290 1800 36 9
44300 1800 36 9
44307 1520 31 7
44289 7840 157 39
44295 840 16 5
44309 1040 21 5
44288 2560 52 12
44294 1880 38 9
44304 10000 200 50
44284 2920 59 14
44291 1560 32 7
44301 1160 24 5
44287 28240 565 141
44296 28240 565 141
44310 28120 563 140
Total 163 200 3270 810

(b) Size Extended of Meta-Album

Dataset Images Train Evaluation
44320 49053 252 63
44331 20480 96 24
44338 37317 40 10
44317 473237 77 19
44326 75222 82 20
44340 170491 94 23
44318 8189 82 20
44327 120688 20 5
44335 15122 20 5
44321 54305 31 7
44332 1596 21 5
44336 2549 22 5
44316 4060 27 6
44330 5530 14 5
44342 15050 16 5
44324 31500 36 9
44333 36707 36 9
44341 43821 32 8
44323 16185 157 39
44329 9625 16 5
44343 138367 21 5
44322 8675 52 12
44328 5640 38 9
44337 25000 200 50
44319 10416 59 14
44325 3389 32 8
44334 2402 24 5
Total 1 384 616 1597 395
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We also include external datasets for evaluation purposes. We use ImageNet-1k (Deng et al., 2009) both as
a baseline and to compute the overlap with class names and concepts between the classes in ImageNet-1k
and Meta-Album. As described in Sect. 4, when searching for the exact match, we extract the names of the
classes from the label files of each dataset, pre-process them by removing any underscore and apostrophe,
and make the whole word lowercase. If a label in ImageNet-1k is defined by multiple names, from the coarsest
to the finest, we select only the finest word. However, this analysis might overlook several minor differences,
misspelled items, and hyphenated words. For this reason, we take a step further and try to identify related
concepts by means of CLIP (Radford et al., 2021) embeddings of the label names. We take the same pre-
processed words, exclude those that had already found a match with the previous technique, and embed
them with the aforementioned feature extractor. For each dataset, we then compute the cosine similarity
between each embedded word in ImageNet-1k and every word that is still unmatched in the current dataset
and we keep the highest score for each word. To set a general threshold that could fit all the datasets, we
compute the 90th percentile of the similarity distribution for each dataset, in order to only keep matches
that have high similarity. Then, we select the median value among all the datasets’ percentiles and we define
a threshold set at 0.83.

We also consider different datasets for evaluation purposes, as described in Section 3.3. For each dataset,
we only use the test split generated following the splits proposed in the previous literature. In particular, we
considered CIFAR-fs which consists of 20 classes for testing (Bertinetto et al., 2019); CUB (Wah et al., 2011),
which consists of 30 classes in the test set; Aircraft (Triantafillou et al., 2020) with only 15 classes in the test
split; Meta-iNat (Wertheimer & Hariharan, 2019) consists of 227 classes reserved for testing. For EuroSat
(Helber et al., 2018) and ISIC (Codella et al., 2018), which were not initially meant for meta-learning, we
use all their classes in test, which are 10 and 7, respectively.

Training details. We build each training episode as an N -way K-shot classification task, where N and K
are fixed to 5. Following the same model architecture as in Vettoruzzo et al. (2025), we use a ResNet-50 (He
et al., 2016) feature extractor fψ pre-trained on ImageNet-1k and a class encoder gϕ consisting of a single
learnable layer that maps the N class labels to a dimensionality of 256. The non-causal transformer consists
of 8 encoder layers, each incorporating a multi-head self-attention block with 8 attention heads, an MLP
with a reverse bottleneck of 3072 (with GeLU activation function), and an input-output feature size of 2304,
which corresponds to the concatenation of feature label (with a size of 2048) and the class label features
(with a size of 256). Finally, a single-layer classifier maps the transformer output to the predicted category.
The episodic training is performed for 300 000 iterations with the Adam optimizer, an initial learning rate
set at 10−5, and a warmup cosine scheduler. When referring to epochs and episodes, we define an epoch
as a collection of 500 iterations, after which the trainloader is re-initialized. The total number of epochs is
set to 600. For the subsequent evaluation, the best-performing model is saved as the one resulting in the
highest validation accuracy across 50 000 new tasks, sampled from Dtest

a , a = 1, · · · , A. The code is written
in Python and the experiments are run on an NVIDIA A100-SXM4 GPU with 40GB of VRAM for faster
execution. However, the model can also be run and debugged on consumer hardware, such as an NVIDIA
GeForce RTX 3070 Ti Laptop GPU.

When selecting a dataset to sample a task from, our study defines three main approaches. The first, used in
the supervised (offline) scenario detailed in Sect. 5 and in the offline baseline in Sect. 6.1, select each dataset
with a probability p(Da) = |Da|∑

Da∈D
|Da|

, ensuring larger datasets are sampled more frequently. The other two
approaches refer to the streaming scenario described in Sect. 6.1, where datasets are processed sequentially.
In the proportional approach, the number of training iterations allocated to each dataset depends on the
size of the dataset. Given a total number of iterations I (set to 300 000 by default), each dataset Da receives
Ia = I · |Da|∑

Da∈D
|Da|

iterations before advancing to the next dataset. In contrast, the static approach assigns

each dataset an equal number of iterations Ia = I
A , ensuring uniform training time across datasets.

Lastly, for the unsupervised part, we follow what is described in Vettoruzzo et al. (2025). We use the same
sampling strategy as in supervised (offline) learning, but we assume no labeled data are available during
training. We randomly draw N samples from a dataset Da and augment images to reconstruct the same
N -way K-shot problem. Each support image is augmented K times, with an augmentation function Ak
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sampled from a predefined set of transformations A. Queries go through a two-step augmentation process
to enhance diversity and increase the task complexity: firstly, K queries are generated from the same image
xj via another set of augmentations Aj and then mixed with an external sample zj drawn from the same
dataset Da with the following method: xq = λzj + (1 − λ)x̃n,j , where λ ∼ Beta(α, β) with α = 1, β = 1 and
λ ∈ (0, 0.5).

