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Abstract

We introduce a new method that extracts knowledge from a
large language model (LLM) to produce object-level plans,
which describe high-level changes to object state, and uses
them to bootstrap task and motion planning (TAMP) in a
hierarchical manner. Existing works use LLMs to either di-
rectly output task plans or to generate goals in represen-
tations like PDDL. However, these methods fall short be-
cause they either rely on the LLM to do the actual planning
or output a hard-to-satisfy goal. Our approach instead ex-
tracts knowledge from a LLM in the form of plan schemas
as an object-level representation called functional object-
oriented networks (FOON), from which we automatically
generate PDDL subgoals. Our experiments demonstrate how
our method’s performance markedly exceeds alternative plan-
ning strategies across several tasks in simulation.

Introduction
The advent of large language models (LLMs) has led to a
plethora of work that exploits their capabilities for a variety
of tasks, including planning for robotics (Ichter et al. 2023;
Driess et al. 2023) and embodied agents (Huang et al. 2022;
Raman et al. 2024). These approaches use LLMs as either
a planner (Ichter et al. 2023; Singh et al. 2023; Driess et al.
2023), or a goal generator (Liu et al. 2023; Xie et al. 2023;
Liu et al. 2024; Kumar et al. 2024). As a task planner, an
LLM is informed of the task and scene and directly outputs
a complete plan, thus forgoing automated planning with off-
the-shelf planners (Ghallab, Nau, and Traverso 2016). Plan
actions generated by an LLM are then grounded to action
policies or primitives. As a task goal generator, an LLM gen-
erates planning definitions in the form of representations like
PDDL (McDermott et al. 1998) (short for Planning Domain
Definition Language); this type of approach is often associ-
ated with task and motion planning (TAMP) (Garrett et al.
2021).

However, existing work in these categories fails to handle
complex, goal-oriented tasks in several key aspects. On the
one hand, positing the LLM as a task planner deprives such
methods of guarantees promised by classical planning (viz.
optimality and completeness). Recent work has also called
to question whether LLMs can effectively plan (Valmeekam
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Figure 1: Our approach prompts an LLM for object-level
information with which we construct an object-level plan (as
FOON). This plan schema bootstraps task- and motion-level
planning (TAMP) via PDDL subgoals.

et al. 2023). On the other hand, using the LLM as a task de-
scription generator will fail to generate plan specifications
that are guaranteed to work due to the LLM’s lack of em-
bodiment. For instance, it may be difficult for the LLM to
generate accurate PDDL definitions simply from a language
description of the robot’s environment.

It is natural to exploit language models for planning as
they contain useful domain knowledge and often output use-
ful steps. Similarly, they are useful as goal generators be-
cause one can still rely on off-the-shelf planners. This work
uses an LLM to generate partial goal schemas at the ob-
ject level, which can then form PDDL subgoals. Such an ap-
proach inherits the desirable commonsense planning knowl-
edge of the LLM while supporting sound and complete task-
level planning. The object (as opposed to task) level is the
level at which natural language is most appropriate and at
which most knowledge is captured and expressed (Kroemer,
Niekum, and Konidaris 2021; Paulius 2022). While task-
level planning focuses on action or motion constraints for
execution, object-level planning focuses on object interac-
tions without committing to how these effects will be re-
solved until runtime.

We propose a modular approach that distills do-



main knowledge from an LLM to generate object-level
plans (Paulius 2022), which then bootstrap hierarchical
planning. We situate object-level planning as an interface
between human language and TAMP and exploit an object-
level representation (OLR) called the functional object-
oriented network (FOON) (Paulius et al. 2016). Recent work
has shown how object-level knowledge in FOON can au-
tomatically generate PDDL subgoals (Paulius*, Agostini*,
and Lee 2023); however, this assumes that partial plan spec-
ifications already exist as a FOON. We exploit the capabil-
ities of LLMs for object-level planning, overcoming the in-
ability of LLMs to directly output feasible task plans while
exploiting the higher, object-level nature of LLM output and
language as a whole.

The contributions of our work are as follows: first, we in-
troduce a modular planning approach (Figure 1) that inter-
faces with an LLM to generate natural language instructions,
from which we transform into an OLR (e.g., FOON) for hi-
erarchical planning. Second, we show how object-level in-
formation can be distilled directly from an LLM and then
used to generate planning definitions as PDDL, improv-
ing the feasibility of generated plans. Finally, we showcase
markedly better performance than alternative LLM-based
methods.

Background
Large Language Models: A large language model (LLM)
is a complex neural network model trained via self-
supervised learning and self-attention (Vaswani et al. 2017).
LLMs have shown remarkable performance in natural lan-
guage processing (NLP) and text generation tasks. Variants
such as GPT (Brown et al. 2020) and LLaMA (Touvron et al.
2023) are trained on large corpora of text collected from the
Internet and fine-tuned using RLHF (reinforcement learn-
ing from human feedback). For this reason, an LLM can
be thought of as a “compressed” representation of domain
knowledge from the web (Chiang 2023), which is why we
aim to exploit these models to inform planning. This work
uses OpenAI’s Chat-GPT (OpenAI 2024).

