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Abstract001

Complex multi-step reasoning remains chal-002
lenging for large language models (LLMs).003
While parallel inference-time scaling methods,004
such as step-level beam search, offer a promis-005
ing solution, existing approaches typically de-006
pend on either domain-specific external ver-007
ifiers, or self-evaluation which is brittle and008
prompt-sensitive. To address these issues, we009
propose Collaborative Beam Search (CBS), an010
iterative framework that harnesses the collec-011
tive intelligence of multiple LLMs across both012
generation and verification stages. For genera-013
tion, CBS leverages multiple LLMs to explore a014
broader search space, resulting in more diverse015
candidate steps. For verifications, CBS em-016
ploys a perplexity-based collective consensus017
among these models, eliminating reliance on an018
external verifier or complex prompts. Between019
iterations, CBS leverages a dynamic quota allo-020
cation strategy that reassigns generation budget021
based on each model’s past consensus perfor-022
mance, striking a balance between candidate di-023
versity and quality. Experimental results on six024
tasks across arithmetic, logical, and common-025
sense reasoning show that CBS outperforms026
single-model scaling and multi-model ensem-027
ble baselines by over 4 percentage points in028
average accuracy, demonstrating its effective-029
ness and broad applicability.030

1 Introduction031

Improving the reasoning capabilities of large lan-032

guage models (LLMs), particularly for complex033

tasks requiring multiple reasoning steps, still faces034

challenges (Creswell et al., 2022; Wei et al., 2022).035

A promising strategy to address this challenge is036

parallel inference-time scaling, which generates037

multiple candidates via sampling and then prunes038

bad candidates based on verification signals. By039

exploring of a broad space of potential reasoning040

paths, parallel scaling can improve the robustness041
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Figure 1: Motivation of CBS. Existing verifiers face
limitations. External verifiers are largely confined to
well-defined and well-explored areas like mathematical
reasoning, limiting their applicability to broader rea-
soning tasks. Self-evaluation relies on well-designed
prompts and often struggles with reliable assessment.
Our approach CBS provides a more robust and general-
izable verification mechanism.

and accuracy of LLM reasoning processes (Yao 042

et al., 2023; Brown et al., 2024; Snell et al., 2025). 043

Step-level beam search is an effective and com- 044

putationally efficient parallel scaling method (Park 045

et al., 2024; Chen et al., 2024; Yu et al., 2024a). 046

This approach iteratively utilize a step-level veri- 047

fier to filter candidate steps generated by a single 048

model. As illustrated in Figure 1, existing verifiers 049

fall into two main categories: 1) External verifiers, 050

such as process reward models (PRMs), often rely 051

on expensive human annotations or automatic an- 052

notation via Monte Carlo Tree Search (Zheng et al., 053

2024). Consequently, their availability is restricted 054

to well-defined and widely explored domains (e.g., 055

mathematical reasoning). Furthermore, even in 056

domains where resources are available, verifiers 057

exhibit limited generalization capabilities on more 058
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Figure 2: The CBS framework. CBS iteratively executes generation and verification stages. (1) Generation: we
leverage multiple LLMs to generate diverse candidate steps. (2) Verification: we employ collective consensus
calculated by average perplexity to facilitate verifier-free evaluation. (3) Between iterations, we reallocate candidate
quotas for the next generation stage based on the models’ performance history.