A.3 TL based curricula

To further prove the effectiveness of our curriculum strategy and demonstrate that the learning trend shown
in Sect. 6.3.1, where H2E generally achieves higher accuracy values than E2H, is not influenced by the frozen
weights of ResNet50 pre-trained on ImageNet-1k, we use the very same architecture but we jointly train
our image feature extractor from scratch. Although the results shown in Tab. 7 are lower than the original,
which would require a thorough revision of the architecture and/or the training time, the learning trend
shown in Fig. 13 still evidences that H2E generally achieves better performance than E2H.

Table 7: Accuracy results of GEOM-S using different TL-based curricula and a feature extractor trained
from scratch: easy-to-hard (E2H), hard-to-easy (H2E), and domain-based order. The same number of epochs
(20) is assigned to each dataset, using the static approach in Sect. 6.1. The bold font highlights the best-
performing approach for each dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

E2H 26.49 ± 3.08 21.84 ± 0.91 23.96 ± 1.56 22.42 ± 3.36 22.18 ± 1.21 22.16 ± 1.68 33.60 ± 5.32 23.42 ± 2.22 22.52 ± 1.33 25.48 ± 2.22 26.15 ± 11.25 23.66 ± 1.75
H2E 49.32 ± 4.91 29.79 ± 1.12 38.77 ± 3.26 28.14 ± 10.17 28.42 ± 1.77 29.28 ± 2.58 57.39 ± 11.11 33.33 ± 5.79 26.98 ± 0.63 40.99 ± 7.52 33.26 ± 18.56 28.51 ± 4.33
Domain-based 39.59 ± 2.44 25.83 ± 1.06 33.30 ± 2.59 32.50 ± 3.76 25.94 ± 1.85 26.70 ± 0.98 43.95 ± 5.33 30.92 ± 6.62 25.32 ± 2.75 44.27 ± 5.63 39.60 ± 12.69 29.51 ± 5.47

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

E2H 23.24 ± 5.58 19.90 ± 0.42 25.98 ± 2.14 32.19 ± 8.72 44.97 ± 13.70 32.00 ± 6.04 20.71 ± 1.33 22.11 ± 3.77 20.55 ± 1.53
H2E 32.89 ± 2.58 24.39 ± 3.12 20.06 ± 0.10 46.65 ± 4.88 75.63 ± 5.58 47.71 ± 2.78 24.63 ± 2.56 25.05 ± 1.91 24.32 ± 0.92
Domain-based 29.54 ± 3.78 21.11 ± 1.53 22.11 ± 2.74 39.16 ± 2.90 62.43 ± 1.79 42.87 ± 3.49 25.11 ± 1.30 24.98 ± 1.39 24.27 ± 1.47

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

E2H 41.16 ± 10.09 24.45 ± 1.20 35.51 ± 10.26 27.85 ± 1.09 24.37 ± 1.07 25.56 ± 1.49 20.39 ± 0.39 20.62 ± 0.24 20.27 ± 0.47
H2E 74.38 ± 5.67 39.26 ± 2.77 87.25 ± 2.45 49.01 ± 5.67 32.20 ± 2.84 44.26 ± 6.96 19.68 ± 0.05 20.46 ± 0.13 21.12 ± 0.10
Domain-based 61.90 ± 4.76 35.06 ± 1.84 66.22 ± 8.91 41.41 ± 0.35 30.00 ± 2.17 38.37 ± 3.86 20.46 ± 0.08 20.88 ± 0.23 20.90 ± 0.23
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Figure 13: Relative validation accuracy of different TL curricula when the feature extractor is trained from
scratch. The trend is equivalent to the one shown in Sect. 6.3.1.
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A.4 Optimal transport curricula
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Figure 14: Heatmap representing the dataset similarity for all datasets in Meta-Album Mini computed with
OTDD (Alvarez-Melis & Fusi, 2020). The lower the number the closer/more similar are the datasets.

Using OTDD (Alvarez-Melis & Fusi, 2020), we construct three curricula for our experiments based on the
dataset distance in Fig. 14:

• Easy-to-Easy (E2E): [44304, 44310, 44295, 44309, 44306, 44292, 44303, 44285, 44293, 44302, 44305,
44298, 44291, 44289, 44301, 44284, 44294, 44283, 44288, 44286, 44307, 44290, 44300, 44296, 44287,
44282, 44297, 44299, 44281, 44308];

• Hard-to-Hard (H2H): [44304, 44308, 44281, 44290, 44299, 44307, 44297, 44300, 44287, 44286, 44296,
44288, 44282, 44302, 44310, 44301, 44306, 44294, 44283, 44309, 44305, 44295, 44293, 44284, 44289,
44303, 44292, 44285, 44298, 44291];

• Switch (Switch): [44304, 44308, 44290, 44281, 44297, 44307, 44300, 44299, 44282, 44286, 44293,
44287, 44296, 44288, 44302, 44310, 44295, 44283, 44285, 44294, 44292, 44301, 44305, 44306, 44309,
44284, 44291, 44289, 44298, 44303].

In addition to reporting the distance values, Fig. 15 visualizes the dataset similarity relationships. The x-
axis represents the starting dataset, while the y-axis orders all other datasets from most similar (bottom) to
most dissimilar (top). Colors indicate the domain to which each dataset belongs. As previously mentioned,
distances are computed using the Micro size of the datasets rather than Mini. However, since the model
is trained and evaluated on Mini, we report only the Mini dataset IDs for simplicity. The corresponding
dataset IDs for both the Micro and Mini size of Meta-Album are listed in Tab. 8.
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Figure 15: Dataset similarity for all datasets in Meta-Album Mini computed with OTDD (Alvarez-Melis
& Fusi, 2020). A column is assigned to each dataset and it shows the dataset IDs ordered from the eas-
iest/similar (bottom) to the most difficult/dissimilar (top) dataset. Datasets with the same colors are
associated with the same domain: blue for Large Animals, orange for Small Animals, green for Plants, red
for Plant Diseases, purple for Microscopy, brown for Remote Sensing, pink for Vehicles, gray for Manufac-
turing, yellow for Human Actions, light blue for OCR.

Table 8: Dataset IDs for Micro and Mini sizes of Meta-Album.

