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Abstract

Self-supervised learning (SSL) for graphs is an es-
sential problem since graph data are ubiquitous and
labeling can be costly. We argue that existing SSL
approaches for graphs have two limitations. First,
they rely on corruption techniques such as node
attribute perturbation and edge dropping to gen-
erate graph views for contrastive learning. These
unnatural corruption techniques require extensive
tuning efforts and provide marginal improvements.
Second, the current approaches require the compu-
tation of multiple graph views, which is memory
and computationally inefficient. These shortcom-
ings of graph SSL call for a corruption-free single-
view learning approach, but the strawman approach
of using neighboring nodes as positive examples
suffers two problems: it ignores the strength of con-
nections between nodes implied by the graph struc-
ture on a macro level, and cannot deal with the high
noise in real-world graphs. We propose Proxim-
ity Divergence Minimization (PDM), a corruption-
free single-view graph SSL approach that over-
comes these problems by leveraging node proxim-
ity to measure connection strength and denoise the
graph structure. Through extensive experiments,
we show that PDM achieves up to 4.55% absolute
improvement in ROC-AUC on graph SSL tasks
over state-of-the-art approaches while being more
memory efficient. Moreover, PDM even outper-
forms supervised training on node classification
tasks of ogbn-proteins dataset. Our code is pub-
licly availablea.

ahttps://github.com/tonyzhang617/
pdm

1 INTRODUCTION

Graph Neural Networks (GNN) [Welling and Kipf, 2016,
Hamilton et al., 2017, Chen et al., 2022b, Duan et al., 2022]
are neural network architectures that extract meaningful and
useful representations out of graph data. GNNs have shown
great potential in a wide range of applications, including
social networks [Fan et al., 2019, Min et al., 2021, Liu et al.,
2021], recommendation systems [Wu et al., 2020, Chang
et al., 2021, Chen et al., 2022a], and drug discovery [Chen
et al., 2018, Xiong et al., 2019, Zhou et al., 2019].

The Need for Self-Supervised Learning: Traditional su-
pervised GNN training strategies require intensive data la-
beling, which is prohibitively expensive in important fields
such as biochemistry [Xiong et al., 2019]. As an alternative,
Self-Supervised Learning (SSL) strategies do not rely on
labels and have shown promising potential in graph learn-
ing. Prior SSL approaches such as DGI [Velickovic et al.,
2019], GRACE [Zhu et al., 2020], BGRL [Thakoor et al.,
2021] can learn meaningful representations that are useful
in downstream tasks such as academic paper categorization,
molecule classification, and product recommendation.

Problems of Existing Graph SSL Approaches: In this
paper, we identify two problems in the current graph SSL
approaches. First, prior competitive SSL approaches for
graphs rely on corruption techniques, which perturb node at-
tributes or the adjacency matrix. The corruption techniques
are inspired by data augmentation tricks from the computer
vision [Shorten and Khoshgoftaar, 2019]. However, unlike
images, corrupted graphs may not maintain the original se-
mantics at the node level or graph level. As a result, the
encoder may not be able to learn meaningful representa-
tions because the learning goal is flawed. Second, existing
graph SSL approaches need to compute multiple views of
the graph, which increases the memory and computation
complexity during training. This efficiency issue would be
exacerbated when we train on large graphs with a limited
memory budget.
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Given the limitation of current graph SSL approaches, a
natural question arises:

Can we have a corruption-free single-view approach for
graph SSL with promising performance?

In this paper, we answer this question positively by
proposing Proximity Divergence Minimization (PDM), a
corruption-free single-view graph SSL approach. In particu-
lar, we summarize our contributions as:

1. We propose a novel graph SSL framework by lever-
aging node proximity as the learning target for node
representation similarity from a single uncorrupted
graph view. Without corruption, our proposed method
is a natural and more informative learning objective
that achieves significantly better accuracy with mini-
mal tuning. Using only a single view, our approach is
much more memory-efficient than previous methods
and able to scale to large graphs that are impractical
for multi-view methods.

2. We extend our approach to easily scale PDM to large-
scale graphs that leverages recent advances in efficient
graph training. We scale SSL to large-scale graphs that
are difficult to tune and time-consuming to train for the
existing SSL methods.

3. We demonstrate the effectiveness of PDM by achiev-
ing state-of-the-art accuracy on a variety of real-world
graph datasets. We highlight that our approach achieves
2.6%, 4.55% and 3.04% absolute accuracy improve-
ment on PubMed, ogbn-proteins and ogbn-products
respectively compared to the previous best.

