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Abstract

Complex-valued representation exists inherently in the time-sequential data that
can be derived from the integration of harmonic waves. The non-stationary spectral
kernel, realizing a complex-valued feature mapping, has shown its potential to
analyze the time-varying statistical characteristics of the time-sequential data, as
a result of the modeling frequency parameters. However, most existing spectral
kernel-based methods eliminate the imaginary part, thereby limiting the representa-
tion power of the spectral kernel. To tackle this issue, we propose a generalized
spectral kernel network, namely, Complex-valued spectral kernel Network (Cos-
Net), which includes spectral kernel mapping generalization (SKMG) module
and complex-valued spectral kernel embedding (CSKE) module. Concretely, the
SKMG module is devised to generalize the spectral kernel mapping in the real
number domain to the complex number domain, recovering the inherent complex-
valued representation for the real-valued data. Then a following CSKE module
is further developed to combine the complex-valued spectral kernels and neural
networks to effectively capture long-range or periodic relations of the data. Along
with the CosNet, we study the effect of the complex-valued spectral kernel map-
ping via theoretically analyzing the bound of covering number and generalization
error. Extensive experiments demonstrate that CosNet performs better than the
mainstream kernel methods and complex-valued neural networks.

1 Introduction

Complex numbers represent the information of the amplitude and phase simultaneously. In contrast
to the amplitude, which can be revealed by the real number, the phase can denote the time delay
and advance, thereby encoding the temporal dependency of the data|Hirose| [[2003[]. This suggests
that complex-valued models can be employed in some practical applications, especially for the time-
sequential data where information is wave-related, such as signal analysis|Hirose ef al.|[2019];|Yu et al.
[2019]];|Zeng et al.|[2022]], speech processing Shafran ez al.|[2018]], and time series classification Yang
et al.|[2020,2017]); [Wisdom et al.| [2016].

In the learning community, the spectral kernel, which is constructed from the inverse Fourier transform,
can naturally realize the complex-valued mapping. That said, the spectral kernel can analyze the data
in the frequency domain directly. As a candidate of the spectral kernel family, the non-stationary
spectral kernel is also proposed to conquer the local limitations of the classical kernels, such as
stationarity and monotonicity [Remes et al.|[2017]]; Tompkins et al.| [2020]; Ton et al.| [2018]]; L1
et al.|[2020]. Ideally, these advanced kernels can extract appropriate non-stationary time-varying
characteristics of the data by modeling the frequency parameters, and hence infer the long-range or
periodic relations of the input data.
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However, most existing methods usually eliminate the imaginary part of the spectral kernel mapping
arbitrarily for the convenience of calculation. For example, Rahimi and Recht| [2007]]; /Zhang et al.
[2017a] ignore the imaginary part directly by replacing the integrand e/ (®~2") with cos(w(x —'));
Xue et al. eliminates the imaginary part with an elaborate spectral density function definition for
the non-stationary spectral kernel Xue et al|[2019]. Remarkably, existing research shows that
complex numbers could lead to a rich representational capability for wave-related information
processing |Wisdom et al.|[2016]; Danihelka ez al.|[2016[]; Worrall et al.|{[2017]]; Trouillon and Nickel
[2017]. However, simply plugging the imaginary part in the neural networks does not ensure that the
model retains the property of the spectral kernel. Therefore, more efforts are required to develop a
new framework that can involve the imaginary part in spectral kernel networks.

In this paper, we propose a new framework that generalizes the spectral kernel that endows with
the complex-value representation, and we name it as a complex-valued spectral kernel network
(CosNet). The proposed CosNet includes two modules: the spectral kernel mapping generalization
(SKMG) module and the complex-valued spectral kernel embedding (CSKE) module. Technically,
we generalize the spectral kernel mapping in the real number domain to the complex number domain
by defining the spectral density function in the SKMG module. We further embed the complex-valued
spectral kernel into neural networks to attain the proposed CosNet using the CSKE module. It is noted
that a new initialization scheme is also proposed for the CSKE module that adopts the cosine and
sine functions as the activation for the real and imaginary parts of the weight matrix. This initializing
scheme retains the statistical characteristics of the non-stationary spectral kernel. It enables CosNet
to take the relative distance of data into account by shifting between phases, such that capture the
long-range or periodic relations of data in the complex domain without increasing the number of
parameters. Our contributions in this paper are shown as follows:

* We propose a complex-valued spectral kernel network, i.e., CosNet, which takes both the
real and imaginary parts of the spectral kernel mapping into account and thus improves the
representational capability of the spectral kernel.

