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ABSTRACT

Text-conditioned human motion generation, which allows for user interaction
through natural language, has become increasingly popular. Existing methods
typically generate short, isolated motions based on a single input sentence. How-
ever, human motions are continuous and extend over long periods, carrying rich
semantics. Creating long, complex motions that precisely respond to streams of text
descriptions, particularly in an online and real-time setting, remains a significant
challenge. Furthermore, incorporating spatial constraints into text-conditioned
motion generation presents additional challenges, as it requires aligning the mo-
tion semantics specified by text descriptions with geometric information, such as
goal locations and 3D scene geometry. To address these limitations, we propose
DartControl, in short DART, a Diffusion-based Autoregressive motion primitive
model for Real-time Text-driven motion Control. Our model effectively learns
a compact motion primitive space jointly conditioned on motion history and text
inputs using latent diffusion models. By autoregressively generating motion primi-
tives based on the preceding motion history and current text input, DART enables
real-time, sequential motion generation driven by natural language descriptions.
Additionally, the learned motion primitive space allows for precise spatial motion
control, which we formulate either as a latent noise optimization problem or as a
Markov decision process addressed through reinforcement learning. We present
effective algorithms for both approaches, demonstrating our model’s versatility
and superior performance in various motion synthesis tasks. Experiments show our
method outperforms existing baselines in motion realism, efficiency, and controlla-
bility. Video results and code are available at https://zkf1997.github.io/DART/.

1 INTRODUCTION

Text-conditioned human motion generation has gained increasing popularity in recent years for
flexible user interaction via natural languages. Existing text-conditioned motion models (Tevet et al.,
2023; Guo et al., 2024; Zhang et al., 2023a; Guo et al., 2022; Jiang et al., 2024a) primarily focus
on generating standalone short motions from a single descriptive sentence. These methods fail to
accurately generate long and complex motions composed of multiple action segments, where each
segment is conditioned on distinct action descriptions. FlowMDM (Barquero et al., 2024) is the
state-of-the-art temporal motion composition method, capable of generating complex, continuous
motions by composing desired actions with precise adherence to their specified durations. However,
FlowMDM is an offline method that requires prior knowledge of the entire action timeline and has a
slow generation speed, making it unsuitable for online and real-time applications.

In addition to text-based semantic control, generating human motion within spatial constraints and
achieving specific goals, such as reaching a keyframe body pose, following a joint trajectory, or
interacting with objects, has broad applications but introduces additional complex challenges. Recent
works (Shafir et al., 2024; Karunratanakul et al., 2024b; Xie et al., 2024) have sought to integrate
text-conditioned motion models with spatial control capabilities. However, they still face challenges
in effectively balancing spatial control, motion quality, and semantic alignment with text. Moreover,
these approaches are typically restricted to controlling isolated short motions in an offline setting.
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Meanwhile, interactive character control (Kovar et al., 2008; Holden et al., 2015; Ling et al., 2020;
Peng et al., 2022) has been a longstanding focus in computer graphics, with a primary emphasis on
achieving motion realism and responsiveness to interactive control signals. However, most of these
works lack support for text-conditioned semantic control and are limited by being trained on small,
curated datasets. Incorporating text-conditioned motion generation could provide a novel intuitive
language interface for animators and everyday users to control the characters, reducing the effort
required when specifying detailed spatial control signals is challenging or tedious.

To address these limitations, we propose DART, a diffusion-based autoregressive motion primitive
model for real-time text-driven motion control. Moreover, the compact and expressive motion space of
DART provides a foundation for integrating precise spatial control through latent space optimization
or reinforcement learning (RL)-based policies. DART features three key components.

First, DART represents human motion as a collection of motion primitives (Zhang & Tang, 2022),
which are autoregressive representations consisting of overlapping short motion segments tailored
for online generation and control. These short primitives also provide a more precise alignment
with atomic action semantics compared to longer sequences, enabling effective learning of a text-
conditioned motion space. By focusing on shorter primitives, DART avoids the complexities and
extensive data demands of modeling entire motion sequences, allowing for high-quality motion
generation with only a few diffusion steps.

Next, DART learns a text-conditioned autoregressive motion generation model from large-scale
data using a latent diffusion architecture, which contains a variational autoencoder for learning a
compact latent motion primitive space, and a denoiser network for generating motion primitives
conditioned on texts and history. Leveraging the trained denoiser and decoder models, DART employs
an autoregressive rollout to synthesize motion sequences from real-time text inputs, enabling the
efficient generation of motions of arbitrary length. Compared with the offline temporal motion
composition method FlowMDM, DART provides real-time response and 10x generation speed.

Lastly, we introduce a latent space control framework based on DART for spatially controllable
motion synthesis, leveraging its learned space of realistic human motions to ensure high-quality
generation. We present effective optimization and learning algorithms that explore the latent diffusion
noise space to synthesize motion sequences that precisely follow both textual and spatial constraints.
We evaluate DART across various motion synthesis tasks, including generating long, continuous
sequences from sequential text prompts, in-between motion generation, scene-conditioned motion,
and goal-reaching synthesis. The experimental results show that DART is a simple, unified and highly
effective motion model, consistently outperforming or matching the performance of baselines.

2 RELATED WORKS

Conditional Motion Generation. Generating realistic and diverse human motions is a long-standing
challenge in computer vision and graphics. Apart from generating highly realistic human motions
(Kovar et al., 2008; Holden et al., 2020; Clavet et al., 2016; Zinno, 2019), conditional generation is
another important factor that aligns motion generation with human intentions and various application
constraints. Text-conditioned motion generation (Tevet et al., 2023; Zhang et al., 2022a; Petrovich
et al., 2022; Guo et al., 2022; Jiang et al., 2024a; Zhang et al., 2023a) has become increasingly
popular since it allows users to modulate motion generation with flexible natural languages. Audio
and speech-driven motion synthesis methods (Alexanderson et al., 2023; Tseng et al., 2023; Siyao
et al., 2022; Ao et al., 2022; 2023) have also made significant progress recently. Moreover, there
exist many applications that require spatial awareness and precise control in motion generation, such
as interactive character control (Ling et al., 2020; Peng et al., 2022; Starke et al., 2022; Luo et al.,
2024; Starke et al., 2024), human-scene interactions(Hassan et al., 2021; Starke et al., 2019; Zhao
et al., 2022; 2023; Li et al., 2024a; Xu et al., 2023; Jiang et al., 2024b; Wang et al., 2024; Liu et al.,
2024; Li et al., 2024b; Zhang et al., 2022b; 2025), and human-human(noid) interactions (Liang et al.,
2024; Zhang et al., 2023c; Christen et al., 2023; Cheng et al., 2024; Shan et al., 2024). Synthesizing
high-quality motions with precise spatial control remains challenging, and DART is a step toward a
general and efficient motion model that supports precise control tasks.

Diffusion Generative Models. Denoising Diffusion Models (Ho et al., 2020; Song et al., 2021a;b)
are generative models that learn to predict clean data samples by iteratively annealing the noise from
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a standard Gaussian sample. Diffusion models have achieved unprecedented performances in many
generation tasks including images, videos, and 3D human motions (Tevet et al., 2023; Rombach
et al., 2022; Ho et al., 2022). Diffusion models can accept flexible conditions to modulate the
generation, such as text prompts, images, audio, and 3D objects (Rombach et al., 2022; Tevet et al.,
2023; Alexanderson et al., 2023; Tseng et al., 2023; Zhang et al., 2023b; Xu et al., 2023; Li et al.,
2023). Most existing diffusion-based motion generation methods focus on offline generations of short,
isolated motion sequences while neglecting the autoregressive nature of human motions (Tevet et al.,
2023; Barquero et al., 2024; Chen et al., 2023b; Karunratanakul et al., 2024b; Cohan et al., 2024;
Dai et al., 2025; Chen et al., 2023a). Among these methods, DNO (Karunratanakul et al., 2024b)
is closely related to our optimization-based control approach, as both use diffusion noises as the
latent space for editing and control. However, the key distinction lies in our latent motion primitive-
based diffusion model, which, unlike DNO’s diffusion model trained with full motion sequences
in explicit motion representations, achieves superior performance in harmonizing spatial control
with text semantic alignment during experiments. There are also works that incorporate history
conditions in diffusion-based motion generation and capture (Xu et al., 2023; Jiang et al., 2024b;
Van Wouwe et al., 2024; Han et al., 2024). Shi et al. (2024) and Chen et al. (2024) adapt diffusion
models for real-time character motion generation and control. While Shi et al. (2024) learns character
control policies using diffusion noises as the action space, akin to our reinforcement-learning-based
control, their method focuses on single-frame autoregressive generation and lacks support for text
conditions, which offers a compact and intuitive interface for users to control character behaviors. In
contrast, DART is an efficient and general motion model that scales effectively to large motion-text
datasets. DART supports natural language interfacing and provides a versatile foundation for various
motion generation tasks with spatial control. Concurrent work, CloSD (Tevet et al., 2025), trains
autoregressive motion diffusion models conditioned on target joint locations to guide the human
motion towards these goals. This approach relies on paired training data of control signals and human
motions. In contrast, DART learns a latent motion space from motion-only data and introduces latent
space control methods to achieve flexible control goals without the need for paired training data.