The following sections are organized as follows. We intro-
duce the graph SSL problem and existing SSL methods’ two
major drawbacks in Section 2. The motivation behind our ap-
proach and the details of our proposed method are included
in Section 3. We report the setup and results of our extensive
experiments for evaluating our method in Section 4.

2 GRAPH SELF-SUPERVISED
LEARNING

In this section, we introduce the graph self-supervised learn-
ing problem studied in this paper. Next, we identify two
problems of existing graph SSL methods.

2.1 PROBLEM FORMULATION

Graph SSL aims to learn a GNN-based encoder that pro-
duces high-quality representations for graph data without
using labels. We follow the standard problem setup of graph

SSL [Velickovic et al., 2019, Zhu et al., 2020, Thakoor
et al., 2021] to keep the training and evaluation proce-
dures consistent with prior approaches. During the training
stage, we have access to graph data (X,A) for training a
GNN-based encoder E , where X ∈ Rn×k is the node fea-
ture matrix and A ∈ Rn×n is the adjacency matrix. We
denote each row of X as xi, which corresponds to a k-
dimensional feature vector of node i, where i ∈ [n]. There
should be an SSL objective to update the parameters of the
encoder E : Rn×k × Rn×n → Rn×d, which encodes the
graph (X,A) into node representation matrix Z ∈ Rn×d.
Here each row of Z, denoted as zi, corresponds to the d-
dimensional representation of node i. We evaluate graph
SSL methods by training and testing a linear classifier with
the learned node representation matrix Z on downstream
tasks.

2.2 GRAPH CORRUPTION TECHNIQUES

Prior competitive graph SSL methods rely on corrupting
the input graph to generate positive and negative exam-
ples for learning. Graph corruption techniques perturb node
attributes or the adjacency matrix to produce alternative
graph views [Zhu et al., 2020]. In this way, the GNN-based
encoder (see Section 2.1) can learn to produce invariant
representations. Popular graph corruption techniques in-
clude node feature masking [Zhu et al., 2020], node fea-
ture shuffling [Velickovic et al., 2019], node dropping [You
et al., 2020], edge dropping [Zhu et al., 2020], and subgraph-
ing [You et al., 2020]. For example, CCA-SSG [Zhang et al.,
2021] and BGRL [Thakoor et al., 2021] employ node fea-
ture masking and edge dropping to generate graph views and
maximize the agreement between those views, DGI [Velick-
ovic et al., 2019] uses node feature shuffling to produce
negative examples, and GRACE [Zhu et al., 2020] uses node
feature masking and edge removal for generating inter-view
positives, inter-view negatives and intra-view negatives for
contrastive learning. The graph corruption techniques are di-
rectly inspired by data augmentation methods from the com-
puter vision domain, such as random erasing [Zhong et al.,
2020] and cropping [Shorten and Khoshgoftaar, 2019].

However, corruption techniques for vision and graphs have
a fundamental difference: corruptions of natural images pre-
serve their underlying semantics, while the properties of a
graph may alter significantly after minor corruptions. For
example, in the application of a social network or citation
graph, the semantics of a node could significantly change
if its edge to a hub node is dropped by graph perturbation.
Additionally, in the context of molecular graphs, perturba-
tions to the nodes and edges can lead to drastic changes
in the molecule’s properties [Sun et al., 2021]. Through
extensive experiments, You et al. [2020] demonstrate that
edge perturbations in graph SSL significantly degrade the
model performance on molecular graphs. It is unclear which



Figure 1: (a) Left: A graph of two densely connected clusters (orange and blue) with sparse edges across clusters. Right:
Visualization of the learned node representation using the strawman approach, in which clusters are not perfectly separated.
(b) Left: The connection strengths measured by the heat kernel proximity measure. Right: Visualization of the learned node
representations using PDM, in which clusters are linearly separable.

corruption techniques are applicable in different graphs, and
finding a decent graph corruption requires significant tri-
als and errors since many graphs are highly sensitive to
corruption techniques and parameters. As a result, previ-
ous works [You et al., 2021, Thakoor et al., 2021, Zhang
et al., 2021] resort to extensive grid search for the best com-
binations of corruption schemes, and show that different
datasets require vastly different corruption parameters since
the performance of learned models differ greatly with slight
changes to corruption schemes and parameters.

