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ABSTRACT

Self-supervised learning (SSL) has become the predominant approach to training
on large amounts of data when no labels are available. Since the corresponding
model architectures are usually large, the training process is, in itself, costly, and
training relies on dedicated expensive hardware. As a consequence, not every
party can train such models from scratch. Instead, new APIs offer paid access to
pre-trained SSL models. We consider transformer-based SSL sentence encoders
and show that they can be efficiently extracted (stolen) from behind these APIs
through black-box query access. Our stealing requires down to 40x fewer queries
than the number of the victim’s training data points and much less computation.
This large gap between low attack costs and high victim training costs strongly
incentivizes attackers to steal encoders. To protect the transformer-based sentence
encoders against stealing, we propose to embed secret downstream tasks to their
training which serve as watermarks. In general, our work highlights that sentence
embedding encoders are easily stolen but hard to defend.

1 INTRODUCTION

The success of self-supervised learning (SSL) motivates the emergence of large-scale services offering
API access to encoders which return high-dimensional representations for given input data. These
representations serve to train a diverse set of downstream tasks with a small amount of labeled data.
Latest APIs (Clarifai, 2023; Cohere, 2023; OpenAI, 2023) use transformer-based encoders (Devlin
et al., 2018; Dosovitskiy et al., 2020) to generate representations. Such encoders have a high number
of parameters (e.g., the state-of-the-art RoBERTa-Large language encoder (Liu et al., 2019) has
roughly 355M parameters) and are trained on datasets consisting of millions of unlabeled data points—
yielding a highly expensive training procedure (Sharir et al., 2020). Therefore, these encoders are
lucrative targets for stealing attacks (Tramèr et al., 2016). In such attacks, an adversary extracts a
victim encoder by submitting queries and using the outputs to train a local stolen copy, often at a
fraction of the victim’s training cost (Sha et al., 2022; Dziedzic et al., 2022a). The stolen encoder can
then be used for inferences without the owner’s permission, violating their intellectual property right
and causing financial loss.

While stealing and defending supervised models has been heavily studied (Tramèr et al., 2016; Juuti
et al., 2019; Orekondy et al., 2020), research on the topic of stealing and defending transformer-based
encoders in the NLP domain is limited. Despite the immediate practical importance of this problem,
to the best of our knowledge, all previous works on model stealing attacks and defenses against SSL
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encoders are conducted offline in contrived experimental settings (Cong et al., 2022; Sha et al., 2022;
Dziedzic et al., 2022a;b), focusing on the vision domain with convolutional neural network (CNN)-
based architectures, and do not attack the popular transformer (Vaswani et al., 2017) architecture. In
our work, we focus on stealing state-of-the-art sentence embedding encoders (Gao et al., 2021) that
are built on top of pre-trained transformers and exposed via public APIs (Clarifai, 2023).1

We show how stealing attacks (Sha et al., 2022; Dziedzic et al., 2022a) can be successfully applied
to extract transformer-based sentence encoders only through their returned representations. This
corresponds to a real-world API setup. Our stealing requires much less computing power and much
fewer data points than training the encoders from scratch. More specifically, we successfully steal
sentence-encoders using only a small number of representations obtained through queries to the
victim. We steal with down to 40x fewer queries than the number of original training data points and
our stolen encoders achieve similar performances on benchmark tasks as their corresponding victims.
We also show that this number can be further reduced by re-using representations obtained from the
victim encoder for semantically similar sentences of the stealing queries.

The successful applicability of encoder stealing to transformer-based architectures in public API
settings motivates the urgent need for defenses. We propose a new watermarking scheme to protect
the encoders from theft. Our watermark relies on alternating between the actual sentence embedding
task and a secretly chosen downstream task during the last iterations of training. This transforms
the representations so that they preserve their high performance on general sentence embedding
tasks while increasing their accuracy on the downstream task. To embed the watermark task, we
append a fully-connected layer to the encoder. The additional layer acts as our secret key. We verify
whether a given encoder is a stolen copy by attaching that layer to the suspect encoder and checking
the agreement to the victim encoder’s output for the watermark downstream task. The victim and
independent encoders have significantly different outputs whereas victim and stolen copies return
similar outputs.

To summarize, we make the following contributions:

• We successfully steal sentence embedding encoders in a real-world API setting. Our stolen encoders
achieve comparable performance to their respective victims on standard benchmarks assuming
access to representations only. The stealing process uses less computing power than a victim’s
training and up to 40x fewer queries than the number of samples in a victim’s training
dataset.

• We further reduce the number of stealing queries by using semantically similar sentences while
achieving comparable performance to the victims on standard benchmarks.

• To detect stolen sentence embedding encoders, we propose a method to watermark their representa-
tions by alternating between the actual embedding and a secretly chosen downstream task during
the last iterations of training.