3 METHOD

3.1 PRELIMINARIES

Problem Definition. We focus on the task of text-conditioned online motion generation with spatial
control. Given an H frame seed motion Hseed = [h1, ...,hH ], a sequence of N text prompts
C = [c1, ..., cN ], and spatial goals g, the objective is to autoregressively generate continuous and
realistic human motion sequences M = [Hseed,X

1, ...,XN ], where each motion segment Xi

matches the semantics of the corresponding text prompt ci and satisfies the spatial goal constraints g.
This task imposes challenges in high-level action semantic control, precise spatial control, and smooth
temporal transition in motion generation.

Autoregressive Motion Primitive Representation. We model long-term human motions as the
sequential composition of motion primitives (Zhang & Tang, 2022) with overlaps for efficient
generative learning and online inference. Each motion primitive Pi = [Hi,Xi] is a short motion
clip containing H frames of history motion Hi = [hi,1, ...,hi,H ] that overlap with the previous
motion primitive, and F frames of future motion Xi = [xi,1, ...,xi,F ]. The history motion of the i-th
motion primitive Hi consists of the last H frames of the previous motion primitive Xi−1,F−H+1:F .
Therefore, infinitely long motions can be represented as the rollout of such overlapping motion
primitives as M = [Hseed,X

1, ...,XN ]. To represent human bodies in each motion frame, we use
an overparameterized representation based on the SMPL-X (Pavlakos et al., 2019) parametric human
body model. Each frame is represented as a D = 276 dimensional vector including the body root
translation t, root orientation R, local joint rotations θ, joint locations J, and the temporal difference
features of locations and rotations. Each motion primitive is canonicalized in a local coordinate frame
centered at the first-frame body pelvis. We use history length H = 2 and future length F = 8 in
our experiments. Further details of the primitive representation are attached in the Appendix A. For
brevity, we omit the primitive index superscript i when discussing in the context of a single primitive.

In contrast to directly modeling long motion sequences, the primitive representation decomposes
globally complex sequences into short and simple primitives, resulting in a more tractable data
distribution for generative learning. Moreover, the autoregressive and simple nature of the prim-
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Figure 1: Architecture illustration of DART. The encoder network compresses the future frames
X = [x1, ...,xF ] into a latent variable, conditioned on the history frames H = [h1, ...,hH ]. The
decoder network reconstructs the future frames conditioned on the history frames and the latent
sample. The denoiser network predicts the clean latent sample ẑ0 conditioned on the noising step,
text prompt, history frames, and noised latent sample zt. During the denoiser training, the encoder
and decoder network weights remain fixed.

itive representation makes it inherently suitable for fast online generations. Furthermore, motion
primitives convey more interpretable semantics than individual frames, enhancing the learning of
text-conditioned motion space.

3.2 DART: A DIFFUSION-BASED AUTOREGRESSIVE MOTION PRIMITIVE MODEL

We propose a latent diffusion model (Rombach et al., 2022; Chen et al., 2023b) designed for seamless
autoregressive motion generation, conditioned on text prompts and motion history. The proposed
model contains a variational autoencoder (VAE) (Kingma & Welling, 2014) that compresses the
motion primitives into a compact latent space and a latent denoising diffusion model that predicts
clean latent variables from noise, conditioned on text prompts and motion history.

Learning the Latent Motion Primitive Space. We introduce a motion primitive VAE that com-
presses motion primitives into a compact latent space, upon which we train our latent diffusion
models, rather than using the raw motion space (Rombach et al., 2022; Chen et al., 2023b). The
design of learning a compressed latent space of motion primitives is inspired by the observations
that raw motion data from the used motion capture dataset AMASS (Mahmood et al., 2019) often
contain various levels of artifacts including glitches and jitters, and training diffusion models on
raw motion space leads to results inheriting such artifacts. This is evidenced by the significantly
higher jittering in generated motions of the ablative model without VAE in Appendix. E.3. The
compression achieved through the motion primitive VAE significantly mitigates the impacts of these
outlier artifacts in motion data. The resulting latent representation is not only more compact but also
more computationally efficient than the raw motion data, thereby enhancing the efficiency of our
generative model and improving the control capabilities within the latent space.

Our motion primitive VAE employs a transformer-based architecture based on MLD (Chen et al.,
2023b), comprising an encoder E and decoder D, as shown in Fig. 1. The encoder takes as input the
history motion frames H and future motion frames X as well as the learnable distribution tokens Tµ

and Tσ , which are responsible for predicting the distribution mean and variance. The latent sample z
is obtained from the predicted distribution via reparameterization (Kingma & Welling, 2014). The
decoder then predicts the future frames X̂ from zero tokens conditioned on the latent sample z and
the history frames H. The motion primitive VAE is trained with the future frame reconstruction loss
Lrec, auxiliary losses Laux that penalize unnatural motion reconstruction, a small Kullback-Leibler
(KL) regularization term LKL, and additional SMPL-based reconstruction and regularization terms.
We refer to Appendix C for further details about the motion primitive VAE.
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Algorithm 1 Autoregressive rollout generation using latent motion primitive model

Input: primitive decoder D, latent variable denoiser G, history motion seed Hseed, text prompts
C = [c1, ..., cN ], total diffusion steps T , classifier-free guidance scale w, diffusion sampler S.
Optional Input: Latent noises ZT = [z1T , ..., z

N
T ]

Output: motion sequence M
H← Hseed

M← Hseed

for i← 1 to N do ▷ number of rollouts
sample noise ziT from N (0, 1) if not inputted
ẑi0 ← S(G, ziT , T,H, ci, w) ▷ diffusion sample loop with classifier-free guidance
X̂← D(H, ẑi0)

M← CONCAT(M, X̂) ▷ concatenate future frames to generated sequence
H← CANONICALIZE(X̂F−H+1:F ) ▷ update the rollout history with last H generated frames

end for
return M

Latent Motion Primitive Diffusion Model. Building on the compact latent motion primitive
space, we formulate text-conditioned autoregressive motion generation via a probabilistic distribution
q(z|H, c), and train a latent diffusion model G to approximate it. Diffusion models (Ho et al., 2020)
are generative models that learn data distributions by progressively reversing a forward diffusion
process, which iteratively adds Gaussian noise to data samples until they approach pure noiseN (0, I).
Given a motion primitive sampled from the dataset and its latent representation z0 obtained using
the encoder E , the forward diffusion produces a sequence of increasingly noisy samples z1, . . . , zT
by iteratively adding noises as: q(zt|zt−1) = N (

√
1− βtzt−1, βtI), where βt are noise schedule

hyper parameters. The denoiser model learns the reverse process pθ(zt−1|zt, t,H, c) = N (µt,Σt)
for generating motion primitives conditioned on the motion history H and text label c of the motion
primitive. The vairance Σt of the reverse process distribution is scheduled using hyper parameters,
while the mean µt is modeled using a denoiser neural network. We design the denoiser model G to
predict the clean latent variable ẑ0 = G(zt, t,H, c), from which µt can be derived as follows:

µt =

√
ᾱt−1βt

1− ᾱt
G(zt, t,H, c) +

√
αt(1− ᾱt−1)

1− ᾱt
zt, (1)

where αt = 1− βt and ᾱt =
∏t

i=1 αi. During generation, we initialize with zT ∼ N (0, I) and use
the denoiser model to predict the clean variable ẑ0, which is subsequently diffused to a lower noise
level zT−1.This denoising process iterates until a clean sample z0 is obtained.

