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Abstract

Many applications require infinite plans—i.e. an infinite se-
quence of actions—in order to carry out some given pro-
cess indefinitely. In addition, it is desirable to guarantee op-
timality. In this paper, we address this problem in the set-
ting of doubly-priced timed automata, where we show how
to efficiently compute ratio-optimal cycles for optimal infi-
nite plans. For efficient computation, we present symbolic λ-
deduction (S-λD), an any-time algorithm that uses a symbolic
representation (priced zones) to search the state-space with a
compact representation of the time constraints. Our approach
guarantees termination while arriving at an optimal solution.
Our experimental evaluation shows that S-λD outperforms
the alternative of searching in the concrete state space, is very
robust with respect to fine-grained temporal constraints, and
has a very good anytime behaviour.

1 Introduction
Temporal planning deals with the problem of finding a (con-
current) plan to achieve a certain goal (Fox and Long 2003;
Gigante et al. 2022). However, this disregards the resulting
state of the system after executing the plan, and how easy
it will be to achieve future goals from there. Many plan-
ning applications require instead a cyclic schedule, where a
system must stay operational while achieving a goal repeat-
edly (Draper et al. 1999). Consider for example an assem-
bly line scenario (Asai and Fukunaga 2014) where a large
number of units must be produced. A simple approach is to
find a plan for producing a single unit and then repeating the
plan over and over. However, this may lead to suboptimal
plans where no part of the production is parallelised, or even
infeasible plans, where after producing some amount the as-
sembly line is left in a state where it cannot produce further
units. In such scenarios, we desire infinite plans containing
a loop that can be executed arbitrarily many times. Infinite
plans have been considered in the context of classical plan-
ning with LTL goals (Patrizi et al. 2011), but here we are
interested in finding optimal temporal plans with concurrent
and delay-constrained actions.

We propose to tackle these applications by finding ratio-
optimal cycles in cost-reward timed automata (Bouyer,
Brinksma, and Larsen 2004). Thus, assume that the plan-
ning problem under consideration may be modelled as a
priced-timed automata (Behrmann et al. 2001; Alur, Torre,

and Pappas 2004), which has been used to model various
real-world scenarios (Hune, Larsen, and Pettersson 2001;
Fehnker 1999; Niebert and Yovine 2001; Brinksma, Mader,
and Fehnker 2002). The optimal infinite plan has been
shown to be a cyclic plan, minimizing the ratio between to-
tal cost and reward. This is a very general setting that can,
for example, be used to find the schedule that minimizes the
monetary cost per produced unit in a factory or that mini-
mizes the amount of time per locations that must be surveyed
in a surveillance scenario.

Bouyer, Brinksma, and Larsen (2004) showed that find-
ing a plan with optimal cost-reward ratio is possible us-
ing the so-called corner-point abstraction, which reduces the
problem to a finite doubly weighted graph by discretizing
time. However, this approach requires the entire state space
to be enumerated in advance and therefore it scales very
poorly with respect to the time scale considered. Thus, prac-
tical approaches have focused on finding approximate solu-
tions (e.g., population-based methods (Tolonen, French, and
Reynolds 2018)), or analyzing restricted settings, e.g., timed
automata with only 1 clock (David et al. 2011).

Our aim is to alleviate the state-space explosion by us-
ing priced zones (Larsen et al. 2001), a compact representa-
tion of sets of states originally introduced in model checking
tools for timed automata (Larsen, Pettersson, and Yi 1997).
However, this is not trivial in a cost-reward setting, as sym-
bolic representations make it difficult to determine whether
there is a concrete cycle as well as determining the cost and
reward the concrete paths they abstract over.

We introduce symbolic λ-deduction (S-λD), an anytime
algorithm that incrementally finds new cycles with improved
ratio. To do so, S-λD reduces the problem to a single priced
automaton and explores the state space symbolically using
priced zones, avoiding the enumeration of all possible com-
binations of clock valuations. We show that the approach
converges and terminates with a ratio-optimal cyclic plan,
proving that no better solution exists.

We evaluate S-λD in three scenarios, showing that it is
feasible to compute ratio-optimal cycles in different types
of practical applications. S-λD has good anytime behaviour,
oftentimes finds the optimal cycle faster than the concrete
approach, and is far more robust with respect to different
time constraints, being almost unaffected by large clock val-
ues.



2 Background
We adopt the formalism used by Bouyer, Brinksma, and
Larsen (2004). A clock is an object that measures the time
since it was last reset. A clock valuation u ∈ RC

≥0 over the
set of clocks C is a function u : C → R≥0 assigning a
value to each clock. When time passes, it is called a delay,
and the value of all clocks increase uniformly. For a delay
δ ∈ R≥0 we denote the updated valuation by u + δ, where
(u + δ)(x) = u(x) + δ. Let R ⊆ C be a set of clocks to
be reset, then u′ = u[R 7→ 0] is the new valuation such
that u′(x) = 0 if x ∈ R, otherwise, u′(x) = u(x).We de-
note by B(C) the set of clock constraints over C obtained by
conjunction over atomic constraints of the type x ▷◁ n for
x ∈ C, ▷◁ ∈ {≤,=,≥}, and n ∈ N. Let g ∈ B(C) be such
a constraint, then we write u |= g when u satisfies g. For
example, for the valuation u(x) = 3, u(y) = 1, we have that
u |= x ≤ 3 and u ̸|= y ≥ 2 ∧ x ≥ 1.

Definition 1. A timed automaton over a set of clocks C is a
tuple (L, ℓ0, E, I), where L is the set of locations, ℓ0 ∈ L is
the initial location, E ⊆ L×B(C)×2C×L is the set of edges
between locations, and I : L → B(C) assigns invariants to
locations.