* We propose an initialization scheme for the complex-valued weight matrix, which ensures
that CosNet retains the property of non-stationary spectral kernels and takes the relative
distance of data in the complex number domain without increasing the number of parameters.

* We provide the lower generalization bound of CosNet than the real-valued non-stationary
spectral kernel.

» Thorough experiments demonstrate that our proposed method is totally superior to state-of-
the-art kernel methods.

2 Related Work

Spectarl kernel networks Spectral approaches were developed to fully characterize general
kernels with concise representation forms, such as sparse spectrum kernels [Lazaro-Gredilla et al.
[2010], sparse mixture kernels Wilson and Adams|[2013]], non-stationary spectral kernels Remes ef
al.|[2017]], and random Fourier features methods to deal with large-scale settings |L1 ef al.|[2019]; Liu
et al.|[2021]]. These methods commonly approximated the kernel function using an explicit spectral
representation based on Bochner’s theorem Bochner and others|[[1959] and Yaglom’s theorem |[Yaglom
[1987]]. Benefiting from the outstanding representation capability of neural networks with hierarchical
nonlinear linking structures Bengio ef al.|[2006]], researchers attempt to embed spectral representation
(i.e., feature mapping of kernels) into the hierarchical architecture of neural networks to construct
spectral kernel networks. |[Zhang ef al.|[2017a] used the Random Fourier Feature to approach the
stationary kernel mapping and embedded it into each layer of DNNGs. Xue ef al.|[[2019] proposed a
deep spectral kernel network to embed the non-stationary spectral kernel into each layer of DNNs,
which can approximate most of the kernels. L1 et al.|[2020] proposed an automated spectral kernel
learning (ASKL) that incorporates the process of finding suitable non-stationary kernels and model
training. However, for convenience of calculation, these models commonly use the real-valued
representation, although spectral kernels lead to the complex-valued mapping.

Complex-valued neural networks Complex-valued neural networks (CVNNs) have shown excel-
lent efficiency compared to their real counterparts in biological Reichert and Serre|[2013]], speech
enhancement Tsuzuki et al.|[2013]];|Choi et al.|[2019], image |[Popal [2017]]; |Wen et al.|[2020], and
signal processing |Kim and Guest| [1990]; |Wilmanski ef al.|[2016]. In previous studies, researchers



commonly split the complex-valued input into a pair of real-valued inputs and fed them into the
real-valued neural networks with both real-valued weight matrix and activation function. This design
cannot exploit the advantages of complex numbers completely, and the neural network convergence
strongly depends on proper initialization and the choice of learning rate |Yang et al.| [2007]]; Zhang e
al.|[2009]]. Subsequently, CVNNs with complex-valued weight and activation functions are proposed
in the complex number domain to deal with complex-valued inputs |Hirose|[[1992]]; [Dedmari et al.
[2018]];|Zhang et al.|[2017b]]. Benefitting from the rich representation capability, researchers tend to
extend CVNNSs to other neural networks, such as complex-valued convolutional neural networks |Tra-
belsi et al.|[2018]], complex-valued residual neural networks Wang et al.|[2018]], and complex-valued
recurrent neural networks Wolter and Yao| [2018]]; |Arjovsky et al.|[2016]. All these works have
proved that the complex-valued models have a richer representational capacity and perform better on
real-world learning tasks by a set of experiments.