2 BACKGROUND AND RELATED WORK

Model extraction attacks. The goal of the model extraction attacks is to replicate a functionality of
a victim model fv trained on a dataset DP . An attacker has a black box access to the victim model
and uses a stealing dataset Ds = {qi, fv(qi)}ni=1, consisting of queries qi and the corresponding
predictions or representations returned by the victim model, to train a stolen model fs. Model
extraction attacks have been shown against various types of models including classification (Tramèr
et al., 2016; Jagielski et al., 2020) and representation models (Sha et al., 2022; Dziedzic et al., 2022a).

Sentence Embedding Encoders. We use SimCSE (Gao et al., 2021) to learn sentence representations
since it outperforms other methods and is exposed via public APIs (Clarifai, 2023). SimCSE proposes
unsupervised and supervised approaches to generate sentence embeddings. It starts from a pre-
trained checkpoint of a BERT-based encoder, e.g., RoBERTa, and takes the representation for the
classification token ([CLS]) as sentence embeddings. In this work, we rely on the supervised approach
leveraging pairs of sentences from natural language inference (NLI) datasets within a contrastive
learning framework. It uses the entailment pairs as positives and contradictions as hard negatives.

1https://clarifai.com/princeton-nlp/language-modeling/models/
sup-simcse-roberta-large
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Stealing Encoders. Thus far, methods for stealing encoders through representations have been
shown in the computer vision domain and only for CNNs (Sha et al., 2022; Dziedzic et al., 2022a).
Previous work in the NLP domain focuses on classification tasks and performs stealing against
fine-tuned models through labels based on a given pre-trained language encoder (Krishna et al., 2020;
Zanella-Beguelin et al., 2021; He et al., 2021). Model extraction against NLP APIs is shown by (Xu
et al., 2021), specifically for sentiment classification and machine translation tasks. The setup of
previous work differs from ours which is concerned with stealing through representations instead of
low-dimensional outputs, such as labels. This is motivated by the fact that these representations are
exactly what new public APIs expose (Cohere, 2023; Clarifai, 2023). Distillation methods used in
the NLP domain (Jiao et al., 2019) which could, in principle, be applied to stealing encoders, usually
require white box access to the original model, for example, to the attention layers (Jiao et al., 2019).
Therefore, distillation cannot be applied to stealing in public API-access scenarios.

Defending Encoders. Dataset inference (DI) (Maini et al., 2021; Dziedzic et al., 2022b) is a defense
against model stealing attacks which relies on identifying stolen copies for ownership attribution. It
enables a model owner or a third-party arbitrator to attribute the ownership of a potentially stolen
model. Therefore, it uses the victim’s training dataset as a unique signature. Recently, watermarking
(Uchida et al., 2017; Jia et al., 2021; Adi et al., 2018) methods have been proposed for encoders
(Dziedzic et al., 2022a; Cong et al., 2022; Wu et al., 2022). The watermarking techniques use
downstream tasks to detect a watermark while dataset inference for SSL (Dziedzic et al., 2022b)
resolves ownership based on the representations directly. For a more detailed overview of related
work, please see Appendix A.

3 STEALING TRANSFORMER-BASED ENCODERS

We aim at stealing BERT-based transformers that are fine-tuned to return sentence embeddings.
Stealing is performed following previous work (Dziedzic et al., 2022a): (i) The adversary sends N
raw or augmented inputs to the victim encoder. These inputs can, in principle, be taken from any data
distribution of the target domain, using open-source data. (ii) With the obtained representations, the
adversary trains a stolen copy of the victim. The goal of this training is to maximize the similarity
of the stolen copy’s output and the representations output by the victim. Therefore, the adversary
either imitates a self-supervised training using a contrastive loss function, e.g., InfoNCE Chen et al.
(2020) or SoftNN Frosst et al. (2019), or directly matches both models’ representations via the Mean
Squared Error (MSE) loss.

Our stealing method operates in a public API setting where the adversary can query the encoders
through a pre-defined interface to obtain high-dimensional representations for their inputs. Public
APIs (Cohere, 2023) expose transformers which are first pre-trained on a large corpus of text data
to return per-token representations and then fine-tuned to return high-dimensional embeddings for
a given full-text input, e.g., a sentence. We find that public APIs (Clarifai, 2023) provide metadata
about exposed encoders, which can contain information about datasets used for pre-training as well
as the encoder architecture. Thus, we can instantiate our stolen encoders with the victim encoder’s
architecture. We also follow the API setting and initialize the stolen copies of language encoders
with publicly available pre-trained transformers.2

Re-using Representations. For stealing sentence encoders more efficiently, we reduce the number
of stealing queries by re-using representations over semantically similar sentences.3 This is possible
since sentence encoders are required to return similar representations to such semantically similar
sentences. Hence, when a stealing dataset holds such similar sentences (e.g., in the form of positive
pairs, which is the case for all the datasets used in this work), we only have to query one of these
sentences and assign the same representation to all semantically similar sentences to augment the
dataset that the attacker uses for fine-tuning the stolen-copy. Our experimental evaluation in Section 5
shows the effectiveness of this approach.