A state of the timed automaton consists of a location and
a clock valuation. An edge e = (ℓ, g, R, ℓ′) ∈ E means that
the automaton can move from location ℓ to ℓ′ if the clocks
satisfy the guard g, and after taking this edge the clocks in
R will be reset. The invariant of a location I(ℓ) is the clock
constraints that must be satisfied to be in location ℓ, thus you
cannot move into location ℓ if the clock valuation does not
satisfy I(ℓ) and if already in ℓ you cannot delay such that
the clock valuation no longer satisfies I(ℓ).

The semantics of a timed automaton are given by an
underlying labeled transition system T ∗

A = (S, s0, A, T ),
where S = L×RC

≥0 is the set of concrete states, s0 = (ℓ0,0)
is the initial state, where 0 is the valuation mapping all
clocks to 0, A = E∪R≥0 is the set of actions, being either an
edge or a time to delay, and T ⊆ S ×A×S is the transition
relation. We write s α−→ s′ whenever (s, α, s′) ∈ T and refer
to states in this transition system as concrete. The transition
relation then contains delay transitions with δ ∈ R≥0

(ℓ, u)
δ−→ (ℓ, u+ δ) if ∀0 ≤ δ′ ≤ δ. u+ δ′ |= I(ℓ),

and edge transitions with e = (ℓ, g, R, ℓ′) ∈ E

(ℓ, u)
e−→ (ℓ′, u[R 7→ 0]) if u |= g and u[R 7→ 0] |= I(ℓ′).

We now extend timed automata by also including costs
and rewards for edges and delays.

Definition 2. A Cost-Reward Timed Automaton (CRTA)
A = (L, ℓ0, E, I, c, r) is a timed automaton extended with
two functions c, r : L ∪ E → N0, which represent cost and
reward rates for locations and edges.

A CRTA A = (L, ℓ0, E, I, c, r) induces a Cost-
Reward Weighted Transition System (CR-WTS) TA =
(S, s0, A, T, cost, reward), a labeled transition system ex-
tended with functions cost, reward : T → R, which assign

short

x ≤ 3
c′ = 1
r′ = 10

long

x ≤ 5

c′ = 1
r′ = 3

slow
x ≤ 3
c′ = 1
r′ = 0

fast
x ≤ 3
c′ = 1
r′ = 0

x := 0
y := 0

x ≥ 3, x := 0

x ≥ 2

x ≥ 1
x := 0

y ≥ 5
x := 0

Figure 1: CRTA of a lawnmower example. Resets are de-
noted by ”x := 0”, cost increments by ”c += n” (or reward
by ”r += n”), the cost/reward rates of delaying in locations
are denoted by ”c′ = n” (and ”r′ = n” for reward). The
initial state is marked by a sourceless incoming edge.

cost and reward to transitions.

cost((ℓ, u)
α−→ (ℓ′, u′)) =

{
c(ℓ) · δ if α = δ ∈ R≥0

c(e) if α = e ∈ E

and dually for reward.
Let π = s0

α0−→ s1
α1−→ . . .

αn−1−−−→ sn be a fi-
nite execution in a CR-WTS (S, s0, T, cost, reward) con-
sisting of concrete states. The cost and reward functions
extend to finite executions straightforwardly as Cost(π) =∑n

i=1 cost(si−1, αi−1, si) and dually for Reward. We de-
fine the cost-reward ratio for a finite execution, where
Reward(π) ̸= 0, as Ratio(π) = Cost(π)

Reward(π) .
We now consider the case of an infinite execution, Π.

Let Πn denote the finite prefix execution of Π with length
n. The ratio of the infinite execution Π is then defined by
Ratio(Π) = lim infn→+∞ Ratio(Πn), provided this limit
exists. The optimal ratio for a CR-WTS A is indicated by
θ∗ = inf {Ratio(Π) | Π is an infinite execution in A} . An
infinite execution Π is ratio-optimal if Ratio(Π) = θ∗.

We make the restriction that automata must not contain
any so-called Zeno-cycles, i.e. all infinite executions must
also use an infinite amount of time. Similarly, they must also
be reward-diverging, meaning all infinite executions that are
time-divergent accumulate infinite reward. Finally, we will
assume that the automata are bounded, i.e. there exists a
Cmax ∈ N s.t. no clock ever has a value larger than Cmax.
Behrmann et al. (2001) shows that any unbounded timed au-
tomaton can be converted into an equivalent bounded timed
automaton, thus no expressiveness is lost.

An interesting subclass of CRTA is when reward corre-
sponds to the time elapsed (i.e., there are no transition re-
wards and the reward rate at each location is the same).
Ratio-optimal plans correspond then to operating the sys-
tem with lowest cost per time unit. In this case, not having
Zeno-cycles is the same as reward-divergence.
Example 1 Consider the example CRTA shown in Figure
1, which models a lawnmower, whose job is to tend a lawn
by keeping it nicely short. When it decides that the grass is
too long (after some 1 to 3 time units) it transitions to the
long location. Here it waits for an additional 2 time units,



but receives less reward. Next, it has the option of whether to
mow fast or slow by going to their respective location. The
slow approach takes 3 units of time, and the fast approach
takes between 2 and 3 units of time. The reward models the
quality of the lawn, and the cost models the time. One ex-
ample of a cycle is to delay 3 units of time in short, go to
long, delay 2, go to fast, delay 3, and complete the cycle by
returning to short. This cycle accumulates 8 cost and 36 re-
ward, and thus it has a ratio of 8

36 ≈ 0.22. The optimal plan
has a ratio of 11

60 ≈ 0.18 and it involves a longer loop that
alternates between slow and fast.