2.3 MULTI-VIEW REPRESENTATION LEARNING
ON GRAPHS

In addition to over-reliance on corruption techniques, prior
graph SSL approaches compute multiple views of the same
graph, which has significant memory and computational
overhead. The computation of multiple views are required
for previous methods since they mine positive/negative ex-
amples from them. For example, DGI [Velickovic et al.,
2019] computes an additional view through shuffling node
features to produce negative examples, LaGraph [Xie et al.,
2022] computes two views and minimizes the distance be-
tween them, and BGRL [Thakoor et al., 2021] computes four
views for positive-only contrastive learning. This creates
significant concerns related to computational efficiency and
scalability. Modern hardware used for GNN training such
as GPU has limited memory, and hence the computation of
multiple views scale poorly to large graphs. Compared to
supervised training which only computes a single view of
the graph, prior self-supervised methods consume multiple
times more memory and computation time. This is problem-
atic in many real-world problems since common citation,
co-purchasing, and social network graphs contain millions if
not billions of nodes and edges [Hu et al., 2020]. Although

sub-sampling techniques can fit multiple views of the graph
in a limited memory budget, they have been demonstrated to
hurt performance significantly [Thakoor et al., 2021]. As a
result, it is ideal to have a graph SSL method that computes
only a single view of the graph so that it can scale to larger
graphs efficiently.

3 PROXIMITY DIVERGENCE
MINIMIZATION

In this section, we first motivate our proposed method by
describing a strawman approach and identify its flaws in
3.1. Then we describe our proposed method by explaining
our learning target in Section 3.2.1 and training strategy
in Section 3.2.2. We then analyse the memory efficiency
of our proposed approach and compare it against existing
methods in Section 3.3. Finally, we describe an extension to
our method for scaling to very large graphs in Section 3.4.

3.1 OUR MOTIVATION: A CORRUPTION-FREE
SINGLE-VIEW SSL ON GRAPHS

The drawbacks of corruption techniques and multi-view
approaches call for a corruption-free single-view SSL ap-
proach for graphs. However, this is nontrivial in practice.

3.1.1 A Strawman Approach

A strawman approach for corruption-free single-view SSL
is to perform contrastive learning using neighboring nodes
as positive instances and non-neighboring nodes as negative
instances. But this method has two major problems: it only
sees the local structure and fails to take the graph structure



Figure 2: Our proposed training approach PDM for graph SSL. During each training step, we feed-forward the uncorrupted
graph a single time, and minimize the divergence between node representation similarity and proximity distribution.

at a macro level into account, and it is impacted by noise in
real-world datasets.

In this strawman approach, neighboring nodes are consid-
ered as positive examples and their mutual information is
maximized. However, this is counterproductive because it
ignores the rich information implied by the graph struc-
ture at a macro level. The strengths of connections between
nodes vary greatly. For example, a graph may consists of
a few densely connected node clusters with sparse edges
across clusters. This is a common structure for many real-
world graphs such as citation and social networks [Fan et al.,
2019]. The graph structure on a macro level implies nodes
are more strongly linked to nodes within the same cluster,
with weaker connection to nodes in other clusters. However,
this information is not captured in the strawman approach,
in which each edge is considered as equally strong. This
could mislead the feature learning target and discourage
the encoder from understanding the global graph structure.
As a result, the learned node representations are entangled,
shown in Figure 1. Furthermore, real-world graphs often in-
clude a large amount of noisy edges [Kang et al., 2019]. The
existence of noisy edges confuses the encoder and results in
poorer representations.

3.2 OUR PROPOSAL

We propose Proximity Divergence Minimization (PDM),
which views node proximity as a distribution and uses it as
the learning objective for similarity between node represen-
tations. Our proposed method resolves the two aforemen-
tioned problems and incorporates the knowledge of graph
structure into the learned representations.

3.2.1 Node Proximity Distribution

A node proximity score Pu(v) measures the strength of
direct and indirect connections between a pair of nodes
u and v in a graph [Zhu et al.]. Unlike the classical distance
metrics between nodes such as the shortest path distance,
proximity measures take all connections into account to
capture rich structural information between the relationship

of a node pair [Chebotarev and Shamis, 2006]. Leveraging
node proximity measures overcomes the aforementioned
two problems. Since proximity measures take all connec-
tions into account, it smoothes out the noisy edges in real-
world graphs and takes into account the structure of the
graph on a macro level. Moreover, it captures the differ-
ences in strength of connections between node pairs, unlike
the binary adjacency information.

We consider only the proximity measures that are normal-
ized, i.e.,

∑n
v=1 Pu(v) = 1. We view the proximity score

for a certain node as a distribution over all nodes in the graph.
The distributions of proximity are used as the learning target
in our proposed method. We consider the following three
types of node proximity measures in this work.