The denoiser model architecture is shown in Fig. 1. The diffusion step t is embedded using a small
MLP, while the text prompt c is encoded using the CLIP (Radford et al., 2021) text encoder. The
text prompt is randomly masked out by a probability of 0.1 during training to enable classifier-
free guidance (Ho & Salimans, 2021) during generation. The cleaned latent variable ẑ0 can be
converted back to the future frames using the frozen decoder D: X̂ = D(H, ẑ0). We train the latent
denoiser G using the simple objective (Ho et al., 2020). Additionally, we apply the reconstruction
loss Lrec and auxiliary losses Laux on the decoded future frames X̂. Notably, we use only 10
diffusion steps for both training and inference. This small number suffices for realistic sample
generation due to the simplicity of our motion primitive representation, enabling highly efficient
online generation. Moreover, we use the scheduled training (Ling et al., 2020; Bengio et al., 2015;
Rempe et al., 2021) to progressively introduce the test-time distribution of the history motion H,
which improves the stability of long sequence online generation and the text prompt controllability
for unseen poses. We refer to Appendix D for the details. With the trained motion primitive decoder
D, latent denoiser G and a diffusion sampler S such as DDPM and DDIM (Ho et al., 2020; Song
et al., 2021a), we can autoregressively generate motion sequences given the history motion seed
Hseed and the online sequence of text prompts C, as shown in Alg. 1. During sampling, we use
classifier-free guidance (Ho & Salimans, 2021) on the text condition with a guidance scale w:
Gw(zt, t,H, c) = G(zt, t,H, ∅) + w · (G(zt, t,H, c)− G(zt, t,H, ∅)). Using the rollout algorithm,
DART generates over 300 frames per second using a single RTX 4090 GPU, enabling real-time
applications and online reinforcement-learning control as in Sec. 3.3.
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Algorithm 2 Latent noises optimization

Input: Latent noises ZT = [z1T , ..., z
N
T ], Optimizer O, learning rate η, and goal g. (For brevity,

we do not reiterate the inputs of the rollout function defined in Alg. 1 and criterion terms in Eq. 2)
Output: a motion sequence M.
for i← 1 to optimization steps do

M← ROLLOUT(ZT ,Hseed, C)
∇ ← ∇ZT

(F(Π(M), g) + cons(M))
ZT ← O(ZT ,∇/∥∇∥, η) ▷ update using normalized gradient

end for
return M← ROLLOUT(ZT ,Hseed, C)

3.3 SPATIALLY CONTROLLABLE MOTION SYNTHESIS VIA DART

Text-conditioned motion generation offers a user-friendly interface for controlling motions through
natural language. However, relying solely on text limits precise spatial control, such as walking to
a specific location or sitting in a designated spot. Therefore, it is necessary to incorporate motion
control mechanisms to achieve precise spatial goals, including reaching a keyframe body pose,
following joint trajectories, and interacting with scene objects. We formulate the motion control task
as generating the motion sequence M that minimizes its distance to a given spatial goal g under a
criterion function F(·, ·) and the regularization from the scene and physical constraints cons(·):

M∗ = argminMF(Π(M), g) + cons(M), (2)

where g is the task-dependent spatial goal (e.g., a keyframe body for motion in-between tasks or a
target location for navigation tasks), Π(·) is the projection function that extracts goal-relevant features
from motion sequences and maps them into the task-aligned observation space, and cons(·) denotes
physical and scene constraints, such as preventing scene collisions and floating bodies.

Directly solving the motion control task in the raw motion space often results in unrealistic motions
since most samples in the raw motion space do not represent plausible motions. To improve the
generated motion quality, many previous methods tackle such motion control tasks in a latent motion
space, where samples can be mapped to plausible motions (Karunratanakul et al., 2024b; Ling et al.,
2020; Peng et al., 2022; Holden et al., 2015). DART offers a powerful text-conditioned latent motion
space for such latent space control, as it learns a generative model capable of producing diverse
and realistic motions from standard Gaussian samples. Using the deterministic DDIM (Song et al.,
2021a) sampler, we adapt DART sampling to function as a deterministic mapping from latent noises
ZT to plausible motions. This allows us to reformulate the motion control task in Eq. 2 as a latent
space control problem as follows: Given the initial motion history Hseed, a sequence of text prompts
C, the pretrained DART models, and a deterministic diffusion sampler S, the rollout function in
Alg. 1 can deterministically map a list of motion primitive latent noises ZT = [z1T , .., z

N
T ] to a motion

sequence conditioned on the history motion seed and text prompts: M = ROLLOUT(ZT ,Hseed, C).
The minimization objective is converted as:

ZT
∗ = argminZT

F(Π(ROLLOUT(ZT ,Hseed, C)), g) + cons(ROLLOUT(ZT ,Hseed, C)) (3)

Note that we do not use DDIM to skip diffusion steps at sampling, which we observe to cause artifacts
in generated motion. We then propose two solutions to this latent space motion control problem, one
is to directly optimize the latent noises using gradient descent, and the other is to model the control
task as a Markov process and use reinforcement learning to learn control policies.

Motion Control via Latent Diffusion Noise Optimization. One straightforward solution to this
minimization problem (Eq. 3) is to directly optimize the latent noises ZT given the criterion function
using gradient descent methods (Kingma & Ba, 2015; Karunratanakul et al., 2024a). The latent
noise optimization is illustrated in Alg. 2. This optimization-based control framework is general and
applicable for various spatial control tasks. We instantiate the latent noise optimization method in two
example control scenarios: in-between motion generation and human-scene interaction generation.

First, we address the motion in-between task that aims to generate the motion frames transition
between given history and goal keyframes g that is f frames away conditioned on the text prompt c.
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Figure 2: Architecture of the reinforcement learning-based control policy. The pretrained DART
diffusion denoiser and decoder models transform the latent actions into motion frames. The last
predicted frames are canonicalized and provided to the policy model as the next step history condition.

We use the distance between the f -th frame of the generated motion and the goal keyframe as
the optimization objective. Second, we show that physical and scene constraints cons(·) can be
incorporated to synthesize human motions in a contextual environment. Given input 3D scenes, text
prompts C, and spatial goals g of the interaction anchor joint locations, e.g., locations of the pelvis
when sitting, the objective is to generate motions that not only perform the desired interaction but
also achieve the goal joint positions while adhering to scene constraints. During the optimization, the
3D scenes are represented as signed distance fields (SDF) to compute body-scene distances, which
serve as the basis for deriving human-scene contact and collision metrics that encourage foot-floor
contact and scene collision avoidance, as detailed in Appendix. F.

Motion Control via Reinforcement Learning. Although the proposed latent noise optimization is
effective for general control tasks, the optimization can be computationally expensive. To address this,
the autoregressive primitive-based motion representation of DART allows for another efficient control
mechanism using reinforcement learning (RL) (Sutton & Barto, 1998). We model the latent motion
control as a Markov decision process with a latent action space and use RL to learn policy models to
achieve the goals. We model digital humans as agents to interact with an environment according to a
policy to maximize the expected discounted return. At each time step i, the agent observes the state
si of the system, samples an action ai from the learned policy, with the system transitioning to the
next state si+1 due to the performed action ai, and receives a reward ri = r(si,ai, si+1).

Our latent motion primitive model naturally fits in the Markov decision process due to its autore-
gressive nature. We use the latent noises zT as the latent action space and train goal-conditioned
policy models as controllers. The policy architecture is shown in Fig. 2. Our policy model employs
the actor-critic (Sutton & Barto, 1998) architecture and is trained with the PPO (Schulman et al.,
2017) algorithm. The state si includes the history motion observation Hi, goal observation gi, scene
observation si, and the CLIP embedding of the text prompt ci. The policy model takes in [Hi, gi, si,
ci] to predict the latent noise ziT as the action. The latent noise ziT is mapped to the future motion
frames Xi using the frozen latent denoiser G and motion primitive decoder D. The new history
motion is extracted from the last H predicted frames and fed to the policy network in the next step.
We reformulate the minimization problem in Eq. 3 as reward maximization to train the policy.