Task and Motion Planning: The aim of task and mo-
tion planning (TAMP) is to integrate higher-level symbolic
task planning with lower-level motion planning to enable
robots to solve complex long-horizon tasks (Garrett et al.
2021). At the lower level, motion planning finds collision-
free robot motion or trajectories that are typically used to
achieve a task. However, typical robot tasks are too complex
for motion-level planning alone. For this reason, task plan-
ning is necessary as an added layer to reason over an ab-
straction of the robot’s actions and environment. Task plan-
ning assumes a state description S using logical predicates,
which are true or false depending on whether or not the
robot observes them. Starting from an initial state s0 ∈ S,
task planning finds an action sequence a ∈ A that achieves
a goal g as a task plan P = {a1, ..., an} (Ghallab, Nau,
and Traverso 2016). An action a refers to a robot-executable
skill or policy; our work assumes access to a repertoire of
skills, which we denote by A, which are defined as planning
operators in PDDL (McDermott et al. 1998). Finally, given

the task plan P , motion planning finds collision-free trajec-
tories that reproduce the intended effects of each action; our
work uses OMPL (Şucan, Moll, and Kavraki 2012) for mo-
tion planning.

Related Work
Language Models for Planning: Many researchers have
explored the use of language models for robotics appli-
cations, having been inspired by their remarkable perfor-
mance in language-related tasks. Prior works have investi-
gated the planning capabilities of LLMs (Silver et al. 2024;
Valmeekam et al. 2023). Other works supplement task plan-
ning with language models (Liu et al. 2023; Chen et al. 2024;
Singh et al. 2023; Singh, Traum, and Thomason 2024; Liu
et al. 2024; Han et al. 2024). LLM+P (Liu et al. 2023) gen-
erates PDDL problem file via LLM prompting. Much like
our work, existing works use LLMs as an informer of sub-
goals for classical planning (Singh, Traum, and Thomason
2024; Liu et al. 2024; Han et al. 2024; Kumar et al. 2024).
In particular, DELTA (Liu et al. 2024) resembles our method
in that it decomposes a task into a series of PDDL subgoal
definitions directly output by an LLM. Our approach uses an
LLM at the object level and not task level (i.e., PDDL). Re-
cent work also iteratively prompts an LLM for FOON gener-
ation (Sakib and Sun 2024). Similar to DELTA, they do not
focus on generating nor executing physically valid plans.

Language Models as Planners: Several works treat lan-
guage models as robotic task planners. SayCan (Ichter et al.
2023) combines a language model and affordance detectors
for driving robotic execution given a task prompt. PaLM-
E (Driess et al. 2023) is an embodied language model that
directly incorporates continuous observations (like images,
state estimates, or other sensor modalities) into the language
embedding space. These works have shown that language
models are capable of performing some degree of embodied
reasoning. However, one major drawback of these works is
that they require a large amount of engineering effort, par-
ticularly to enable them to operate in novel environments
and solve long-horizon tasks. Previous works also exploited
the reasoning capabilities of an LLM to solve a wide range
of tasks both in simulation (Huang et al. 2022; Gramopad-
hye and Szafir 2023; Raman et al. 2024) and with a real
robot (Raman et al. 2024).

Object-level Planning with Language Models
There exists a disconnect between language and the task
level, which makes TAMP unsuitable for generalization
across tasks and settings. Yet, existing works use LLMs ei-
ther as planners or task description generators for task exe-
cution; these approaches fall short because of the inability of
LLMs to correctly reason about task- and motion-level con-
straints. It is impractical to provide the entire context of a
task setting to an LLM and expect it to handle all the reason-
ing about a robot’s embodiment (e.g., where objects are lo-
cated, in what poses they are, what type of gripper the robot
has, etc.) in order to generate adequate planning definitions
or feasible task plans.

Instead, the strength of language models lies in their abil-
ity to provide approximate subgoals that are useful to deci-
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Figure 2: Our approach interfaces with a language model to generate object-level plans (as FOON graphs) for bootstrapping
task and motion planning. We generate task-level subgoals as PDDL subgoals by grounding object-level subgoals to the robot’s
environment; with these task-level definitions, task planning to obtains task plan segments per object-level action, which are
executed using motion-level planning, improving prior work (Paulius*, Agostini*, and Lee 2023).

sion making at both task and motion levels. This is because
language models can express task-relevant knowledge in a
generic yet informative way. Imagine your typical cooking
recipe, for instance: a recipe provides a sketch of object in-
teractions agnostic to the state of the reader’s kitchen or the
recipe writer’s kitchen. It also does not provide details on
how actions should be executed (e.g., which hand should be
used, how should an object be grasped, etc.). What a recipe
expressed in natural language may provide, however, is an
idea of the types of actions and inter-object interactions nec-
essary to complete a task. Rather, the exact details of task-
and motion-level execution are resolved at run time.