Heat Kernel Heat kernel is a technique commonly ap-
plied in natural sciences to measure the distribution of heat
or diffusive matter [Vassilevich, 2003], and Chung [2007]
generalized the heat kernel to discrete graph structures. The
heat kernel matrix is a convergent, infinite sum of weighted
i-hop adjacency matrices,

Pheat =

∞∑
i=0

αheat
i Âi (1)

where Â = (D+ I)−
1
2 (A+ I)(D+ I)−

1
2 , D ∈ Rn×n is

the diagonal degree matrix, and αheat
i = e−tti

i! for diffusion
time t [Gasteiger et al., 2019]. The node proximity score
between nodes u, v, based on heat kernel, is the u, v entry
of the heat matrix, i.e. Pu(v) = [Pheat]u,v .

Personalized PageRank Personalized PageRank (PPR)
was originally proposed to use in search engines to measure
the personalized importance of a web page [Page et al.,
1999]. It can be interpreted as a probability matrix in which
the entry u, v is the probability of a random walk starting at
node u eventually terminating at node v. The PPR matrix is
defined as

PPPR =

∞∑
i=0

αPPR
i Âi (2)



where αPPR
i = β(1 − β)i for the teleport probability

β [Gasteiger et al., 2019]. The node proximity score be-
tween nodes u, v, based on PPR, is the u, v entry of the PPR
matrix, i.e. Pu(v) = [PPPR]u,v .

SimRank SimRank [Jeh and Widom, 2002] is a proximity
measure that determines the similarity between nodes based
on their structural contexts, which can be combined with
domain-specific similarity to be made more informative. It
is motivated by the insight that two nodes are similar if
they are pointed to by similar nodes. The SimRank score
between nodes u, v is defined recursively as

PSimRank(u, v) =

C

|Nin(u)||Nin(v)|
∑

a∈Nin(u)

∑
b∈Nin(v)

PSimRank(a, b) (3)

where Nin(u) denotes the set of in-neighbors of u and
C ∈ (0, 1) is a constant. In practice, the SimRank score
is computed iteratively until convergence or for a fixed num-
ber of iterations, as follows

Pi+1
SimRank(u, v) =

C

|Nin(u)||Nin(v)|
∑

a∈Nin(u)

∑
b∈Nin(v)

Pi
SimRank(a, b) (4)

with initialization

P0
SimRank(u, v) =

{
0 if u ̸= v

1 if u = v

3.2.2 Training Strategy

The main idea of PDM is to minimize the divergence be-
tween the distribution of node representation similarity and
the distribution of node proximity.

Node Representation Similarity To measure the sim-
ilarity between the learned representations of two nodes
u, v, we use the dot product sim(zu, zv) = z⊤u zv . We apply
softmax normalization to normalize the similarity scores be-
tween node u and all other nodes into a distribution. Specif-
ically, the representation similarity distribution of node u
is

Su(v) =
exp(sim(zu, zv))∑n
i=1 exp(sim(zu, zi))

,where v ∈ [n] (5)

Loss Function Our proposed loss function is the mean
Kullback-Leibler divergence [Kullback and Leibler, 1951]
between the node proximity distribution and node represen-
tation similarity distribution,

1

n

n∑
u=1

DKL(Pu ∥ Su) =

1

n

n∑
u=1

(

n∑
v=1

Pu(v) logPu(v)−
n∑

v=1

Pu(v) logSu(v)) (6)

Since the entropy of the node proximity distribution of a
given graph is fixed (i.e.

∑n
v=1 Pu(v) logPu(v) is a con-

stant), we omit it and equivalently minimize the following
loss function.

L = − 1

n

n∑
u=1

n∑
v=1

Pu(v) log
exp(sim(zu, zv))∑n
i=1 exp(sim(zu, zi))

(7)

An overview of PDM’s training strategy is shown in Fig-
ure 2.

In practice, using the proximity distributions of a subsample
of all nodes accelerates convergence and avoids loading all
proximity scores into GPU RAM. Therefore, for a batch B
of sampled indices, we minimize the following batched loss
function.

Lbatch = − 1

|B|
∑
u∈B

n∑
v=1

Pu(v) log
exp(sim(zu, zv))∑n
i=1 exp(sim(zu, zi))

(8)

Empirically, we found batch sizes of 1024 or 2048 for node
proximity distributions work well.