We instantiate the reinforcement learning control with the text-conditioned goal-reaching task. Given
a text prompt c and a 2D goal location g, we aim to control the human to reach the goal location
using the action specified by the text. The goal location is transformed into a local observation,
which includes its distance to the body pelvis at the last history frame and its local direction within
the human-centric coordinate frame. We consider a simple flat scene and the scene observation
is the relative floor height to the body pelvis at the first history frame. The policy is trained with
distance rewards encouraging the human pelvis to reach the goal location and scene constraint rewards
penalizing foot skating and floor penetration. Further details can be found in appendix G. With the
trained control policies, we can efficiently control a human to reach dynamic goals using specified
skills like walking or hopping.

7



Published as a conference paper at ICLR 2025

4 EXPERIMENTS

We provide extensive experiments showing how DART can serve as a general model for text-
conditioned temporal motion composition (4.1) and various motion generation tasks requiring precise
spatial control via latent noise optimization (4.2) and reinforcement learning policy (4.3). Qualitative
results and comparisons are available in the supplementary videos on the project page.

Our DART is trained on motion-text data from the BABEL (Punnakkal et al., 2021) dataset in our
experiments if not otherwise stated. BABEL contains motion capture sequences with frame-aligned
text labels that annotate the fine-grained semantics of actions. Fine-grained text labels in BABEL
allow models to learn precise human action controls and natural transitions among actions. However,
DART can also learn using motions with coarse sequence-level labels such as the HML3D (Guo
et al., 2022) dataset, as in the optimization-based motion in-between experiments in Sec. 4.2.

4.1 TEXT-CONDITIONED TEMPORAL MOTION COMPOSITION

Text-conditioned temporal motion composition aims to generate realistic motion sequences that
faithfully align with a list of action segments, each defined by a specific text prompt and duration.
We evaluate the motion composition task on the BABEL(Punnakkal et al., 2021) dataset consisting of
motion capture sequences with human-annotated per-frame action descriptions, which facilitate the
evaluation of precise action controls and natural transitions in motion composition. Since BABEL
does not release the test set, we compare our DART with baseline methods on the BABEL validation
set. We extract the list of action segments described by tuples of text prompts and durations from
each data sequence and feed the action lists as conditions for motion composition.

We evaluate the generation results using metrics proposed in Guo et al. (2022) and Barquero et al.
(2024). For each action segment, we evaluate the similarity between generation and dataset (FID),
motion-text semantic alignment (R-prec, MM-DIST), and generation diversity (DIV). To evaluate
smooth transitions between two segments, we measure the jerk (the derivative of acceleration) of the
30-frame transition clip centered at the splitting point of two action segments, reporting the peak jerk
(PJ) and Area Under the Jerk (AUJ). Moreover, we profile all methods in a benchmark of generating
one 5000-frame-long sequence and report the generation speed, the latency of getting the first
generated frames, and memory usage. We also conduct human preference studies to evaluate motion
realism and motion-text semantic alignment of generation results, during which the participants are
given generation results from two different methods and are asked to select the generation that is
perceptually more realistic or better aligns with the action text stream in subtitles. We compare
DART with baselines inlcuding TEACH (Athanasiou et al., 2022), DoubleTake (Shafir et al., 2024), a
history-conditioned modification of T2M-GPT (Zhang et al., 2023a)(denoted as T2M-GPT*), and the
state-of-the-art offline motion composition method FlowMDM (Barquero et al., 2024).

We present the quantitative results in Tab. 1 and Tab. 2. DART achieves the best FID in both the
segment and transition evaluation, indicating the highest similarity to the dataset and best motion
realism. DART also displays second-best jerk metrics indicating smooth action transitions. We
observe that DART performs slightly worse than FlowMDM in motion-text semantic alignment
(R-prec and MM-Dist) because of the online generation nature of DART. Natural action transitions
require time to transit to the new action after receiving the new action prompt, leading to a delay in the
emergence of the new action semantics. For instance, a human cannot immediately transition from
kicking a leg in the air to stepping backward without first recovering to a standing pose. This inherent
delay in transitions results in a motion embedding shift that impacts the R-prec metric of DART. In
contrast, the offline baseline FlowMDM generates the entire sequence as a whole and requires oracle
information of the full timeline of action segments to modulate compatibility between subsequent
segments. The slight but natural action transition delay of DART is perceived as natural by humans,
as shown in the preference study results in Tab. 2. DART is preferred over all the baselines, including
FlowMDM, for both motion realism and motion-text semantic alignment in human evaluations.

DART requires significantly less memory than the offline baseline FlowMDM and achieves approx-
imately 10x faster generation, with a frame rate exceeding 300 and a latency of 0.02s, enabling
real-time text-conditioned motion composition (see supplementary video). We refer to Appendix E
for details of experiments, user studies, and ablation studies about model architecture and hyperpa-
rameters, and refer to the supplementary video for qualitative comparisons.
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Table 1: Quantitative evaluation results on text-conditioned temporal motion composition. The first
row includes the metrics of the dataset for reference. Symbol ‘→’ denotes that closer to the dataset
reference is better and ‘±’ indicates the 95% confidence interval. Bold and blue texts indicate the
best and second best results excluding the dataset, respectively.

Segment Transition Profiling
FID↓ R-prec↑ DIV → MM-Dist↓ FID↓ DIV → PJ→ AUJ ↓ Speed(frame/s)↑ Latency(s)↓ Mem.(MiB)↓

Dataset 0.00±0.00 0.72±0.00 8.42±0.15 3.36±0.00 0.00±0.00 6.20±0.06 0.02±0.00 0.00±0.00
TEACH 17.58±0.04 0.66±0.00 10.02±0.06 5.86±0.00 3.89±0.05 5.44±0.07 1.39±0.01 5.86±0.02 3880±144 0.05±0.00 2251
DoubleTake 7.92±0.13 0.60±0.01 8.29±0.16 5.59±0.01 3.56±0.05 6.08±0.06 0.32±0.00 1.23±0.01 85±1 59.11±0.76 1474
T2M-GPT* 7.71±0.55 0.49±0.01 8.89±0.21 6.69±0.08 2.53±0.04 6.61±0.02 1.44±0.03 4.10±0.09 885±12 0.23 ±0.00 2172
FlowMDM 5.81±0.10 0.67±0.00 8.90±0.06 5.08±0.02 2.39±0.01 6.63±0.08 0.04±0.00 0.11±0.00 31±0 161.29±0.24 11892
Ours 3.79±0.06 0.62±0.01 8.05±0.10 5.27±0.01 1.86±0.05 6.70±0.03 0.06±0.00 0.21±0.00 334 ±2 0.02±0.00 2394

Table 2: Human preference study results comparing our method against baselines in generation
realism and motion-text semantic alignment on text-conditioned temporal motion composition. We
report the percentage of each method being voted better than the other (Ours vs. Baselines).

Realism (%) Semantic (%)

Ours vs. TEACH 66.7 vs. 33.3 66.0 vs. 34.0
Ours vs. DoubleTake 66.4 vs. 33.6 66.1 vs. 33.9
Ours vs. T2M-GPT* 61.3 vs. 38.7 66.7 vs. 33.3
Ours vs. FlowMDM 53.3 vs. 46.7 51.3 vs. 48.7

4.2 LATENT DIFFUSION NOISE OPTIMIZATION-BASED CONTROL USING DART

Text-conditioned motion in-between. Motion in-betweening aims to generate realistic motion
frames that smoothly transition between a pair of history and goal keyframes. We consider a text-
conditioned variant where an additional text prompt is inputted to specify the action semantics of
the frames in between. We compare our method with DNO (Karunratanakul et al., 2024b) and
OmniControl (Xie et al., 2024). For a fair comparison, we train DART on the HML3D dataset same
as the baselines. We evaluate using test sequences covering diverse actions, with the sequence lengths
ranging from 2 to 4 seconds. The quantitative evaluations are shown in Tab. 3. We report the L2 norm
errors between the generated motion and the history motion and goal keyframe. We also evaluate
the motion realism with the skate and jerk metrics. The skate metric (Ling et al., 2020; Zhang et al.,
2018) calculates a scaled foot skating when in contact with the floor: s = disp · (2 − 2h/0.03),
where disp is the foot displacement in two consecutive frames, h denotes the higher foot height in
consecutive frames and 0.03m is the threshold value for contact. We do not calculate skate metric
for sequences where the feet are not on a flat floor, such as crawling and climbing down stairs. Our
method can generate the motions closest to the keyframe and show fewer skating and jerk artifacts.
Our method effectively preserves the semantics specified by the text prompts, while the baseline
DNO occasionally ignores the text prompts to reach the goal keyframe, as illustrated in the examples
of pacing in circles and dancing in the supplementary video. This highlights the superior capability of
our latent motion primitive-based DART in harmonizing spatial control and text semantic alignment.