For these reasons, we adopt an object-level planning ap-
proach to bootstrap task and motion planning (Paulius*,
Agostini*, and Lee 2023). We generate object-level plan
sketches, which provide task-level subgoals that naturally
interface language and decision making, using an LLM.
Briefly, given a language command to a robot, our approach
(Figure 2) uses an LLM to generate a sequence of natu-
ral language instructions, which is then transformed into an
object-level plan (OLP) represented as a FOON. It is then
through task planning where properties relevant to the robot
(e.g., robot’s end-effector and object poses) are used to find
a task-aware plan which is then executed via TAMP. Task-
level planning is achieved by transforming each OLP action
into PDDL definitions to find task plan segments.

Object-level Planning
We adopt another layer of planning above TAMP called
object-level planning, which considers changes to object
state (Paulius 2022). We use an object-level representation in
the form of a knowledge graph called the functional object-
oriented network (FOON) (Paulius et al. 2016; Paulius and
Sun 2019). Formally, a FOON G = {O,M, E} is a bipar-
tite graph with object nodes (o ∈ O) and motion nodes
(m ∈ M) connected via directed edges (e ∈ E), which
reflect the change of an object’s state as it is manipulated
via a corresponding action. An object o = (ot, os, oI) is
defined as a tuple with the following attributes: its object
type or name (ot), its state (os), and, if applicable, its ob-
ject composition (oI = {ot1 , ot2 , ..., otn}, where n = |I|).
A motion node m = (mt) is defined by an action verb or
type (mt). A FOON describes object-state transitions via

functional units (FU = {Oin,Oout, m̃}) at a level close
to human language. A functional unit defines preconditions
and effects of executing an action (m̃), where a set of input
nodes (Oin) are required to produce a new set of output ob-
ject nodes (Oout). We illustrate an example of a functional
unit in Figure 3, which describes an action for a block stack-
ing task. We argue that foundation models naturally inter-
face with object-level representations due to their similarity
to human language, which in turn allows them to interface
with tools that combine vision and language (Brown et al.
2020; Zhang et al. 2024).

LLM Prompting to Object-level Plan
Our goal is to extract attributes for object-state transitions
before and after each action is performed (i.e., preconditions
and effects) to construct an OLP describing task subgoals.
We instantiate object-level planning with FOONs. Our ap-
proach constructs a FOON GT , where T is a task given
in natural language (such as “Make a tower of two red
blocks”—see Figure 3) via a two-stage process. In addition
to the task instruction T , we include a language description
of objects in the scene (from which the LLM will determine
those that are relevant to the task) as well as a set of exam-
ple object-level plans (as FOONs) XG = {G1,G2, ...,Gn}
for reference.

The first stage prompts an LLM for a plan sketch com-
prised of natural language instructions denoted by PL =
{ξ1, ξ2, ..., ξn}, where ξi refers to an instruction as text. As
an example in Figure 3, given a task and available objects
(without any context about their present configuration), we
expect text instructions PL that solely mention red blocks
for the task “Make a tower of 2 red blocks.” During this
step, we transform the top-k most similar FOONs in XG
into example plan sketches, from which the LLM selects the
one closest to the new task to use as reference (denoted by
Ĝ). We identify the top k candidates using cosine similarity
between text embeddings of the task prompt T and the set
of instructions for a given reference Ĝ ∈ XG . An example
sketch may describe how three generic blocks (regardless of
type) can be stacked into a tower. In the second stage, the
LLM must reason about each instruction ξi ∈ PL to gener-
ate an OLP for the novel task. We prompt the LLM to rea-
son about state changes of task-relevant objects, specifically



User Task: "Make a tower of 2 red blocks."

LLM-to-OLP Stage 1: Language Plan
1. Pick the first red block and place it on the second red block.

LLM-to-OLP Stage 2: Plan Sketch Generation

Codified Plan Sketch (GT  )~

first red block: {
    "precondition"': [
        "on table", 
        "under nothing"],
    "effect": [
        "on second red block", 
        "under nothing"]
}

second red block: {
    "precondition": [
        "on table", 
        "under nothing"],
    "effect": [
        "on table",
        "under first red block"]
}

FOON Object-level Plan  (GT  )

second red block
states:
<on [table]>
<under [nothing]>

first red block
states:
<on [table]>
<under [nothing]>

second red block
states:
<on [table]>
<under [first red block]>

first red block
states:
<on [second red block]>
<under [nothing]>

pick and place

Figure 3: Illustration of how a user task specified in natural
language is transformed into an object-level plan (OLP) as a
FOON via LLM prompting.

geometric relations for task-level planning. In the previous
example, we expect output with state descriptions such as
“first red block on second red block,” “first red block un-
der nothing,” “second red block under first red block,” and
“second red block on table” (Figure 3). We assist the LLM
by providing Ĝ in the prompt, with which it must generate a
new FOON GT for the novel task. Inspired by previous work
on code writing for robots (Liang et al. 2023), we codify Ĝ as
a JSON. The LLM then outputs a codified OLP G̃T , which
captures each instruction ξi ∈ PL. Finally, each action in
G̃T forms a functional unit FU i ∈ GT .