challenging tasks (Liu et al., 2025). 2) Prompt-059

based self-evaluation methods (Yao et al., 2023;060

Xie et al., 2023; Li et al., 2025) have the LLM061

prompt itself to generate critical feedback or re-062

ward scores. Nevertheless, their heavy dependence063

on well-designed prompts restricts their general064

applicability. More critically, they often struggle065

to reliably assess solution quality, leading to fluc-066

tuating performance (Liu et al., 2025; Wan et al.,067

2024). Beyond the limitations of existing verifiers,068

the reliance on just one model for generation offers069

limited candidate diversity, ultimately restricting070

the potential for effective scaling.071

To tackle the above issues, we introduce Collab-072

orative Beam Search (CBS), a novel framework073

that harnesses collective model intelligence to en-074

hance LLM reasoning. The key insight behind075

CBS is the natural synergy between model ensem-076

ble and inference-time scaling: the collective power077

of model ensemble can enhance both the genera-078

tion and verification stages iteratively within this079

scaling process. In the generation stage, to ad-080

dress the limited diversity of single-model sam-081

pling, CBS sources candidate steps from multiple082

LLMs. These LLMs, spanning diverse datasets, ar-083

chitectures, and training methodologies, exhibit dis-084

tinct capabilities (Jiang et al., 2023; Xu et al., 2024).085

In the verification stage, to overcome the fragility086

of self-evaluation and the dependency on external087

verifiers, CBS utilizes perplexity-based collective088

consensus among multiple models as its reward 089

signal, resulting in a more reliable and generaliz- 090

able verification. Between iterations, to address the 091

inefficiency of "one-size-fits-all" budgeting, where 092

all models contribute equally despite large vari- 093

ance in their per-task reliability, CBS incorporates 094

a dynamic quota allocation strategy. This strategy 095

reassigns generation budget based on each model’s 096

past consensus performance, striking a balance be- 097

tween diversity and quality. 098

We evaluate our method on six reasoning tasks 099

across three categories: arithmetic, logical, and 100

commonsense reasoning. Experimental results 101

demonstrate the superiority of our approach com- 102

pared with existing single-model scaling and multi- 103

model ensemble baselines, achieving an average 104

improvement of more than 4 percentage points 105

across all tasks. Further analysis elucidates the 106

mechanism by which CBS achieves improvements 107

through ensembling. 108

Our contributions can be summarized as follows: 109

• We propose a novel collaborative beam search 110

method that leverages ensembling to enrich 111

the candidate pool and perform accurate veri- 112

fication. 113

• We devise a dynamic quota allocation strat- 114

egy that adjusts the generation budget based 115

on historical performance, striking a balance 116

between diversity and quality. 117
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• Empirical results demonstrate the effective-118

ness and broad applicability of our method.119

Further analysis elucidates how the ensemble120

leads to the observed performance gains.121

2 Methods122

We introduce CBS, a framework designed to en-123

hance LLM reasoning by leveraging collective in-124

telligence. The core mechanisms—diverse candi-125

dates generation (Section 2.1), collective consen-126

sus verification (Section 2.2), and differential quota127

allocation (Section 2.3)—are detailed in the follow-128

ing subsections. Pseudo-code for CBS is provided129

in Algorithm 1 and the case study is provided in130

Appendix C.131

2.1 Diverse Candidates Generation132

The candidate generation stage of CBS shares the133

core mechanism of standard beam search, which in-134

volves generating multiple potential continuations135

for each active hypothesis. It differs primarily in136

two aspects: First, CBS generates complete sen-137

tences as its intermediate steps, rather than indi-138

vidual tokens. Second, CBS sources these candi-139

date steps from multiple LLMs, instead of relying140

on a single model. By leveraging multiple LLMs141

with different capabilities and internal knowledge,142

CBS aims to generate a more diverse set of candi-143

date steps, thereby enabling exploration of a signif-144

icantly broader solution space.145

As shown in Figure 2, in the initial generation146

round, we allocate the candidate generation quota147

evenly among all participating LLMs to obtain as148

diverse candidate steps as possible. In the subse-149

quent generation rounds, more sampling opportuni-150

ties are assigned to LLMs that have demonstrated151

superior performance in the previous round. This152

dynamic allocation strategy will be detailed in Sec-153

tion 2.3.154

2.2 Collective Consensus Verification155

In the verification stage, the CBS framework uti-156

lizes perplexity, a simple and widely used metric,157

to evaluate and select generated reasoning steps.158

Perplexity assesses the alignment of a candidate159

step with each LLM’s internal knowledge. A lower160

perplexity score signifies a closer alignment, which161

indicates stronger model endorsement for that can-162

didate step. The simplicity of perplexity obviates163

the need for external verifiers or intricately de-164

signed self-evaluation prompts, thereby providing165

Algorithm 1 Collaborative Beam Search
Input: Input prompt q, Beam size B, Sampled steps per
stage K, Maximum step depth T
Output: Best solution sequence for q
Model: N LLMsM← {m1, . . . ,mN}

1: Initialize prefix sequences S ← {s01, . . . , s0B}
2: for i = 1 to B do
3: s0i ← q
4: end for
5: Initialize allocation a← {a1, . . . , aN}
6: for i = 1 to N do
7: ai ← K/(B ∗N)
8: end for
9: t← 1

10: while sequences in S are not complete and t < T do
11: Scandidate ← {}
12: for each sequence s(0:t−1) in S do
13: for i = 1 to N do
14: for j = 1 to ai do
15: s′extended ← GENERATION(mi, s