Domain Micro dataset IDs Mini dataset IDs

Large Animals 44241 44313 44275 44285 44298 44305
Small Animals 44238 44248 44276 44282 44292 44306

Plants 44239 44249 44272 44283 44293 44302
Plant Diseases 44242 44314 44273 44286 44299 44303

Microscopy 44237 44312 44278 44281 44297 44308
Remote Sensing 44246 44315 44277 44290 44300 44307

Vehicles 44245 44251 44279 44289 44295 44309
Manufacturing 44244 44250 44274 44288 44294 44304
Human Actions 44240 44247 44271 44284 44291 44301

OCR 44243 44252 44280 44287 44296 44310
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Figure 16: Model robustness to input-label mapping perturbations by varying the proportion of correctly
labeled examples in the demonstrations 100-90-75-50% (corresponding to 0-2-6-12 mislabeled examples) at
test time. Only the datasets in the first release of Meta-Album Mini are shown for simplicity.

A.5 Robustness to label noise

A key challenge in evaluating GEOM is understanding its reliance on input-label mappings in the demonstra-
tions to perform a task. In real-world scenarios, mislabeling errors or label noise during pre-processing, as
well as challenges in assigning correct labels to certain samples, can lead to incorrect input-label mappings.
To simulate this, we introduce perturbations in the input-label mapping for a subset of examples, varying
the proportion of correctly labeled instances in the test task context. The results, illustrated in Fig. 16,
reveal that the model remains robust to label perturbation even when only 75% of the labels in the task
context are correct. This aligns with the findings in Min et al. (2022b), suggesting that meta-training with
an explicit in-context learning objective encourages the model to rely less on the input-label mapping and
instead leverage other aspects of the demonstrations to make predictions. The complete results are reported
in Tab. 15.

Additionally, we examine the effects of applying label perturbations exclusively during the training phase.
The results indicate that the model effectively exploits the task context for test time predictions rather than
relying on memorized input-label mappings from training. Indeed, if the model were memorizing erroneous
mappings, this would result in significant performance degradation during testing, which is not observed
in Tab. 16. Interestingly, introducing minor label perturbations (e.g., 10% of the demonstrations) during
training acts as a form of regularization (Guo et al., 2021), improving the model’s ability to generalize across
domains, even with more challenging tasks.
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A.6 Additional results - Offline learning

Table 9: Comparison between GEOM trained on Meta-Album Mini and on Meta-Album Extended. The
training is performed following the LOO setting described in Sect. 5, and the performance is evaluated on
the datasets from the left-out domain. The dataset IDs differ between the Mini and Extended sizes, and
they are reported here as they appear in the Meta-Album website (Ullah et al., 2022). OCR is not part of
the Extended size of Meta-Album. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

Mini 73.34 ± 1.34 63.03 ± 3.03 76.22 ± 1.62 78.05 ± 0.75 52.34 ± 0.75 55.72 ± 0.35 78.38 ± 1.22 51.14 ± 0.74 37.92 ± 0.54 78.35 ± 1.06 87.75 ± 0.76 58.02 ± 0.76
44320 44331 44338 44317 44326 44340 44318 44327 44335 44321 44332 44336

Extended 73.15 ± 1.86 59.44 ± 2.38 67.61 ± 3.19 76.24 ± 1.78 51.95 ± 1.12 54.67 ± 1.79 78.35 ± 0.19 51.98 ± 1.27 38.57 ± 0.25 78.01 ± 0.47 85.49 ± 0.89 58.6 ± 0.6

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

Mini 79.41 ± 0.55 30.64 ± 0.56 31.53 ± 0.27 69.74 ± 0.62 82.28 ± 1.33 68.45 ± 1.56 42.39 ± 1.29 57.11 ± 0.52 36.78 ± 0.94
4316 44330 44342 44324 44333 44341 44323 44329 44343

Extended 77.30 ± 0.59 31.98 ± 0.34 32.01 ± 0.92 68.50 ± 0.40 85.58 ± 0.43 67.58 ± 0.49 43.97 ± 1.98 47.66 ± 0.39 36.71 ± 0.98

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

Mini 73.05 ± 0.99 56.34 ± 0.72 87.36 ± 0.69 72.66 ± 1.00 55.94 ± 1.61 53.50 ± 2.97 30.47 ± 0.31 26.68 ± 0.47 39.16 ± 0.22
44322 44328 44337 44319 44325 44334 - - -

Extended 92.11 ± 0.60 61.62 ± 0.37 96.91 ± 0.18 74.00 ± 2.36 55.33 ± 2.57 55.06 ± 4.15 - - -

Table 10: Performance comparison among GEOM, GEOM-M, and GEOM-IN across all Meta-Album (Mini)
datasets. The training is performed following the LOO setting described in Sect. 5 (for GEOM and GEOM-
M) and on ImageNet-1k (Deng et al., 2009) for GEOM-IN. The performance is then evaluated on the
Meta-Album datasets in the left-out domain. The bold font highlights the best-performing approach for
each dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

GEOM 73.34 ± 1.34 63.03 ± 3.03 76.22 ± 1.62 78.05 ± 0.75 52.34 ± 0.75 55.72 ± 0.35 78.38 ± 1.22 51.14 ± 0.74 37.92 ± 0.54 78.35 ± 1.06 87.75 ± 0.76 58.02 ± 0.76
GEOM-M 71.77 ± 0.41 63.97 ± 0.36 68.38 ± 0.30 78.37 ± 0.56 51.25 ± 0.86 54.09 ± 1.50 76.57 ± 1.51 47.16 ± 2.00 36.35 ± 0.26 77.16 ± 0.88 86.65 ± 1.13 57.71 ± 0.29
GEOM-IN 90.33 ± 0.44 98.49 ± 0.10 95.88 ± 0.02 74.29 ± 0.71 55.14 ± 0.43 62.98 ± 0.81 75.14 ± 1.35 48.25 ± 1.50 37.54 ± 1.52 67.53 ± 2.59 80.11 ± 4.00 47.46 ± 0.64