Table 3: Quantitative evaluation of text-conditioned motion in-between. The best results excluding
the dataset are in bold and ‘±’ indicates the 95% confidence interval.

History error (cm)↓ Goal error (cm)↓ Skate (cm/s)↓ Jerk↓
Dataset 0.00 ± 0.00 0.00 ± 0.00 2.27 ± 0.00 0.74 ± 0.00
OmniControl 21.22 ± 2.86 7.79 ± 1.91 4.97 ± 1.31 1.41 ± 0.08
DNO 1.20 ± 0.20 4.24 ± 1.34 5.38 ± 0.70 0.65 ± 0.06
Ours 0.00 ± 0.00 0.59 ± 0.01 2.98 ± 0.32 0.61 ± 0.01

Human-scene interaction. We qualitatively show that our latent noise optimization control can
be applied to human-scene interaction synthesis, where the goal is to control the human to interact
naturally with the surrounding environment. Given an input 3D scene and the text prompts specifying
the actions and durations, we use latent noise optimization to control the human to reach the goal
joint location while adhering to the scene contact and collision constraints. The input scenes are
represented as signed distance fields for evaluating human-scene collision and contact constraints as
detailed in Appendix F. We present generated interactions of climbing stairs and walking to sit on a
chair in Fig. 3 and the supplementary video.
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(a) Walk, turn left, sit on the chair (b) Walk upstaris (c) Walk downstaris

Figure 3: Illustrations of human-scene interaction generation given text prompts and goal pelvis joint
location (visualized as a red sphere). Best viewed in the supplementary video.

4.3 REINFORCENT LEARNING-BASED CONTROL USING DART

By integrating DART with reinforcement learning-based control, we train text-conditioned goal-
reaching policy models capable of three locomotion styles: ‘walk’, ‘run’, and ‘hop on the left leg’.
We evaluate goal-reaching on paths consisting of sequences of waypoints. We compare our method to
a baseline GAMMA (Zhang & Tang, 2022), which also trains goal-reaching policies with a learned
motion action space. Unlike DART, GAMMA lacks text conditioning and is limited to generating
walking motions. The evaluation metrics include the reach time, the success rate of reaching the final
goal waypoint, foot skating, and foot-floor distance. The evaluation results are shown in Tab. 4. Our
policy consistently reaches all goals within a reasonable timeframe, while GAMMA occasionally
fails to meet the final goal and may float off the floor beyond the contact threshold. Moreover, our
text-conditioned goal-reaching policy achieves a generation speed of 240 frames per second. These
results demonstrate the potential of DART as a foundational human motion model, upon which
versatile control models for various tasks can be learned through reinforcement learning.

Table 4: Quantitative evaluation of text-conditioned goal-reaching controller. The best results are in
bold and ‘±’ indicates the 95% confidence interval.

Time (s)↓ Success rate↑ Skate (cm/s) ↓ Floor distance (cm)↓
GAMMA walk 31.44 ± 2.58 0.95 ± 0.03 5.14 ± 1.58 5.55 ± 0.84
Ours ‘walk’ 17.08 ± 0.05 1.0 ± 0.0 2.67 ± 0.12 2.24 ± 0.02
Ours ‘run’ 10.55 ± 0.06 1.0 ± 0.0 3.23 ± 0.24 3.86 ± 0.05
Ours ‘hop on left leg’ 20.50 ± 0.24 1.0 ± 0.0 2.22 ± 0.12 4.11 ± 0.07

5 LIMITATIONS AND CONCLUSIONS

DART relies on motion sequences with frame-level aligned text annotations, as in BABEL, to achieve
precise text-motion alignment and natural transition between actions. When trained on the coarse
sentence-level motion labels from HML3D, the text-motion alignment degenerates for texts describing
multiple actions, resulting in motions randomly switching between the described actions in a random
order. This occurs because each short motion primitive inherently matches only a portion of the
sequence’s semantics. Using a coarse sentence-level description as the text label for a primitive causes
semantic misalignment and ambiguity. We aim to explore hierarchical latent spaces to effectively
tackle both fine-grained and global sequence-level semantics (Stoffl et al., 2024) in the future.

Our method DART effectively learns a text-conditioned motion primitive space that enables real-time
online motion generation driven by natural languages. Additionally, the learned powerful motion
primitive space allows for precise spatial motion control via latent noise optimization or reinforcement
learning policies. Experiments demonstrate the superiority of DART in harmonizing spatial control
with motion text-semantic alignment in the generated motions.
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A MOTION PRIMITIVE REPRESENTATION

Representation. We represent each frame of the motion primitive as a tuple of
(t,R,θ,J,dt,dR,dJ), where t ∈ R3 denotes the global body translation, R ∈ R6 denotes the
6D rotation representation (Zhou et al., 2019) of the global body orientation, θ ∈ R21×6 is the 6D
representation of 21 joint rotations, J ∈ R22×3 denotes the 22 joints locations, dt ∈ R3 denotes the
temporal difference with previous frame’s translation, dR ∈ R6 denotes the 6D representation of the
relative rotation between current and previous frame’s body orientation, and dJ ∈ R22×3 denotes the
temporal diffence between current and previous frame’s joint locations.

Our motion representation is overparameterized (Holden et al., 2017; Ling et al., 2020; Rempe
et al., 2021; Guo et al., 2022), with multiple benefits. Firstly, the joint rotation components θ
are compatible with animation pipelines, saving the time-consuming optimization-based skeleton-
to-body conversion required by the commonly used HML3D (Guo et al., 2022) representation in
text-to-motion methods. Moreover, including the joint location components J facilitates solving
physical constraints like reducing foot skating and joint trajectory control. Our motion representation
also models the first-order kinematics with the temporal difference features to improve the motion
naturalness.

Canonicalization. We represent motion primitives in a human-centric local coordinates frame to
canonicalize the primitive features and facilitate model learning. Each motion primitive is canonical-
ized in a local coordinates system centered at the first frame body. The origin is located at the pelvis
of the first frame body, the X-axis is the horizontal projection of the vector pointing from the left hip
to the right hip, and the Z-axis is pointing in the inverse gravity direction. Given the pelvis, left hip,
and right hip joints, the origin is located at the pelvis joint, and the local axis system can be derived
by:

Algorithm 3 Motion primitive rotation canonicalization

Input: right_hip ∈ R3, left_hip ∈ R3

x_axis = right_hip - left_hip
x_axis[2] = 0 ▷ Project to the xy plane
normalize(x_axis)
z_axis = [0, 0, 1] ▷ Inverse gravity direction
y_axis = cross_porudct(z_axis, x_axis)
normalize(y_axis)
return [x_axis, y_axis, z_axis]

We store the canonicalization transformations and apply their inverse transformation to the generated
motion primitives to recover global motions in the world coordinates.

B DATASETS

We train separate DART models on motion-text data from the BABEL (Punnakkal et al., 2021)
and HML3D (Guo et al., 2022) dataset. Both BABEL and HML3D use motion sources from the
AMASS (Mahmood et al., 2019) dataset. Their main difference is that BABEL features fine-grained
frame-level text annotation while HML3D uses coarse sequence-level annotation.

The BABEL dataset contains motion capture sequences with frame-aligned text labels that annotate
the fine-grained semantics of actions. Fine-grained text labels in BABEL allow models to learn
precise human action controls and natural transitions among actions. We use the motion data at a
framerate of 30 frames per second the same as prior works (Barquero et al., 2024; Athanasiou et al.,
2022). During training, motion primitives are randomly sampled from data sequences and the text
label is randomly sampled from all the action segments that overlap with the primitive. To alleviate
the action imbalance in the BABEL dataset, we use the provided action labels to perform importance
sampling during training so that the motion data of each action category has roughly equal sampling
chances despite their varying frequency in the original dataset. To maintain compatibility with prior
works, we fix the human gender to male and set the body shape parameter to zero.
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The HML3D dataset contains short motions with coarse sequence-level sentence descriptions. We
only use a subset of HML3D in training since its subset HumanAct12 and left-right mirroring motion
sequences only provide joint locations instead of SMPL (Loper et al., 2015; Pavlakos et al., 2019)
body sequences that our motion representation requires. The joint rotations used in the original
HML3D are calculated using naive inverse kinematics and can not be directly used to animate
human motions. We therefore only train using the subset where the SMPL body motion sequences is
available. The HML3D motions are sampled at a framerate of 20 frames per second. During training,
we randomly sample primitives with uniform probability and the text label is randomly chosen from
one of the multiple sentence captions of the overlapping sequence. To maintain compatibility with
prior works, we fix the human gender to male and set the body shape parameter to zero.