Bridging to Task and Motion Planning
We generate a plan schema GT , with which we can solve
a task T given in natural language. However, this schema
is too abstract to be executed in its present form, and it
must be grounded to the robot’s embodiment and environ-
ment (Paulius*, Agostini*, and Lee 2023). Therefore, we
use GT to bootstrap TAMP via PDDL subgoals. This is done
through a hierarchical approach that automatically trans-
forms each object-level action in GT into PDDL problem
definitions and searches for a robot-executable plan given a
predefined set of robot skills or operators (Paulius*, Agos-
tini*, and Lee 2023).

Object-Level to Task-Level Planning
The aim of task-level planning is to find a robot-executable
task plan Pµ that solves task T . A task plan is composed
of a sequence of smaller plan segments for each func-
tional unit, i.e., Pµ = {P̃µ1

, P̃µ2
, ..., P̃µn

}, where P̃µi
=

{aµ1
, aµ2

, ..., aµm
} denotes a plan segment achieving the

subgoals described by a functional unit FU i and aµi
refers

to the i-th step corresponding to a parameterized skill in A.
PDDL solvers require two components: a domain defini-

tion and a problem definition (McDermott et al. 1998). A
domain definition provides details on what actions can be
taken by a robot as well as possible object types, while a
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Figure 4: Example of task-level grounding for an object-
level plan (Figure 3), which is compatible by design with
the planning operators in Figure 5.

problem definition captures the initial state of the robot and
its environment (sµ) as well as the target goal state (gµ) as
logical predicates. We assume a predefined domain defini-
tion with planning operators corresponding to a repertoire
of parameterized, robot-executable skills A. For the gen-
eration of problem definitions, both sµ and gµ are adapted
from a functional unit FU ∈ GT : predicates are constructed
based on the object-state pairs in FU (Paulius*, Agostini*,
and Lee 2023). In other words, transforming a FOON into
PDDL requires mapping attributes of each object o to pred-
icates (where o ∈ Oin ∪ Oout).

Object-centered Predicates: We use object-centered
predicates (Agostini et al. 2020; Paulius*, Agostini*, and
Lee 2023) that describe constraints for collision-free motion.
They are written as (〈rel〉 〈?obj 1〉 〈?obj 2〉), where
〈rel〉 refers to a geometric relation using the spatial ad-
positions in, on, or under, while 〈?obj 1〉 and 〈?obj 2〉
refer to objects described by a given predicate. These rela-
tions are described from the reference frame of each object,
which permits propagating motion constraints at task plan-
ning for the generation of feasible plans (Agostini and Piater
2023). For example, the predicate (on block 1 block 2)
denotes that block 2 lies on top of block 1. We also use
a virtual object air to describe free space in or on ob-
jects, which is important for collision-free picking, i.e., (on
block 1 air)—nothing is on a block, which makes it free
for grasping).

Grounding: Each subgoal in an OLP (i.e., functional unit
in FOON) must be grounded to the robot’s environment
for effective task-level planning. For starters, object-level
aliases must be linked to object references at the task level.
This can be likened to how we as humans use recipes: a
recipe refers to ingredients with words, but we must resolve
their references to object instances around us when complet-
ing a recipe. This work assumes that there exists an exact
mapping of objects described in an OLP to those existing in
the environment, and we prompt the LLM to map each alias
to an instance. For example, if we have two red blocks as ob-
jects in an OLP (Figure 3), an LLM will map them to object
instances red block 1 and red block 2 (Figure 4). Once
completed, we obtain a mapping of object-state pairs to task-
level predicates: we use object poses (both position and ori-
entation) and bounding boxes to derive object-centered pred-
icates for each object o in GT using the mechanism from
previous work (Agostini and Piater 2023).



(:action pick
:parameters (
?obj - object
?surface - object)

:precondition (and
; collision-free
; constraints:
(in hand air)
(on ?obj air)
; object is on a surface:
(on ?surface ?obj)
(under ?obj ?surface) )

:effect (and
; hand contains
; target object:
(in hand ?obj)
(not (in hand air))
; object has been grasped:
(on ?obj hand)
(under ?obj air)
(not (on ?obj air))
; nothing is on surface:
(not (on ?surface ?obj))
(not (under ?obj ?surface))
(on ?surface air) ))

(a) Pick Action

(:action place
:parameters (
?obj - object
?surface - object)

:precondition (and
; collision-free
; constraints:
(on ?surface air)
(under ?obj air)
; hand contains object:
(in hand ?obj)
(on ?obj hand) )

:effect (and
; hand no longer
; contains object:
(in hand air)
(not (in hand ?obj))
; object is on surface:
(on ?surface ?obj)
(not (on ?surface air))
(under ?obj ?surface)
(not (under ?obj air))
; nothing is on object:
(not (on ?obj hand))
(on ?obj air) ))

(b) Place Action

Figure 5: Planning operators for pick and place actions us-
ing object-centered predicates (Agostini et al. 2020) and ex-
ecutable via motion-level planning.