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

GEOM 79.41 ± 0.55 30.64 ± 0.56 31.53 ± 0.27 69.74 ± 0.62 82.28 ± 1.33 68.45 ± 1.56 42.39 ± 1.29 57.11 ± 0.52 36.78 ± 0.94
GEOM-M 78.67 ± 0.66 30.64 ± 0.92 30.36 ± 0.55 67.96 ± 0.66 81.58 ± 0.43 66.11 ± 1.59 45.47 ± 1.20 57.44 ± 0.59 35.19 ± 0.08
GEOM-IN 71.78 ± 1.25 30.81 ± 0.64 30.82 ± 0.63 68.37 ± 1.01 79.33 ± 2.84 67.42 ± 2.47 57.04 ± 0.61 52.83 ± 1.80 46.08 ± 0.60

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

GEOM 73.05 ± 0.99 56.34 ± 0.72 87.36 ± 0.69 72.66 ± 1.00 55.94 ± 1.61 53.50 ± 2.97 30.47 ± 0.31 26.68 ± 0.47 39.16 ± 0.22
GEOM-M 71.32 ± 0.18 58.33 ± 0.31 85.51 ± 0.26 74.24 ± 0.18 55.76 ± 0.32 55.72 ± 0.54 31.14 ± 0.36 26.77 ± 0.26 39.92 ± 0.26
GEOM-IN 85.52 ± 1.41 66.66 ± 0.80 94.93 ± 0.80 88.91 ± 0.63 82.46 ± 0.76 67.44 ± 0.40 31.86 ± 0.81 29.17 ± 0.06 41.63 ± 1.10
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Table 11: Performance comparison among GEOM and GEOM-IN across all Meta-Album (Mini) datasets.
The pre-trained weights are inherited from CLIP Radford et al. (2021) and the timm3 library. The training
is performed following the LOO setting described in Sect. 5 and on ImageNet-1k (Deng et al., 2009) for
GEOM-IN. The performance is then evaluated on the Meta-Album datasets in the left-out domain. The
bold font highlights the best-performing approach for each dataset. Results show the average across three
complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

GEOM 84.78 ± 1.58 53.20 ± 5.18 86.79 ± 1.89 69.82 ± 0.47 46.53 ± 0.98 69.13 ± 0.87 91.26 ± 0.55 68.46 ± 1.18 29.60 ± 1.45 45.34 ± 6.01 70.57 ± 3.86 49.95 ± 1.41
GEOM-IN 96.25 ± 0.09 91.37 ± 0.81 98.71 ± 0.30 64.77 ± 1.46 52.56 ± 1.12 77.32 ± 0.41 93.52 ± 0.43 65.01 ± 4.78 27.33 ± 4.56 34.49 ± 7.53 60.25 ± 8.61 47.72 ± 5.49

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

GEOM 46.01 ± 5.53 24.17 ± 1.89 23.29 ± 3.28 77.36 ± 4.71 84.38 ± 0.98 64.27 ± 2.91 74.25 ± 3.89 51.59 ± 5.46 45.30 ± 1.58
GEOM-IN 29.25 ± 7.24 22.86 ± 2.97 20.57 ± 2.87 89.67 ± 2.57 86.31 ± 2.09 80.25 ± 0.39 88.63 ± 1.54 52.89 ± 7.80 69.71 ± 2.77

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

GEOM 84.87 ± 2.32 75.26 ± 3.05 91.11 ± 0.98 61.09 ± 3.99 44.17 ± 2.56 40.16 ± 12.94 28.84 ± 0.97 30.83 ± 0.53 36.96 ± 0.38
GEOM-IN 82.87 ± 6.41 72.36 ± 2.15 94.92 ± 0.33 97.41 ± 0.48 88.23 ± 0.94 73.44 ± 4.87 33.58 ± 1.57 35.82 ± 3.25 40.03 ± 2.11

Table 12: Performance comparison between GEOM and GEOM-M across all Meta-Album (Mini) datasets
in the 5-ways 1-shot setting (N = 5, K = 1). The training is performed following the LOO setting described
in Sect. 5. The performance is then evaluated on the Meta-Album datasets in the left-out domain. The
bold font highlights the best-performing approach for each dataset. Results show the average across three
complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

GEOM 55.69 ± 1.59 48.01 ± 1.90 58.13 ± 1.52 62.87 ± 0.83 37.45 ± 0.63 40.47 ± 0.48 59.39 ± 1.11 36.58 ± 0.34 28.91 ± 0.50 62.14 ± 0.30 76.88 ± 0.79 42.56 ± 0.89
GEOM-M 54.55 ± 0.54 47.53 ± 0.73 51.21 ± 0.29 63.61 ± 1.02 35.39 ± 0.90 37.77 ± 1.06 57.02 ± 1.55 33.44 ± 0.68 27.79 ± 0.30 59.79 ± 1.38 75.53 ± 0.31 40.63 ± 0.38

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

GEOM 66.44 ± 1.35 25.43 ± 0.80 25.73 ± 0.06 49.79 ± 1.40 64.66 ± 1.30 49.80 ± 1.29 32.71 ± 0.58 41.35 ± 0.63 28.17 ± 1.02
GEOM-M 65.80 ± 0.87 25.16 ± 0.39 25.21 ± 0.34 48.41 ± 1.30 63.33 ± 0.66 47.33 ± 1.51 34.13 ± 0.69 39.92 ± 0.80 27.66 ± 0.82

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

GEOM 64.31 ± 0.78 39.29 ± 0.97 78.79 ± 1.33 53.45 ± 0.91 39.68 ± 1.16 38.11 ± 1.19 24.63 ± 0.02 23.07 ± 0.34 29.56 ± 0.37
GEOM-M 63.77 ± 1.01 40.31 ± 0.66 77.59 ± 0.20 54.90 ± 0.22 38.88 ± 0.78 37.94 ± 0.33 24.79 ± 0.13 23.11 ± 0.14 29.29 ± 0.11