C MOTION PRIMITIVE VAE

Architecture. Our Motion Primitive VAE employs the transformer-based architecture. Both the
encoder and decoder consist of 7 transformer encoder layers with skip connections (Chen et al.,
2023b). The transformer layers use the dropout rate of 0.1, feed-forward dimension of 1024, hidden
dimension of 256, 4 attention heads, and the gelu activation function. The latent space dimension is
256. After finishing training, we follow (Rombach et al., 2022) to calculate the variance of the latent
variables using a data batch. When training the latent denoiser model, the raw latent output from the
encoder is scaled to have a unit standard deviation.

Losses. The motion primitive VAE is trained with the following losses:

LV AE = Lrec + wKL × LKL + waux × Laux+wSMPL × LSMPL. (4)

The reconstruction loss Lrec aims to minimize the distance between the reconstructed future frames
X̂ and the ground truth future frames X as follows:

Lrec = F(X̂,X), (5)

where F(·, ·) denotes the distance function and we use the smoothed L1 loss(Girshick, 2015) in
implementation.

The Kullback-Leibler divergence (KL) term LKL penalizes the distribution difference between the
predicted distribution and a standard Gaussian:

LKL = KL(q(z|H) ∥ N (0, I)), (6)

where KL(·, ·) denotes the Kullback-Leibler divergence (KL), and q(z|H) denotes the predicted
distribution from the encoder E . We use a small KL term of 1e−6 following Rombach et al. (2022)
as we aim to keep the latent space expressive and only use the small KL loss to avoid arbitrarily
high-variance latent spaces.

The auxiliary loss Laux regularizes the predicted temporal difference features d̂· of translations,
global orientation, and joints to be close to the actual temporal differences d̄· calculated from the
predicted motion features:

Laux = F(d̄t, d̂t) + F(d̄J, d̂J) + F(d̄R, d̂R). (7)

For instance, the difference of the first two frames of the predicted root translation (d̄t0 := t̂1 − t̂0)
should be consistent with the predicted first frame root translation difference feature d̂t

0
. We use

waux = 100 in our experiments.

The SMPL losses LSMPL consist of two components: the SMPL-based joint reconstruction loss
Ljoint_rec, and the joint consistency loss Lconsistency. The SMPL losses LSMPL are defined as
follows:

LSMPL = Ljoint_rec + Lconsistency. (8)

The SMPL joint reconstruction loss Ljoint_rec penalizes the discrepancy between the joints regressed
from the predicted body parameters and those regressed from the ground truth body parameters:

Ljoint_rec = F(J (t̂, R̂, θ̂),J (t,R,θ)), (9)
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whereJ denotes the SMPL body joint regressor that predicts joint locations given the body parameters.
The SMPL body shape parameter β is assumed to be zero and ignored for simplicity here.

The joint consistency loss Lconsistency regularizes the predicted joint locations and predicted SMPL
body parameters consistently represent the same body joints:

Lconsistency = F(Ĵ,J (t̂, R̂, θ̂)). (10)

We use wSMPL = 100 in our experiments. We train the motion primitive VAE with the AdamW
(Kingma & Ba, 2015) optimizer and the learning rate is set to 1e−4 with linear annealing.

We conduct ablation studies on the impacts of the losses. We evaluate motion primitive VAEs
trained with different loss weights on autoregressive motion sequence reconstruction error and motion
jittering in reconstructed motions. Using large KL loss weight of wKL = 1, reduces the model
expressiveness (the reconstruction error increases from 0.08 to 0.44 compared to wKL = 1e−6 on the
test motions) and fails to accurately reconstruct complex sequences like cartwheeling. Using a small
KL loss weight of wKL = 1e−6 can maintain the expressiveness of the learned VAE while allowing
the latent distribution to deviate a bit more from a standard Gaussian. Applying the auxiliary losses
with waux = 100 helps to reduce the jittering in the reconstructions and improve the motion quality
compared to using waux = 0, as reflected by a smaller jerk metric of 2.45 when using waux = 100
compared to a jerk of 3.67 when using waux = 0.

D LATENT DENOISER MODEL

D.1 LOSSES

We train the latent denoiser model using DDPM (Ho et al., 2020) with 10 diffusion steps and use a
cosine noise scheduler. The denoiser model is trained with the following losses:

Ldenoiser = Lsimple + wrec × Lrec + waux × Laux, (11)

Lsimple = E(z0,c)∼q(z0,c), t∼[1,T ], ϵ∼N (0,I)F(G(zt, t,H, c), z0), (12)

where F(·, ·) is a distance function and we use the smooth L1 loss (Girshick, 2015) in our implemen-
tation. We train the denoiser to predict the clean latent variable with the simple objective Lsimple, and
apply the feature reconstruction loss Lrec and auxiliary losses Laux on the decoded motion primitive
X̂ = D(G(zt, t,H, c)) to ensure the decoded motion primitives are valid.

D.2 SCHEDULED TRAINING

We use scheduled training to improve the stability of long sequence generation and the text prompt
controllability. Long-term prediction stability is a significant challenge in autoregressive generation
since the sample distribution can drift and accumulate during autoregressive generation. When the
sample drifts out of the distribution covered by the learned model, the generation results can go wild.
Our latent motion primitive model also faces the long-term stability challenge as an autoregressive
method.

To alleviate the out-of-distribution problems, we use the scheduled training (Ling et al., 2020; Bengio
et al., 2015; Rempe et al., 2021; Martinez et al., 2017) to progressively introduce the test-time
distributions during training. Specifically, we train the latent denoiser model on sequences of N
consecutive motion primitives and use the prediction result of the previous motion primitive instead of
the ground truth dataset to extract the history motion input H. We name such history motion extracted
from the predicted last primitive as rollout history. Using the rollout history instead of the ground
truth history introduces the test-time distribution which can differ from the dataset distribution, e.g.,
unseen human poses or out-of-distribution combinations of human bodies and text labels. Exposing
the model to such test-time distribution at training can improve the long-term generation stability and
increase the text controllability when facing novel combinations of history motion and text prompts
at generation time.

The scheduled training has three stages to progressively introduce the rollout history. The first stage
is fully supervised training where only the ground truth history is used during training. The second
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scheduled learning stage randomly replaces the ground truth history motion with rollout history
motion by a probability linearly increasing from 0 to 1. The third stage of rollout training always
uses the rollout history instead of the ground truth history. The scheduled training algorithm for the
latent denoising model is shown in Alg. 5.

Algorithm 4 Calculate rollout probability

1: Input: current iteration number iter, number of train iterations in the first supervised stage I1,
number of train iterations in the second scheduled stage I2

2: Output: rollout probability p
3: function ROLLOUT_PROBABILITY(iter, I1, I2)
4: if iter ≤ I1 then ▷ no rollout in the first supervised stage
5: p← 0
6: else if iter > I1 + I2 then ▷ the third rollout stage always use rollout
7: p← 1
8: else ▷ linearly scheduled rollout probability in the second scheduled stage
9: p← iter−I1

I2
10: end if
11: return p
12: end function

We use wrec = 1 and waux = 10000 in our experiments. We do not use the SMPL losses LSMPL in
training the denoiser model because the SMPL body model inference process slows down the training.
The denoiser model is trained using an AdamW optimizer. The learning rate is set to 1e−4 with
linear annealing. Our denoiser model is trained with scheduled training (Ling et al., 2020; Bengio
et al., 2015), consisting of a fully supervised stage of 100K iterations, a scheduled stage of 100K
iterations, and a rollout stage of 100K iterations. We set the maximum number of rollouts as 4. With
the scheduled training, our latent motion primitive model can stably generate long motion sequences
and better respond to the text prompt control even at poses that are not paired with the text prompt in
the dataset.