3 Complex-valued Spectral Kernel Networks

In this section, we first introduce concepts and notations of the non-stationary kernel and complex
numbers. Then, we provide the overall architecture of our CosNet with two modules. Moreover, we
explicitly provide the details of each module. In addition, we present a detailed analysis of CosNet.

3.1 Preliminary

To better illustrate CosNet, we introduce the necessary preliminary knowledge and notation of
non-stationary spectral kernels and complex numbers in this section.

Notations  Formally, we use R”, C", R™*™ and C™*" to denote n-dimensional Euclidean
spaces, n-dimensional complex number spaces, the space of m x n real-valued matrix and the
space of m x n complex-valued matrix. Throughout the paper, the matrices, vectors and scalars
are denoted by bold capital letters (e.g. X)), bold lower-case letters (e.g. «) and lower-case letters
(e.g. ), respectively. A complex number z € CP is represented as z = wu + iv with a real
part uw and an imaginary part v. z = u — v denotes the complex conjugate of z. For any two
complex numbers z; = uj + V1,22 = Uz +ive € C, 21 + 29 = (ug + ug) + i(v1 + v2),
z122 = (U1ug — V1V2) + (U1 V3 + v1u2). To represent the complex-valued layer with 2D features,
we allocate the first D features to represent the real component and the remaining to represent the
imaginary component.

Preliminary knowledge Non-stationary spectral kernels are constructed from inverse Fourier
transform in the frequency domain. Based on Yaglom’s theorem|Yaglom|[1987], a general kernel
k(z, ') is positive definite on R if and only if it admits the form:

k(z,x') = / gilw v
RD xRP

where p(dw, dw’) is the Lebesgue-Stieltjes measure associated with some positive semi-definite
spectral density function s(w, w’) with bounded variations. Therefore, a general kernel can be defined
as the following form:

1T

) pu(dw, dw') (1)

k(x,z') = / il == T2) g W) dwdw' (2)
RP xRP
where s(w, w’) can be understood as a joint probability density function.

3.2 Overall architecture

To explore the capability of the imaginary part in the spectral kernel networks, we propose CosNet as a
generalized framework. CosNet involves two modules: the SKMG module to achieve complex-valued
spectral kernel mapping and the CSKE module to embed the spectral kernel into neural networks.
The overall architecture is shown in Figure[T}

Concretely, the SKMG module is denoted as ®(x) via generalizing the spectral kernel mapping in
the real number domain to the complex number domain for the real-valued data . And the CSKE
module is denoted as ¥(h) via initializing complex-valued weight matrix with the cosine and sine
function for the complex-valued spectral kernel mapping h.
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Figure 1: The structure of CosNet with two modules. The SKMG module is used to map the real-
valued inputs to a complex-valued representation. The CSKE module is the complex-valued spectral
kernel embedding with our initialization.

Based on the two modules, our CosNet with [ layers is defined as :
CosNet(x) = U= .. U (x))). 3)

Moreover, the corresponding complex-valued spectral kernel is defined as:

KW (@, ') =(W! 1. 0H(®(x))), ¥ 1(... ¥ (d!(x))))) = (CosNet(z), CosNet(z')) @

where K()(x, ') denotes the I-layer complex-valued spectral kernel.

3.3 Complex-valued spectral kernel network (CosNet)

Spectral kernel mapping generalization module In this module, we generalize the spectral kernel
mapping in the real number domain to the complex number domain. Furthermore, the generalized
mapping can be used in both stationary and non-stationary spectral kernels. Here we elaborate on the
detailed process.

According to Equation (), to produce a positive semi-definite kernel, we need to include symmetries

s(w,w’) = s(w',w) and sufficient diagonal components s(w,w) and s(w’,w’). Concretely, we
. (e T Ty . . . . .

replace the exponential component e*(* =« ') in Equation (@) with (., . (z, '), which is defined

as:

1 . / / . ’ ’ . ’ . ’ ’ ’
Cw,w’ (CE,.’B,) - - |:ez(szfw Ta') + 61(w Te—w'a') + ez(szfme ) + 61(w Te—w' e ):| ) (5)

Then, we expand the exponential component to the complex-valued representation with the cosine
and sine function based on Euler’s formula, and ¢, ./ (z, ") can be rewritten as:

1
Cow (T, ) =5 [cos(me — W) +isin(w'x — W' 2)

tcos(w' 'z —w ') +isin(w Tz —w ')

teos(w'e —w'a) +isin(w 'z —w' )

(6)

tcos(w' T — W' Ta) +isin(w' Tz — w’Ta:')].