Intuition Node proximity measures are higher-order con-
nectivity scores for node pairs. It is a more informed mea-
sure of structural relationship between nodes than adjacency
information. It is able to smooth out noisy connections and
boost the signal-to-noise ratio of the graph spectrum. Mini-
mizing the divergence between proximity distribution and
representation similarity distribution ensures that the en-
coder learn to incorporate structural knowledge into the
learned node representations. Instead of using hard pos-
itive/negative instances, we leverage proximity measures
between nodes as supervision to tune the relationship be-
tween learned node representations using the connection
strength implied by the graph structure at a macro level.

Limitations Our proposed method PDM is based on the
assumption of homophily McPherson et al. [2001], meaning
neighboring nodes tend to be more similar. Therefore, PDM
may not perform well on non-homophilous graphs. Addi-
tionally, choosing a good proximity measure for learning on
a particular graph may require trial and error, as there is a
lack of theoretical guidance. Proximity measures may also
be computationally expensive to compute.

3.3 MEMORY ANALYSIS

Without the reliance on multiple graph views or extra MLP
layers, our approach has clear advantage in memory effi-
ciency over prior approaches. Table 1 presents the mem-
ory complexity and the empirical GPU memory usage of
the most competitive graph SSL methods on ogbn-arxiv
and ogbn-proteins datasets [Hu et al., 2020]. Each for-
ward pass/back-propagation consumes O(n + m) mem-
ory, where n is the number of nodes and m is the num-



Table 1: Memory complexity and empirical GPU memory usage of competitive graph SSL approaches on ogbn-arxiv and
ogbn-proteins datasets. “OOM” means out of memory on a GPU with 32 GB of memory.

Method Memory Complexity GPU RAM Usage
ogbn-arxiv ogbn-proteins

Supervised GCN C fw
GCN(n+m) + Cbw

GCN(n+m) + CSupervised · n 6.9G 17.2G

GRACE 2C fw
GNN(n+m) + Cbw

GNN(n+m) + 2C fw
MLP · n+ Cbw

MLP · n+ CGRACE · n2 OOM OOM
BGRL 4C fw

GNN(n+m) + Cbw
GNN(n+m) + 2C fw

MLP · n+ Cbw
MLP · n+ CBGRL · n 25.4G OOM

LaGraph 2C fw
GNN(n+m) + C fw

GNN(n+m) + Cbw
MLP · n+ Cbw

MLP · n+ CLaGraph · n 16.9G OOM
CCA-SSG 2C fw

GNN(n+m) + Cbw
GNN(n+m) + CCCA-SSG · n 15.6G OOM

PDM (ours) C fw
GNN(n+m) + Cbw

GNN(n+m) + CPDM · b · n 7.8G 18.3G

ber of edges in the graph. We let C fw be the constant fac-
tor for each forward pass and Cbw be the constant factor
for each back-propagation. We consider the most memory-
efficient graph SSL methods GRACE [Zhu et al., 2020],
BGRL [Thakoor et al., 2021], LaGraph [Xie et al., 2022],
and CCA-SSG [Zhang et al., 2021], all of which compute
two or more graph views at each training step. GRACE uses
intra-view and inter-view negative examples, and hence com-
puting its loss function consumes O(n2) memory. BGRL
does not use negative instances in its loss function to avoid
quadratic blowup, but it computes 4 graph views in total,
2 by the online encoder and 2 by the target encoder. La-
Graph and CCA-SSG both compute 2 graph views and
maximize the invariance between views, and LaGraph uses
an additional MLP component as the decoder. Our method
computes a single graph view, with memory efficiency on
par with supervised training theoretically and empirically.

We employ the same encoder for all approaches to ensure
a fair comparison of memory usage. On ogbn-arxiv, the
memory efficiency of our method is on par with supervised
training, while other methods consume 2× or more memory.
On ogbn-proteins, supervised training consumes more than
half the memory on a 32GB GPU, which makes multi-view
training impractical. Therefore, only our SSL method is able
to train on ogbn-proteins without running out of memory.

3.4 SCALING TO LARGE GRAPHS

Real-world graphs are very large and pose a significant chal-
lenge in scalability [Tang et al., 2023]. Existing methods re-
sort to sub-sampling techniques such as neighbor-sampling
[Thakoor et al., 2021]. For PDM, neighbor sampling tech-
niques may not work since node proximity measure may
not be well-defined for the sampled neighborhood. To scale
to very large graphs, we propose a natural extension to
our method by leveraging recent advances in efficient GNN
training. Cluster-GCN [Chiang et al., 2019] proposes to train
on subgraphs of clusters partitioned from the original graph
to avoid the exponential neighborhood expansion problem.
We leverage Cluster-GCN to scale PDM to very large graphs
by partitioning them into subgraphs and minimize the di-

vergence between node proximity distribution and node
representation distribution in each of the subgraphs. We
evaluate the effectiveness of PDM scaled to large graphs in
Section 4.3.