E TEXT-CONDITIONED TEMPORAL MOTION COMPOSITION

E.1 EXPERIMENT DETAILS

We apply DART to conduct online motion generation using the rollout algorithm 1 with a default
seed motion Hseed of rest standing and using a classifier-free guidance weight of 5. We use the
released checkpoints of FlowMDM (Barquero et al., 2024), TEACH (Athanasiou et al., 2022),
and DoubleTake (Shafir et al., 2024) for baseline comparison. We adjust the handshake size and
blending length of DoubleTake to be compatible with the shortest segment length of 15 frames. The
history-conditioned modification of T2M-GPT is retrained on the BABEL dataset using the original
hyperparameters. At generation time, the last frames of the previous action segment are encoded into
tokens and provided as the first tokens when generating the next action segment to provide history
conditioning of the previous action.

We extract the timeline of action segments for evaluation from the BABEL (Punnakkal et al., 2021)
valid set. For each sequence in the validation set, we sort the original frame labels provided by
BABEL to obtain a list of tuples of text prompts and durations. We randomly sample one text
label when a segment is annotated by multiple texts. We skip the ‘transition’ text labels due to the
ambiguous semantics and clamp the duration length with a minimum of 15 frames.

E.2 HUMAN PREFERENCE STUDIES.

We conduct human preference studies to quantitatively compare our method DART with baselines
to provide a more comprehensive and convincing evaluation. We run human preference studies on
Amazon Mechanical Turk(AMT) to evaluate generation realism and text-motion semantic alignment.
Participants are given generation results from two different methods and are asked to select the
generation that is perceptually more realistic or better aligns with the action text stream in subtitles, as
illustrated in Fig. 4. During the realism evaluation, action descriptions were not displayed to eliminate
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Algorithm 5 Scheduled training for the latent denoising model

1: Input: pretrained motion primitive decoder D and encoder E , latent variable denoiser Gθ
parameterized by θ, total diffusion steps T , optimizer O, loss criterion L, train dataset X .

2: Scheduled training parameters: the number of train iterations in the first supervised stage I1,
the number of train iterations in the second scheduled stage I2, the number of train iterations in
the third rollout stage I3, the maximum number of primitive rollouts N during training.

3:
4: Itotal ← I1 + I2 + I3
5: iter ← 0
6: while iter < Itotal do
7: [Hseed,X

1, c1, ...,XN , cN ] ∼ X
8: ▷ sample N consecutive motion primitives with text labels from dataset X
9: H← Hseed ▷ initialize motion history

10: for i← 1 to N do ▷ number of rollouts
11: zi0 = E(H,Xi) ▷ compress motion primitive into latent space
12: t ∼ U [0, T ) ▷ sample diffusion step t
13: zit ← FORWARD_DIFFUSION(zi0, t)
14: ẑi0 = Gθ(zit, t,H, ci) ▷ latent denoising model prediction
15: X̂ = D(H, ẑi0) ▷ decode predicted latent variable to future motion frames
16: ∇ ← ∇θL(zi0, ẑi0,H,Xi, X̂i) ▷ model parameter gradient calculation
17: θ ← O(θ,∇) ▷ model update using optimizer
18:
19: p← ROLLOUT_PROBABILITY(iter, I1, I2)
20: ▷ update history motion using predicted or GT motion by a scheduled probability
21: if rand() < p then ▷ use predicted rollout history
22: ziT ← FORWARD_DIFFUSION(zi0, T ) ▷ maximum noising simulating inference time
23: ẑi0 = DDPM_SAMPLE(GΘ, ziT , T,H, ci) ▷ full DDPM denoising loop
24: X̂ = SG(D(H, ẑi0)) ▷ decode predicted latent variable and stop gradient
25: H← CANONICALIZE(X̂F−H+1:F )
26: else ▷ use ground truth history
27: H← CANONICALIZE(XF−H+1:F )
28: end if
29:
30: iter ← iter + 1
31: end for
32: end while

distractions. We sample 256 sequences of action texts and durations from the BABEL dataset and
use each method to generate motions given the action timelines. Participants are shown random pairs
of results from our method and a baseline, and they are asked to choose the better generation. Each
comparison is voted by 3 independent participants, with the video pairs randomly shuffled to ensure
that participants do not know the method source.

E.3 ABLATION STUDIES.

We conduct ablative studies on architecture designs, diffusion steps, primitive representation, and
scheduled training on the text-conditioned motion composition task.

Removing the variational autoencoder (DART-VAE) and training diffusion model in the raw motion
space results in a significantly higher jittering as reflected by the peak jerk (PJ) and Area Under Jerk
(AUJ) metrics. This validates the effectiveness of integrating the variational encoder to compress the
high-frequency noise in motion data and improve motion generation quality.

Without the scheduled training (DART-schedule), the model can not effectively respond to text
control and have significantly worse R-Prec and FID metrics. This is because, without scheduled
training, the model can easily encounter out-of-distribution combinations of history motion and text
prompts during autoregressive generation.
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Figure 4: Illustration of the human preference study interface for evaluating motion-text semantic
alignment (top) and perceptual realism(bottom). Participants are requested to select the generation
that is perceptually more realistic or better aligns with the action descriptions in subtitles (only visible
in semantic preference study).

We also include the ablation study of training a model to predict the single next frame conditioned
on the current frame (per frame) as used in Shi et al. (2024). This is a special case of primitive
with history length H = 1 and future length F = 1. The ablative model has significantly worse
R-Prec and FID metrics and cannot respond to text prompts. This indicates using frame-by-frame
prediction is less effective than primitives with a reasonable horizon (H = 2, F = 8) in learning
text-conditioned motion space.

DART can learn high-quality text-conditioned motion primitive models using very few diffusion
steps because of the simplicity of the primitive representation. We conduct ablative studies of training
DART using different numbers of DDPM diffusion steps. Reducing the diffusion steps from 100 to
fewer than 10 does not significantly affect performance. However, an extremely low diffusion step
number of 2 leads to a much higher FID, indicating poorer motion quality.

Table 5: Ablation studies results on text-conditioned temporal motion composition. The first row
includes the metrics of the dataset for reference. Symbol ‘→’ denotes that closer to the dataset
reference is better and ‘±’ indicates the 95% confidence interval.

Segment Transition
FID↓ R-prec↑ DIV → MM-Dist↓ FID↓ DIV → PJ→ AUJ ↓

Dataset 0.00±0.00 0.72±0.00 8.42±0.15 3.36±0.00 0.00±0.00 6.20±0.06 0.02±0.00 0.00±0.00
Ours 3.79±0.06 0.62±0.01 8.05±0.10 5.27±0.01 1.86±0.05 6.70±0.03 0.06±0.00 0.21±0.00
DART-VAE 4.23±0.02 0.62±0.01 8.33±0.12 5.29±0.01 1.79±0.02 6.73±0.23 0.20±0.00 0.96±0.00
DART-schedule 8.08±0.09 0.39±0.01 8.05±0.12 6.96±0.03 7.41±0.10 6.58±0.06 0.03±0.00 0.18±0.00
per frame(H=1,F=1) 10.31±0.09 0.29±0.01 6.82±0.13 7.41±0.01 7.82±0.09 6.03±0.08 0.02±0.00 0.08±0.00
H=2,F=16 4.04±0.10 0.66±0.00 8.20±0.06 4.96±0.01 2.22±0.10 6.60±0.20 0.06±0.00 0.18±0.00
steps 2 4.44±0.04 0.60±0.00 8.20±0.15 5.38±0.01 2.24±0.02 6.77±0.07 0.05±0.00 0.20±0.00
steps 5 3.49±0.09 0.63±0.00 8.25±0.15 5.18±0.01 2.11±0.07 6.74±0.11 0.05±0.00 0.20±0.00
steps 8 3.70±0.03 0.62±0.01 8.04±0.13 5.25±0.03 2.15±0.08 6.72±0.15 0.06±0.00 0.20±0.00
steps 10 (Ours) 3.79±0.06 0.62±0.01 8.05±0.10 5.27±0.01 1.86±0.05 6.70±0.03 0.06±0.00 0.21±0.00
steps 50 3.82±0.05 0.60±0.00 7.74±0.07 5.30±0.01 2.11±0.10 6.58±0.10 0.06±0.00 0.22±0.00
steps 100 4.16±0.06 0.61±0.00 7.82±0.15 5.32±0.02 2.20±0.05 6.43±0.10 0.06±0.00 0.21±0.00
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F LATENT DIFFUSION NOISE OPTIMIZATION-BASED CONTROL

Optimization details. We use the Adam (Kingma & Ba, 2015) optimizer with a learning rate of
0.05 to optimize latent noises ZT for 100 to 300 steps. The learning rate is linearly annealed to 0
and the gradient is normalized to stabilize optimization. The latent noises are initialized by sampling
from Gaussian distributions. Empirically, we observe that initializing these latent noises with a small
variance, such as 0.01, slightly improves the jerk and skate metrics at the cost of reduced motion
diversity in the in-between experiment, compared to a unit variance initialization. The optimization
running time is dependent on both the motion sequence length and the number of optimization steps.
An example experiment of a target motion sequence of 60 frames and 100 optimization steps costs
around 74 seconds.