As aresult, the general spectral kernel in Equation (Z)) can be redefined as:

k(z,z') = /RD . Cww (@, ' )p(w, ') dwdw' @)

where p(w,w’) = i[s(w,w’) + s(w',w) + s(w,w) + s(w’,w’)] also can be considered as a

probability density function.



Subsequently, we approximate Equation (7)) with Monte Carlo random sampling:

k(z,x') :/ Cww (@, 2 )p(w, w')dwdw' = Ey, o p [Cw,w/(m, :c’)}
RD xRDP

M
1 .
Vi E [COS(&);I—.’I} —wita') +isin(w, © — W)
i=1

tcos(w! '@ — w] ') +isin(w] x — w; =) @)
T T

T T/)

+cos(w; ¢ —w; ') +isin(w;, T —w, T

%

tcos(w] '@ — wi'a) +isin(w, x — w;w’)}

=(@(x), B(x))

where, (w;,w;")1 is the frequency pairs, M is the sampling number.
The generalized spectral kernel mapping in Equation (8)) is defined as:
1
d(z) = i [(COS(QTw) + cos(Q' T x)) +i(sin(Q ) 4 sin(Q' T x))|, 9

and the frequency matrices 2, Q' are denoted as:

Q= [w,ws, - ,wy], QX =[w],wh, Wiy (10)

As a result, we obtain a complex-valued spectral kernel mapping. The real part of the output is
denoted as R(®(x)) = cos(Q"x) + cos(Q'Tx), and the imaginary part is denoted as 3(®(z)) =
sin(QTx) + sin(Q' T x).

Complex-valued spectral kernel embedding module In this module, we attempt to embed the
complex-valued spectral kernel into each layer of neural networks to construct CosNet. Spectral
kernel, based on the general Fourier analysis, provides a new explicit kernel mapping. These kernels
can not only approximate most kernels under specific conditions by some fundamental theorems |Cox
and Miller [[2017]; |[Yaglom| [1987] but also provide an efficient way to combine neural networks with
kernel methods to construct spectral networks. Most existing spectral kernel networks commonly
embed the spectral kernel into neural networks by stacking the spectral kernel mapping in the
hierarchical architecture of neural networks directly. However, the introduction of an imaginary part
enables that networks with a simple stack of complex-valued mapping cannot be formulated as a
spectral kernel (see the Supplementary Material for details).

To ensure the sub-network containing the first layer to arbitrary [-th layer (I > 2) can be integrally
seen as a spectral kernel, and following the form of complex-valued parameters in CVNNs, we define
the complex-valued weight matrix of this module as:

W = cos(A) + isin(A), (11)
where A is a real-valued matrix.

In this module, the convolution operates with the complex weight matrix W is defined as:

U(h) =Wh =,/ ﬁ {COS(A)(COS(QTw) + cos(Q' T x))

—sin(A)(sin(Q " x) + sin(Q/Tw))}

+ iy / ﬁ [Sin(A) (cos(Q T x) + cos(Q' " x))
+ cos(A)(sin(Q T x) + sin(Q’Tm))] :

(12)

The real and imaginary parts of the convolution operation are represented in the matrix notation:

[é}e(\ll(h))} _ [COS(A) —sin(A)} . [cos(QTm) +cos(Q’Tx)} . (13)

3(¥(h)) sin(A) cos(A) 4M |sin(QTz) + sin(Q' T z)



To inherit the outstanding representation capability from neural networks, in this module, we construct
the spectral kernel networks by stacking W:

CosNet(x) = U'=1(... Ul(h)), (14)
where U!(2 < ) denotes the [-layer complex-valued spectral kernel mapping and

1

h:
4M

{(cos(QTm) +cos(QTx)) +i(sin(Q x) 4 sin(Q' T x))|. (15)

3.4 Analysis of CosNet

CosNet, constructed by stacking the non-station complex-valued spectral kernel mapping, not only re-
tains the property of non-stationary spectral kernels, which can effectively reveal the input-dependence
characteristics and long-range relations but also can learn hierarchy within Reproducing Kernel Hilbert
Space, yielding a cascade of non-linear features. Besides, CosNet takes the imaginary part of the
complex-valued spectral kernel mapping into account, leading to a richer representation capability.

Framework generality In spectral kernels view, CosNet will be reduced to a stationarity spectral
kernel when w = w’ in Equation (2)). Besides, the real-valued spectral kernel mapping is the special
case (i.e., the imaginary part S®(x) equal to 0) of our complex-valued mapping. In the data view,
CosNet can analyze the real-valued data, where the complex-valued representation can be found
inherently. The first module of CosNet also can be considered as a complex-valued representation
learning module, which transforms real-valued data into complex-valued features by optimizing the
learnable frequency matrices €2 and €2’. CosNet also can analyze complex-valued data with the
framework that only includes the second module.

Parameters In the complex-valued spectral kernel embedding module, we initialize the real and
imaginary parts of weight matrices with the cosine and sine functions, respectively. Compared with
CVNNSs, which define the weight matrix as W = A + i B, the number of parameters used in CosNet
decreases because of our periodic initialization strategy using only A. Compared to non-stationary
spectral kernels, the number of parameters is reduced since there is no need for sampling two different
frequency matrices,  and €¥'.

Theoretical results We provide theoretical evidence of the generalization performance of CosNet,
showing that CosNet has a lower generalization error bound compared to the real-valued spectral
kernel networks of the same architecture. Concretely, we first bound the covering numbers of different
layers in CosNet, followed by comparisons between covering numbers of real-valued spectral kernel
networks and that of CosNet, which provide evidence of CosNet’s improvements in generalization
ability. Further, we derive the generalization bound of CosNet based on several theorems |Bartlett e
al.|[2017]]; Mohri et al.| [2018].

Theorem 1. Denote the covering number of set S as Ny(S,€). X € RY > is the input of n samples

and each sample is d*-dimensioned. X' € RIXM is the input of layer | (1 > 1) and Al is the weight
matrix of layer | (I > 2). The other notations remain the same as mentioned above. For different
layers, their covering numbers satisfy that

1. In the first layer, Ng(Q' X, €) < (4d°d®)¥, where k > ”“’;75,”? maz ||@;;]|*.
0.

_ _ Wil|2 = _
2. Inlayerl (1> 1), Ny(A' X't e) < (2d'd' =1 + 1)*, where k > Hs%gleXl 3.
Proof. The proof is relegated to the supplementary material of our paper due to space limitations. [

Covering numbers also serves as an indicator of models’ representation ability, where the larger the
covering number the greater the representation ability, but the more difficult it is to get the optimal
solution. Note that when the weight matrices are the same, the bound of the covering number of each
layer of a multilayer perception (MLP) is (2d'd"~1)*, where k > 4l || X1=1(|2. And that of

. . 2 . . .
real-valued spectral network is (4d'd'~1)¥, where k > ”“272’”1 || X!=1]|2, which is as twice large as
that of MLP. It can be observed that real-value spectral networks improve their representation ability
at the cost of much larger covering number bounds and poorer generalization performance. However,



CosNet combines the advantages of both MLP and real-valued spectral networks. Compared to
MLP, CosNet’s representation ability is further improved by bringing complex-valued representations
into the spectral kernel networks, while only the covering number bound of the first layer increases
when constant terms are neglected, which has stronger characterization ability and makes it easier to
find the optimal solution. Its superiority is even more clear when compared to real-valued spectral
kernels such as DSKN, every layer of CosNet has a smaller complexity, which leads to a significant
difference when it comes to the complexity of the whole network.