3https://timm.fast.ai/
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Table 13: Performance of GEOM vs GEOM-M when models are tested on GEOM-M-like tasks, i.e., a task
can include classes from different datasets and domain. The training is performed following the LOO setting
described in Sect. 5. The name of the domain is the one excluded during the training and test phases. The
only exception is Oracle, which have access to all the training classes of all the 30 datasets in Meta-Album.
Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases Microscopy
GEOM 91.33 ± 0.15 92.86 ± 0.30 93.35 ± 0.20 93.26 ± 0.19 93.43 ± 0.19
GEOM-M 92.86 ± 0.09 93.94 ± 0.25 93.87 ± 0.04 94.29 ± 0.09 94.29 ± 0.13

Oracle 98.59 ± 0.09 98.59 ± 0.09 98.59 ± 0.09 98.59 ± 0.09 98.59 ± 0.09

Remote Sensing Vehicles Manufacturing Human Actions OCR
GEOM 93.07 ± 0.38 92.82 ± 0.43 92.01 ± 0.34 93.27 ± 0.24 98.94 ± 0.09
GEOM-M 94.11 ± 0.15 93.84 ± 0.26 93.47 ± 0.15 94.17 ± 0.14 98.66 ± 0.06

Oracle 98.59 ± 0.09 98.59 ± 0.09 98.59 ± 0.09 98.59 ± 0.09 98.59 ± 0.09
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Figure 17: Comparison of GEOM training only on datasets from the first release (First, 9 datasets), on
datasets from the first and second releases (Second, 18 datasets), and on datasets from all three releases
(Third, 27 datasets) of Meta-Album Mini. The training is performed following the LOO setting described in
Sect. 5, and the performance is evaluated on the datasets from the left-out domain (represented with blue,
orange, and green colors).
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Table 14: Comparison of GEOM training only on datasets from the first release (First, 9 datasets), on
datasets from the first and second releases (Second, 18 datasets), and on datasets from all three releases
(Third, 27 datasets) of Meta-Album Mini. The training is performed following the LOO setting described
in Sect. 5, and the performance is evaluated on the datasets from the left-out domain. Results show the
average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

First 52.38 ± 1.97 45.26 ± 2.18 59.88 ± 2.18 75.94 ± 0.22 47.70 ± 0.72 48.83 ± 2.99 67.18 ± 1.43 42.56 ± 0.71 34.43 ± 2.06 73.58 ± 0.89 84.22 ± 1.13 52.43 ± 0.61
Second 62.69 ± 0.46 54.79 ± 1.96 70.41 ± 0.57 77.03 ± 0.80 49.86 ± 0.75 51.64 ± 0.38 74.22 ± 0.98 48.84 ± 0.85 36.55 ± 1.27 75.12 ± 0.78 86.74 ± 0.45 57.00 ± 0.13
Third 73.34 ± 1.34 63.03 ± 3.03 76.22 ± 1.62 78.05 ± 0.75 52.34 ± 0.75 55.72 ± 0.35 78.38 ± 1.22 51.14 ± 0.74 37.92 ± 0.54 78.35 ± 1.06 87.75 ± 0.76 58.02 ± 0.76

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

First 76.23 ± 0.54 28.38 ± 0.53 28.79 ± 0.74 61.77 ± 0.71 74.56 ± 1.10 60.43 ± 1.17 38.59 ± 1.46 51.21 ± 0.32 32.15 ± 0.08
Second 77.50 ± 1.66 28.99 ± 0.32 29.71 ± 0.36 63.51 ± 0.39 75.40 ± 0.89 62.74 ± 0.78 42.27 ± 1.04 55.03 ± 0.58 34.17 ± 1.12
Third 79.41 ± 0.55 30.64 ± 0.56 31.53 ± 0.27 69.74 ± 0.62 82.28 ± 1.33 68.45 ± 1.56 42.39 ± 1.29 57.11 ± 0.52 36.78 ± 0.94

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

First 74.43 ± 2.10 53.70 ± 0.81 84.30 ± 0.71 62.83 ± 3.06 45.32 ± 4.32 48.16 ± 3.27 30.02 ± 1.25 26.53 ± 0.92 36.56 ± 1.02
Second 74.29 ± 2.21 52.75 ± 0.30 85.71 ± 1.66 65.89 ± 1.35 51.58 ± 3.31 49.07 ± 2.58 29.85 ± 0.54 26.74 ± 0.69 37.86 ± 0.87
Third 73.05 ± 0.99 56.34 ± 0.72 87.36 ± 0.69 72.66 ± 1.00 55.94 ± 1.61 53.50 ± 2.97 30.47 ± 0.31 26.68 ± 0.47 39.16 ± 0.22

Table 15: Model robustness to input-label mapping perturbations by varying the proportion of correctly
labeled examples in the demonstrations 100-90-75-50% (corresponding to 0-2-6-12 mislabeled examples) at
test time. The model is trained on all the Meta-Album datasets and the evaluation is performed on the test
set of each dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

100% correct 96.53 ± 0.09 95.54 ± 0.31 95.50 ± 0.59 80.70 ± 0.32 56.99 ± 0.40 75.04 ± 0.77 91.18 ± 0.54 59.47 ± 1.06 35.37 ± 2.06 56.26 ± 2.18 86.69 ± 2.42 49.49 ± 1.68
90% correct 95.92 ± 0.22 95.07 ± 0.39 94.77 ± 1.66 76.17 ± 0.24 53.83 ± 0.16 73.77 ± 1.15 90.88 ± 0.15 55.51 ± 0.38 32.26 ± 1.70 57.05 ± 3.33 83.30 ± 2.47 50.14 ± 0.50
75% correct 93.37 ± 0.31 91.79 ± 0.35 90.12 ± 2.01 72.42 ± 0.44 47.72 ± 0.79 67.87 ± 1.30 85.90 ± 0.23 51.53 ± 1.70 31.02 ± 0.19 50.80 ± 2.95 76.49 ± 1.80 46.16 ± 0.66
50% correct 72.56 ± 1.31 70.44 ± 2.29 67.14 ± 0.79 54.67 ± 1.67 35.84 ± 1.13 51.16 ± 0.26 63.96 ± 1.08 42.46 ± 3.35 27.80 ± 0.08 39.60 ± 2.38 63.82 ± 4.21 37.75 ± 0.61

