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Abstract

Complex multi-step reasoning remains chal-
lenging for large language models (LLMs).
While parallel inference-time scaling methods,
such as step-level beam search, offer a promis-
ing solution, existing approaches typically de-
pend on either domain-specific external ver-
ifiers, or self-evaluation which is brittle and
prompt-sensitive. To address these issues, we
propose Collaborative Beam Search (CBS), an
iterative framework that harnesses the collec-
tive intelligence of multiple LLMs across both
generation and verification stages. For genera-
tion, CBS leverages multiple LLMs to explore a
broader search space, resulting in more diverse
candidate steps. For verifications, CBS em-
ploys a perplexity-based collective consensus
among these models, eliminating reliance on an
external verifier or complex prompts. Between
iterations, CBS leverages a dynamic quota allo-
cation strategy that reassigns generation budget
based on each model’s past consensus perfor-
mance, striking a balance between candidate di-
versity and quality. Experimental results on six
tasks across arithmetic, logical, and common-
sense reasoning show that CBS outperforms
single-model scaling and multi-model ensem-
ble baselines by over 4 percentage points in
average accuracy, demonstrating its effective-
ness and broad applicability.

1 Introduction

Improving the reasoning capabilities of large lan-
guage models (LLMs), particularly for complex
tasks requiring multiple reasoning steps, still faces
challenges (Creswell et al., 2022; Wei et al., 2022).
A promising strategy to address this challenge is
parallel inference-time scaling, which generates
multiple candidates via sampling and then prunes
bad candidates based on verification signals. By
exploring of a broad space of potential reasoning
paths, parallel scaling can improve the robustness
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Figure 1: Motivation of CBS. Existing verifiers face
limitations. External verifiers are largely confined to
well-defined and well-explored areas like mathematical
reasoning, limiting their applicability to broader rea-
soning tasks. Self-evaluation relies on well-designed
prompts and often struggles with reliable assessment.
Our approach CBS provides a more robust and general-
izable verification mechanism.

and accuracy of LLLM reasoning processes (Yao
et al., 2023; Brown et al., 2024; Snell et al., 2025).

Step-level beam search is an effective and com-
putationally efficient parallel scaling method (Park
et al., 2024; Chen et al., 2024; Yu et al., 2024a).
This approach iteratively utilize a step-level veri-
fier to filter candidate steps generated by a single
model. As illustrated in Figure 1, existing verifiers
fall into two main categories: 1) External verifiers,
such as process reward models (PRMs), often rely
on expensive human annotations or automatic an-
notation via Monte Carlo Tree Search (Zheng et al.,
2024). Consequently, their availability is restricted
to well-defined and widely explored domains (e.g.,
mathematical reasoning). Furthermore, even in
domains where resources are available, verifiers
exhibit limited generalization capabilities on more
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Figure 2: The CBS framework. CBS iteratively executes generation and verification stages. (1) Generation: we
leverage multiple LLMs to generate diverse candidate steps. (2) Verification: we employ collective consensus
calculated by average perplexity to facilitate verifier-free evaluation. (3) Between iterations, we reallocate candidate
quotas for the next generation stage based on the models’ performance history.

challenging tasks (Liu et al., 2025). 2) Prompt-
based self-evaluation methods (Yao et al., 2023;
Xie et al., 2023; Li et al., 2025) have the LLM
prompt itself to generate critical feedback or re-
ward scores. Nevertheless, their heavy dependence
on well-designed prompts restricts their general
applicability. More critically, they often struggle
to reliably assess solution quality, leading to fluc-
tuating performance (Liu et al., 2025; Wan et al.,
2024). Beyond the limitations of existing verifiers,
the reliance on just one model for generation offers
limited candidate diversity, ultimately restricting
the potential for effective scaling.