(0:t−1))
16: Scandidate ← Scandidate + s′extended
17: end for
18: end for
19: end for
20: c← VERIFICATION(Scandidate,M)
21: Sbeam ← SELECTION(Scandidate, c, B)
22: a← ALLOCATION(Sbeam,K/B)
23: S ← Sbeam
24: t← t+ 1
25: end while

return sequence with highest final value in S

our CBS framework with enhanced generalization 166

capabilities. 167

Considering a set of N candidate LLMs (de- 168

noted as M), and a set of K candidate steps (de- 169

noted as S) generated at the current reasoning stage. 170

We first have each candidate LLM (mi ∈ M) in- 171

dependently calculate the perplexity score for all 172

candidate steps: 173

PPLi(s
t
k)=exp

− 1

|stk|

|stk|∑
j=1

logp(xj |s(0:t−1)
k ,x<j)

 174

where stk is the k-th candidate step generated at the 175

t-th round, and s
(1:t−1)
k is the prefix leading to stk. 176

Next, we define the collective consensus metric 177

for each candidate step as the negative of its aver- 178

age perplexity. Building on this, a reasoning path’s 179

collective consensus metric is derived by averag- 180

ing the metrics of its constituent steps (Line 20 in 181

Algorithm 1). 182

c(s
(1:t)
k ) =

1

t

t∑
j=1

c(sjk) 183

=
1

t

t∑
j=1

1

N

∑
mi∈M

−PPLi(s
j
k) 184
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The top-B paths with the highest collective consen-185

sus form the beam for the next generation round186

Sbeam (Line 21 in Algorithm 1).187

2.3 Differential Quota Allocation188

To leverage the varying strengths of participating189

LLMs, CBS employs a differential quota allocation190

strategy. Based on observed performance history,191

this strategy dynamically adjusts the number of192

candidate steps each LLM will generate in subse-193

quent rounds. First, we quantify the performance of194

each model mi in the current round by counting the195

number of its generated candidate steps included in196

selected beam Sbeam. Notably, if multiple models197

generate the same step, and that step is included in198

Sbeam, each contributing model is counted. Next,199

these counts are transformed into a probability dis-200

tribution using a temperature-controlled softmax.201

We sample from this distribution to determine each202

model’s candidate quota a for the next generation203

round (Line 22 in Algorithm 1).204

ai ∝ exp (Count(Sbeam, i))/τ)205

Lower values of temperature τ make the selec-206

tion more biased towards top-performing models,207

while higher values lead to more uniform selection208

probabilities, encouraging diversity. By adjusting209

the temperature, we strike a balance between can-210

didate diversity and quality.211

3 Experimental Settings212

3.1 Tasks and Datasets213

To demonstrate the versatility of our method, we214

choose benchmarks from three reasoning gen-215

res: arithmetic reasoning (GSM8K (Cobbe et al.,216

2021) and MATH (Hendrycks et al., 2021)), logi-217

cal reasoning (PrOntoQA (Saparov and He, 2023)218

and ProofWriter (Tafjord et al., 2021)) and com-219

monsense reasoning (StrategyQA (Geva et al.,220

2021) and Date Understanding from BIG-Bench-221

Hard (Suzgun et al., 2023)). Task details are pro-222

vided in Appendix A.223

3.2 Candidate LLMs224

We select four open-source LLMs, approximately225

7B to 9B in size, as candidate models for en-226

semble in each task. For arithmetic reasoning227

tasks, we use two general domain LLMs: Yi-1.5-228

9B (Young et al., 2024) and InternLM-2.5-7B (Cai229

et al., 2024), along with two math LLMs: Rho-230

Math-7B (Lin et al., 2024) and DeepSeek-Math-231

7B (Shao et al., 2024). For other tasks, we utilize232

Method Multiple LLM
Ensemble

External
Verifier

Prompt-based
Evaluation

PANEL ✓

LLM-Blender ✓ ✓

MOA ✓ ✓

SweetSpan ✓

LE-MCTS ✓ ✓

CBS-PRM ✓ ✓

Table 1: Summary of representative recent methods.