For simplicity we describe our techniques as operating on
the full timed automata, as they are agnostic of the exact for-
malism used. In practice more compact representations can
be used. Our implementation is based in UPPAAL(Larsen,
Pettersson, and Yi 1997), which uses a representation based
on networks of synchronized timed automata. This can be
exponentially more compact than the full CRTA, which is
only generated in an on-the-fly manner.

Corner-Point abstraction
Bouyer, Brinksma, and Larsen (2004) introduced corner-
point abstraction, a method for discretising the clock valua-
tion space by only considering points that are integer-valued.
In a bounded timed automata this reduces to a finite state
space which can be represented as a doubly weighted finite
graph. They showed that this abstraction is sound and com-
plete. There is a slight distinction in our model as, for sim-
plicity, we only allow non-strict clock guards, which simpli-
fies the corner-point abstraction.

The intuition for why it suffices to consider integer valu-
ations only, is that all clock guards have integer bounds and
the minimum of a linear fractional function with linear con-
straints is attained in the corner-points of the zone that the
constraints define, hence at integer valuations.

We call a cycle with integer-valued clock valuations a dis-
crete cycle. Bouyer, Brinksma, and Larsen (2004) show that
there are only finitely many discrete simple cycles and there
is always such a cycle that is ratio-optimal.

Wielding the corner-point abstraction, a simple approach
is to construct the entire corner-point abstracted state-space
as a doubly weighted graph, then use an existing algorithm
for the ratio-optimal cycle problem, such as Howard’s policy
iteration algorithm (Howard 1960; Dasdan, Irani, and Gupta
1999). We use this as a base-line for our symbolic approach.

3 Anytime λ-deduction Algorithm
The main issue with using the corner-point abstraction is
that often the size of the graph grows exponentially with the
number of clocks. Therefore, constructing the entire graph
before starting the search is a huge bottleneck. Instead, we
aim to perform an on-the-fly exploration of the state space
in order to find the optimal-ratio cycle. However, when deal-
ing with both cost and reward, a problem arises because the
costs and rewards of reaching a state can be incomparable.
For example, a cost/reward of 1/1 is not necessarily better
or worse than 2/3 because, depending on the rest of the path
to close the cycle, both could be the minimum ratio. If the

rest of the cycle has cost/reward 1/0, then the better ratio
is 3/3, and if it has 0/2, then the better ratio is 1/3. While
this could be dealt with multi-objective search (Fränzle et al.
2022; Larsen and Rasmussen 2008), maintaining the entire
Pareto front for each clock valuation is unnecessary because
we are interested on a single objective: the minimum ratio.

Gondran and Minoux (1995) show how to overcome this
problem by combining the cost and reward into a single
weight, and then incrementally finding better solutions (ac-
cording to the current weight) until the optimal is found.
This style of algorithm works by maintaining the ratio of the
best solution found so far, λ. The weight at each iteration is
wλ = Cost− λ · Reward.
Proposition 3. A cycle x has negative λ-deducted weight if
and only if Ratio(x) < λ.

Proof. Cost(x)−λ·Reward(x) < 0⇐⇒ Cost(x)
Reward(x) < λ.

This suggests the method used in Algorithm 1: First, pick
any cycle x from the CRTA, and let λ := Ratio(x) =
Cost(x)

Reward(x) . Then, find a cycle x′ s.t. wλ(x
′) < 0, and up-

date λ := Ratio(x′). This is repeated until no such x′ exists,
at which point an optimal solution has been found.

To use this approach in our setting, we need a method for
finding cycles with negative λ-deducted weight. We there-
fore introduce a transformation of the original cost-reward
automaton into a λ-deducted single priced timed automaton.
Definition 4. Let A = (L, ℓ0, E, I, c, r) be a CRTA. The
λ-deducted single priced timed automata of A is Aλ =
(L, ℓ0, E, I, wλ), where wλ(a) = c(a) − λ · r(a) for a ∈
L ∪ E.

Note that the weight of any path in Aλ corresponds to the
λ-deducted weight of the path in A. This follows from the
semantics of A and the additive nature of the λ-deducted
weight. We say a cycle in Aλ is a negative-weight concrete
cycle if the summed weight of the cycle is negative.

Algorithm 1 shows an abstract algorithm for finding ratio-
optimal cycles using the λ-deducted automaton.
Theorem 5. Algorithm 1 terminates, and returns a ratio-
optimal concrete cycle, if one exists, otherwise NO CYCLE.

Proof. There are finitely many simple discrete cycles. At
each step λ decreases. Thus at some point there will be no
simple discrete cycle with ratio lower than λ.

It is worth noting that, at each iteration, it suffices to find
any negative cycle, not necessarily one with minimum (neg-
ative) cost. In fact, finding cycles with lower weight does
not guarantee faster convergence. For example, with λ = 3,
a cycle with cost/reward 3/2 has weight wλ = 3−3·2 = −3,
while a cycle with a better cost/reward ratio 1/1 has weight
wλ = 1− 1 · 2 = −1.

4 Symbolic λ-Deduction
All that remains to instantiate the λ-deduction algorithm is
an effective and efficient way for finding negative-weight
concrete cycles in Aλ. This could be done with an explicit
search of the corner-point abstracted state space. However,



Algorithm 1: λ-deduction algorithm.
input : A bounded and strongly reward-divergent CRTA

A = (L, ℓ0, E, I, c, r) over the clocks C.
output: A ratio-optimal concrete cycle, if one exists,

otherwise NO CYCLE.
1 if A has no cycle then
2 return NO CYCLE

3 Cλ := any cycle in A
4 λ := Ratio(Cλ)
5 while Aλ has negative-weight simple discrete cycle C do
6 λ := Ratio(C)
7 Cλ := C

8 return Cλ
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Figure 2: Zone (in green, left) induced by 4 constraints over
clocks x and y and successors (right) after a delay transition.

as the number of states grows exponentially with the number
of clocks, we utilise a symbolic representation of the clock-
space.