To tackle the above issues, we introduce Collab-
orative Beam Search (CBS), a novel framework
that harnesses collective model intelligence to en-
hance LLM reasoning. The key insight behind
CBS is the natural synergy between model ensem-
ble and inference-time scaling: the collective power
of model ensemble can enhance both the genera-
tion and verification stages iteratively within this
scaling process. In the generation stage, to ad-
dress the limited diversity of single-model sam-
pling, CBS sources candidate steps from multiple
LLMs. These LLMs, spanning diverse datasets, ar-
chitectures, and training methodologies, exhibit dis-
tinct capabilities (Jiang et al., 2023; Xu et al., 2024).
In the verification stage, to overcome the fragility
of self-evaluation and the dependency on external
verifiers, CBS utilizes perplexity-based collective

consensus among multiple models as its reward
signal, resulting in a more reliable and generaliz-
able verification. Between iterations, to address the
inefficiency of "one-size-fits-all" budgeting, where
all models contribute equally despite large vari-
ance in their per-task reliability, CBS incorporates
a dynamic quota allocation strategy. This strategy
reassigns generation budget based on each model’s
past consensus performance, striking a balance be-
tween diversity and quality.

We evaluate our method on six reasoning tasks
across three categories: arithmetic, logical, and
commonsense reasoning. Experimental results
demonstrate the superiority of our approach com-
pared with existing single-model scaling and multi-
model ensemble baselines, achieving an average
improvement of more than 4 percentage points
across all tasks. Further analysis elucidates the
mechanism by which CBS achieves improvements
through ensembling.

Our contributions can be summarized as follows:

* We propose a novel collaborative beam search
method that leverages ensembling to enrich
the candidate pool and perform accurate veri-
fication.

* We devise a dynamic quota allocation strat-
egy that adjusts the generation budget based
on historical performance, striking a balance
between diversity and quality.



* Empirical results demonstrate the effective-
ness and broad applicability of our method.
Further analysis elucidates how the ensemble
leads to the observed performance gains.

2 Methods

We introduce CBS, a framework designed to en-
hance LLM reasoning by leveraging collective in-
telligence. The core mechanisms—diverse candi-
dates generation (Section 2.1), collective consen-
sus verification (Section 2.2), and differential quota
allocation (Section 2.3)—are detailed in the follow-
ing subsections. Pseudo-code for CBS is provided
in Algorithm 1 and the case study is provided in
Appendix C.

2.1 Diverse Candidates Generation

The candidate generation stage of CBS shares the
core mechanism of standard beam search, which in-
volves generating multiple potential continuations
for each active hypothesis. It differs primarily in
two aspects: First, CBS generates complete sen-
tences as its intermediate steps, rather than indi-
vidual tokens. Second, CBS sources these candi-
date steps from multiple LLMs, instead of relying
on a single model. By leveraging multiple LLMs
with different capabilities and internal knowledge,
CBS aims to generate a more diverse set of candi-
date steps, thereby enabling exploration of a signif-
icantly broader solution space.

As shown in Figure 2, in the initial generation
round, we allocate the candidate generation quota
evenly among all participating LLMs to obtain as
diverse candidate steps as possible. In the subse-
quent generation rounds, more sampling opportuni-
ties are assigned to LLMs that have demonstrated
superior performance in the previous round. This
dynamic allocation strategy will be detailed in Sec-
tion 2.3.

2.2 Collective Consensus Verification

In the verification stage, the CBS framework uti-
lizes perplexity, a simple and widely used metric,
to evaluate and select generated reasoning steps.
Perplexity assesses the alignment of a candidate
step with each LLM’s internal knowledge. A lower
perplexity score signifies a closer alignment, which
indicates stronger model endorsement for that can-
didate step. The simplicity of perplexity obviates
the need for external verifiers or intricately de-
signed self-evaluation prompts, thereby providing

Algorithm 1 Collaborative Beam Search

Input: Input prompt g, Beam size B, Sampled steps per
stage K, Maximum step depth T’
Output: Best solution sequence for g
Model: N LLMs M + {m1,...,mn}
: Initialize prefix sequences S < {s?,...
: fori=1to B do
s? g
end for
: Initialize allocation a + {a1, ...
: fori=1to N do
a; + K/(B*N)
: end for
t+1
10: while sequences in S are not complete and ¢ < T do
11: Scandidate — {}

s}

,an}
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12: for each sequence s~ in S do

13: fori =1to N do

14: for j = 1toa; do

15: Shrended < GENERATION (m;, 504 D)
16Z Scandidale — Scandidate + Séxtended

17: end for

18: end for

19: end for

20: ¢ + VERIFICATION(Scandidate,/M)

21: Sheam < SELECTION(Scandidate> €, B)

22: a < ALLOCATION(Sheam, K/ B)
23: S «— Sbeam
24: t<—t+1
25: end while
return sequence with highest final value in S

our CBS framework with enhanced generalization
capabilities.