four general models: Yi-1.5-9B, InternLM-2.5-7B, 233

Gemma-2-9B (Team et al., 2024), and Llama-3.1- 234

8B (Grattafiori et al., 2024). 235

These models are trained on large-scale, high- 236

quality datasets, establishing a strong knowledge 237

base that allows them to perform well on public 238

benchmarks. Sourced from distinct institutions, 239

these models exhibit inherent diversity, which pro- 240

vides opportunities for effective ensemble. 241

3.3 Baselines 242

To provide a comprehensive evaluation of CBS, 243

we compare it against diverse baselines from three 244

groups: classical single LLM inference-time scal- 245

ing methods, representative recent methods from 246

related problems, and a variant of our method. 247

Classical baselines include greedy decoding, self- 248

consistency (SC) (Wang et al., 2022), Best-of-N 249

(BoN) (Lightman et al., 2023), and step-level beam 250

search (BS). The key characteristics of the latter 251

two groups are summarized in Table 1, with further 252

details in Appendix B. 253

3.4 Implement Details 254

Unless explicitly modified, we utilize nucleus sam- 255

pling decoding with a temperature of 0.6 and a 256

top-p value of 0.9 in all experiments. Across all 257

tasks, we apply a 3-shot chain-of-thought prompt 258

and report accuracy as the performance metric. For 259

our proposed method, we set the beam size B = 4, 260

the sample size K = 32, and the softmax tempera- 261

ture τ = 0.1. We define each sentence starting with 262

a "Step" marker as a reasoning step. The hyperpa- 263

rameters for baselines are configured as described 264

in their respective papers. 265

4 Experimental Results and Analysis 266

The main results on logical reasoning, common- 267

sense reasoning, and arithmetic reasoning tasks are 268

shown in Table 2 and Table 3. 269
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Base LLM Method Logical Reasoning Commonsense Reasoning Average

PrOntoQA ProofWriter StrategyQA Date

Yi-1.5

Greedy 74.00 54.67 71.18 81.60 70.36
SC 77.40 62.67 74.67 82.80 74.55
BON 67.00 23.83 68.56 82.00 60.35
BS 75.60 62.83 69.00 84.80 73.06

InternLM-2.5

Greedy 64.00 49.67 72.93 87.20 68.45
SC 68.00 59.67 72.93 88.80 72.35
BON 59.20 27.5 72.05 84.40 60.79
BS 73.60 55.67 71.62 86.80 71.92

Gemma-2

Greedy 69.80 50.00 70.31 82.00 68.03
SC 74.80 51.00 70.74 85.20 70.44
BON 60.60 31.17 69.00 84.80 61.39
BS 69.80 52.50 70.74 84.40 69.36

LlaMa-3.1

Greedy 71.60 58.67 69.43 82.80 70.63
SC 80.20 63.83 71.18 84.80 75.00
BON 63.40 39.17 62.88 85.20 62.66
BS 79.00 61.00 69.00 86.00 73.75

Top-1 PANEL 78.80 50.00 72.05 84.80 71.41
All LLM-Blender 19.40 42.83 66.81 84.40 53.36
All MOA 76.00 55.33 73.80 87.60 73.18
All SweetSpan 77.00 59.17 74.67 88.40 74.81
All CBS(Ours) 83.80(+3.60) 67.17(+3.34) 74.67(+0.0) 92.00(+3.20) 79.41(+4.41)

Table 2: Main results on logical and commonsense reasoning tasks. We highlight the best result in bold and the
second-best result with an underline, respectively. LE-MCTS and CBS-PRM are excluded from these four tasks
due to the unavailability of the required external verifier resources.