Symbolic Zone-Based Representation
In model checking, zones are commonly used as a symbolic
representation of a subset of the clock space (Daws et al.
1995; Larsen, Pettersson, and Yi 1997). A zone over a set of
clocks C is defined by a conjunction of constraints, which
can be upper or lower bounds on either the value of clocks or
the difference between two clocks. Thus, the zone represents
a convex subset of |C|-dimensional Euclidean space.

As we are also dealing with a price, namely the λ-
deducted weight, we use priced zones (Larsen et al. 2001).
Priced zones extend zones with a price function, an affine
function from the clock values to the price of reaching
that particular state. Figure 2 (left) shows an example of
a zone. Assuming that the price function is wgreen(u) =
−1 · u(x) + 2 · u(y) + 1, the price of reaching the valuation
(x = 2, y = 1) is wgreen(2, 1) = −1 · 2 + 2 · 1 + 1 = 1.

A symbolic state S = (ℓ, Z,w) consists of a location,
a zone and a price function. We say that a concrete state
s = (ℓ, u) is in S, denoted by s ∈ S, iff u ∈ Z.

Zones themselves are represented using difference bound
matrices(Dill 1989; Bengtsson and Yi 2003), a data struc-
ture for efficient storing and performing necessary opera-
tions on zones. We define the functions Poste and Postϵ that
return, for a given symbolic state S = (ℓ, Z,w), the sym-
bolic successors after using the discrete edge and delay ac-
tions, respectively. The delay successors of a symbolic state,

Postϵ(S) reflect the lowest price of reaching a specific point
the successors from some point in S. Each delay action has
an associated delay rate r. The slope of the delay trajectory
of a priced zone is the price of increasing all clocks by 1 ac-
cording to w, let us call this q. There are only two ways to
reach a valuation to consider: (i) delaying as much as possi-
ble in this delay action; (ii) delaying the least possible. We
should choose (i) when r ≤ q and choose (ii) when r ≥ q.

The result of delaying can be represented as one or more
symbolic states. The example of Figure 2 (right) shows the
successors after a symbolic delay action on the zone de-
picted in the left, assuming the location ℓ has an invariant
x ≤ 4, and that we delay in a location with weight-rate r =
3. In this case, the slope of the delay trajectory of the green
zone is q = 1 (i.e. the sum of the coefficients for u(x) and
u(y)); thus we should delay the least possible. Therefore,
only the valuations not already reachable from green are rep-
resented in separate symbolic states with new zones. The
two new zones, red and blue (respectively, vertical lines and
dots), have price functions wred(u) = −1·u(x)+1·u(y)+2
and wblue(u) = 1 · u(x) + 2 · u(y) − 5. There are similar
considerations for the discrete edge successor; we refer the
reader to Larsen et al. (2001) for full details.

Symbolic Cycles
We write S

α−→ S′ whenever S′ ∈ Postα(S) for some
α ∈ E ∪ {ϵ}. When the particular action does not matter,
we simply write S → S′. A symbolic path Π = S0

α0−→
S1 → · · · αn−1−−−→ Sn is sequence of symbolic transitions. We
use the notation S0 ⇝ Sn whenever there exists a symbolic
path from S0 to Sn. We say that a concrete path π is in a
symbolic path Π, denoted π ∈ Π, when π and Π agree on
the discrete transitions and all concrete states in π are con-
tained in the corresponding symbolic state in Π.
Definition 6. A symbolic path Π is a symbolic cycle iff there
exists a concrete cycle π ∈ Π. A symbolic cycle Π is a
negative-weight symbolic cycle iff there exists a negative-
weight concrete cycle π ∈ Π.

We first consider the problem of, given a symbolic path,
how to determine whether it is a (negative-weight) symbolic
cycle. This is an important question, as we want to symbol-
ically search for negative-weight concrete cycles. However,
this is not readily apparent as there may be an overlap in
the start and end zones but no concrete cycle from one point
back to itself. Furthermore, despite priced zones keeping the
price of reaching any point in the end zone, we cannot de-
termine the price of a particular path from start to end. For
a given end valuation, we only know the cheapest price of
reaching this valuation, but not from which valuation a path
with this price is realisable from. Next, we will show how
to extract the best concrete cycle from a symbolic path, both
w.r.t. to ratio and λ-deducted weight.

Extracting the best concrete cycle from a symbolic cycle
consists of finding optimal concrete delays for the symbolic
delays. However, since symbolic states abstract over many
concrete states, there are also concrete cycles that do multi-
ple revolutions inside the symbolic cycle. Specifically, given
a symbolic cycle Π, we want to find the best concrete cycle



π s.t. there exists a k for which π ∈ Πk, where Πk is Π
concatenated onto itself k times.
Theorem 7. Let Π = (ℓ, Z1) ⇝ (ℓ, Zn) be a symbolic
cycle. Then for all k > 1, the optimal concrete cycle in Π1

has the same ratio as the optimal concrete cycle in Πk.
Proof sketch. Let πk be a cycle in Πk. We will then show
how to construct a cycle π1 ∈ Π1 that has the same ratio. Let
π1π2 · · ·πk = πk be the partitioning of πk s.t. πi ∈ Π for
0 < i ≤ k. We then construct π1 as a convex combination
of all πi. For a scalar η ∈ R≥0 and a valuation u ∈ RC

≥0,
we define (η · u)(x) = η · u(x) for x ∈ C. Also, we define
(u+ u′)(x) = u(x) + u′(x) for x ∈ C.