Considering a set of IV candidate LLMs (de-
noted as M), and a set of K candidate steps (de-
noted as S) generated at the current reasoning stage.
We first have each candidate LLM (m; € M) in-
dependently calculate the perplexity score for all
candidate steps:
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where s’,; is the k-th candidate step generated at the
t-th round, and sg:t_l) is the prefix leading to s .

Next, we define the collective consensus metric
for each candidate step as the negative of its aver-
age perplexity. Building on this, a reasoning path’s
collective consensus metric is derived by averag-
ing the metrics of its constituent steps (Line 20 in

Algorithm 1).
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The top-B paths with the highest collective consen-
sus form the beam for the next generation round
Steam (Line 21 in Algorithm 1).

2.3 Differential Quota Allocation

To leverage the varying strengths of participating
LLMs, CBS employs a differential quota allocation
strategy. Based on observed performance history,
this strategy dynamically adjusts the number of
candidate steps each LLM will generate in subse-
quent rounds. First, we quantify the performance of
each model m; in the current round by counting the
number of its generated candidate steps included in
selected beam Speq;,. Notably, if multiple models
generate the same step, and that step is included in
Steam»> €ach contributing model is counted. Next,
these counts are transformed into a probability dis-
tribution using a temperature-controlled softmax.
We sample from this distribution to determine each
model’s candidate quota a for the next generation
round (Line 22 in Algorithm 1).

a; < exp (Count(Speam,))/T)

Lower values of temperature 7 make the selec-
tion more biased towards top-performing models,
while higher values lead to more uniform selection
probabilities, encouraging diversity. By adjusting
the temperature, we strike a balance between can-
didate diversity and quality.

3 Experimental Settings
3.1 Tasks and Datasets

To demonstrate the versatility of our method, we
choose benchmarks from three reasoning gen-
res: arithmetic reasoning (GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021)), logi-
cal reasoning (PrOntoQA (Saparov and He, 2023)
and ProofWriter (Tafjord et al., 2021)) and com-
monsense reasoning (StrategyQA (Geva et al.,
2021) and Date Understanding from BIG-Bench-
Hard (Suzgun et al., 2023)). Task details are pro-
vided in Appendix A.

3.2 Candidate LLMs

We select four open-source LLMs, approximately
7B to 9B in size, as candidate models for en-
semble in each task. For arithmetic reasoning
tasks, we use two general domain LLMs: Yi-1.5-
9B (Young et al., 2024) and InternLM-2.5-7B (Cai
et al., 2024), along with two math LLMs: Rho-
Math-7B (Lin et al., 2024) and DeepSeek-Math-
7B (Shao et al., 2024). For other tasks, we utilize

Multiple LLM  External Prompt-based

Method

Ensemble Verifier Evaluation
PANEL v
LLM-Blender v v
MOA v v
SweetSpan v
LE-MCTS v v
CBS-PRM v v

Table 1: Summary of representative recent methods.

four general models: Yi-1.5-9B, InternLM-2.5-7B,
Gemma-2-9B (Team et al., 2024), and Llama-3.1-
8B (Grattafiori et al., 2024).

These models are trained on large-scale, high-
quality datasets, establishing a strong knowledge
base that allows them to perform well on public
benchmarks. Sourced from distinct institutions,
these models exhibit inherent diversity, which pro-
vides opportunities for effective ensemble.

3.3 Baselines

To provide a comprehensive evaluation of CBS,
we compare it against diverse baselines from three
groups: classical single LLM inference-time scal-
ing methods, representative recent methods from
related problems, and a variant of our method.
Classical baselines include greedy decoding, self-
consistency (SC) (Wang et al., 2022), Best-of-N
(BoN) (Lightman et al., 2023), and step-level beam
search (BS). The key characteristics of the latter
two groups are summarized in Table 1, with further
details in Appendix B.