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

100% correct 73.23 ± 0.59 32.43 ± 2.78 30.74 ± 0.78 81.74 ± 0.66 94.29 ± 0.34 75.17 ± 2.15 72.23 ± 0.41 71.21 ± 1.81 51.53 ± 2.36
90% correct 70.88 ± 1.77 31.21 ± 2.50 29.88 ± 0.58 80.17 ± 0.73 93.66 ± 0.29 72.87 ± 1.78 70.19 ± 0.06 70.13 ± 0.84 57.84 ± 1.99
75% correct 66.42 ± 1.69 28.53 ± 1.12 27.90 ± 2.00 74.37 ± 0.37 89.18 ± 0.48 68.36 ± 1.86 65.37 ± 0.27 60.93 ± 1.35 53.42 ± 0.75
50% correct 48.80 ± 1.00 26.62 ± 1.40 24.66 ± 2.34 54.76 ± 0.13 68.65 ± 1.11 50.84 ± 0.73 49.12 ± 0.61 46.57 ± 6.51 39.76 ± 1.54

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

100% correct 90.04 ± 2.56 72.89 ± 1.05 98.34 ± 0.15 85.26 ± 2.55 68.86 ± 1.55 57.33 ± 2.59 61.98 ± 0.25 57.03 ± 0.27 72.60 ± 0.42
90% correct 91.58 ± 2.97 69.38 ± 1.25 98.00 ± 0.16 81.54 ± 1.80 67.93 ± 1.26 57.01 ± 2.53 59.59 ± 0.16 54.53 ± 0.19 70.42 ± 0.58
75% correct 87.71 ± 2.59 63.97 ± 2.28 96.62 ± 0.27 75.68 ± 2.40 60.69 ± 2.09 53.24 ± 0.99 53.85 ± 0.22 49.01 ± 0.79 64.54 ± 0.34
50% correct 64.10 ± 0.85 46.28 ± 0.87 77.06 ± 0.05 57.74 ± 1.04 44.26 ± 0.57 37.18 ± 1.74 41.11 ± 0.06 37.43 ± 0.66 48.29 ± 0.32
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Table 16: Model robustness to input-label mapping perturbations by varying the proportion of correctly
labeled examples in the demonstrations 100-90-75-50% (corresponding to 0-2-6-12 mislabeled examples) at
training time. The model is trained on all the Meta-Album datasets and the evaluation is performed on the
test set of each dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

100% correct 96.53 ± 0.09 95.54 ± 0.31 95.50 ± 0.59 80.70 ± 0.32 56.99 ± 0.40 75.04 ± 0.77 91.18 ± 0.54 59.47 ± 1.06 35.37 ± 2.06 56.26 ± 2.18 86.69 ± 2.42 49.49 ± 1.68
90% correct 96.42 ± 0.24 95.41 ± 0.28 94.73 ± 0.85 78.26 ± 0.18 55.51 ± 1.06 75.36 ± 0.99 91.24 ± 0.32 60.48 ± 1.55 34.08 ± 0.89 59.12 ± 2.28 86.72 ± 2.59 51.22 ± 0.89
75% correct 96.34 ± 0.08 95.20 ± 0.39 95.01 ± 1.35 77.65 ± 0.34 55.52 ± 0.78 75.26 ± 1.62 90.89 ± 0.51 58.77 ± 2.82 33.56 ± 2.70 59.66 ± 1.54 83.74 ± 1.61 51.40 ± 2.15
50% correct 94.65 ± 0.29 89.82 ± 1.93 91.19 ± 1.33 73.87 ± 0.13 50.23 ± 1.22 71.09 ± 0.62 87.43 ± 0.29 46.66 ± 3.63 30.14 ± 3.51 49.44 ± 2.73 78.35 ± 6.52 45.38 ± 2.62

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

100% correct 73.23 ± 0.59 32.43 ± 2.78 30.74 ± 0.78 81.74 ± 0.66 94.29 ± 0.34 75.17 ± 2.15 72.23 ± 0.41 71.21 ± 1.81 51.53 ± 2.36
90% correct 74.43 ± 1.67 32.55 ± 2.92 28.50 ± 1.59 82.48 ± 0.62 94.44 ± 0.40 75.94 ± 1.66 72.01 ± 0.15 69.79 ± 4.42 58.94 ± 1.73
75% correct 71.79 ± 1.10 32.37 ± 2.25 27.80 ± 2.32 81.75 ± 0.70 95.04 ± 0.65 74.10 ± 2.24 71.77 ± 0.58 72.24 ± 0.94 55.20 ± 2.98
50% correct 63.74 ± 6.08 29.70 ± 3.45 26.46 ± 2.05 75.49 ± 2.23 92.99 ± 0.46 68.88 ± 1.48 67.46 ± 1.06 54.17 ± 4.67 41.64 ± 1.46

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

100% correct 90.04 ± 2.56 72.89 ± 1.05 98.34 ± 0.15 85.26 ± 2.55 68.86 ± 1.55 57.33 ± 2.59 61.98 ± 0.25 57.03 ± 0.27 72.60 ± 0.42
90% correct 92.94 ± 0.74 72.29 ± 1.94 98.55 ± 0.18 82.85 ± 2.40 70.77 ± 0.81 60.04 ± 1.32 61.76 ± 0.66 56.05 ± 0.18 71.83 ± 0.38
75% correct 92.63 ± 1.81 72.85 ± 1.45 98.45 ± 0.22 83.48 ± 1.47 70.76 ± 1.80 61.88 ± 1.13 60.03 ± 0.25 54.32 ± 0.16 70.43 ± 0.34
50% correct 92.14 ± 1.06 67.55 ± 5.38 97.64 ± 0.23 78.02 ± 1.19 56.03 ± 4.78 47.20 ± 4.70 53.31 ± 0.67 47.47 ± 0.47 64.34 ± 0.84

A.7 Additional results - Sequential learning

Table 17: Comparative results of GEOM-S assigning to each dataset the same number of epochs (static)
or a proportion dependent on the size of each dataset (proportional). The offline baseline can be seen as
an oracle baseline as all datasets are available simultaneously during training (non-sequential approach). In
this setting, the training split of each dataset is used for sampling training tasks, while the performance is
evaluated on the test split, as described in Sect. 6. Results show the average across three complete runs of
the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