4 EXPERIMENTS

In this section, we evaluate the performance of PDM and
compare it against the most competitive graph SSL methods
on a variety of node classification datasets. We first intro-
duce the setup, the datasets, and the baselines used for the
evaluation in Section 4.1. Then we present the evaluation
results on small to medium-scale datasets in Section 4.2
and results on large-scale datasets in Sectin 4.3. Finally, we
present the results of the ablation study in Section 4.4.

4.1 SETTINGS

Evaluation Setup We take an untrained GNN encoder
with randomly initialized parameters, and train it using PDM
and baseline methods on the graph data (X,A) without
labels until convergence. Then we freeze the parameters of
the GNN and and use it to encode the nodes into learned
node representations Z. We then train a linear classifier
(logistic regression classifier) on the labelled training set
with Z as input, and report the evaluation metrics on the
unseen test set. Our evaluation setup is identical to previous
works [Velickovic et al., 2019, Thakoor et al., 2021] to keep
the evaluation fair and consistent. Details about the testbed
for performing the evaluation is given in Section 4.1, and
the hyper-parameters and training details are presented in
Table 1 in the Supplemental Materials.

Datasets Our baselines are evaluated on 6 datasets, in-
cluding 3 small scale datasets (Cora, Citeser, PubMed [Sen
et al., 2008]), 1 medium scale dataset (ogbn-arxiv [Hu et al.,
2020]) and 2 large scale dataset (ogbn-proteins and ogbn-
products [Hu et al., 2020]). The graph statistics are summa-
rized in Table 3.



Table 2: Performance of self-supervised learning methods in terms of classification accuracy (along with standard deviations).
The results of baselines are taken from official papers. “OOM” means out of memory on a GPU with 32 GB of memory.

Paradigm Method Cora Citeseer PubMed ogbn-arxiv

Supervised
MLP 55.1 46.5 71.4 55.50
GCN 81.5 70.3 79.0 71.74 ± 0.29
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 72.10 ± 0.13

Self-Supervised

DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6 70.34 ± 0.16
GATE 83.2 ± 0.6 71.8 ± 0.8 80.9 ± 0.3 OOM
GRACE 81.9 ± 0.4 71.2 ± 0.5 80.6 ± 0.4 71.51 ± 0.11
BGRL 82.7 ± 0.5 71.1 ± 0.8 79.6 ± 0.5 71.64 ± 0.12
LaGraph 84.1 ± 0.3 73.0 ± 0.4 80.9 ± 0.3 71.71 ± 0.21
GraphMAE 84.2 ± 0.4 73.4 ± 0.4 81.1 ± 0.4 71.75 ± 0.17
InfoGCL 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2 OOM
CCA-SSG 84.0 ± 0.4 73.1 ± 0.3 81.2 ± 0.3 71.24 ± 0.20
PDM (ours) 84.4 ± 0.1 74.6 ± 0.2 83.8 ± 0.2 72.08 ± 0.18

Table 3: Statistics of the graph datasets used for evaluation.

Dataset # of Nodes # of Edges Metric # of Classes

Cora 2,708 5,429 Accuracy 7
Citeseer 3,327 4,732 Accuracy 6
PubMed 19,717 44,338 Accuracy 3
ogbn-arxiv 169,343 1,166,243 Accuracy 40
ogbn-proteins 132,534 39,561,252 ROC-AUC 112
ogbn-products 2,449,029 61,859,140 Accuracy 47

Testbed We implement our proposed method with the
Deep Graph Library [Wang et al., 2019]. Our experiments
are conducted on a machine with 1 NVIDIA Tesla V100
32GB GPU, 2 24-core/48-thread Intel Xeon Gold 5220R
CPUs, and 1.5TB of RAM.