3.4 Implement Details

Unless explicitly modified, we utilize nucleus sam-
pling decoding with a temperature of 0.6 and a
top-p value of 0.9 in all experiments. Across all
tasks, we apply a 3-shot chain-of-thought prompt
and report accuracy as the performance metric. For
our proposed method, we set the beam size B = 4,
the sample size K = 32, and the softmax tempera-
ture 7 = 0.1. We define each sentence starting with
a "Step" marker as a reasoning step. The hyperpa-
rameters for baselines are configured as described
in their respective papers.

4 Experimental Results and Analysis

The main results on logical reasoning, common-
sense reasoning, and arithmetic reasoning tasks are
shown in Table 2 and Table 3.



Base LLM Method Logical Reasoning Commonsense Reasoning Average
PrOntoQA  ProofWriter  StrategyQA Date
Greedy 74.00 54.67 71.18 81.60 70.36
Yi-15 SC 77.40 62.67 74.67 82.80 74.55
) BON 67.00 23.83 68.56 82.00 60.35
BS 75.60 62.83 69.00 84.80 73.06
Greedy 64.00 49.67 72.93 87.20 68.45
InternLM-2.5 SC 68.00 59.67 72.93 88.80 72.35
BON 59.20 27.5 72.05 84.40 60.79
BS 73.60 55.67 71.62 86.80 71.92
Greedy 69.80 50.00 70.31 82.00 68.03
Gemma-2 SC 74.80 51.00 70.74 85.20 70.44
BON 60.60 31.17 69.00 84.80 61.39
BS 69.80 52.50 70.74 84.40 69.36
Greedy 71.60 58.67 69.43 82.80 70.63
LlaMa-3.1 SC 80.20 63.83 71.18 84.80 75.00
BON 63.40 39.17 62.88 85.20 62.66
BS 79.00 61.00 69.00 86.00 73.75
Top-1 PANEL 78.80 50.00 72.05 84.80 71.41
All LLM-Blender 19.40 42.83 66.81 84.40 53.36
All MOA 76.00 55.33 73.80 87.60 73.18
All SweetSpan 77.00 59.17 74.67 88.40 74.81
All CBS(Ours) 83.80(+3.60) 67.17(+3.34) 74.67(+0.0)  92.00(+3.20) 79.41(+4.41)

Table 2: Main results on logical and commonsense reasoning tasks. We highlight the best result in bold and the
second-best result with an underline, respectively. LE-MCTS and CBS-PRM are excluded from these four tasks
due to the unavailability of the required external verifier resources.

4.1 CBS demonstrates superiority

Our proposed CBS consistently outperforms single
LLM inference-time scaling methods and LLM en-
semble methods across all types of reasoning tasks,
demonstrating the effectiveness and broad appli-
cability of our approach. Notably, CBS achieves
an average improvement of 4.20% on arithmetic
reasoning tasks and 4.41% on logical and common-
sense reasoning tasks over the second-best method.
We attribute this success to CBS’s effective harness-
ing of collective model intelligence, which broad-
ens candidate exploration through diverse and se-
lected LLM contributions and ensures robust and
verifier-free evaluation via perplexity-based collec-
tive consensus.

4.2 Performance Comparison: CBS vs.
External Verification

In arithmetic reasoning tasks, where PRM re-
sources are available, our method demonstrates
superior robustness and generalization compared
to external verifier-based methods LE-MCTS and
CBS-PRM. We observe that LE-MCTS achieves
only marginal improvements on MATH, while on

GSMBSK, it underperforms even the greedy decod-
ing results of the best single model. This underper-
formance likely stems from the detrimental effect
of weak candidate models on LE-MCTS, as its
performance is sensitive to the quality of its en-
semble members (Park et al., 2024). In contrast,
our method exhibits greater robustness by dynam-
ically allocating more computational resources to
the stronger models for a given instance. This adap-
tive approach allows CBS to effectively leverage
the strengths of different models while mitigating
the impact of weaker ones.