2We use transformers from Hugging Face (https://huggingface.co/.
3This is relevant in public API settings since costs usually increase linearly with the number of queries and

since the number of representations that can be obtained in a given time-unit is often limited. If furthermore
reduces the computational costs of the stealing attack.
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Figure 1: Our Watermark for Sentence Encoders. To embed our watermark for sentence embedding
encoders, training alternates between the main task and a secretly chosen downstream task during the
last iterations. For verification, the fully-connected (FC) layer is attached to a potentially stolen copy
and agreement to the victim’s output on the downstream task is measured.

4 WATERMARKING SENTENCE-EMBEDDING ENCODERS

We develop a new watermarking-based defense against stealing sentence embedding encoders. We
embed the watermark starting from an already fine-tuned encoder. This is a realistic scenario where
the model owner would like to add a watermark post hoc at a low cost. To embed the watermark,
we perform a few iterations of training, where we alternate between one iteration of the original
sentence embedding training (with SimCSE), and then one iteration of training of the whole model
for a downstream task. During training of the downstream task, we add an additional fully-connected
layer, which serves as our secret key during verification. Our watermarking approach is visualized in
Figure 1. In this work, we select SST2 (binary classification for sentiment analysis) as the watermark
downstream task. Note, however, that a defender can select from many possible downstream tasks,
reshuffle or flip the labels, or use their own private downstream task.

To resolve ownership, a verifier attaches the fully-connected layer (secret key) to the output of an
encoder suspected to be a stolen copy. Then, agreement between the outputs of the victim encoder
(plus the fully-connected layer), and the outputs of the potentially stolen copy (plus the same fully-
connected layer) on the secret downstream task is measured as the percentage of labels where both
outputs agree. We resolve that an encoder was stolen if the agreement is above the threshold of 95%,
otherwise, the encoder is marked as independent

5 EMPIRICAL EVALUATION

We evaluate our methods for stealing and defending transformer-based sentence encoders trained on
different NLP datasets within a public API setup with black-box query access.

5.1 EXPERIMENTAL SETTING.

We steal from BERT-based sentence embedding encoders fine-tuned on nli-for-SimCSE (Gao et al.,
2021) ("nli"), QQP (Iyer et al.) ("qqp"), and Flickr30k (Young et al., 2014) ("flickr"). For more
insights on the datasets and our pre-processing, see Appendix B.1.

Victim. As victim encoders, we use TinyBERT-based encoders and fine-tune them for the sentence
embedding task on nli, qqp, and flickr by using SimSCE (Gao et al., 2021). For more details on data
pre-processing and the datasets, see Appendix B.1. We fine-tune our encoders for 10 epochs, with
batch size (bs)=128, learning rate (lr)=5e-5, and temperature=0.05. Additionally, we use transformers
fine-tuned with nli from BERT 4, and RoBERTa 5 from Hugging Face as victim encoders. For
fine-tuning and stealing over all encoders, we set the maximal input sequence length to 32 and use
truncation and padding. The performance of our victim encoders can be found in Table 1.

4https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased
5https://huggingface.co/princeton-nlp/sup-simcse-roberta-large
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Table 1: Performance of NLP Transformers. We follow SimCSE (Gao et al., 2021) and use the
SentEval benchmark. fv denotes the victim encoder trained on data Dv. fs is the stolen encoder
extracted using queries from a given stealing dataset Ds. For stealing, we use 60K queries to the
victim encoder and fine-tune our stolen copy with the resulting outputs for 20 (TinyBERT (T) and
BERT (B)), and 5 (RoBERTa (R)) epochs. Victim encoders with an asterisk (*) are pre-trained
encoders from Hugging Face obtained by the SimCSE code-base, while other encoders are trained
using the SimCSE code-base. ∆ is the average difference in performance between the victim and the
stolen encoder over all tasks.