4.1 CBS demonstrates superiority270

Our proposed CBS consistently outperforms single271

LLM inference-time scaling methods and LLM en-272

semble methods across all types of reasoning tasks,273

demonstrating the effectiveness and broad appli-274

cability of our approach. Notably, CBS achieves275

an average improvement of 4.20% on arithmetic276

reasoning tasks and 4.41% on logical and common-277

sense reasoning tasks over the second-best method.278

We attribute this success to CBS’s effective harness-279

ing of collective model intelligence, which broad-280

ens candidate exploration through diverse and se-281

lected LLM contributions and ensures robust and282

verifier-free evaluation via perplexity-based collec-283

tive consensus.284

4.2 Performance Comparison: CBS vs.285

External Verification286

In arithmetic reasoning tasks, where PRM re-287

sources are available, our method demonstrates288

superior robustness and generalization compared289

to external verifier-based methods LE-MCTS and290

CBS-PRM. We observe that LE-MCTS achieves291

only marginal improvements on MATH, while on292

GSM8K, it underperforms even the greedy decod- 293

ing results of the best single model. This underper- 294

formance likely stems from the detrimental effect 295

of weak candidate models on LE-MCTS, as its 296

performance is sensitive to the quality of its en- 297

semble members (Park et al., 2024). In contrast, 298

our method exhibits greater robustness by dynam- 299

ically allocating more computational resources to 300

the stronger models for a given instance. This adap- 301

tive approach allows CBS to effectively leverage 302

the strengths of different models while mitigating 303

the impact of weaker ones. 304

On the other hand, while CBS-PRM performs 305

comparably to our method on the simpler GSM8K 306

benchmark, its performance degrades significantly 307

on the more challenging MATH500 dataset. This 308

suggests that PRM exhibits limited generalization 309

capabilities on more challenging in-domain tasks, 310

which aligns with the observations of Liu et al. 311

(2025). Rather than relying on external verifiers, 312

our method uses collective consensus among the 313

models for evaluation, demonstrating superior gen- 314

eralization performance. 315

Unlike the previous two approaches, LLM- 316

Blender utilizes general-purpose ranking and fu- 317
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Base LLM Method GSM8K MATH Average

Yi-1.5

Greedy 63.08 32.00 47.54
SC 73.46 37.20 55.33
BON 70.66 32.00 51.33
BS 69.14 36.40 52.77

InternLM-2.5

Greedy 53.83 35.80 44.82
SC 65.88 43.20 54.54
BON 65.43 39.20 52.32
BS 64.22 40.60 52.41

Rho-Math

Greedy 59.59 28.00 43.80
SC 69.98 36.40 53.19
BON 65.43 35.00 50.22
BS 67.10 31.80 49.45

DS-Math

Greedy 56.41 31.60 44.01
SC 67.55 38.00 52.78
BON 60.50 35.40 47.95
BS 64.44 35.20 49.82

Top-1 PANEL 65.50 35.60 50.55
All LLM-Blender 58.83 - -
All MOA 63.08 33.40 48.24
All SweetSpan 62.85 37.60 52.23
All LE-MCTS 61.41 36.60 49.01
All CBS-PRM 74.53 35.80 55.17
All CBS(Ours) 75.06(+0.53) 44.00(+0.80) 59.53(+4.20)

Table 3: Main results on arithmetic reasoning tasks.
We highlight the best result in bold and the second-best
result with an underline, respectively. LLM-Blender is
excluded from the MATH task because we find that it
cannot generate properly fomatted result.

sion models and is applied to all tasks. However, it318

performs very poorly on the PrOntoQA and cannot319

generate properly formatted results in MATH. This320

indicates LLM-Blender struggles to generalize to321

domains with data distributions that differ from its322

training data.323

4.3 Performance Comparison: CBS vs.324

Prompt-Based Self-Evaluation325

As prompt-based self-evaluation methods, MOA326

and PANEL show limited improvement. In fact,327

on some tasks, they perform worse than greedy328

decoding. This limited self-evaluation ability of329

LLMs via prompting aligns with findings from pre-330

vious papers (Huang et al., 2023; Stechly et al.,331

2023). These methods require highly specialized332

and complex prompts. Furthermore, the number of333

candidate samples supported by such approaches is334

constrained by the context length of the underlying335

LLM. For example, with PANEL, we observe that336

attempting to incorporate more candidates did not337

improve performance and even led to degradation338

(see our analysis in Section 4.5). In contrast, our339

CBS method avoids these limitations, providing340

a simple yet effective way to achieve consistent341

performance gains.342

4.4 Ablation Study 343

To dissect the contributions of the core components 344

within our CBS framework, we conduct a series 345

of ablation studies. We systematically evaluate the 346

impact of: (1) collective consensus verification, (2) 347

diverse candidates generation, and (3) differential 348

quota allocation. This is achieved by comparing the 349

full CBS approach against three ablated variants. 350

Single-Best LLM + Self-PPL Evaluation (SS) 351

This baseline employs the best-performing model 352

for each task, identified by its greedy decoding 353

performance, to conduct a standard step-level beam 354

search. During the verification stage, we utilize 355

only the chosen model’s perplexity as the reward 356

signal to evaluate candidate steps. 357

Single-Best LLM + Collective PPL Evaluation 358

(SC) In this variant, candidates are still sourced 359

from the single best-performing LLM for each task, 360

identical to SS. The verification stage differs by 361

employing the collective consensus mechanism in 362

CBS, using the average perplexity from multiple 363

models as the reward signal. 364

Multi LLM + Collective PPL Evaluation (MC) 365

This setup uses multiple LLMs to generate candi- 366

dates and applies the collective consensus mecha- 367

nism for verification, resembling the complete CBS 368

approach. The only difference is that it does not 369

incorporate differential quota allocation; instead, 370

each model provides an equal number of candi- 371

dates in each generation round, regardless of past 372

performance. 373

4.4.1 Impact of Collective Consensus 374

Verification 375

Comparing SC with SS allows us to isolate the im- 376

pact of collective consensus verification. Both vari- 377

ants source candidates from the best-performing 378

LLM but utilize different verification signals: SC 379

employs collective consensus, while SS depends on 380

self-evaluation. Our experimental results demon- 381

strate that SC surpasses SS across all evaluation 382

tasks. This underscores that collective consensus 383

provides a more robust and accurate reward signal 384

than self-evaluation. Such benefit is particularly 385

pronounced in GSM8K, MATH, and Date Under- 386

standing. 387
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Method Collective
Consensus