On the other hand, while CBS-PRM performs
comparably to our method on the simpler GSM8K
benchmark, its performance degrades significantly
on the more challenging MATHS500 dataset. This
suggests that PRM exhibits limited generalization
capabilities on more challenging in-domain tasks,
which aligns with the observations of Liu et al.
(2025). Rather than relying on external verifiers,
our method uses collective consensus among the
models for evaluation, demonstrating superior gen-
eralization performance.

Unlike the previous two approaches, LLM-
Blender utilizes general-purpose ranking and fu-



Base LLM  Method GSMSK MATH Average
Greedy 63.08 32.00 47.54
Vils Ne 73.46 37.20 55.33
: BON 70.66 32.00 51.33
BS 69.14 36.40 5277
Greedy 53.83 35.80 44.82
Ne 65.88 43.20 54.54
InternlM-2.5 B 65.43 39.20 5232
BS 64.22 40.60 5241
Greedy 59.59 28.00 43.80
Ne 69.98 36.40 53.19
Rho-Math g5 65.43 35.00 50.22
BS 67.10 31.80 49.45
Greedy 56.41 31.60 4401
Ne 67.55 38.00 5278
DS-Math gy 60.50 35.40 47.95
BS 64.44 35.20 4982
Top-1 PANEL 65.50 35.60 50.55
All LLM-Blender 58.83 - -
All MOA 63.08 33.40 4824
All SweetSpan 62.85 37.60 52.23
All LE-MCTS 6141 36.60 49.01
All CBS-PRM 74.53 35.80 55.17
All CBS(Ours)  75.06(+0.53) 44.00(+0.80) 59.53(+4.20)

Table 3: Main results on arithmetic reasoning tasks.
We highlight the best result in bold and the second-best
result with an underline, respectively. LLM-Blender is
excluded from the MATH task because we find that it
cannot generate properly fomatted result.

sion models and is applied to all tasks. However, it
performs very poorly on the PrOntoQA and cannot
generate properly formatted results in MATH. This
indicates LLM-Blender struggles to generalize to
domains with data distributions that differ from its
training data.

4.3 Performance Comparison: CBS vs.
Prompt-Based Self-Evaluation

As prompt-based self-evaluation methods, MOA
and PANEL show limited improvement. In fact,
on some tasks, they perform worse than greedy
decoding. This limited self-evaluation ability of
LLMs via prompting aligns with findings from pre-
vious papers (Huang et al., 2023; Stechly et al.,
2023). These methods require highly specialized
and complex prompts. Furthermore, the number of
candidate samples supported by such approaches is
constrained by the context length of the underlying
LLM. For example, with PANEL, we observe that
attempting to incorporate more candidates did not
improve performance and even led to degradation
(see our analysis in Section 4.5). In contrast, our
CBS method avoids these limitations, providing
a simple yet effective way to achieve consistent
performance gains.

4.4 Ablation Study

To dissect the contributions of the core components
within our CBS framework, we conduct a series
of ablation studies. We systematically evaluate the
impact of: (1) collective consensus verification, (2)
diverse candidates generation, and (3) differential
quota allocation. This is achieved by comparing the
full CBS approach against three ablated variants.

Single-Best LLM + Self-PPL Evaluation (SS)
This baseline employs the best-performing model
for each task, identified by its greedy decoding
performance, to conduct a standard step-level beam
search. During the verification stage, we utilize
only the chosen model’s perplexity as the reward
signal to evaluate candidate steps.

Single-Best LLM + Collective PPL Evaluation
(SC) In this variant, candidates are still sourced
from the single best-performing LLM for each task,
identical to SS. The verification stage differs by
employing the collective consensus mechanism in
CBS, using the average perplexity from multiple
models as the reward signal.

Multi LLM + Collective PPL Evaluation (MC)
This setup uses multiple LLMs to generate candi-
dates and applies the collective consensus mecha-
nism for verification, resembling the complete CBS
approach. The only difference is that it does not
incorporate differential quota allocation; instead,
each model provides an equal number of candi-
dates in each generation round, regardless of past
performance.