Theorem 2. Let S = {(x1,y1), (€2,Y2), -, (Tn, Yn) } be a sample data of size n from distribution
D. Given the weight matrices defined before (', 2, A', A% ..., AL), and they satisfy that || A!|| <
e [|WH < by, | < @, [|X]1 < B d' < Wand T = (31, (2)23)2 1}, 1. And the
loss function L(CosNet(x),y) < M. Then with the probability of at least 1 — 0, the proposed
network CosNet satisfies:

E [(L(CosNet(x),y)]
(@,y)~D

1 n
< ﬁZE(CosNet(ml) y;) + O( 3/2 M\/ (16)

i=1
In )\/ln(W)W\IX"||2T2+l7”L(W)a?||X||2
n
n

).
Proof. The proof is relegated to the supplementary material of our paper due to space limitations. [J

4 Experiments

In this section, we first introduce the implementation details containing comparison methods and
evaluation datasets. Then we conduct systematical experiments to demonstrate the superiority of the
proposed CosNet, especially on the time series classification task.

Datasets To systematically evaluate the performance of our CosNet, we conduct comparison
experiments on several typical time-series datasets, including 12 sub-datasets with default training
and testing data splitting from the UCR Archive |Dau et al.|[2019] dataset for the classification task
and 3 UCI Blake|[[1998]] localization datasets for regression task. The overall statistics of the used
datasets are shown in the Supplementary Material.

Compared methods We compare the proposed CosNet with several mainstream kernel methods
and CVNNS, as follows: SRFF [Zhang et al.|[2017a]): Stacked Kernel Network, which stacks random
Fourier features with stationary kernels; DSKN Xue et al.|[2019]: Deep Spectral Kernel Network;
DCN [Trabelsi et al.|[2018]]: Deep Complex Network. We compare two variants with different
commonly used activation functions, including CReLU (DCN') and modReLU (DCN?); ASKL [Li
et al.|[2020]: Automated spectral kernel learning.

Implementation details  All the experiments are implemented with PyTorch |Paszke ez al|[2019]
and conducted on a workstation with NVIDIA RTX 3090 GPU, AMD R7-5700X 3.40GHz 8-core
CPU, and 32 GB memory. Each method is trained by ADAM Kingma and Ba[2014] using cross-
entropy loss for the classification task and L2 loss for the regression task. The learning rate equals
0.01, and the weight matrix is initialized from a normal distribution A'(0, 0.01). Each model contains
five layers, including the input layer, the output layer, and three hidden layers. As exemplified by the
time series classification task, the input is a time series (i.e. vector) with a scalar at each time point.
The output is the implied feature mapping (i.e. vector), which is used to conduct the classification
task. Concretely, the operation in the first layer is defined as ® : R?" — C?", where d® denotes the
dimension of the data. Via @ in the first layer, the data result in complex-valued representations,
which are fed into the CSKE module starting from the second layer. The operation of [ layer
is defined as W' : (Cdl — (CdHl, where d' denotes the number of hidden complex-valued neuron.
After the CSKE module, we obtain the implied complex-valued feathers. Moreover, these implied
complex-valued features are condensed into vector form by the operation c? - ]RML, which
concatenate real and imaginary parts, to conduct the classification task. Each experiment is repeated
twenty times with different random seeds. Note that, the width of networks in each dataset depends



on the length of the time series, respectively. Therefore, the detailed settings of different models are
shown in the Supplementary Material.