Human-scene interaction. In human-scene interaction synthesis, we use two scene constraints to
avoid human-scene collision and foot-floating artifacts. To reduce human-scene interpenetration,
cons_coll(·) penalizes joints that collide into scenes and exhibit negative SDF values in each frame:

cons_coll(J) = −
22∑
k=1

(Ψ(Jk)− τ k)− (13)

where Jk denotes the location of the k-th joint in the scene coordinates, Ψ(·) denotes the signed
distance function returning the signed distance from the query joint location to the scene, τ denotes
the joint-dependent contact threshold values, which are determined by the joint-skin distance in
the rest pose, and (·)− denotes clipping positive values. To reduce the occurrence of foot-floating
artifacts, cons_cont(·) encourages the foot to be in contact with the scene in every frame and is
defined as:

cons_cont(J) = ( min
k∈Foot

Ψ(Jk)− τ)+ (14)

where Foot denotes the set of foot joint indices, τ denotes the foot-floor contact threshold distance,
and (·)+ denotes clipping negative values.

G REINFORCEMENT LEARNING-BASED CONTROL

Architecture. Both the actor and critic networks are 4-layer MLPs with residual connections and a
hidden dimension of 512. We apply the tanh scaling: x = 4 · tanh(x) (Ling et al., 2020) to the actor
output to clip the action prediction in the range of [−4, 4], avoiding unbounded action predictions.
The actor networks are initialized with close to zero weights to boost policy training following
(Andrychowicz et al., 2021). The observation input contains a 512D text embedding, a 552D of
history motion, a 1D observation of floor height relative to the human pelvis, a 1D observation of the
floor plane distance from the pelvis to the goal location, and a 3D unit vector of the goal direction
in the human-centric coordinates frames. We clamp the goal distance observation with a maximum
value of 5m and the goal direction in the range of a 120-degree field of view to simulate egocentric
human perception.

Rewards. The text-conditioned goal-reaching control policies are trained to maximize the discounted
expectation of the following rewards (Zhang & Tang, 2022; Li et al., 2024a; Zhao et al., 2023):

We use three distance-related rewards to encourage the human agent to minimize its distance to the
goal location.

rdist = di−1 − di (15)
The distance reward rdist encourages the human to get closer to the goal location, where di is the 2D
distance between the human pelvis and the goal location at step i.

rsucc =

{
1 if di < 0.3

0 otherwise
(16)

The success reward succ gives a sparse but strong reward when the human arrives at the goal, where
0.3m is the success threshold value.

rori =
⟨pi − pi−1, g − pi−1⟩+ 1

2
, (17)
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The moving orientation reward encourages the moving orientation to be aligned with the goal
orientation, where pi is the human pelvis location at step i, and g is the goal location.

Moreover, we apply scene constraints-related rewards to discourage unnatural behaviors such as foot
skating and collision with the floor.

rskate = −disp · (2− 2h/0.03), (18)

The skate reward rskate penalizes foot displacements when in contact with the floor, where disp is
the foot displacement in two consecutive frames, h denotes the higher foot height in two consecutive
frames and 0.03m is the threshold value for contact.

rfloor = −(|lf | − 0.03)+, (19)

The floor contact reward rfloor penalizes when the lower foot distance to the floor is above the
threshold of 0.03m, where lf denotes the height of the lower foot, | · | denotes the absolute value
operator, and (·)+ is the clipping operator with a minimum of 0.

The rewards are weighted with wdist = 1, wsucc = 1, wori = 0.1, wskate = 100, wfloor = 10 for
hopping and running and wfloor = 100 for walking.

H COMBINATION WITH PHYSICS-BASED MOTION TRACKING

Our method, DART, enables real-time motion generation in response to online text prompts. However,
as a kinematic-based approach, DART may produce physically inaccurate motions with artifacts
such as skating and floating. To address this, we demonstrate that DART can be integrated with
physically simulated motion tracking methods, specifically PHC (Luo et al., 2023), to generate
more physically plausible motions. In Fig. 5, we present an example sequence of a person crawling.
The raw generation results from DART exhibit artifacts such as hand-floor penetration. Applying
physics-based tracking to refine the raw motion successfully produces more physically plausible
results, improving joint-floor contact and eliminating penetration artifacts. This integration combines
the versatile text-driven motion generation of DART with the physical accuracy provided by the
physics-based simulation. Given the real-time capabilities of both DART and PHC, it is possible
to leverage physics to correct the kinematic motion generated by DART on the fly and then use the
corrected motions for subsequent online generation.

(a) Crawling sequence generated by DART (b) Physics-based motion tracking result

Figure 5: We demonstrate an example of integrating DART with the physics-based motion tracking
method PHC (Luo et al., 2023) to achieve more physically plausible motions. The left image illustrates
a crawling sequence generated by DART, exhibiting artifacts such as hand-floor penetration. The right
image displays the physics-based motion tracking outcome applied to the raw generated sequence,
which enhances joint-floor contact and resolves the hand-floor penetration issue.
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I DISCUSSION OF LONG ROLLOUT RESULTS GIVEN A SINGLE TEXT PROMPT

Our DART can autoregressively generate perpetual rollouts of actions that are inherently repeatable
and extendable. For example, DART can produce minutes-long sequences of continuous human
motion, such as jogging in circles, performing cartwheels, or dancing. These actions are inherently
repeatable, and such extensions are also represented in the AMASS (Mahmood et al., 2019) dataset.
DART can stably generate minutes-long rollouts of the same action, enabled by its autoregressive
motion primitive modeling and scheduled training scheme.
Some other actions, however, have inherent boundary states that mark the completion of the action.
For instance, “kneel down” reaches a boundary state where the knees achieve contact with the floor.
Further extrapolation of “kneel down” beyond this boundary state is not represented in the dataset and
is not intuitively anticipatable by humans, as no further motion logically extends within the action
semantics. Continuing rollout using the “kneel down” text prompt results in motions exhibiting
fluctuations around the boundary state.
In summary, long rollout results given a single text prompt will repeat naturally or fluctuate around a
boundary state, depending on the inherent nature of the action and its representation in the dataset.
We provide video results of minutes-long rollout generation results on our project website.

J DISCUSSION ON OPEN-VOCABULARY MOTION GENERATION

Limited vocabulary is a critical limitation and challenge shared by existing text-conditioned motion
generation methods. Existing methods, including our approach DART, struggle to generalize to
open-vocabulary text prompts due to the scarcity of 3D human motion data with text annotations. The
scale of motion data available is several orders of magnitude smaller than that for text-conditioned
image and video generation, primarily due to the reliance on marker-based motion capture systems,
which are challenging to scale.
To expand the dataset and enable open-vocabulary generation, extracting human motion data from
in-the-wild internet videos and generative image/video models (Kapon et al., 2024; Goel et al., 2023;
Lin et al., 2023; Shan et al., 2024), is a promising direction. Additionally, the rapid advancement of
vision-language models (VLMs) holds promise for automatically providing detailed, frame-aligned
motion text labels to facilitate text-to-motion generation (Shan et al., 2024; Dai et al., 2023).

K COMPUTING RESOURCES

Our experiments and performance profiling are conducted on a workstation with single RTX 4090
GPU, intel i7-13700K CPU, 64GiB memory. The workstation runs with Ubuntu 22.04.4 LTS system.
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https://zkf1997.github.io/DART/
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