Let η = 1
k , we then construct π1 as the convex combina-

tion, such that each state (ℓj , vj) ∈ π1 has vj =
∑k

i=1 u
i
j

where (ℓj , u
i
j) ∈ πi. The delays are then also the convex

combination of the delays of all πi. It can be shown that
π1 is a valid cycle and has the same ratio as πk. Since the
zones are convex, π1 ∈ Π. The reset operation also works in
the convex combination because they all agree that the reset
clock is 0. The ratio is the convex combination of all of the
ratios, since η = 1

k it is the same as the ratio of πk.

Corollary 8. Let Π = (ℓ, Z1) ⇝ (ℓ, Zn) be a symbolic
cycle in a single weight timed automata. Then for all k > 1,
there exists a concrete cycle with weight w in Π1 if and only
if there exists a concrete cycle with weight w · k in Πk.

Proof. This follows easily from Theorem 7. We can simply
pretend that Reward(Π) = 1, then there is a cycle π ∈ Π
with Ratio(π) = w

1 iff there is a cycle πk ∈ Πk with
Ratio(πk) = k·w

k .

With this, we know that we can limit ourselves to finding
cycles of a single revolution in the symbolic cycle; thus, we
will now describe how to extract a concrete cycle. We will
first focus on extracting the best concrete cycle w.r.t. cost-
reward ratio. Tolonen, French, and Reynolds (2018) show
how this is achieved by optimisation the delays of the sym-
bolic cycle using linear-fractional programming (Charnes
and Cooper 1962); here, we give only an overview of the
procedure. We optimise the delays to minimise over the frac-
tional objective that is the cost-reward ratio of the cycle.
For a symbolic cycle Π, the core idea is to construct times-
tamps ti for each αi in Π, representing the time elapsed since
the action α0. Additionally, a timestamp tn+1 is added as
the end of the cycle, where n = |Π|, i.e. the duration of
the cycle. Recall that zones are constructed from difference
constraints on clock values. Therefore, zones can be trans-
formed into constraints on timestamps by translating a clock
value at index i into a difference constraint on the current
timestamp and the timestamp at which it was last reset. For
a constraint x ≤ n at index i, we find the index j that is
the latest index (w.r.t. i) where x was reset. Then, if j ≤ i
the constraint is equivalent to ti − tj ≤ n, and if j > i, i.e.
if x was only reset in the previous iteration of Π, then the
constraint is equivalent to ti + tn+1 − tj ≤ n.

We can therefore determine whether a symbolic cycle is
negative by optimising for the lowest weight concrete cycle

and seeing if it is negative, or alternatively, optimize for the
best cost-reward ratio concrete cycle and checking if it is less
than the current λ (i.e., the best ratio found so far). The latter
is preferred, as we might as well extract the best cost-reward
ratio cycle, as this will maximise the improvement of λ.

Symbolic Search for Negative Cycles
We are now ready to present our algorithm for find-
ing negative-weight cycles. Algorithm 2 performs best-first
search, where each search node corresponds with a symbolic
state. We maintain a parent pointer, Parent , that maps each
discovered symbolic state to its predecessor. Specifically, the
Parent pointer returns for S either a pair (S′, α), where S′

is the predecessor and e ∈ E is the action, s.t. S′ e−→ S, or
the special symbol NIL when S is the initial state.

On line 5, the algorithm extracts and expands a minimum
element from Waiting , according to some ordering. The or-
der chosen has no consequence on termination and correct-
ness of the algorithm, but it may affect the efficiency. We
suggest to choose a state containing the minimum weight
valuationfrom the intuition that cheap valuations are more
likely to produce negative cycles.

Every time a new successor is generated, we check
whether it belongs to a negative-weight cycle (line 10) by
calling the subroutine FIND-NEGATIVE-CYCLE. This re-
cursive subroutine follows the Parent pointer backwards,
checking whether the suffix is a cycle. This is done with
the linear-fractional program for all symbolic paths that
satisfy some necessary conditions (e.g. there is some con-
crete state s such that s ∈ S1 and s ∈ Sn). Thus,
FIND-NEGATIVE-CYCLE returns a negative-weight sym-
bolic cycle if one is found, otherwise it will eventually reach
NIL and return NO CYCLE.

The key problem is when to stop searching. It may seem
that duplicate detection is safe, i.e., if we return to a state
(ℓ, Z,w) with the same location and zone, there is no point
in continuing the search. However, that is not the case. Du-
plicate pruning ignoring w, may incorrectly prune the opti-
mal cycle, which may pass multiple times by the same sym-
bolic state.
Proposition 9. There exist CRTAs such that the optimal
concrete cycle is contained in a non-simple symbolic cycle.
Proof sketch. Consider the automaton:

ax ≤ 1
r′ = 5

b

x ≤ 2
c′ = 100

c
x ≤ 2
r′ = 1
c′ = 1

e1

x = 1
e2

x := 0

e3

x ≥ 1

e4

x ≥ 2, x := 0

The optimal concrete cycle is (a, 0) 1−→ (a, 1)
e1−→ (b, 1)

e2−→
(c, 0)

2−→ (c, 2)
e3−→ (b, 2)

e4−→ (a, 0), with a ratio of 2
7 . How-

ever, this is in the non-simple symbolic cycle S0 → S1 →
S2 → S3 → S4 → S5 → S3 → S0, with both S0 and
S3 appearing twice. There are two simple symbolic cycles
S0 → S1 → S2 → S3 → S0 and S3 → S4 → S5 → S3,
however, the optimal concrete cycles in these only achieve a
cost-reward ratio of 100

5 and 1
1 , respectively.

Note that this does not contradict Theorem 7, as both parts
of the cycle are using different edges.