4.1 Experimental results

Inherently complex-valued representation learning In practice, the observed data is always
presented as real numbers, while the complex-valued representation can be found inherently in
information processing. In CosNet, we propose the CSKG module, which generalizes the spectral
kernel mapping in the real number domain to the complex number domain. To show the capability
of our method to recover the complex-valued representation, we conduct a simulation experiment
and compare CosNet with two typical strategies to deal with complex-valued mapping, i.e., Fourier
transform (FT) and eliminating the complex part (DSKN). In the experiment, a complex number
sequence with 100 points {z; = u; + v; }129, is randomly generated as the ground truth, and the
corresponding real number is given as x; = |z;|. The first module of CosNet, i.e., CSKG, is used
for recovering the given complex numbers {z; }1%) from the real numbers {x; } 1%} . The results are
shown in Figure 2] from which we can find that CosNet with the complex-valued non-stationary
spectral kernel mapping, compared with FT and DSKN, can recover the inherently complex-valued
representation precisely. In contrast, the oscillations of the recovered sequences in both two domains
by FT are intense while the DSKN fails to recover the phase information contained in the imaginary

part.
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Figure 2: Comparison of complex-valued representation learning. The left and right denote the
learning of real and imaginary parts, respectively.

Time series classification To verify the effectiveness of our CosNet on the time-sequential data
analysis, we compared the state-of-the-art spectral kernel networks and CVNNSs on the time series
classification task. The results are shown in Table[Il We can observe that our CosNet achieves state-
of-the-art performance in all datasets. Specifically, CosNet outperforms other methods impressively
and achieves 3% accuracy increment (83.06 — 85.46) on Wine and 2.7% (69.81 — 71.73) on FordB
compared with the mainstream kernel methods and CVNNs. Furthermore, these results reveal that
the performance of real-valued methods is limited to the data with the inherently complex-valued
representation.

Image classification and compression To further explore the representation capacity of our
CosNet, we expand the application of CosNet to convolutional networks (see the Supplementary
Material for details) for image classification and compression tasks using Fashion-MNIST Xiao ef al.
[2017] and CIFAR10 Krizhevsky and Hinton|[2009] datasets. For the classification task, accuracy is
applied to the metric of performance. For the compression task, we first extract the implicit features
through various models, and then we conduct the clustering task based on these extracted features. In
this task, Normalized Mutual Information (NMI) and Rand Index (RI) are used as the assessment
metrics. All the results are reported in Table[2] We can find out that our CosNet outperforms the
baseline methods on both classification task and compression task. Notadly, our CosNet achieves



Table 1: Classification accuracy (%) of each compared method on several time series datasets. The
best results are highlighted in bold.

Dataset | SRFF DSKN DCN! DCN? ASKL | CosNet
FordA 81.46 8224 81.87 7990 72.66 | 82.42
FordB 68.99 69.81 69.68 50.17 6420 | 71.73
PhalangesOutlinesCorrect 68.77 69.73 6891 67.63 68.65 70.79
Wine 7722 7648 83.06 80.00 67.41 | 85.46
ECG200 7340 77.80 89.80 89.85 87.53 | 90.10
ECG5000 9198 91.14 93.11 9350 9275 | 93.70
Herring 57.73 56.64 6523 58.13 59.52 | 65.39
Ham 51.52 4881 71.10 67.76 6852 | 71.29
ProximalPhalanxOutlineAgeGroup | 79.49  79.51  81.80 81.59  80.00 | 82.71

Table 2: Classification and compression results on image datasets. The best results are highlighted in
bold.

DCN! DCN? CosNet | DCN!  DCN?  CosNet
Accuracy (%) | 87.02 8444 8833 | 6432 5239  66.51

‘ Fashion-MNIST ‘ CIFAR10

NMI (%) 86.04 8131 90.86 | 57.14 41.69  66.18
RI (%) 97.15 9597 9831 | 87.78 84.07  89.97

1.5% accuracy improvment (87.02% — 88.33%), 5.6% NMI improvement (86.04% — 90.86%),
1.19% RI improvement (97.15% — 98.13%) on FMNIST dataset, and 3.4% accuracy improvement
(64.32% — 66.51, 15.82% NMI improvement (57.14% — 66.18%), 2.5% RI improvement (88.78%
— 89.97%) on CIFAR-10 dataset. The results show that our CosNet has a greater representation
capability than other complex-valued convolutional networks.