Diverse
Candidates

Differential
Allocation

Arithmetic Reasoning Logical Reasoning Commonsense Reasoning

GSM8K MATH PrOntoQA ProofWriter StrategyQA Date

SS 69.14 40.60 75.60 61.00 71.62 86.80
SC ✓ 74.98 43.60 76.60 62.00 72.05 91.20
MC ✓ ✓ 73.77 42.00 82.20 66.33 72.93 90.80
CBS ✓ ✓ ✓ 75.06 44.00 83.80 67.17 74.67 92.00

Table 4: Ablation study on the three core components within CBS: (1) diverse candidates generation, (2) collective
consensus verification, and (3) differential quota allocation.

4.4.2 Impact of Diverse Candidates388

Generation389

Comparing MC with SC highlights the impact of390

diverse candidates generation. Keeping the veri-391

fication method constant, we observe that sourc-392

ing candidates from multiple LLMs yields vary-393

ing effects across different tasks. This presents a394

trade-off between the enhanced diversity afforded395

by incorporating weaker models and the poten-396

tial degradation in candidate quality. For PrOn-397

toQA and ProofWriter, the positive impact of di-398

versity significantly outweighs the potential reduc-399

tion in candidate quality, making diverse sourc-400

ing a primary driver for the performance improve-401

ments observed with CBS. Conversely, for tasks402

like GSM8K, MATH, and Date Understanding, the403

detrimental effect of quality degradation is more404

pronounced. This occurs because weaker models405

crowd out the candidate quota that could otherwise406

be allocated to more proficient models, ultimately407

hindering overall performance.408

This observation highlights the necessity of dif-409

ferential quota allocation for ensuring that the pur-410

suit of diversity does not lead to a significant com-411

promise in quality.412

4.4.3 Impact of Differential Quota Allocation413

Finally, we assess the contribution of the differen-414

tial quota allocation strategy by comparing CBS415

against MC and SC. Experimental results show416

that this strategy effectively improves the candi-417

date quality from multiple sources, as evidenced418

by CBS outperforming MC across all tasks. Fur-419

thermore, CBS also consistently achieves better420

performance than SC. This suggests that under-421

performing models are effectively identified and422

their negative impact is mitigated by this allocation423

mechanism.424

To further quantify the impact of differential al-425

location, we conduct a detailed analysis on the426

MATH dataset. For each problem, a model is con-427

sidered "capable" if it successfully solves the prob-428

lem via greedy decoding. While greedy decoding429

correctness is an imperfect measure of a model’s 430

true ability, it serves as a reasonable proxy. We 431

compare CBS and MC by analyzing the propor- 432

tion of selected models that were capable at each 433

problem’s first, middle, and last steps. As shown in 434

Figure 3, differential allocation increases the pro- 435

portion of choosing capable models by prioritizing 436

historically better-performing models during sam- 437

pling. This effect becomes more pronounced in 438

later steps, demonstrating that our method lever- 439

ages accumulated historical information for increas- 440

ingly effective allocation decisions. 441

4.5 Efficiency Analysis 442

We evaluate the efficiency of our method in compar- 443

ison to existing approaches by examining through- 444

put. Throughput is measured as the average time 445

taken per example, reported in seconds per exam- 446

ple (s/ex). Lower throughput values indicate bet- 447

ter efficiency. As shown in Figure 4, our method 448

demonstrates superior performance while maintain- 449

ing a competitive time cost. To further illustrate 450

how our method strikes a good balance between 451

performance and efficiency, we test PANEL by in- 452

creasing its candidate samples from the default of 453

5 to 16 (termed PANEL-16). However, we found 454

that incorporating more candidates did not improve 455

its performance and even led to degradation. We at- 456

tribute this failure to the context length limitations 457

of the underlying LLM, as a larger set of candi- 458

dates makes it increasingly difficult for the model 459

to make effective judgments via prompting. 460

5 Related Work 461

Our work is closely related to two fields of research: 462

LLM ensemble and parallel inference-time scaling. 463

This section reviews recent advancements in these 464

fields. 465

5.1 Large Language Model Ensemble 466

Ensemble learning is a widely adopted technique 467

to improve performance on specific tasks and en- 468

sure robust generalization by leveraging multiple 469

7



Figure 3: Effect of Differential Quota Allocation.