4.4.1 Impact of Collective Consensus
Verification

Comparing SC with SS allows us to isolate the im-
pact of collective consensus verification. Both vari-
ants source candidates from the best-performing
LLM but utilize different verification signals: SC
employs collective consensus, while SS depends on
self-evaluation. Our experimental results demon-
strate that SC surpasses SS across all evaluation
tasks. This underscores that collective consensus
provides a more robust and accurate reward signal
than self-evaluation. Such benefit is particularly
pronounced in GSM8K, MATH, and Date Under-
standing.



Collective Diverse Differential ~ Arithmetic Reasoning Logical Reasoning Commonsense Reasoning
Method Consensus  Candidates  Allocation
GSMSK MATH PrOntoQA  ProofWriter StrategyQA Date
SS 69.14 40.60 75.60 61.00 71.62 86.80
SC v 74.98 43.60 76.60 62.00 72.05 91.20
MC v v 73.71 42.00 82.20 66.33 72.93 90.80
CBS v v 75.06 44.00 83.80 67.17 74.67 92.00

Table 4: Ablation study on the three core components within CBS: (1) diverse candidates generation, (2) collective
consensus verification, and (3) differential quota allocation.

4.4.2 Impact of Diverse Candidates
Generation

Comparing MC with SC highlights the impact of
diverse candidates generation. Keeping the veri-
fication method constant, we observe that sourc-
ing candidates from multiple LL.Ms yields vary-
ing effects across different tasks. This presents a
trade-off between the enhanced diversity afforded
by incorporating weaker models and the poten-
tial degradation in candidate quality. For PrOn-
toQA and ProofWriter, the positive impact of di-
versity significantly outweighs the potential reduc-
tion in candidate quality, making diverse sourc-
ing a primary driver for the performance improve-
ments observed with CBS. Conversely, for tasks
like GSM8K, MATH, and Date Understanding, the
detrimental effect of quality degradation is more
pronounced. This occurs because weaker models
crowd out the candidate quota that could otherwise
be allocated to more proficient models, ultimately
hindering overall performance.

This observation highlights the necessity of dif-
ferential quota allocation for ensuring that the pur-
suit of diversity does not lead to a significant com-
promise in quality.

4.4.3 Impact of Differential Quota Allocation

Finally, we assess the contribution of the differen-
tial quota allocation strategy by comparing CBS
against MC and SC. Experimental results show
that this strategy effectively improves the candi-
date quality from multiple sources, as evidenced
by CBS outperforming MC across all tasks. Fur-
thermore, CBS also consistently achieves better
performance than SC. This suggests that under-
performing models are effectively identified and
their negative impact is mitigated by this allocation
mechanism.

To further quantify the impact of differential al-
location, we conduct a detailed analysis on the
MATH dataset. For each problem, a model is con-
sidered "capable" if it successfully solves the prob-
lem via greedy decoding. While greedy decoding

correctness is an imperfect measure of a model’s
true ability, it serves as a reasonable proxy. We
compare CBS and MC by analyzing the propor-
tion of selected models that were capable at each
problem’s first, middle, and last steps. As shown in
Figure 3, differential allocation increases the pro-
portion of choosing capable models by prioritizing
historically better-performing models during sam-
pling. This effect becomes more pronounced in
later steps, demonstrating that our method lever-
ages accumulated historical information for increas-
ingly effective allocation decisions.

4.5 Efficiency Analysis

We evaluate the efficiency of our method in compar-
ison to existing approaches by examining through-
put. Throughput is measured as the average time
taken per example, reported in seconds per exam-
ple (s/ex). Lower throughput values indicate bet-
ter efficiency. As shown in Figure 4, our method
demonstrates superior performance while maintain-
ing a competitive time cost. To further illustrate
how our method strikes a good balance between
performance and efficiency, we test PANEL by in-
creasing its candidate samples from the default of
5 to 16 (termed PANEL-16). However, we found
that incorporating more candidates did not improve
its performance and even led to degradation. We at-
tribute this failure to the context length limitations
of the underlying LLM, as a larger set of candi-
dates makes it increasingly difficult for the model
to make effective judgments via prompting.

5 Related Work

Our work is closely related to two fields of research:
LLM ensemble and parallel inference-time scaling.
This section reviews recent advancements in these
fields.