Algorithm 2: Find Negative Cycle of S-λD.
input : A single priced timed automaton

Aλ = (L, ℓ0, E, I, wλ).
output: A negative weight simple discrete cycle, if one

exists, otherwise NO CYCLE.

1 Function FIND-NEGATIVE-CYCLE()
2 Waiting := {S0 }// initial state
3 Parent := {S0 7→ NIL}
4 while Waiting ̸= ∅ do
5 S := EXTRACT-MIN(Waiting)
6 forall S′ ∈ Postϵ(Poste(S)) for all e ∈ E do
7 if ∀S′′ ∈ dom(Parent). S′′ ̸⊑ S′ then
8 Parent(S′) := (S, α)
9 insert S′ into Waiting

10 if NEG-CYCLE(S α−→ S′) returns cycle C then
11 return C

12 return NO CYCLE

13 Function NEG-CYCLE(S1
α2−−→ · · · αn−−→ Sn)

14 if S1
α2−−→ · · · αn−−→ Sn is a negative-weight cycle then

15 return best concrete cycle in S1
α2−−→ · · · αn−−→ Sn

16 if Parent(S1) ̸= NIL then
17 (S, α) := Parent(S1)

18 return NEG-CYCLE(S α−→ S1
α2−−→ · · · αn−−→ Sn)

19 else
20 return NO CYCLE

To ensure termination, we define a domination criteria to
prune symbolic states if they have a higher price everywhere.

Definition 10. A priced symbolic state S = (ℓ, Z,w) dom-
inates another S′ = (ℓ′, Z ′, w′), denoted by S ⊑ S′, iff (i)
ℓ = ℓ′, (ii) Z ⊇ Z ′, and (iii) w(u) ≤ w′(u) for all u ∈ Z ′.

When searching, we do not expand a state S if we have
already seen a state S′ where S′ ⊑ S. On line 7, only succes-
sors where no dominating state has already been discovered
are added to Waiting . This ensures that an optimal cycle
will not be pruned, and it is sufficient to ensure that the algo-
rithm terminates. If prices keep becoming lower and lower,
then a negative cycle will be found. If there is no negative
cycle, eventually no non-dominated state will be left, and
the algorithm will return NO CYCLE.

Lemma 11. The subroutine FIND-NEGATIVE-CYCLE in
Algorithm 2 terminates.

Proof. We first argue that there exists a constant wmin for
Aλ s.t. any symbolic path that contains a concrete path with
weight less than wmin must contain a negative-weight con-
crete cycle. Let Tcp = (Scp, s0, A, Tcp, cost, reward) be
the CR-WTS induced by the corner point abstraction of
the automaton A, i.e. containing only discrete states and
transitions, then wmin =

∑
{wλ(t) | t ∈ Tcp, wλ(t) < 0 },

where wλ(t) = cost(t) − λ · reward(t), i.e. the sum of the
weight of all negative λ-deducted transitions. Any concrete

path with weight less than wmin must use at least one nega-
tive edge more than once, and therefore, it contains at least
one concrete cycle. At least one of these cycles must be neg-
ative.

Now, let S be the set of all priced symbolic states and
S≥wmin

= { (ℓ, Z,w) ∈ S | ∀u ∈ Z. w(u) ≥ wmin }. We
now argue that (S≥wmin

,⊑) is a well-quasi order, i.e. there
exists no infinite descending sequence where the states are
not dominated by a previous state. For a bounded priced
timed automaton, there is only a finite number of (unpriced)
zones, thus a zone must eventually repeat in an infinite se-
quence. The minimum of a priced zone is attained in an in-
teger point, therefore, we can limit ourselves to study the
cost plane only in the finite number of integer points. Let
u ∈ Z be an integer point of zone Z, π be a minimum
λ-deducted weight path to u, and λ = a

b for a ∈ Z and
b ∈ N+. Let Q ·

b
= { q ∈ Q | ∃c ∈ Z. q = c

b } be the set of
rationals that can be written with b as denominator. The λ-
deducted weight of reaching the integer point is wλ(π) =

Cost(π)− a
b · Reward(π) = Cost(π)·b−a·Reward(π)

b , and since
Cost(π) and Reward(π) are integer-valued (known from
corner-point abstraction), wλ(π) ∈ Q ·

b
. For all b ∈ Z+,

Q ·
b

is nowhere dense in R and thus any infinite descend-
ing sequence must tend towards negative infinity. Thus, the
weight of the integer points cannot keep improving ad in-
finitum, as it will become less than wmin, and since there
are only finitely many integer points eventually no point can
improve further. This, in conjunction with the finiteness of
zones, shows that (S≥wmin ,⊑) is a well-quasi order. The
argument is similar to Dickson’s Lemma (Kruskal 1972).

These properties guarantee that our algorithm terminates.
Firstly, the subroutine FIND-NEGATIVE-CYCLE termi-
nates either when Waiting = ∅ or when NEG-CYCLE re-
turns a cycle. The if-statement on line 7 ensures that we
never added a state to Waiting that is dominated by a pre-
viously expanded state. Thus only a finite amount of dom-
inated states will be expanded. If no state is ever expanded
that contains a point cheaper than wmin, then there exists no
infinite descending sequence for ⊑, and thus the algorithm
must terminate. Otherwise, whenever any state containing a
point cheaper than wmin is expanded, then there must be a
negative cycle present in the parent pointer, so therefore it
terminates. The subroutine NEG-CYCLE is called whenever
a state is added to Waiting , thus when the parent pointer
contains a cycle, it is detected. We will assume that the lin-
ear programming solver finds a discrete cycle. However, if
it does not, this does not affect convergence of the algo-
rithm, as we know from corner-point abstraction (Bouyer,
Brinksma, and Larsen 2004) that there exists an equivalent
discrete cycle with the same cost-reward ratio.