complementary models (Lu et al., 2024; Chen et al.,470

2025). Existing work explores model ensembles471

at different granularities. Sample-level ensemble472

methods (Jiang et al., 2023; Shnitzer et al., 2023;473

Lu et al., 2023; Jitkrittum et al., 2025; Farinhas474

et al., 2023) select or blend fully generated outputs,475

limiting dynamic correction and refinement during476

generation. For example, Jiang et al. (2023) rank477

candidate outputs from multiple LLMs using a pair-478

wise ranking model trained on human preferences479

annotations, then merge the top three candidates480

with a fusion model fine-tuned on a mixed instruc-481

tion dataset to produce an improved output. On482

the other hand, finer-grained approaches operate on483

partial outputs, ensembling at the token, word, or484

span level, which can mitigate error accumulation485

during generation. Token-level methods (Fu et al.,486

2023; Xu et al., 2024; Yu et al., 2024b) combine487

the output distribution of candidate models at each488

generation step. Liu et al. (2024) employ individ-489

ual words as the ensembling unit, while Xu et al.490

(2025) leverage fixed-length spans.491

In contrast, we propose a novel step-level ensem-492

ble method for reasoning, where variable-length493

complete sentences serve as the unit of ensembling.494

This approach ensures an uninterrupted reasoning495

process and demonstrates superior performance.496

5.2 Parallel Inference-Time Scaling497

Existing methods broadly fall into two cate-498

gories: self-evaluation and external verifier-based499

approaches. Self-evaluation methods (Xie et al.,500

2023; Zhu et al., 2024; Li et al., 2025) prompt501

the model to generate its own feedback or reward502

scores. For instance, Xie et al. (2023) use self-503

generated answers to multiple-choice questions to504

guide stochastic beam search. External verifier-505

based methods (Yu et al., 2024a; Ma et al., 2023;506

Figure 4: Efficiency Analysis. We compare the effi-
ciency of our method with existing approaches based
on throughput, measured in seconds per example.

Wan et al., 2024; Park et al., 2024) rely on exter- 507

nal sources for process supervision. For example, 508

Yu et al. (2024a) and Ma et al. (2023) enhanced 509

heuristic search algorithms using process rewards 510

from outcome-supervised value models and PRMs, 511

respectively. 512

Both self-evaluation and external verifier-based 513

approaches have limitations. Self-evaluation heav- 514

ily rely on well-designed prompts and often strug- 515

gles with reliable assessment, while external veri- 516

fiers are largely confined to well-defined and well- 517

explored areas like mathematical reasoning. In con- 518

trast, by combining model ensemble, our method 519

provides a more reliable and generalizable verifica- 520

tion mechanism. 521

6 Conclusion 522

In this paper, we introduce CBS, a novel frame- 523

work harnessing collective model intelligence to 524

enhance LLM reasoning. CBS expands the search 525

space through diverse and selected LLM sources 526

and achieves robust, verifier-free verification via 527

perplexity-based collective consensus. This ap- 528

proach overcomes key limitations of existing meth- 529

ods, such as their restriction to single-model candi- 530

date generation, reliance on external verifiers, and 531

dependence on complex prompts. Extensive experi- 532

ments across arithmetic, logical, and commonsense 533

reasoning tasks demonstrate the effectiveness and 534

versatility of our method. By exploring the collec- 535

tive power of model ensembles, CBS paves the way 536

for broader, multi-dimensional inference-time scal- 537

ing, enabling expansion not only along traditional 538

axes (e.g., sampling attempts, sequence length) but 539

also along the model quantity dimension. Future 540

work can explore deeper integration of model en- 541

sembles with advanced inference-time scaling tech- 542

niques. 543
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Limitations544

The performance of CBS relies heavily on the di-545

versity and quality of the candidate LLMs. While546

our experiments demonstrate the effectiveness of547

collective consensus as a reward signal and the dif-548

ferential quota allocation strategy in mitigating the549

influence of underperforming models, CBS perfor-550

mance can be impacted in extreme cases where the551

candidate LLMs exhibit substantial performance552

disparities or severely lack diversity (e.g., using dif-553

ferent generations of the same model like Llama 2554

and Llama 3). In such scenarios, CBS may not out-555

perform inference-time scaling with the single best556

model. Approaches that use input characteristics to557

guide model selection before generation (Jitkrittum558

et al., 2025; Zhuang et al., 2024) offer a potential559

solution and could serve as a pre-filtering step for560

CBS. We leave a thorough exploration of combin-561

ing these approaches for future work.562
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A Tasks and Datesets796