Task-Level to Motion-Level Planning
With each plan segment P̃µ ∈ Pµ, a robot can then ex-
ecute a sequence of actions that resolve object-level sub-
goals. We use motion-level planning to find collision-free
robot movements that will achieve the effects of a robot’s
skills. This work considers picking and placing actions (Fig-
ure 5). For the pick action (Figure 5a), we generate a trajec-
tory that moves the robot’s end-effector from its initial po-
sition to a target object, while the place action (Figure 5b)
moves the robot’s end-effector grasping an object from its
initial pose to a position above a target surface or object.
The initial and final poses of the hand for these actions can
be obtained directly from object-centered hand-object rela-
tions encoded in the preconditions and effects of their cor-
responding planning operators using geometric rotation and
translation transformations (Agostini and Piater 2023).

Evaluation
We evaluate the flexibility of our approach (denoted as OLP
in Table 1) with alternative methods on several tasks in sim-
ulated experiments. Our results show that an LLM cannot
reliably produce PDDL definitions and is unable to reliably
task plan due to its lack of spatial understanding; however,
we can prompt an LLM for object-level subgoals compatible
with our modular approach from previous work (Paulius*,
Agostini*, and Lee 2023).1

Experimental Setup
We perform experiments in a simulated table-top environ-
ment in CoppeliaSim (Rohmer, Singh, and Freese 2013)
with a Franka Emika Panda robot affixed to a table upon
which blocks are randomly initialized. Given a task spec-
ified in natural language, the robot must perform a se-
quence of pick and place actions (defined in Figure 5) ful-

1Demonstration videos: https://davidpaulius.github.io/olp llm/

filling the task. We assume that the state of the environment
is fully observable—object poses and bounding boxes are
known via perception. This information is used in motion-
level planning to generate collision-free trajectories. In ad-
dition to Chat-GPT2 (OpenAI 2024) as our LLM of choice,
we use Fast Downward (Helmert 2006), an off-the-shelf
PDDL solver, for task-level planning in our method and
baselines. When planning with Fast Downward, we use
the A* algorithm with the landmark cut (LMCUT) heuris-
tic for plan optimality. For motion-level planning, we use
RRT-Connect (Kuffner and LaValle 2000) as provided by
OMPL (Şucan, Moll, and Kavraki 2012).

Task Settings: We design scenarios in which the robot
has to complete several tasks for three tasks of increasing
difficulty: 1) tower building, 2) spelling, and 3) organizing a
table (Figure 6). The tower building task involves the robot
assembling a tower of blocks of a given height n, where
3 ≤ n ≤ 7, with n + 1 blocks provided on the table.
The spelling task also involves robot constructing a tower
of blocks of some height n, but with the added constraint
that the blocks correctly spell a given word of length n. This
requires correct placement of lettered blocks, thus heavily
depending on the LLM’s ability to generate the correct se-
quence of pick and place actions. Finally, the organizing task
involves a robot making piles of matching blocks: here, we
initialize a scene of 3 block types, each with n block in-
stances (where 2 ≤ m ≤ 4). This can be seen as a mix
of the two prior tasks, where alike but varying numbers of
blocks must be placed into piles.

Metrics: We report the following metrics: 1) plan com-
pletion, which measures the percentage of all plans that were
executed from start to finish regardless of whether the task
objective was achieved; 2) success, which measures the per-
centage of successfully executed plans that achieve the task
objective; 3) average plan computation time (in seconds); 4)
average number of tokens for LLM prompting; and 5) aver-
age plan length across all successful executions.

Baseline Methods
We compare our OLP-based method to several baseline
methods, for which we provide details below. These base-
line methods also rely upon Chat-GPT to either directly out-
put a task plan or PDDL definitions, following the tracks of
LLM-based planning work previously introduced.

LLM-Planner This baseline serves as a proxy for meth-
ods that directly plan with LLMs (Ichter et al. 2023; Driess
et al. 2023). We directly provide a textual description of
the state of the robot’s environment (denoted by s̃) and the
robot’s executable skills (A) as input and retrieve a task plan
Pµ as output. We then parse each action to identify target
objects and surfaces needed for pick and place actions while
performing the necessary motion-level planning to success-
fully resolve each action. This baseline approach evaluates
the LLM’s ability to reason about the robot’s embodiment
and produce a correct task plan.

2We tested gpt-4, gpt-4o, and chatgpt-4o-latest,
but found chatgpt-4o-latest to produce the best plans, ad-
hering to instructions.



Table 1: Experimental results for several block stacking tasks across 10 trials per setting and block counts

Task
Setting

Planning
Approach

% Plan
Complete ↑

%
Success ↑ Avg. Plan Time (s) ↓ Avg. Tokens ↓ Avg. Plan Length ↓

Tower

OLP 86.00% 76.00% 0.0043± 0.0021 2406.38± 335.0091 10.2791± 4.5687
LLM-Planner 44.00% 34.00% 12.0486± 6.3784 744.94± 120.9533 10.2791± 4.5687

LLM+P 18.00% 34.00% 0.0346± 0.0312 1656.42± 170.2912 8.5556± 3.9291
DELTA 86.00% 60.00% 0.0067± 0.01206 4871.88438.2610 9.0233± 4.7883

