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ABSTRACT

Generating 3D shapes at part level is pivotal for downstream applications such as
mesh retopology, UV mapping, and 3D printing. However, existing part-based
generation methods often lack sufficient controllability and produce semantically
inconsistent decompositions. To this end, we introduce X -Part, a diffusion-based
method designed to decompose a holistic 3D object into semantically meaning-
ful and structurally coherent parts with high geometric fidelity. X -Part exploits
bounding boxes as prompts for part generation and injects point-wise semantic
features for meaningful decomposition. Furthermore, we design a pipeline for
interactive part editing. Extensive experimental results show that X -Part signif-
icantly advances the state-of-the-art in both part shape quality and semantic cor-
rectness. This work establishes a new paradigm for creating production-ready,
editable, and structurally sound 3D assets. Codes will be released for public re-
search.

1 INTRODUCTION

3D assets are now extensively utilized across a wide range of fields, including gaming, film pro-
duction, 3D printing, autonomous driving, and robotic simulation. However, traditional 3D content
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creation remains a time-consuming process that demands significant expertise. Recent advances in
generative AI have substantially lowered the barriers to 3D content generation, particularly with the
emergence of foundational 3D models Zhang et al. (2024); Zhao et al. (2025); Lai et al. (2025).

Despite this progress, most existing generative approaches are only capable of producing monolithic
3D models, which poses considerable limitations for practical 3D creation pipelines. Decomposing
a complete 3D shape into meaningful semantic parts would greatly facilitate various downstream
tasks. For instance, breaking down a complex geometry into simpler parts can significantly ease the
process of mesh re-topology Weng et al. (2025) and uv-unwrapping Li et al. (2025a). Generating
shapes at the part level presents two major challenges: 1) The decomposed geometry must maintain
meaningful part-level semantics, and 2) The generation process must recover geometrically plausible
structures for internal regions.

Mainstream part-generation methods adopt the latent vecset diffusion framework Zhang et al.
(2023), where each part is represented as an independent set of latent codes for diffusion. The gener-
ation process can be executed independently for individual parts (e.g., HoloPart Yang et al. (2025a))
or simultaneously for all parts (e.g., PartCrafter Lin et al. (2025), PartPacker Tang et al. (2025))
with enhanced part synchronization. Furthermore, 2D image segmentation or 3D mesh segmenta-
tion are frequently employed for better part generation Chen et al. (2024); Yang et al. (2025a;b).
However, these approaches are highly sensitive to inaccuracies in the segmentation results. Alterna-
tive works Lin et al. (2025); Tang et al. (2025) do not explicitly rely on segmentation, but they lack
controllability and often generate parts with ambiguous boundary.

Motivated by these observations, we present X -Part, a diffusion-based framework that decomposes
a holistic mesh into semantically meaningful and structurally coherent 3D parts. The method uti-
lizes the state-of-the-art segmenter P3-SAM Ma et al. (2025) to automatically generate initial part
segmentations, bounding boxes, and semantic features. Then the shape decomposition is executed
within a synchronized multi-part diffusion process.

Specifically, 1) First, to control part decomposition, instead of directly using segmentation results
as input we uses bounding boxes as prompts to indicate part locations and scales. Compared with
fine-grained and point-level segmentation cues, bounding boxes provide a coarser form of guidance,
which mitigates overfitting to the input segmentation masks. Besides, the bounding box provides
additional volume scale information for the partially visible part, benefiting generation and controlla-
bility. 2) Second, despite inaccuracies in the segmentation results, we notice that the high-dimension
point-wise semantic feature is free from the information compression caused by the mask prediction
head used in P3-SAM, resulting in more robust semantic representations. Therefore, we introduce
the semantic features from P3-SAM into our diffusion process to guide the multi-part diffusion pro-
cess. This greatly benefits the part decomposition. 3) Third, we integrate X -Part into a bounding
box based part editing pipeline following Lugmayr et al. (2023). It supports local editing, such as
splitting a part into several parts and adjusting their scales, to facilitate interactive part generation.

To prove the effectiveness of X -Part, we conducted extensive experiments on various benchmarks.
Our results show that X -Part achieves state-of-the-art performance in part-level decomposition and
generation. In summary, the contributions of our work are as follows:

1. We propose X -Part, a controllable and editable diffusion framework, capable of generating
semantically meaningful and structurally coherent 3D parts.

2. We integrate X -Part into an editable part generation pipeline, which supports multiple in-
teractive editing methods.

3. Extensive experiments demonstrate that X -Part achieves state-of-the-art performance in
part-level decomposition and generation.

2 RELATED WORK

Part Segmentation. The most straightforward approach for decomposing a 3D geometry is seg-
mentation. Conventional methods Qi et al. (2017); Zhao et al. (2021) directly predict per-point se-
mantic labels via supervised learning. However, these methods rely heavily on extensive part-level
annotations and generalize poorly beyond seen categories. Inspired by the remarkable success of
2D foundation models like SAM Kirillov et al. (2023) and GLIP Li et al. (2022) in open-vocabulary
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tasks, several recent approaches Abdelreheem et al. (2023); Liu et al. (2023); Tang et al. (2024); Thai
et al. (2024); Umam et al. (2024); Zhong et al. (2024) attempt to lift 2D visual knowledge to 3D do-
mains. Although these methods improve generalization, they often fail to accurately infer parts in
occluded or unobserved regions. To mitigate this, PartField Liu et al. (2025) and SAMPart3D Yang
et al. (2024) learn open-world 3D feature fields for semantic part decomposition. P3-SAM Ma et al.
(2025) proposes a native 3D part segmentation network trained on a large, purely 3D dataset with
part annotations, demonstrating impressive part segmentation results.