Arithmetic Reasoning. GSM8K (Cobbe et al.,797

2021) consists of high quality linguistically di-798

verse grade school math word problems. We799

used 1,319 test examples for the experiment.800

MATH (Hendrycks et al., 2021) is a dataset of chal-801

lenging competition mathematics problems. We802

used the MATH500 subset for evaluation to avoid803

data leakage.804

Logical Reasoning. ProofWriter (Tafjord et al.,805

2021) and PrOntoQA (Saparov and He, 2023) are806

widely utilized logical reasoning benchmarks using807

natural language. We evaluate on their respective808

most challenging subsets, comprising 600 and 500809

samples.810

Commonsense Reasoning. StrategyQA (Geva 811

et al., 2021) is a human-curated commonsense 812

dataset designed to test implicit multi-step reason- 813

ing. We use the validation set for test. Date Un- 814

derstanding from BIG-Bench-Hard (Suzgun et al., 815

2023) evaluates a model’s ability to understand 816

date-related information and answer time-sensitive 817

factual questions. 818

B Baselines 819

Classical Baselines We evaluate greedy decod- 820

ing, self-consistency (SC) (Wang et al., 2022), Best- 821

of-N (BoN) (Lightman et al., 2023) and step-level 822

beam search (BS) as inference time scaling base- 823

lines for single LLMs. 824

PANEL Li et al. (2025) utilize self-generated 825

natural language critiques as feedback to guide 826

the step-level tree search. We leverage the best- 827

performing model for each task to establish a strong 828

baseline for comparison. 829

LLM-Blender utilize a fusion model to merge 830

the top-ranked candidates selected by a pairwise 831

ranker and produce an improved output. 832

MOA Wang et al. (2024a) construct a layered 833

Mixture-of-Agents architecture in which each layer 834

consists of multiple LLM agents. Each agent takes 835

all the outputs from agents in the previous layer as 836

auxiliary information in generating its response. 837

SweetSpan Xu et al. (2025) propose a span-level 838

model ensemble method that iteratively selects 839

the best fixed-length spans generated by multiple 840

LLMs to construct the final output. 841

LE-MCTS Park et al. (2024) present a process- 842

level model ensemble framework that incorporates 843

Monte Carlo Tree Search for complex math reason- 844

ing. 845

CBS-PRM This variant replaces our verification 846

component with an external process reward model 847

Math-Shepherd (Wang et al., 2024b), the same one 848

employed by LE-MCTS. 849

C Case Study 850

We present an example generated by CBS using a 851

test case from MATH in Figure 5. CBS achieves 852

the correct solution by combining the best model- 853

generated steps, as selected through collective con- 854

sensus. 855
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Question: For the eight counties listed below, what was the median number of 
students in $2005?$

\begin{tabular}[t]{|l|c|c|c|c|c|}
\multicolumn{6}{c}{\textbf{Number of Students per County}} \\\hline
\textbf{COUNTY}&\textbf{$2001$}&\textbf{$2002$}&\textbf{$2003$}&\t
extbf{$2004$}&\textbf{$2005$}\\\hline
Aiken&124&141&130&143&136\\\hline
Bamberg&17&15&15&14&11\\\hline
Barnwell&25&22&26&28&29\\\hline
Berkeley&583&557&554&553&524\\\hline
Calhoun&15&12&10&18&11\\\hline
Cherokee&19&13&18&13&19\\\hline
Chesterfield&46&18&13&22&29\\\hline
Colleton&64&49&52&46&41\\\hline
\end{tabular}

Yi-1.5-9B: Step1: The number of students for each county in $2005$ are $136, 11, 
29, 524, 11, 19, 29, 41$. 
InternLM-2.5-7B: Step2: Arrange these numbers in ascending order: $11, 11, 19, 29, 
29, 41, 136, 524$.
Rho-Math-7B: Step3: Since there are $8$ numbers, the median is the average of the 
$4$th and $5$th numbers: $\\frac{29+29}{2}=29$. 
DeepSeek-Math-7B/ InternLM-2.5-7B/ Rho-Math-7B : Step4: so the final answer is: 
\\boxed{29}. End of answer.

Figure 5: Example output of CBS in MATH.
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