Spelling

OLP 80.00% 62.00% 0.02715± 0.0828 2588.66± 379.1376 8.45± 3.4932
LLM-Planner 22.00% 16.00% 7.5734± 2.4650 754.06± 102.7516 9.7778± 3.3529

LLM+P 30.00% 46.00% 0.0268± 0.0266 1671.26± 189.9115 9.0435± 4.0393
DELTA 78.00% 50.00% 0.0075± 0.0061 4836.72± 475.0059 10.5641± 5.5998

Organize

OLP 81.43% 77.14% 0.0080± 0.0053 3051.5± 499.4818 15.3684± 7.1630
LLM-Planner 35.71% 22.86% 24.1510± 15.9711 885.0571± 126.3086 8.40± 2.2361

LLM+P 37.14% 37.14% 0.0538± 0.1139 1891.3286± 212.4083 11.3077± 4.1547
DELTA 67.14% 54.29% 0.0139± 0.0312 5329.9571± 470.9973 13.8298± 6.4042
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Figure 6: Example of initial and final states for the spelling
and organizing table tasks. The tower building task is akin
to spelling without ordering constraints.

LLM+P LLM+P (Liu et al. 2023) uses an LLM to gener-
ate a PDDL problem definition given a text description of a
task planning domain and the initial state of the scene. As
input to the LLM, we provide a description of the robot’s
environment (s̃) and an example of a problem definition
task, and we obtain a problem definition for task T as out-
put. We then use this output with our domain definition of
predefined skills to acquire a task plan using Fast Down-
ward (Helmert 2006), and this task plan is executed and re-
solved with motion-level planning. This baseline approach
evaluates the LLM’s ability to accurately generate a PDDL
problem file, compatible with a predefined set of skills, with-
out explicitly performing object-level planning and reason-
ing.

DELTA DELTA (Liu et al. 2024) is a task planning
method that auto-regressively prompts an LLM to derive
PDDL domain and problem definitions. Similar to our ap-
proach, a task T is broken down into subgoals, each of

which is formulated as their own subgoal PDDL problem
file. We prompt the LLM with details about robot actions
(A) as well as the objects available to the robot, after which
a domain file is generated. The LLM is then provided with
a state description s̃ and a task prompt T to generate a
problem file that contains all goals (similar to the output of
LLM+P (Liu et al. 2023)). This problem file is then bro-
ken down into subgoal problem files based on PDDL sub-
goals auto-regressively suggested by the LLM; this scopes
the problem into subgoal actions that are akin to functional
units. We hypothesize that although this method will cre-
ate simpler and smaller problem definitions, it heavily relies
on the LLM’s ability to generate syntactically and semanti-
cally correct definitions, which may not be as reliable as our
method.

Results and Discussion
Our experimental results show that our OLP-based method
performs better than baselines that either directly generate a
task plan or PDDL files (Table 1). Across all tasks and eval-
uated approaches, we found that some plans were not fully
executable due to motion-level planning failures, where the
plans were not found in reasonable time. Despite this phe-
nomenon, our approach produces the most plan completions
in all task settings on average (Figure 7). Although OLP was
not always successful in execution, our approach generates
plans that exhibit the highest success rates, matching the in-
tention of the given instruction. Interestingly, the spelling
task showed the lowest success rate in all approaches. We at-
tribute this to incorrect reasoning performed by the LLM at
both the object and task levels, where the LLM may generate
a plan sketch to stack the blocks in an incorrect or reversed
order.

Although LLM-Planner generates plans without a solver,
it does not complete a majority of tasks because the LLM
poorly understands the configuration of the robot’s environ-
ment for collision-free motion. As a result, it incorrectly
proposes actions that attempt to pick up an object blocked
by another object or place an object in an occupied spot.
LLM+P also exhibits poor performance: although the LLM
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Figure 7: Graph showing percentage of plans completely executed using all approaches for different number of blocks across
tasks (best viewed in colour).

is capable of directly outputting PDDL, failures were mainly
attributed to inaccurate problem definitions. This may be
due to the fact that LLM+P uses fewer prompts than OLP
and DELTA; also, unlike DELTA, LLM+P does not pro-
vide definitions of PDDL planning operators, thus providing
less context to the LLM. We also observed that the PDDL
problems generated by LLM+P and DELTA were suscepti-
ble to incorrect syntax, which is a drawback of LLM-based
PDDL generation. DELTA, whose approach closely resem-
bles our method, performs better than LLM+P and LLM-
Planner baselines, but it does not perform as well as our
method while also generally requiring more tokens on av-
erage to generate planning definitions. Similar to DELTA,
OLP also demonstrates the advantage of bootstrapping task-
level planning with PDDL subgoal definitions (reflected by
low average planning times) but without relying upon the
LLM to correctly generate PDDL definitions. Our approach
also requires less interaction with the LLM than DELTA as
reflected by the average number of tokens.