Static 95.34 ± 0.04 94.73 ± 0.54 92.60 ± 1.94 76.83 ± 0.77 51.75 ± 0.62 72.97 ± 0.79 89.80 ± 0.85 52.23 ± 2.44 36.64 ± 1.32 59.92 ± 1.14 82.34 ± 0.72 48.04 ± 2.18
Proportional 95.77 ± 0.33 95.06 ± 0.25 94.71 ± 1.22 75.75 ± 0.46 52.10 ± 0.48 73.74 ± 0.48 89.66 ± 0.76 54.02 ± 2.81 33.35 ± 1.30 55.81 ± 0.77 81.90 ± 1.55 47.57 ± 1.11
Offline 96.53 ± 0.09 95.54 ± 0.31 95.50 ± 0.59 80.70 ± 0.32 56.99 ± 0.40 75.04 ± 0.77 91.18 ± 0.54 59.47 ± 1.06 35.37 ± 2.06 56.26 ± 2.18 86.69 ± 2.42 49.49 ± 1.68

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

Static 71.66 ± 1.39 31.29 ± 0.84 30.05 ± 1.79 79.55 ± 0.86 94.00 ± 1.24 70.65 ± 0.74 71.46 ± 0.11 70.65 ± 1.91 57.81 ± 1.59
Proportional 72.27 ± 1.28 31.33 ± 0.26 27.56 ± 1.32 76.30 ± 1.26 90.74 ± 1.57 70.40 ± 1.11 71.98 ± 0.32 71.68 ± 0.74 59.44 ± 0.98
Offline 73.23 ± 0.59 32.43 ± 2.78 30.74 ± 0.78 81.74 ± 0.66 94.29 ± 0.34 75.17 ± 2.15 72.23 ± 0.41 71.21 ± 1.81 51.53 ± 2.36

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

Static 93.69 ± 0.34 74.72 ± 1.38 98.61 ± 0.07 81.51 ± 1.30 69.14 ± 1.42 58.14 ± 5.26 39.13 ± 0.61 30.65 ± 0.14 47.23 ± 1.03
Proportional 87.56 ± 0.52 70.45 ± 1.14 96.87 ± 0.59 81.11 ± 1.93 64.34 ± 1.24 57.71 ± 3.05 63.52 ± 0.25 62.75 ± 0.30 73.57 ± 0.23
Offline 90.04 ± 2.56 72.89 ± 1.05 98.34 ± 0.15 85.26 ± 2.55 68.86 ± 1.55 57.33 ± 2.59 61.98 ± 0.25 57.03 ± 0.27 72.60 ± 0.42
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Table 18: Accuracy results of GEOM-S using different TL-based curricula: easy-to-hard (E2H), hard-to-easy
(H2E), and domain-based order. The same number of epochs (20) is assigned to each dataset, using the
static approach in Sect. 6.1. The bold font highlights the best-performing approach for each dataset. Results
show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

E2H 96.00 ± 0.27 95.24 ± 0.21 92.63 ± 0.85 76.15 ± 0.38 55.14 ± 0.29 74.78 ± 0.46 88.38 ± 0.86 53.98 ± 2.85 35.54 ± 0.76 54.38 ± 1.18 82.00 ± 3.22 46.97 ± 1.42
H2E 95.97 ± 0.31 95.47 ± 0.41 95.55 ± 0.80 79.18 ± 0.54 56.28 ± 0.61 76.66 ± 0.48 91.21 ± 0.51 57.03 ± 1.32 35.98 ± 3.08 63.19 ± 1.55 88.17 ± 1.36 50.16 ± 1.49
Domain-based 95.34 ± 0.48 94.73 ± 0.54 92.60 ± 1.94 76.83 ± 0.77 51.75 ± 0.62 72.97 ± 0.79 89.80 ± 0.85 52.23 ± 2.44 36.64 ± 1.32 59.92 ± 1.14 82.34 ± 0.72 48.04 ± 2.18

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

E2H 66.29 ± 4.38 27.93 ± 1.12 27.31 ± 2.24 79.14 ± 0.99 85.89 ± 1.00 63.12 ± 1.07 71.10 ± 0.49 68.78 ± 3.12 57.23 ± 5.69
H2E 73.80 ± 2.71 31.52 ± 1.47 30.17 ± 0.43 83.22 ± 1.30 95.13 ± 0.72 73.12 ± 1.18 72.53 ± 0.60 72.88 ± 3.38 62.37 ± 1.26
Domain-based 71.66 ± 1.39 31.29 ± 0.84 30.05 ± 1.79 79.55 ± 0.86 94.00 ± 1.24 70.65 ± 0.74 71.46 ± 0.11 70.65 ± 1.91 57.81 ± 1.59

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

E2H 83.46 ± 4.97 61.43 ± 2.69 96.49 ± 0.92 74.94 ± 0.67 52.97 ± 4.69 55.87 ± 4.51 50.10 ± 0.24 37.05 ± 0.50 58.67 ± 0.61
H2E 91.85 ± 1.58 75.94 ± 0.49 97.50 ± 0.03 84.11 ± 2.10 71.10 ± 1.24 62.81 ± 1.76 49.51 ± 0.59 41.04 ± 0.62 62.17 ± 0.60
Domain-based 93.69 ± 0.34 74.72 ± 1.38 98.61 ± 0.07 81.51 ± 1.30 69.14 ± 1.42 58.14 ± 5.26 39.13 ± 0.61 30.65 ± 0.14 47.23 ± 1.03

Table 19: Accuracy results of GEOM-S using different OT-based curricula: easy-to-easy (E2E), hard-to-hard
(H2H), Switch, and the domain-based order. The same number of epochs (20) is assigned to each dataset,
using the static approach in Sect. 6.1. The bold font highlights the best-performing approach for each
dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