EN Dv Ds CR MPQA MR MRPC SST2 SUBJ TREC Avg.STS Avg.Tran SICKR STSB AVG↑ ∆ ↓

fv T
nli - 74.69 82.17 68.51 71.93 72.02 87.99 59.74 76.64 73.86 73.67 79.61 74.62 -
qqp - 72.27 79.1 65.93 70.31 68.92 85.83 57.17 66.19 71.36 56.15 76.22 69.95 -

flickr - 71.87 79.39 66.56 71.52 69.61 86.89 55.25 72.83 71.58 66.63 79.03 71.92 -

fs T

nli
nli 73.56 79.67 67.16 71.05 71.33 87.28 56.53 73.48 72.37 69.56 77.40 72.67 1.95
qqp 73.48 79.88 67.22 70.78 71.9 87.23 56.51 71.08 72.42 65.74 76.41 72.06 2.56

flickr 71.88 78.12 66.91 70.02 70.64 87.12 57.45 71.71 71.73 65.98 77.44 71.73 2.89

qqp
nli 71.42 78.08 66.88 70.14 70.64 86.62 50.24 64.97 70.57 55.18 74.75 69.04 0.91
qqp 72.2 78.23 67.07 71.05 71.67 86.83 52.97 64.36 71.43 54.66 74.06 69.50 0.45

flickr 71.95 77.78 67.14 71.61 71.67 86.96 49.34 65.23 70.92 56.37 74.09 69.37 0.58

flickr
nli 70.51 78.53 66.66 71.69 71.67 85.7 54.35 70.53 71.30 63.43 77.63 71.09 0.83
qqp 71.05 78.41 66.63 71.49 70.87 86.46 53.6 68.57 71.22 60.42 76.73 70.50 1.43

flickr 70.66 77.19 66.74 71.12 71.22 86.13 53.76 70.92 70.97 63.82 78.03 70.96 0.96

fv* B* nli - 89.20 89.67 82.88 73.51 87.31 94.81 88.40 81.57 86.54 80.39 84.26 85.32 -

fs B nli
nli 89.05 88.95 80.49 74.98 86.35 93.39 66.73 81.45 82.85 79.84 83.07 82.47 2.85
qqp 88.25 89.18 79.74 75.20 86.58 94.09 69.08 79.93 83.16 77.24 82.62 82.28 3.04

flickr 82.01 88.50 74.99 72.77 82.11 91.77 63.41 79.23 79.37 76.96 81.50 79.33 5.99

fv* R* nli - 92.37 90.52 88.04 76.64 92.31 95.13 91.20 83.76 89.46 81.95 86.70 88.00 -

fs R nli
nli 92.00 90.72 86.36 76.41 91.76 94.19 86.00 82.15 88.21 81.03 85.21 86.73 1.28
qqp 92.58 90.69 87.02 75.54 92.53 94.48 88.60 82.82 88.78 80.79 85.84 87.24 0.76

flickr 91.74 90.14 85.13 74.72 90.39 93.13 83.20 79.61 86.92 79.06 82.55 85.14 2.86

Stolen. We initialize our stolen encoders with pre-trained transformers from Huggingface
(prajjwal1/bert-tiny, bert-base-uncased, and roberta-large), in accordance with the respective victim
encoder. During stealing, TinyBERT and BERT use an lr=1e-5, bs=256, and linear lr-scheduling
with patience 200 iterations and factor 0.5. For RoBERTa, we use the same setup, however with
bs=64, lr-patience 600 iterations, and lr=5e-6 when stealing with nli or flickr. As in SimCSE, we
evaluate our stolen encoders on the SentEval benchmark.

Independent. We fine-tune the independent TinyBERT-based encoders on nli, qqp, and flickr in the
same setup as the victim encoders. To obtain independent encoders based on BERT and RoBERTa,
we fine-tune the respective base encoders on nli, qqp, and flickr for using SimCSE. We keep lr=5e-5,
temperature=0.05, bs=128 and bs=32 for BERT and RoBERTa, respectively, but following (Gao et al.,
2021), we fine-tune only for 3 epochs.

5.2 STEALING

We depict the performance of our victim and stolen encoders evaluated on tasks from the SentEval
benchmark in Table 1. We observe that across all base encoders (TinyBERT, BERT, and RoBERTa),
the performance of the stolen copies is comparable to their respective victim encoders over most
benchmark tasks. For RoBERTa, the difference (∆) in average accuracy across all benchmarks (AVG)
between victim fv and the best stolen encoder fs is even < 1%. This holds true also for the large qqp
dataset (∼2.6M training samples) and stolen copies obtained with only 60K queries, i.e., ∼40x fewer
queries than training samples. In general, the performance of encoders stolen with nli and qqp is
higher than the one of encoders stolen with flickr. We suspect this is due to the low semantic diversity
in flickr which consists only of 30K images with five semantically equal captions each, leading to
semantic overlap within the 60K stealing-queries.

We further explore the impact of the number of stealing queries on the performance of the stolen
copies. Our results in Table 5 in Appendix C highlight a performance decrease when reducing
the number of stealing queries. The performance drop is most significant between 10k and 20k
queries. This motivates an evaluation of the effectiveness of our method to re-use representations
for semantically similar sentences in this setup. We query the stolen model copy with 10k sentences
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Table 2: Re-using Representations for Stealing NLP Encoders. We assign the same extracted
representation to a given query and its semantically similar sentences. # Samples denotes the final
number of sentences used to fine-tune the stolen encoder. We steal from the victim encoders trained
on the nli and flickr datasets using the queries from the nli dataset. We use the same notation as in
Table 1.