Symbolic λ-deduction, i.e., Algorithm 1 using Algo-
rithm 2 as a sub-routine in line 5 is complete, sound, and
optimal.

Theorem 12. The symbolic λ-deduction algorithm termi-
nates, and it returns a ratio-optimal concrete cycle, if one
exists, otherwise NO CYCLE.

Proof sketch. We know that Algorithm 1 is correct and



terminates (Theorem 5), therefore, it suffices to show that
FIND-NEGATIVE-CYCLE is correct and terminates. We
handled termination already in Lemma 11. Here we prove
the correctness as soundness and completeness.

Soundness: if FIND-NEGATIVE-CYCLE returns a cy-
cle then it is a negative-weight concrete cycle in Aλ. The
algorithm only expands reachable states and only returns a
cycle if it is negative. The concrete cycles are extracted by
linear program optimisation, and by Corollary 8, we need
only consider one revolution in each symbolic cycle. Thus,
the cycle is reachable and has negative-weight.

Completeness: if there exists a negative cycle in Aλ then
FIND-NEGATIVE-CYCLE returns a cycle. Recall from the
proof of Lemma 11, that if there exists a negative cycle, then
there is a weight wmin s.t. reaching a weight below this can
only be done with a negative cycle. Also, a negative cycle
always makes the weight arbitrarily cheap. From the priced
zones, we know that there is always a symbolic path to reach
any reachable state that is descending w.r.t. ⊑; i.e. no sym-
bolic state is dominated by a preceding state in the path.
Thus, the descending symbolic path to reach the state with
weight less than wmin, must eventually be found by the al-
gorithm, and this must contain a concrete cycle. Thus the
symbolic cycle will be discovered because we check of a
negative cycle every time a state is added to Waiting .

5 Experimental Evaluation
We conduct experiments comparing symbolic λ-deduction
(S-λD) against the baseline CP-MCR. CP-MCR constructs
the entire corner-point abstracted concrete state space and
then uses existing techniques to find a ratio optimal cycle
in the doubly weighted graph. We implemented both algo-
rithms on top of UPPAAL 4.1 (Larsen, Pettersson, and Yi
1997). CP-MCR uses the Boost library’s solver for minimum
cycle ratio problems, which is based on Howard’s algorithm
(Dasdan, Irani, and Gupta 1999). All experiments were run
on a cluster with AMD EPYC 7551 32-core processors, with
a 10-minute time limit and 10GB memory limit. The data
from the experiments and the scripts for generating the fig-
ures and tables will be made publicly available.

We conduct experiments in three different domains:
surveillance, job scheduling and volunteer. The problems
are modelled in UPPAAL as networks of timed automata.
Larsen, Pettersson, and Yi (1997) gives a thorough descrip-
tion of how modelling in UPPAAL works. We extended UP-
PAAL’s parsing module to allow for both costs and rewards.

Surveillance In this domain one or more agents must
surveil different places. If a place has not been surveilled
for 10 units of time, the cost of the place is increased. The
agents can either be waiting or surveilling, with the former
giving more reward. At some point the agent can choose to
surveil a place, this takes between 5 to 10 units of time and
resets the cost of the place to its initial value. We denote in-
stances of this problem as Sa,p, where a is the number of
agents and p is the number of places.

Job Scheduling This is a small extension to the schedul-
ing problem by Behrmann, Larsen, and Rasmussen (2005).

CP-MCR S-λD
Inst. topt ts tf States topt ts tf States
J2,1 0.00 0.00 0.00 173 0.00 0.00 0.00 12
J2,2 0.29 0.23 0.23 20k 0.07 0.03 0.00 1k
J2,3 252.29 232.00 230.86 2M 134.51 0.03 0.02 225k
J2,4 OOT - - - OOT - 0.09 -
J3,2 0.54 0.35 0.35 27k 0.06 0.01 0.00 1k
J3,3 OOT - - - 494.80 0.65 0.16 357k
J3,4 OOT - - - OOT - 4.65 -

S1,1 0.00 0.00 0.00 78 0.00 0.00 0.00 7
S1,2 0.04 0.03 0.03 3k 0.00 0.00 0.00 119
S1,3 1.70 1.48 1.37 63k 0.21 0.01 0.00 3k
S1,4 70.81 64.71 63.78 636k 11.35 0.01 0.01 71k
S1,5 OOT - - - 54.22 0.03 0.03 213k
S1,6 OOT - - - 49.94 3.51 3.51 373k
S1,7 OOT - - - 87.44 N/A - 702k
S2,1 0.01 0.01 0.01 1k 0.00 0.00 0.00 39
S2,2 2.15 1.84 1.80 50k 0.14 0.00 0.00 1k
S2,3 OOT - - - 93.83 0.01 0.01 102k
S2,4 OOT - - - OOT - 0.01 -
S3,1 0.35 0.29 0.28 14k 0.04 0.00 0.00 629
S3,2 320.94 313.35 312.51 770k 44.15 0.00 0.00 50k
S3,3 OOT - - - OOT - 0.00 -

V1,1,1 0.03 0.02 0.02 1k 0.14 0.10 0.00 4k
V1,1,2 1.23 1.15 0.61 20k 33.91 18.74 0.00 143k
V1,1,3 363.67 359.67 123.73 542k OOT - 0.25 -
V1,2,1 5.07 3.97 2.83 60k 62.32 27.46 0.00 235k
V1,2,2 320.92 287.45 279.12 694k OOT - 0.02 -
V1,2,3 OOT - - - OOT - 0.59 -
V2,1,1 0.23 0.20 0.16 10k 0.54 0.43 0.00 20k
V2,1,2 12.97 12.06 5.02 115k 253.93 173.78 0.00 1M
V2,1,3 OOT - - - OOT - 0.28 -

Table 1: Results of comparison between S-λD and CP-MCR
in terms of time in seconds until finding the first (non-
optimal) solution (tf ), the optimal solution without proving
optimality (ts), and until termination (topt ). OOT means that
the time limit was exceeded (the memory limit was never ex-
ceeded). The States column indicates the number of concrete
(for CP-MCR) and symbolic states (for S-λD).