E2E 96.94 ± 0.22 95.90 ± 0.07 94.88 ± 0.16 78.37 ± 0.36 53.80 ± 0.59 74.88 ± 0.60 91.18 ± 0.71 55.93 ± 1.92 35.16 ± 0.90 57.27 ± 3.11 88.00 ± 2.58 47.74 ± 0.54
H2H 92.66 ± 0.37 87.00 ± 0.56 94.05 ± 1.31 77.44 ± 1.06 55.16 ± 0.18 75.41 ± 0.75 91.44 ± 0.54 57.25 ± 3.34 35.89 ± 0.65 60.12 ± 3.71 87.36 ± 1.79 50.14 ± 1.71
Switch 96.45 ± 0.12 91.19 ± 3.71 94.85 ± 1.45 77.85 ± 0.69 56.84 ± 0.58 76.28 ± 0.52 91.02 ± 0.34 53.90 ± 2.34 36.55 ± 2.30 61.70 ± 2.82 85.31 ± 1.36 45.39 ± 1.35
Domain-based 95.34 ± 0.48 94.73 ± 0.54 92.60 ± 1.94 76.83 ± 0.77 51.75 ± 0.62 72.97 ± 0.79 89.80 ± 0.85 52.23 ± 2.44 36.64 ± 1.32 59.92 ± 1.14 82.34 ± 0.72 48.04 ± 2.18

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

E2E 71.02 ± 1.28 31.47 ± 2.47 29.19 ± 2.16 82.30 ± 0.96 94.30 ± 0.54 72.13 ± 0.80 72.30 ± 0.84 73.31 ± 2.09 61.78 ± 1.33
H2H 70.21 ± 2.44 29.09 ± 0.06 30.05 ± 1.57 78.85 ± 1.47 93.04 ± 0.36 71.55 ± 1.09 69.76 ± 1.06 72.21 ± 1.43 60.51 ± 3.47
Switch 70.49 ± 2.31 30.06 ± 0.63 29.12 ± 1.29 78.21 ± 1.88 91.81 ± 1.46 70.73 ± 2.32 62.88 ± 0.33 73.57 ± 0.67 59.42 ± 0.57
Domain-based 71.66 ± 1.39 31.29 ± 0.84 30.05 ± 1.79 79.55 ± 0.86 94.00 ± 1.24 70.65 ± 0.74 71.46 ± 0.11 70.65 ± 1.91 57.81 ± 1.59

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

E2E 88.54 ± 1.91 68.71 ± 0.77 97.83 ± 0.95 82.89 ± 0.31 67.62 ± 0.76 62.70 ± 2.10 55.76 ± 0.33 49.26 ± 0.56 69.69 ± 0.76
H2H 89.77 ± 3.40 70.86 ± 0.48 98.03 ± 0.22 82.82 ± 1.23 62.92 ± 2.38 59.21 ± 2.35 51.17 ± 0.26 50.93 ± 0.36 69.82 ± 0.68
Switch 89.36 ± 0.08 71.85 ± 0.95 98.34 ± 0.10 84.01 ± 1.60 69.62 ± 1.88 59.98 ± 0.88 52.55 ± 0.61 49.90 ± 0.67 68.24 ± 0.72
Domain-based 93.69 ± 0.34 74.72 ± 1.38 98.61 ± 0.07 81.51 ± 1.30 69.14 ± 1.42 58.14 ± 5.26 39.13 ± 0.61 30.65 ± 0.14 47.23 ± 1.03

42



Under review as submission to TMLR

A.8 Additional results - Unsupervised learning

Table 20: Comparison between GEOM-U and CAMeLU (Vettoruzzo et al., 2025). GEOM-U is trained
with the LOO approach described in Sect. 5 on Meta-Album Mini removing the class labels during training,
while CAMeLU is trained on ImageNet-1k. The bold font highlights the best-performing approach for each
dataset. Results show the average across three complete runs of the algorithms.

Large Animals Small Animals Plants Plant Diseases
44285 44298 44305 44282 44292 44306 44283 44293 44302 44286 44299 44303

GEOM-U 84.49 ± 0.53 78.43 ± 1.30 83.43 ± 1.06 84.70 ± 0.12 58.51 ± 0.38 66.71 ± 0.50 90.10 ± 0.14 60.34 ± 0.51 45.04 ± 0.29 87.47 ± 0.63 92.74 ± 0.29 62.31 ± 0.62
CAMeLU 90.69 ± 0.19 96.34 ± 0.16 93.03 ± 0.29 80.28 ± 0.34 56.93 ± 0.27 62.09 ± 0.88 82.25 ± 0.28 52.13 ± 0.49 41.34 ± 0.91 81.01 ± 0.20 87.56 ± 1.53 55.54 ± 0.41

Microscopy Remote Sensing Vehicles
44281 44297 44308 44290 44300 44307 44289 44295 44309

GEOM-U 81.97 ± 0.41 34.40 ± 0.56 34.30 ± 0.58 80.22 ± 0.64 92.31 ± 0.24 78.49 ± 0.74 61.58 ± 0.59 57.32 ± 0.38 46.55 ± 0.57
CAMeLU 81.45 ± 0.09 33.65 ± 0.26 34.01 ± 0.47 79.60 ± 0.36 91.57 ± 0.10 78.02 ± 0.37 53.31 ± 0.23 54.10 ± 0.47 43.11 ± 1.11

Manufacturing Human Actions OCR
44288 44294 44304 44284 44291 44301 44287 44296 44310

GEOM-U 97.49 ± 0.08 74.97 ± 1.08 99.32 ± 0.05 89.20 ± 0.38 77.27 ± 0.50 72.57 ± 0.21 38.27 ± 0.10 32.60 ± 0.30 45.74 ± 0.18
CAMeLU 95.81 ± 0.45 76.62 ± 0.53 98.99 ± 0.19 90.52 ± 0.22 79.82 ± 0.25 72.20 ± 0.61 29.06 ± 0.39 27.04 ± 0.36 39.27 ± 0.44

A.9 Miscellanea
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Figure 18: Visualization of GEOM learning trend represented as the relative validation accuracy, computed
as the accuracy relative to its initial value, over 600 epochs. For every epoch, 50 tasks are sampled from
the test split of each datasets (resulting in 1500 tasks/epoch) and the mean validation accuracy is computed
over all tasks. The curve shows three different phases in the learning trend: memorization, learning, and
generalization. These findings are consistend with the observations in Kirsch et al. (2022) and Vettoruzzo
et al. (2025)
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