Baselines We perform a thorough comparison of PDM
against the current most competitive graph SSL methods:
1) DGI [Velickovic et al., 2019] proposes to learn node
representations by maximizing the mutual information be-
tween node representations and the global representation
through contrasting representations of a corrupted graph.
2) GATE [Salehi and Davulcu, 2019] reconstructs the in-
put graph with an auto-encoder architecture that uses self-
attention. 3) GRACE [Zhu et al., 2020] performs contrastive
learning on positive and negative examples from two dif-
ferent corrupted graph views. 4) BGRL [Thakoor et al.,
2021] learns contrastively from positive examples only by
leveraging bootstrapping. 5) LaGraph [Xie et al., 2022]
learns through a reconstruction loss and an invariance loss
between the representations of the original graph and a
corrupted graph. 6) GraphMAE [Hou et al., 2022] learns
through reconstructing node features using two GNNs as
encoder and decoder. 7) InfoGCL [Xu et al., 2021] maxi-
mizes the agreement between the learned representations
of two corrupted graph views encoded by a GNN and MLP.

8) CCA-SSG [Zhang et al., 2021] maximizes the agreement
between two corrupted graph views using a loss function in-
spired by Canonical Correlation Analysis. We also include
the most common supervised model baselines for refer-
ence, which are trained with the training set as supervision.
1) MLP [Hu et al., 2020] is a multi-layer perceptron net-
work with only the node features as input. 2) GCN [Welling
and Kipf, 2016] propagates node information through con-
volutional layers. 3) GAT [Veličković et al., 2018] lever-
ages self-attention to adaptively aggregate node information.
4) GraphSage [Hamilton et al., 2017] aggregates node fea-
ture information to generalize to unseen data.

4.2 EVALUATION ON SMALL AND
MEDIUM-SCALE GRAPHS

Table 2 presents the accuracy of PDM and baselines on
Cora, Citeseer, Pubmed and ogbn-arxiv. PDM achieves
state-of-the-art performance on all 4 datasets, and improves
the previous best by 2.6% on PubMed, 1.1% on CiteSeer,
0.2% on Cora and 0.33% on ogbn-arxiv. Our method sig-
nificantly exceeds the accuracy of supervised training on
Cora, CiteSeer, PubMed, showing its potential in eliminat-
ing the reliance on labels in graph learning. On ogbn-arxiv,
our method achieves accuracy competitive with the best su-
pervised model GAT (within 0.02% difference) while using
a simpler model (GCN).

4.3 EVALUATION ON LARGE-SCALE GRAPHS

We evaluate PDM and baselines on ogbn-proteins and ogbn-
products, which are two challenging large-scale node classi-
fication datasets. Only PDM is able to train on ogbn-proteins
using a single GPU without sub-sampling, other methods re-
quire sub-sampling to fit into 32 GB of GPU memory since
they rely on multiple graph views (see Section 3.3). We



Table 4: AUC-ROC on ogbn-proteins and accuracy on ogbn-products of the best graph SSL methods. We consider GCN and
GraphSage as the backbone model for each method.

Paradigm Method ogbn-proteins ogbn-products

Supervised
GCN 72.51 ± 0.01 75.64 ± 0.01
GraphSage 77.68 ± 0.01 78.29 ± 0.01

Self-Supervised

InfoGCL OOM OOM
GraphMAE 62.52 ± 0.69 72.88 ± 0.37
GRACE 68.40 ± 0.59 71.55 ± 0.88
LaGraph 71.86 ± 0.28 73.23 ± 0.25
BGRL 73.25 ± 0.79 72.86 ± 0.64
CCA-SSG 73.08 ± 0.37 73.46 ± 0.26
PDM (ours) 77.80 ± 0.21 76.50 ± 0.18

Table 5: Evaluate performance of PDM by varying the hyper-parameters for computing node proximity measures.

Heat (t) PPR (β)
3 4 5 6 7 0.02 0.04 0.06 0.08 0.10

Cora 83.9 84.1 84.0 84.0 84.4 84.1 84.0 84.3 84.1 84.0
Citeseer 73.3 74.1 74.3 74.1 74.1 74.0 74.6 74.2 74.0 74.2
PubMed 82.8 83.0 83.6 83.1 82.7 83.6 83.2 83.8 82.8 83.4

leverage the sub-sampling techniques described by Hamil-
ton et al. [2017], Thakoor et al. [2021] to scale the baselines.
By using full-graph training and no sub-sampling, PDM en-
joys a significant advantage on accuracy over other baselines
by achieving 4.55% improvement in AUC-ROC than the
current best SSL method. More importantly, PDM beats su-
pervised training: 5.29% and 0.12% better AUC-ROC than
supervised GCN and GraphSage. As a biological graph of
protein interactions, ogbn-proteins is sensitive to graph cor-
ruptions. Our method achieves the best accuracy by avoiding
corruptions and training on the full graph, which maximally
preserves semantics of the original graph.