EN Dv Ds # Queries # Samples CR MPQA MR MRPC SST2 SUBJ TREC Avg.STS Avg.Tran SICKR STSB AVG↑ ∆↓

fs B* nli nli
10000 10000 84.58 87.64 77.68 75.69 83.94 93.56 69.19 59.25 81.75 56.63 61.87 75.62 9.70
10000 20000 86.89 88.59 78.56 76.42 85.44 93.29 68.62 68.35 82.54 65.30 71.40 78.67 6.65

20000 20000 87.42 89.11 79.13 75.66 86.93 93.45 70.14 69.35 83.12 65.51 73.18 79.36 5.96

fs B flickr nli
10000 10000 72.74 78.71 70.21 72.25 79.01 91.12 53.23 59.26 73.9 54.67 63.86 69.91 12.40
10000 20000 73.38 81.39 71.3 71.15 80.85 91.82 55.92 69.95 75.12 65.67 74.23 73.71 8.60

20000 20000 73.75 83.33 71.59 72.15 80.28 91.53 57.65 71.5 75.75 66.63 76.37 74.60 7.72

from the nli dataset and assign the obtained representation also to the semantically equal positive
partner of each sentence. This results in 20k fine-tuning samples for the stolen copy. Our results in
Table 2 highlight that the performance of the stolen copy with only 10k queries (augmented to 20k
data points) is similar to the original stealing with 20k sentences.

To assess if a given source of semantically similar sentences is adequate for stealing a given encoder,
we do not measure the semantic similarity between sentences, but the similarity of their representa-
tions. We query the victim encoder with a few pairs of sentences and compare their cosine similarity
scores. We run an experiment using sentences from nli, qqp, and flickr datasets on the victim encoders
based on BERT and trained on nli and flickr datasets as well, we use 200 sentences overall, where
there are 100 semantically similar pairs, and present results in Table 3. We observe that stealing using
the nli dataset works better since the sentences have higher cosine similarity scores. By such a quick
assessment, we can determine which dataset might be better to use for a given stealing process.

Table 3: Semantic Similarity. We measure the semantic similarity between sentences from a given
dataset using victim models trained on nli, qqp, and flickr datasets. Model extraction using nli works
better than with flickr or qqp since the sentences from the nli dataset have higher cosine similarity
scores.

Victim model trained on ↓ nli data flickr data qqp data
nli 0.77±0.16 0.59±0.16 0.62±0.18
qqp 0.77±0.16 0.67±0.13 0.65±0.19

flickr 0.82±0.15 0.71±0.14 0.76±0.16

We also experiment with the setup where the adversary does not know the exact architecture of the
victim encoder but only knows the family of possible encoders and the output dimensionality. Then,
they might instantiate their stolen copy with an architecture different from the victim model’s. An
example of different architectures with the same output dimensions is BERT-large and RoBERTa-large
(both output representations of size 1024). In Table 6 (see Appendix C), we compare the performance
of encoders stolen to the victim encoder’s original architecture vs the other similar architecture. We
observe that stealing from a larger encoder (RoBERTa-large) to a smaller one (BERT-large) performs
better than in the opposite direction.

5.3 DEFENDING

We present the performance of the watermarked encoders as well as the success of our watermarking
in Table 4. Our results highlight that a relatively small number of fine-tuning steps (e.g., 200
alternations between original and downstream tasks) are sufficient to embed the watermark into
the encoder while preserving the high performance of the defended encoder on other unrelated and
general downstream tasks. Furthermore, the embedded watermark successfully transfers to stolen
copies. We use the initial fine-tuned sentence embedding encoder as the independent encoder, which
is the most difficult scenario for the ownership resolution since the only difference between the
victim and independent encoders results from the watermarking process. We show that even in this
worst-case, the independent model is never incorrectly resolved as being stolen. To compute the

6
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Table 4: Watermarking Sentence Embedding Encoders. We embed the watermark into an encoder
and present the performance of the downstream task, the underlying encoder, and the comparison
between the victim fv, stolen fs, and independent fi encoders. Steps denotes the number of fine-
tuning steps for watermarking, Agreement (Agr) and accuracy (Acc) on the watermark downstream
task (given in %), test loss (L), p-value (p), and effect size (∆µ).