5.1 Large Language Model Ensemble

Ensemble learning is a widely adopted technique
to improve performance on specific tasks and en-
sure robust generalization by leveraging multiple
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Figure 3: Effect of Differential Quota Allocation.

complementary models (Lu et al., 2024; Chen et al.,
2025). Existing work explores model ensembles
at different granularities. Sample-level ensemble
methods (Jiang et al., 2023; Shnitzer et al., 2023;
Lu et al., 2023; Jitkrittum et al., 2025; Farinhas
et al., 2023) select or blend fully generated outputs,
limiting dynamic correction and refinement during
generation. For example, Jiang et al. (2023) rank
candidate outputs from multiple LLMs using a pair-
wise ranking model trained on human preferences
annotations, then merge the top three candidates
with a fusion model fine-tuned on a mixed instruc-
tion dataset to produce an improved output. On
the other hand, finer-grained approaches operate on
partial outputs, ensembling at the token, word, or
span level, which can mitigate error accumulation
during generation. Token-level methods (Fu et al.,
2023; Xu et al., 2024; Yu et al., 2024b) combine
the output distribution of candidate models at each
generation step. Liu et al. (2024) employ individ-
ual words as the ensembling unit, while Xu et al.
(2025) leverage fixed-length spans.

In contrast, we propose a novel step-level ensem-
ble method for reasoning, where variable-length
complete sentences serve as the unit of ensembling.
This approach ensures an uninterrupted reasoning
process and demonstrates superior performance.

5.2 Parallel Inference-Time Scaling

Existing methods broadly fall into two cate-
gories: self-evaluation and external verifier-based
approaches. Self-evaluation methods (Xie et al.,
2023; Zhu et al., 2024; Li et al., 2025) prompt
the model to generate its own feedback or reward
scores. For instance, Xie et al. (2023) use self-
generated answers to multiple-choice questions to
guide stochastic beam search. External verifier-
based methods (Yu et al., 2024a; Ma et al., 2023;
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Figure 4: Efficiency Analysis. We compare the effi-
ciency of our method with existing approaches based
on throughput, measured in seconds per example.

Wan et al., 2024; Park et al., 2024) rely on exter-
nal sources for process supervision. For example,
Yu et al. (2024a) and Ma et al. (2023) enhanced
heuristic search algorithms using process rewards
from outcome-supervised value models and PRMs,
respectively.

Both self-evaluation and external verifier-based
approaches have limitations. Self-evaluation heav-
ily rely on well-designed prompts and often strug-
gles with reliable assessment, while external veri-
fiers are largely confined to well-defined and well-
explored areas like mathematical reasoning. In con-
trast, by combining model ensemble, our method
provides a more reliable and generalizable verifica-
tion mechanism.

6 Conclusion

In this paper, we introduce CBS, a novel frame-
work harnessing collective model intelligence to
enhance LLM reasoning. CBS expands the search
space through diverse and selected LLM sources
and achieves robust, verifier-free verification via
perplexity-based collective consensus. This ap-
proach overcomes key limitations of existing meth-
ods, such as their restriction to single-model candi-
date generation, reliance on external verifiers, and
dependence on complex prompts. Extensive experi-
ments across arithmetic, logical, and commonsense
reasoning tasks demonstrate the effectiveness and
versatility of our method. By exploring the collec-
tive power of model ensembles, CBS paves the way
for broader, multi-dimensional inference-time scal-
ing, enabling expansion not only along traditional
axes (e.g., sampling attempts, sequence length) but
also along the model quantity dimension. Future
work can explore deeper integration of model en-
sembles with advanced inference-time scaling tech-
niques.



Limitations

The performance of CBS relies heavily on the di-
versity and quality of the candidate LLMs. While
our experiments demonstrate the effectiveness of
collective consensus as a reward signal and the dif-
ferential quota allocation strategy in mitigating the
influence of underperforming models, CBS perfor-
mance can be impacted in extreme cases where the
candidate LL.Ms exhibit substantial performance
disparities or severely lack diversity (e.g., using dif-
ferent generations of the same model like Llama 2
and Llama 3). In such scenarios, CBS may not out-
perform inference-time scaling with the single best
model. Approaches that use input characteristics to
guide model selection before generation (Jitkrittum
et al., 2025; Zhuang et al., 2024) offer a potential
solution and could serve as a pre-filtering step for
CBS. We leave a thorough exploration of combin-
ing these approaches for future work.
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A Tasks and Datesets

Arithmetic Reasoning. GSMS8K (Cobbe et al.,
2021) consists of high quality linguistically di-
verse grade school math word problems. We
used 1,319 test examples for the experiment.
MATH (Hendrycks et al., 2021) is a dataset of chal-
lenging competition mathematics problems. We
used the MATHS00 subset for evaluation to avoid
data leakage.