We made it cyclic, adding a reward for completing jobs. The
model concerns with scheduling a set of jobs on specific ma-
chines. Each job needs to serially perform two tasks on two
specific machines for an amount of time, and it has a fre-
quency at which it needs to be repeated (e.g., job A needs
to use 10s on machine 1 and then 5s on machine 3, and the
job must be completed every 60 seconds). Completing the
task provides reward and running the machines has a cost.
We denote instances of this problem as Jm,j , where m is the
number of machines and j is the number of jobs.

Volunteer This is a scheduling problem which concerns
volunteers balancing their university work while maintain-
ing a supply of cold drinks in the refrigerators. The refrig-
erator can store up to 4 items, which can be withdrawn by
the consumers and volunteers, yielding reward. A volunteer
can decide to walk to the refrigerators to refill them, this
adds to the cost and spends time. The consumers start as ac-
tive members,but become inactive if they do not withdraw an
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(a) Solution quality over time. (b) Scaling: CP-MCR. (c) Scaling: S-λD.

Figure 3: 3a shows the sub-optimality ratio over time for S-λD (black, solid) and CP-MCR (red, dashed). Figures 3b and 3c
show the time of CP-MCR and S-λD on J2,2, V1,1,2 and S1,2 when scaling all clock constants.

item within a given time interval. An inactive consumer no
longer withdraws items and does not generate any reward.
The volunteers earn reward by working in their group room,
as well as when they withdraw items. We denote instances
as Vf,v,c, where f is the number of refrigerators, v is the
number of volunteers, and c is the number of consumers.

We first analyze scalability with respect to the number of
objects, i.e., the number of concurrent timed automata and
thus the number of locations and clocks in the full CRTA. All
clock constants in invariants and guards are small (≤ 15),
and are kept constant across all instances of the domain. Ta-
ble 1 shows the results. Overall, we see that S-λD clearly
outperforms CP-MCR in the job and surveil domains, solv-
ing more problems and being significantly faster and with
lower memory usage. We also note that on S1,7, symbolic λ-
deduction finds that there is no cycle, as a single agent can-
not surveil seven places within the time constraints. How-
ever, CP-MCR outperforms S-λD on volunteer. This is par-
tially due to a larger number of iterations (up to 22 in V2,1,2)
finding improving cycles, and due to the large length of the
optimal cycle (up to 416/7118 steps in V1,1,2/V1,1,3, where
as in other domains are only up to 25 steps). Contrary to
CP-MCR, S-λD uses different states in each iteration, lead-
ing to nearly an order of magnitude more states, even though
S-λD’s states are using priced zones and thus correspond to
multiple explicit states. The number of states gives a clear
indication of why S-λD performs poorly on the volunteer
domain. S-λD searches nearly an order of magnitude more
states, even though S-λD’s states are using priced zones and
thus correspond to multiple explicit states.

An important advantage of S-λD is its good anytime be-
haviour. As it immediately starts searching for cycles, it can
always return the best found cycle so far, before converg-
ing on the optimal. Notably, S-λD always found a (possibly
non-optimal) solution in few seconds, and oftentimes found
the optimal solution a lot sooner than its termination prov-
ing that no better solution exists. Even in the volunteer do-
main, where S-λD performs poorly, it finds a decent solution
before CP-MCR finds any. CP-MCR also incrementally im-
proves on the best found ratio, however before being able to
do so, it needs to spend a lot of effort to expand the entire

state-space. Figure 3a shows the best ratio found along the
search for the most difficult instance of each domain where
both algorithms finished. S-λD excels in this regard, finding
a solution in less than one tenth of a second in most cases,
whereas CP-MCR sometimes fail to find any solution.

Finally, we analyze the performance of the algorithms
when scaling the size of the clock constants. To that end, we
fixed a single instance per domain and scaled all constants
in the model by a factor. Additionally, we add 1 to the con-
stants to remove large common divisors, which means that
the problem can no longer be reduced to the original by sim-
ply dividing by the scaling factor. Figure 3 shows that CP-
MCR suffers a large increase in run-time when scaling the
clock constants. In contrast, scaling the clock constants does
correlate with the run time of symbolic λ-deduction. This is
not surprising as scaling can result in a polynomial increase
in the number of discrete states in the underlying transition
system, which has a direct proportional increase in the num-
ber of vertices in the doubly weighted graph of CP-MCR.
Contrarily, scaling the size of the constants does not have a
direct impact on the number of symbolic states to explore,
and in most cases it only increases the size of the zones.
However, adding 1 to the constants after scaling sometimes
changes the solution space, thus we also see some fluctua-
tions, especially in the volunteer domain.

6 Conclusion
We introduced symbolic λ-deduction, a novel approach for
finding ratio-optimal cycles in cost-reward timed automata.
Our approach combines the cost and reward functions into a
single weight, circumventing some significant barriers that
arise in the doubly priced setting. S-λD incrementally im-
proves the best found cycle, searching with priced zones.
We proved that it converges on an optimal solution.

Our experiments show that S-λD outperforms the base-
line, CP-MCR, in many cases, except when the symbolic
representation is inefficient and leads to a larger number of
explored states. However, even in those cases, S-λD is far
more robust with respect to large values in the temporal con-
straints.
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