Steps Agr(fv, fs) Agr(fv, fi) Acc(fv) L(fv) STS SICKR STSB Acc(fs) L(fs) p(fv, fs) ∆µ(fv, fs) p(fv, fi) ∆µ(fv, fi)

100 97.59 88.3 57 0.68 0.77 0.74 0.79 56.42 0.68 0.79 0.27 0.0016 3.15
200 96.44 67.54 65.37 0.65 0.76 0.73 0.79 64.79 0.65 0.64 0.47 1.74E-14 7.73
300 97.71 72.59 65.37 0.63 0.76 0.73 0.8 65.14 0.63 0.62 0.5 9.87E-22 9.71
400 96.56 59.98 69.95 0.61 0.76 0.73 0.79 70.18 0.61 0.49 0.69 1.43E-27 11.07
500 96.33 60.66 71.1 0.59 0.75 0.71 0.79 71.1 0.6 0.46 0.74 2.67E-28 11.24
600 96.79 62.73 71.56 0.59 0.74 0.69 0.78 72.02 0.59 0.44 0.78 4.65E-32 12.03
700 96.44 62.61 71.44 0.58 0.72 0.67 0.77 72.25 0.58 0.45 0.76 2.30E-35 12.69
800 96.79 56.31 73.85 0.56 0.71 0.66 0.76 72.71 0.57 0.45 0.76 2.91E-42 14
900 96.34 59.75 73.39 0.55 0.71 0.65 0.76 72.13 0.56 0.42 0.8 3.02E-45 14.53

p-values, we leverage the softmax outputs for the correct labels from the downstream task and use
the t-test. The p-values indicate that there is a significant difference between the distribution of the
confidence scores from independent vs victim encoders (p-value < 5%). In contrast, the difference is
not significant between the victim and stolen encoders.

6 CONCLUSIONS AND FUTURE WORK

Through SSL, large amounts of data can be leveraged to train ML models, even when no labels for
this data are available. Due to the costly training procedure on dedicated and expensive hardware,
this approach is, however, limited to parties that can afford it. Such parties can then offer APIs access
to their trained high-value encoders for generating representations of given input text for other parties,
and thereby monetize their encoders. We demonstrate how to steal such transformer-based encoders
by using only their output representations. Our stealing requires up to 40x fewer queries than the
number of training data points used to train the victim and it yields stolen copies with comparable
performance on standard benchmarks. This provides an incentive for attackers to steal the encoders
at a much lower computing cost and the required number of data points than the training of such
encoders from scratch. To protect the encoders, we propose a method for embedding a watermark into
the encoders by fine-tuning a defended encoder with a specific downstream task. Our work highlights
that, in particular, state-of-the-art sentence embedding encoders are easily stolen but hard to defend.
Future work should address the lack of active defenses against stealing encoders that could prevent
attacks as they are happening without degrading the performance of legitimate users. These defenses
should increase the cost of extraction in terms of computation power and the required amount of data
for queries to disincentivize attackers from stealing the sentence embedding encoders.

ACKNOWLEDGMENTS

We would like to acknowledge our sponsors, who support our research with financial and in-kind
contributions: DARPA through the GARD project, Microsoft, Intel, CIFAR through the Canada
CIFAR AI Chair and AI catalyst programs, NFRF through an Exploration grant, and NSERC
COHESA Strategic Alliance. Resources used in preparing this research were provided, in part, by
the Province of Ontario, the Government of Canada through CIFAR, and companies sponsoring
the Vector Institute https://vectorinstitute.ai/partners. Finally, we would like to thank members of
CleverHans Lab for their feedback.

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX
Security Symposium (USENIX Security 18), pp. 1615–1631, 2018.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical

7

https://vectorinstitute.ai/partners


Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics,
2015.

Ting Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. International Conference on Machine Learning, 2020.

Clarifai. https://clarifai.com, 2023. URL https://clarifai.com.

Cohere. https://cohere.ai, 2023. URL https://cohere.ai/.

Tianshuo Cong, Xinlei He, and Yang Zhang. Sslguard: A watermarking scheme for self-supervised
learning pre-trained encoders. CoRR, abs/2201.11692, 2022. URL https://arxiv.org/
abs/2201.11692.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad Kaleem, Jonas Guan, and Nicolas Papernot.
On the difficulty of defending self-supervised learning against model extraction. In International
Conference on Machine Learning, 2022a.

Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan, Yannis
Cattan, Franziska Boenisch, and Nicolas Papernot. Dataset inference for self-supervised models.
In Advances in Neural Information Processing Systems, 2022b. URL https://openreview.
net/forum?id=CCBJf9xJo2X.

Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. Analyzing and improving representations
with the soft nearest neighbor loss. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 2012–2020. PMLR, 09–15 Jun 2019. URL https://
proceedings.mlr.press/v97/frosst19a.html.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 6894–6910, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.552. URL https:
//aclanthology.org/2021.emnlp-main.552.

Xuanli He, Lingjuan Lyu, Qiongkai Xu, and Lichao Sun. Model extraction and adversarial transfer-
ability, your BERT is vulnerable! arXiv preprint arXiv:2103.10013, 2021.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations of sentences
from unlabelled data. In Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 1367–1377,
San Diego, California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/
N16-1162. URL https://aclanthology.org/N16-1162.