Limitations: Much like how we humans plan, object-
level planning serves as a critical interface between language
and TAMP. Our approach requires robot skill definitions
specified as PDDL, which may not always transfer across
robot systems. However, we assume a set of FOON sam-
ples for few-shot learning. Further, we did not consider plan
recovery if objects were knocked down during execution,
thus lowering the success rate of completely executed plans.
Most importantly, as with baselines, this approach depends
on a correctly generated object-level plan compatible with
task-level planning for subgoal definitions. In addition, our
evaluations are performed solely on pick-and-place tasks,
which do not highlight the benefits of the semantic richness
of object-level plans. In future work, we will explore broader
task diversity and examine how we can use an LLM to adapt
existing object-level plans to novel scenarios similar to prior
work (Paulius, Jelodar, and Sun 2018; Sakib, Paulius, and
Sun 2022). Like recent work (Han et al. 2024), we can
also integrate human feedback to correct LLM-generated er-
rors at the object level. We will also explore learning from

demonstration to acquire task-level domain definitions to ad-
dress our assumption of predefined skills.

Conclusion
We introduce a hierarchical planning approach that capital-
izes on the power of large language models (LLMs) to boot-
strap task and motion planning (TAMP). Through an added
layer of planning situated above TAMP known as object-
level planning (Paulius 2022), we enable robots to flexi-
bly find planning solutions from plan sketches extracted via
LLM prompting. Compared to alternative LLM-based plan-
ning approaches that either use an LLM as a planner or as
a generator of planning definitions like PDDL (McDermott
et al. 1998), our method flexibly enables a robot to solve a
wide range of tasks that greatly benefit from the expressive-
ness of natural language.
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Appendix A: Object-level Planning Prompts

1 System: You are a helpful assistant that will generate plans for robots. You will be given the following:
2 1. A simple plan sketch, with which you will generate an entirely new plan sketch describing object states

before
3 (preconditions) and after (effects) actions are executed.
4 2. A list of objects available to the robot.
5
6 Note the following rules:
7 - Closely follow the task prompt. You must use all objects except any objects not related to the task.
8 - Be consistent with object names throughout the plan.
9 - All objects are on the table in front of the robot.

10 - Use one action verb per step. However, any steps involving ”pick” or ”place” must be written as a single
step with

11 the action ”pick and place”.
12 - Use as many states as possible to describe object preconditions and effects.
13 - Only use the states ”in”, ”on”, ”under”, or ”contains” for describing objects. List them in the format
14 ”<relation> <obj>”, where <relation> is a state and <obj> is a single object.

Figure 8: System prompt for our OLP method.

1 User: Your task will be to create a step-by-step plan for the following prompt: T . The following objects are
available in

2 the scene: < objects in scene >. Say ’Okay!’ if you understand the task.
3
4 LLM: Okay!
5
6 User: Below are a list of prototype recipes. You must select the closest one that is the closest to the given task
7 prompt. Simply provide the number corresponding to the closest prototype.
8
9 < Step-by-step language plans for examples XG = {G1,G2, ...,Gn} >

10
11 LLM: < Prototype selection Ĝ ∈ XG >

12
13 User: Generate a concise plan using the prototype as inspiration for the task: T . Follow all guidelines. Give

evidence to
14 support your plan logic.
15
16 LLM: < Step-by-step instructions for task T as PL >

17
18 User: Make a Python list of used objects in the following format: [”object 1”, ”object 2”, ...]’. If there are

several
19 instances of an object type, list them individually (e.g., [’first apple’, ’second apple’] if two apples are

used). Do not add any explanation.
20
21 LLM: < List of objects needed for task T >

22
23 User: Format your generated plan as a JSON dictionary. List as many states as possible when describing each object’s
24 preconditions and effects. Each required object should match a key in ”object states”: Be consistent with

object names across actions. Use this JSON prototype as reference:
25
26 < JSON equivalent of Ĝ >

27
28 LLM: < JSON for task T as G̃T >

Figure 9: Progressive chain-of-thought (CoT) prompting for extracting object-level plans from a LLM. We highlight special
input provided to the LLM (particularly the user task query T , objects in the scene, and few-shot examples—both as language
instructions and JSON) as well as output acquired from the LLM in blue and orange colours respectively. A few-shot sample
codified as a JSON structure is shown as Figure 10.



1 {
2 ”plan”: [{
3 ”step”: 1,
4 ”action”: ”pick and place”,
5 ”required objects”: [”first block”, ”second block”],
6 ”object states”: {
7 ”first block”: {”preconditions”: [”under nothing”, ”on table”], ”effects”: [”under second block”, ”on

table”]},
8 ”second block”: {”preconditions”: [”under nothing”, ”on table”], ”effects”: [”on first block”, ”under

nothing”]},
9 },

10 ”instruction”: ”Pick and place second block from table on first block.”
11 }]
12 }

Figure 10: JSON equivalent of a functional unit presented as Figure 3.



Appendix B: Baseline Method Prompts
LLM-Planner

1 System: You are a helpful PDDL planning expert. Your job is to process a task prompt, a list of objects in the
scene, and

2 a list of statements describing the environment state, reason about how to solve the task, and produce a
plan that solves the task.