Logical Reasoning. ProofWriter (Tafjord et al.,
2021) and PrOntoQA (Saparov and He, 2023) are
widely utilized logical reasoning benchmarks using
natural language. We evaluate on their respective
most challenging subsets, comprising 600 and 500
samples.
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Commonsense Reasoning. StrategyQA (Geva
et al., 2021) is a human-curated commonsense
dataset designed to test implicit multi-step reason-
ing. We use the validation set for test. Date Un-
derstanding from BIG-Bench-Hard (Suzgun et al.,
2023) evaluates a model’s ability to understand
date-related information and answer time-sensitive
factual questions.

B Baselines

Classical Baselines We evaluate greedy decod-
ing, self-consistency (SC) (Wang et al., 2022), Best-
of-N (BoN) (Lightman et al., 2023) and step-level
beam search (BS) as inference time scaling base-
lines for single LLMs.

PANEL Li et al. (2025) utilize self-generated
natural language critiques as feedback to guide
the step-level tree search. We leverage the best-
performing model for each task to establish a strong
baseline for comparison.

LLM-Blender utilize a fusion model to merge
the top-ranked candidates selected by a pairwise
ranker and produce an improved output.

MOA Wang et al. (2024a) construct a layered
Mixture-of-Agents architecture in which each layer
consists of multiple LLM agents. Each agent takes
all the outputs from agents in the previous layer as
auxiliary information in generating its response.

SweetSpan Xu et al. (2025) propose a span-level
model ensemble method that iteratively selects
the best fixed-length spans generated by multiple
LLM:s to construct the final output.

LE-MCTS Park et al. (2024) present a process-
level model ensemble framework that incorporates
Monte Carlo Tree Search for complex math reason-
ing.

CBS-PRM This variant replaces our verification
component with an external process reward model
Math-Shepherd (Wang et al., 2024b), the same one
employed by LE-MCTS.

C Case Study

We present an example generated by CBS using a
test case from MATH in Figure 5. CBS achieves
the correct solution by combining the best model-
generated steps, as selected through collective con-
sensus.



ﬂesﬁon: For the eight counties listed below, what was the median numberh
students in $2005?$

\begin {tabular} [t]{|l|c|c|c|c|c|}

\multicolumn {6} {c} {\textbf {Number of Students per County}} \\\hline
\textbf { COUNTY } &\textbf{$2001$} &\textbf{$2002$ } &\textbf{$2003$} &\t
extbf{$2004$} &\textbf{$2005% }\\\hline
Aiken&124&141&130&143&136\\\hline
Bamberg&17&15&15&14&11\\\hline
Barnwell&25&22&26&28&29\\\hline
Berkeley&583&557&554&553&524\\\hline
Calhoun&15&12&10&18&11\\\hline

Cherokee&19&13&18&13& 19\\\hline

Chesterfield&46& 18&13&22&29\\\hline
Colleton&64&49&52&46&41\\\hline

\end {tabular}

¥i-15-98: Stepl: The number of students for each county in $2005$ are $136, 11,
29,524, 11, 19, 29, 418.

InternLM-2.5-7B: Step2: Arrange these numbers in ascending order: $11, 11, 19, 29,
29, 41, 136, 5249.

Rho-Math-7B: Step3: Since there are $8$ numbers, the median is the average of the
$4$th and $5$th numbers: $\\frac {29+29} {2}=298.

DeepSeek-Math-7B/ InternLM-2.5-7B/ Rho-Math-7B : Step4: so the final answer is:
\\boxed{29}. End of answer.

Figure 5: Example output of CBS in MATH.
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