Shankar Iyer, Nikhil Dandekar, and Kornel Csernai. First quora dataset
release: Question pairs. URL https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs.

Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. High
accuracy and high fidelity extraction of neural networks. In 29th USENIX Security Symposium
(USENIX Security 20), pp. 1345–1362, 2020.

Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. Entangled
watermarks as a defense against model extraction. In 30th USENIX Security Symposium (USENIX
Security 21), pp. 1937–1954, 2021.

8

https://clarifai.com
https://cohere.ai/
https://arxiv.org/abs/2201.11692
https://arxiv.org/abs/2201.11692
https://openreview.net/forum?id=CCBJf9xJo2X
https://openreview.net/forum?id=CCBJf9xJo2X
https://proceedings.mlr.press/v97/frosst19a.html
https://proceedings.mlr.press/v97/frosst19a.html
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/N16-1162
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting against dnn model
stealing attacks. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
512–527. IEEE, 2019.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Skip-thought vectors. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
f442d33fa06832082290ad8544a8da27-Paper.pdf.

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, and Mohit Iyyer. Thieves
on sesame street! model extraction of bert-based apis. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Byl5NREFDr.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence repre-
sentations. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJvJXZb0W.

Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot. Dataset inference: Ownership resolution
in machine learning. In Proceedings of ICLR 2021: 9th International Conference on Learning
Representationsn, 2021.

OpenAI. https://openai.com, 2023. URL https://openai.com/.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Towards defenses
against dnn model stealing attacks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SyevYxHtDB.

Zeyang Sha, Xinlei He, Ning Yu, Michael Backes, and Yang Zhang. Can’t steal? cont-steal!
contrastive stealing attacks against image encoders. 2022. URL https://arxiv.org/abs/
2201.07513.

Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training NLP models: A concise overview.
CoRR, abs/2004.08900, 2020. URL https://arxiv.org/abs/2004.08900.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction apis. In 25th {USENIX} Security Symposium ({USENIX} Security
16), pp. 601–618, 2016.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks into
deep neural networks. In Proceedings of the 2017 ACM on international conference on multimedia
retrieval, pp. 269–277, 2017.

Aäron van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding. ArXiv, abs/1807.03748, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics, 2018.
URL http://aclweb.org/anthology/N18-1101.

9

https://proceedings.neurips.cc/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf
https://openreview.net/forum?id=Byl5NREFDr
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W
https://openai.com/
https://openreview.net/forum?id=SyevYxHtDB
https://arxiv.org/abs/2201.07513
https://arxiv.org/abs/2201.07513
https://arxiv.org/abs/2004.08900
http://aclweb.org/anthology/N18-1101


Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Yutong Wu, Han Qiu, Tianwei Zhang, Lin Jiwei, and Meikang Qiu. Watermarking pre-trained
encoders in contrastive learning. ArXiv, abs/2201.08217, 2022.

Qiongkai Xu, Xuanli He, Lingjuan Lyu, Lizhen Qu, and Gholamreza Haffari. Beyond model
extraction: Imitation attack for black-box NLP APIs. arXiv preprint arXiv:2108.13873, 2021.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Transactions
of the Association for Computational Linguistics, 2:67–78, 2014.

Santiago Zanella-Beguelin, Shruti Tople, Andrew Paverd, and Boris Köpf. Grey-box extraction of
natural language models. In International Conference on Machine Learning, pp. 12278–12286.
PMLR, 2021.

A ADDITIONAL RELATED WORK

Self-Supervised Learning. In computer vision, one of the most popular self-supervised algorithms
is contrastive learning (Chen et al., 2020; van den Oord et al., 2018), where representations that
come from differently transformed views of the same image are brought closer to each other and
the representations from views of different inputs are repelled. In NLP, a popular self-supervised
pre-training approach is to mask selected words in the input sequence and train the model to predict
that masked words Devlin et al. (2018).

Transformers. Transformer (Vaswani et al., 2017) is becoming a ubiquitous architecture in NLP
and computer vision. While the original transformer consists of an encoder and decoder component,
our work only studies the encoder part for representation learning. Transformers are composed
of several identical layers, namely a multi-head attention sublayer followed by a feed forward
sublayer. The multi-head attention sublayer utilizes the self-attention mechanism to learn the pairwise
relationships between all tokens. Self-attention is the key to the success of transformers, which makes
parallel training and learning long-range dependency between tokens easier.

NLP transformers. In this work, we investigate BERT-based models (Devlin et al., 2018), pre-
trained bidirectional transformers (Vaswani et al., 2017). In addition to BERT Base, we also use
TinyBERT (Jiao et al., 2019), obtained by distilling BERT to a smaller transformer architecture,
and RoBERTa Large (Liu et al., 2019), which is pre-trained on a larger dataset than BERT. Then
we analyze the task of learning highly generic sentence representation, a fundamental problem in
NLP (Kiros et al., 2015; Hill et al., 2016; Logeswaran & Lee, 2018).