3
4 A task plan has the format of:
5 1. (< action 1 >< arg1 >< arg2 >)
6 2. (< action 2 >< arg1 >< arg2 >)
7 3. ...
8
9 Observe the following rules:

10 - In the task plan, you can only use these actions:
11 1. (< pick >< obj1 >< obj2 >) - pick < obj1 > that is on top of < obj2 >; this causes nothing to be on < obj2 >.
12 2. (< place >< obj1 >< obj2 >) - place < obj1 > on top of < obj2 >; < obj2 > must have nothing on it for < obj1 >

to
13 be placed on it.
14 - Note the order of the arguments for both actions!
15 - The agent executing this task has a single hand: in order to pick up an object, the agent’s hand must be free.
16
17 User: There is a scenario with the following objects: < objects in scene >. Please await further instructions.
18
19 User: Your task is as follows: T . Transform this instruction into a PDDL goal specification in terms of ’on’

relations.
20 Do not add any explanation.
21
22 LLM: < Goal state description for task T >

23
24
25 User:: Find a task plan in PDDL to achieve this goal given the initial state below. Only specify the list of actions
26 needed. Use the actions defined above. Do not add any explanation.
27
28 Initial state: < State description as text s̃ >

29
30 LLM: < Task plan as text Pµ >

Figure 11: Prompts for LLM-Planner baseline. This baseline simply provides a textual description of the robot’s actions as
well as the current object configuration, with which it must reason about the correct sequence of actions that will result in
collision-free execution and resolve the task.



LLM+P

1
2 User: I want you to generate a PDDL problem file for robot problem solving. An example planning problem is:
3
4 < PDDL Problem File Examples̃ >

5
6 Now I have a new planning problem and its description is as follows: These objects are on the table:
7 < objects in scene >. The current state of the world is: < State description as text s̃ >.
8
9 Your goal is to achieve this task: T . Provide me with the problem PDDL file that describes the new planning

problem
10 directly without further explanations.
11
12 LLM: < PDDL Problem Definition >

Figure 12: Prompts for the LLM+P (Liu et al. 2023) baseline. Similar to our OLP method, we provide the LLM with an example
PDDL problem file definition for the most similar few-shot example. These prompts were based on those provided by Liu et al.
(2023) online.3

DELTA

1 User: Role: You are an excellent PDDL domain file generator. Given a description of action knowledge in natural
language,

2 you can generate a PDDL domain file.
3
4 Example: < PDDL Domain File Example >

5
6 Instruction: A new domain includes the following objects: < objects in scene >. Please generate a

corresponding new PDDL domain file for a robot. Do not add any explanation.
7
8 LLM: < PDDL Domain Definition for task T >

Figure 13: PDDL domain file prompting for the DELTA (Liu et al. 2024) baseline. Similar to our OLP method, we provide the
LLM with an example PDDL domain file definition for the most similar few-shot example.

1 User: Role: You are an excellent PDDL problem file generator. Given a description of the robot’s environment and a
goal

2 description, you can generate a PDDL problem file.
3
4 Example: < PDDL Problem File Example >

5
6 Instruction: Now given a new description of the robot’s scene and using the predicates in the previously

generated PDDL domain file, please generate a new PDDL problem file for the task: T .
7
8 < State description as text s̃ >

9
10 LLM: < PDDL Problem Definition for task T >

Figure 14: PDDL problem file prompting for the DELTA (Liu et al. 2024) baseline. Similar to our OLP method, we provide the
LLM with an example PDDL problem file definition for the most similar few-shot example. This prompt was slightly modified
to account for the lack of a scene graph in this work.

3LLM+P Repository: https://github.com/Cranial-XIX/llm-pddl



1 User: Role: You are an excellent assistant in decomposing long-term goals. Given a PDDL problem file, you can
decompose

2 the long-term goal in a sequence of subgoals.
3
4 Example: < PDDL Subgoals Example >

5
6 Instruction: Given the PDDL problem previously generated, please decompose the long-term goal into a sequence

of subgoals considering the predicates and actions from the previously generated PDDL domain file. Simply list
the decomposed PDDL subgoals for each instruction in a similar format as the example and only 1 level deep.

7
8 LLM: < PDDL Subgoals for task T >

Figure 15: Subgoal prompting for the DELTA (Liu et al. 2024) baseline. To accompany the few-shot example from the prior
prompts, we also defined an example decomposition of subgoals as text. Our implementation of the baseline then extracts each
set of subgoals to then generate PDDL subgoal problem files using the current state at the start of subgoal execution.



Appendix C: Task Settings
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Figure 16: Examples of the initial and final states for all task settings defined in Section . In the tower building example, the robot
must simply construct a tower of 6 blocks (using all but one block on the table). In the spelling task, the robot must assemble a
tower spelling the word “SCHUBERT” (read from top to bottom); this scene also contains extra blocks as distractions. Finally,
in the organizing table task, the robot must stack all alike blocks into separate towers or piles. There are a total of sixteen (16)
blocks in this scene: four (4) block types, each with four (4) instances initially configured in a randomized order. In all settings,
the object-level plan (OLP) will solely focus on the object types relevant to the task, as the LLM is not provided with the entire
set of objects at the OLP generation phase (Section ).