The graph of ogbn-products is so large that even super-
vised training has to resort to sub-sampling. Therefore,
we leverage Cluster-GCN [Chiang et al., 2019] to effi-
ciently scale PDM by partitioning the graph into 100 clus-
ters. Our method exceeds the previous best SSL method by
3.04%. Furthermore, our method beats supervised training
by 0.86% when using the same GCN architecture, suggest-
ing our method has potential of eliminating the need for
costly labels in graph learning.

4.4 ABLATION STUDY

We study the sensitivity of our method to hyper-parameter
changes. A robust SSL method should not be sensitive to
hyper-parameters. This has been a weakness of prior SSL
methods, which require vastly different corruption parame-

ters for different datasets [You et al., 2021, Thakoor et al.,
2021, Zhang et al., 2021]. We vary the hyper-parameters in
computing the node proximity measures for heat kernel and
PPR, and evaluate the test accuracy on Cora, Citeseer and
PubMed. As shown in Table 5, our method is not sensitive to
hyper-parameters of the node proximity scores, since the ac-
curacy drops at most 1.3% from the best accuracy achieved.
Therefore, our method is more robust than previous SSL
approaches which are sensitive to hyper-parameter changes.

5 RELATED WORKS

Self-supervised Learning for Graphs The success
of self-supervised contrastive learning in computer vi-
sion [Oord et al., 2018, Hjelm et al., 2018, Grill et al., 2020]
inspired the development of contrastive learning methods for
graph SSL based on mutual information maximization. For
example, DGI [Velickovic et al., 2019] maximizes mutual
information between local patch representations and global
graph representation by contrasting with negative examples
from shuffled node features. GRACE [Zhu et al., 2020] max-
imizes the mutual information between node representations
of two corrupted graph views by contrasting with intra- and
inter-view negatives. BGRL [Thakoor et al., 2021] leverages
BYOL [Grill et al., 2020] to perform contrastive learning
without negative examples. InfoGCL [Xu et al., 2021] pro-
poses a contrastive framework to maintain task-relevant
information at different levels and minimize the information
loss during graph representation learning. MVGRL [Has-



sani and Khasahmadi, 2020] uses graph diffusion to produce
an alternative graph view and maximize the mutual informa-
tion between the local representation of one view and the
global representation of the other view. Graph SSL methods
based on the reconstruction objective have also been pro-
posed in the past. For instance, GATE [Salehi and Davulcu,
2019] uses stacked self-attention-based encoder/decoder
architecture to reconstruct node features and graph struc-
ture. GraphMAE [Hou et al., 2022] proposes to focus on
feature reconstruction using a graph autoencoder. Recently,
predictive graph SSL methods have also been proposed. La-
Graph [Xie et al., 2022] proposes to learn through predicting
unobserved latent graphs. CCA-SSG [Zhang et al., 2021]
leverages a feature prediction objective inspired by canon-
ical correlation analysis. Contrastive learning methods for
graph SSL without data augmentation have been proposed
before, such as AF-GCL [Wang et al., 2022] and AFGRL
[Lee et al., 2022]. However, both methods use nodes with
the most similar representations as positive instances for
contrastive learning, while our method leverages proximity
measures for node representation learning.

Node Proximity A variety of node proximity mea-
sures have been proposed in the past, including heat ker-
nel [Chung, 2007], PageRank [Page et al., 1999], Cycle
Free Effective Conductance [Koren et al., 2006], Katz [Katz,
1953], and SimRank [Jeh and Widom, 2002]. Node prox-
imity measures have been leveraged for learning on graph
data in previous works. Liben-Nowell and Kleinberg [2003]
leverages different node proximity measures for link pre-
diction in social networks. Murata and Moriyasu [2007]
augments graph proximity measures with existing weights
in social networks for more accurate link prediction. Zhu
et al. computes structural and positional node embeddings
using well-established proximity measures.

6 CONCLUSION

We propose PDM, a novel graph SSL framework that is
corruption-free and uses a single view. By avoiding corrup-
tion techniques employed by prior SSL method, we achieve
a natural SSL objective to attain significantly better accu-
racy on a variety of datasets with minimal tuning efforts.
Without the computation of multiple views, our method is
more memory-efficient and scalable than prior approaches
and able to scale to large graphs that are difficult for existing
methods. Through extensive experiments, we demonstrate
the advantage of PDM over existing SSL methods with sig-
nificant improvements in accuracy on popular graph bench-
marks. Furthermore, our SSL approach is able to surpass or
be competitive with the accuracy of fully supervised train-
ing on large-scale datasets, which is a crucial step towards
eliminating the need for costly labels in graph learning.
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