B DETAILS ON THE EXPERIMENTAL SETUP

B.1 DATASETS

nli. We use (Gao et al., 2021)’s nli-for-SimSCE dataset, consisting of 275,602 data rows from
SNLI (Bowman et al., 2015) and MNLI (Williams et al., 2018). Each row holds three sentences, an
original sentence, a positive entailment and a contradiction. In training, the contradiction acts as a
hard-negative.

qqp. We use the merve/qqp dataset from Hugging Face. The train split consists of 2,607,949 data
rows, each holding two semantically equal questions. We use this data for training as positive pairs.

flickr. The flickr dataset consists of images, each annotated with five human-written captions.
Following (Gao et al., 2021), we consider any two captions of the same image as a positive pair. We
split the training and test set to 90%, 10%, making sure that all caption-pairs related to one image
end up in the same set. This yields 286,050 positive-pair training examples. When using flickr as a
dataset for stealing, we drop the duplicates arising from generating all possible caption pairs before
sampling the stealing-queries. Thereby, we mitigate a too small diversity over the stealing due to
repeated queries.
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C ADDITIONAL RESULTS

C.1 STEALING WITH FEWER QUERIES

We depict the effect of stealing with fewer queries in Table 5.

Table 5: Number of Stealing Queries and Impact on Model Performance. We follow
SimCSE (Gao et al., 2021) and use the SentEval banchmark. fv denotes the victim encoder
trained on data Dv. fs is the stolen encoder extracted using queries from a given stealing dataset
Ds. For stealing, we use a different number of queries to the victim encoder and fine-tune our
stolen copy with the resulting outputs for 20 epochs. We use the BERT-based model pre-trained
and taken from Hugging Face obtained by the SimCSE code-base, marked with an asterisks *
(https://github.com/princeton-nlp/SimCSE) and steal using the nli dataset.

EN Dv, Ds # Queries CR MPQA MR MRPC SST2 SUBJ TREC Avg.STS Avg.Tran SICKR STSB

fs B* nli

60k 89.05 88.95 80.49 74.98 86.35 93.39 66.73 81.45 82.85 79.84 83.07
50k 88.04 88.68 78.96 75.74 86.01 92.76 64.49 80.98 82.1 78.96 82.99
40k 87.83 88.29 78.87 75.96 86.12 92.78 64.91 80.67 82.11 78.99 82.36
30k 87.18 89.13 78.26 76.4 84.4 92.83 65.33 79.09 81.93 76.9 81.29
20k 86.41 89.16 78.45 75.44 84.4 92.98 71.37 74.39 82.60 71.93 76.84
10k 83.81 87.52 78.08 74.39 84.06 93.28 73.27 60.03 82.06 53.86 66.2
5k 78.96 83.77 76.04 72.74 84.29 92.86 69.24 48.18 79.7 44.0 52.36
1k 80.15 83.09 77.42 70.68 84.75 93.0 68.12 45.45 79.67 53.14 37.75

C.2 INFLUENCE OF THE ARCHITECTURE

We depict the effect of the architecture of the stolen model in Table 6.
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Table 6: Base Architecture Influence on Stolen Model Performance. We follow SimCSE (Gao
et al., 2021) and use the SentEval banchmark. fv denotes the victim encoder trained on data Dv.
fs is the stolen encoder extracted using queries from a given stealing dataset Ds. For stealing, we
use 60,000 stealing queries to the victim encoder and fine-tune our stolen copy with the resulting
outputs for 20 epochs. We compare performance between encoders that steal from victims BERT-
large (BL) and RoBERTa-large (R) into a stolen copy with either of this architecture. The victim
models are taken from Hugging Face obtained by the SimCSE code-base, marked with an asterisks *
(https://github.com/princeton-nlp/SimCSE) and steal using the nli dataset. We use
the public tokenizer corresponding to the stolen copy’s architecture.

EN Dv Ds fv CR MPQA MR MRPC SST2 SUBJ TREC Avg.STS Avg.Tran SICKR STSB

fs BL* nli nli BL (Baseline) 90.49 89.95 83.5 75.98 89.45 93.86 68.67 83.67 84.56 81.54 85.81
R 82.88 73.05 76.34 70.61 83.83 85.55 42.39 42.44 73.52 36.51 48.37

fs R* nli nli R (Baseline) 92.37 90.52 88.04 76.64 92.31 95.13 91.20 83.76 89.46 81.95 86.70
BL 90.24 89.67 83.07 76.25 89.68 94.07 72.45 78.96 85.06 77.27 80.65
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