4.2 Ablation Study

Complex-valued representation capability Complex numbers, containing amplitude and phase
information, lead to a rich representation capability. However, the re-introducing of complex values
brings extra parameters. To demonstrate that performance improvement comes from the powerful
representation brought by complex values instead of added parameters, we conduct an ablation study
to evaluate the methods with different parameters. As shown in Table|3| we compare the proposed
CosNet with three variants of SRFF and DSKN, i.e., the variant in the original paper (normal), the
variant with more neurons per layer (wider), and the variant with more layers (deeper).

From Table 3] we can observe that our CosNet commonly performs better with fewer parameters.
Without loss of generality, increasing parameters indeed can lead to the improvement of performance
on certain datasets, but there still remains a gap compared to our CosNet. Therefore, we can conclude
that using real-valued networks in some fields, where complex numbers occur either naturally or by
design, still has limitations.

Initialization = We propose to initialize the complex-valued weight matrix of the second module
with the cosine and sine functions for the imaginary and real parts, respectively. This design ensures
CosNet retains the property of non-stationary spectral kernels and takes the relative distance of data
in the complex number domain without increasing the number of parameters. To explore the role
of the designed initialization scheme, we compare the results of classification and regression tasks
on CosNet with or without cosine and sine functions. The results reported in Table [] show that our
proposed initialization scheme performs better in all cases, which indicates that non-stationarity is
necessary for analyzing the time-sequential data. Furthermore, the experimental results validate the
effectiveness of our design in a complex-valued weight matrix on CosNet.



Table 3: Classification accuracy (%) and parameters with wider and deeper cases. The best results
are highlighted in bold.

Model | Setting ECG200 ECG5000 Ham
Parameters Accuracy | Parameters Accuracy \ Parameters Accuracy

SRFF | wider 69.06K 83.90 84.98K 92.75 686.96K 70.52

normal 22.25K 73.40 31.49K 91.98 251.12K 68.43
deeper 42.35K 65.85 56.91K 92.55 459.22K 60.10

DSKN | wider 137.99K 80.65 169.62K 92.42 1260.00K 71.76
deeper 137.99K 80.65 169.62K 92.42 1260.00K 71.76

normal 44.42K 77.80 62.80K 91.14 502.11K 69.76

CosNet | normal | 19.65K 90.10 40.75K 93.70 | 375.14K 74.27

Table 4: Classification accuracy (%)and regression MSE on the benchmark datasets. (1) indicates the
larger the better, while ({) indicates the smaller the better. The best results are highlighted in bold.

Classification Accuracy (1) Regression MSE ()
Earthquakes DistalPhalanxTW  Strawberry | power concreat yacht
w/ cos, sin 71.76 63.60 97.22 0.8229 1.3606 3.6270
w/0 cos, sin 69.93 63.02 96.80 0.8795 1.3731  3.7932

5 Conclusion

In this paper, we propose a complex-valued spectral kernel network (CosNet) with two core modules,
i.e., SKMG module and CSKE module. Specifically, as the first module of CosNet, the SKMG
module is employed to recover the inherent complex-valued representation of the real-valued data.
The CSKE module, designed by embedding the complex-valued spectral kernel mapping into neural
networks with our initialization scheme, is used to effectively capture long-range or periodic relations
of data. Our proposed CosNet, benefiting from the non-stationary property of kernels, can effectively
encode the dynamic input-dependent characteristics and long-range correlations. The complex-valued
mapping can improve the representation capacity of models without increasing the number of param-
eters. Furthermore, CosNet involves the transformation of the real-valued inputs in the optimization
process to learn an expressive complex-valued representation. Moreover, some theoretical analyses
of CosNet are also presented. Detailed experiments reveal that our proposed approach indeed leads
to significant performance improvements over state-of-the-art relevant methods. Future work will
focus on promoting the proposed CosNet in more applications.

Limitation CosNet with the periodic function is prone to local minima. However, our CosNet
tends to perform well in the time-sequential data analysis since it can not only capture the long-range
relation in an input-dependent manner but also take the imaginary part into account. In future work,
we will focus on promoting the proposed CosNet in the optimization method.
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