Object-level Shape Generation. The remarkable success of latent diffusion models in 2D image
generation has inspired a new wave of methods extending this capability to 3D object generation.
Dreamfusion Poole et al. (2022) introduced Score Distillation Sampling (SDS) to distill 2D priors
from pre-trained diffusion models for 3D synthesis, though it often suffers from slow optimiza-
tion and geometrically inconsistent outputs. Subsequent approaches Li et al. (2023); Long et al.
(2024); Shi et al. (2023), reformulated 3D generation as a multi-view image synthesis problem.
With the release of large-scale 3D datasets such as Objaverse Deitke et al. (2023b) and Objaverse-
XL Deitke et al. (2023a), native 3D generative models have become increasingly prevalent. Methods
like 3DShape2VecSet Zhang et al. (2023), Michelangelo Zhao et al. (2023), Clay Zhang et al. (2024),
and Dora Chen et al. (2025c) encode object point clouds into vector-set tokens using a variational
autoencoder (VAE) Kingma & Welling (2013) and model the distribution via a Diffusion Trans-
former (DiT) Peebles & Xie (2023). In contrast, Trellis Xiang et al. (2025) employs an explicit
voxel representation for coarse geometry and further generates both geometry and appearance from
the voxel latents.

Part-level Shape Generation. PartGen Chen et al. (2025a) decomposes 3D objects by solving
a multi-view segmentation task and subsequently completes and reconstructs each part in 3D.
PhyCAGE Yan et al. (2024b) adopt physical regularization for non-rigid part decomposition. While
recent methods exploit DiT-based generative methods to achieve part-level generation Yang et al.
(2025a); Luo et al. (2025); Lin et al. (2025); Tang et al. (2025); Dong et al. (2025); Yang et al.
(2025b); Zhang et al. (2025). HoloPart Yang et al. (2025a) completes part geometry from initial
3D segmentation results. In contrast, PartCrafter Lin et al. (2025) and PartPacker Tang et al. (2025)
operate without explicit segmentation, instead leveraging multi-instance DiTs to generate parts au-
tomatically. PartPacker Tang et al. (2025) further introduces a dual-volume DiT to model comple-
mentary spatial volumes for improved efficiency. Frankenstein Yan et al. (2024a) execute similar
idea by packing multiple SDFs in a latent triplane space via VAE. However, these approaches of-
ten yield parts with limited geometric quality and offer minimal local controllability. CoPart Dong
et al. (2025) incorporates an auxiliary 2D image diffusion model to enhance texture and detail using
2D/3D bounding box conditions, though it supports only up to 8 parts and cannot decompose an ex-
isting 3D shape. OmniPart Yang et al. (2025b) adopts an explicit representation similar to Trellis and
uses bounding box prompts, yet it lacks the ability to complete occluded geometry. BANG Zhang
et al. (2025) frames part generation as an object explosion process, enabling bounding-box-guided
decomposition and recursive refinement, but it often fails to preserve fine geometric details through-
out the process. AutoPartGen Chen et al. (2025b) employs a latent diffusion model to autoregres-
sively generate parts, which is computationally expensive and offers limited user control.

3 METHOD

Our objective is to generate high-fidelity and structure-coherent part geometries from a given object
point cloud, while ensuring flexible controllability over the decomposition process. To this end,
we propose X -part (see Figure 1) based on a multi-part diffusion framework. In Section 3.1, we
outline the foundational vecset-based 3D latent diffusion model. Section 3.2 introduces our part-
conditioning strategy using bounding box prompts and semantic point features, followed by the
presentation of the complete X -Part framework for synchronized part generation and its training
scheme. Finally, we introduce the part editing pipeline in Section 3.3.

3.1 PRELIMINARY

Our method builds upon pre-trained vecset-based 3D shape generation models Zhang et al. (2024);
Zhao et al. (2023; 2025); Li et al. (2025b), which typically consist of a 3D shape variational autoen-
coder (VAE) and a latent diffusion model.
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Figure 1: Architecture of X -Part. Given the input point cloud, per-point feature and part bounding
boxes are extracted from P3-SAM Ma et al. (2025). Global and part conditions are obtained by
stacking geometry token with interpolated semantic features. They are injected to multi-part diffu-
sion process to guide shape decomposition.

Variational Autoencoder (VAE). Following Zhao et al. (2025), given an input mesh, we first sample
point cloud X ∈ RN×7 including XYZ coordinates, surface normals, and a flag indicating if the
point lies on a sharp edge. The encoder of the VAE consists of a cross-attention block and multiple
self-attention layers. It maps the sampled point cloud into latent vectors:

Z = E(X) = SelfAttn(CrossAttn(PE(X0), PE(X))) (1)

where X0 ∈ RN0×7 denotes the point set obtained by applying farthest point sampling (FPS) to
X , and Z ∈ RN0×C represents the N0 latent tokens of the input shape. PE represents position
embedding for input point cloud. The decoder of the VAE similarly consists of several self-attention
layers followed by a final cross-attention module, mapping a spatial coordinate query q ∈ R3 to its
corresponding signed distance value (SDF). To enhance the capacity of VAE to represent part-level
geometry, we further fine-tune the VAE on a dataset of part shapes.

3D Diffusion Model. To model the latent space of encoded objects, a flow-based diffusion
model Lipman et al. (2022) is trained to generate latent tokens, which can subsequently be de-
coded into 3D geometries. Following Hunyuan-DiT Li et al. (2024) and TripoSG Li et al. (2025b),
the core of our model is constructed using a series of Diffusion Transformer (DiT) blocks.

3.2 MULTI-PARTS LATENT DIFFUSION

Semantic-Aware Shape Conditioning. To incorporate holistic shape information, we encode the
input point cloud X using the VAE encoder, producing a global object condition fo that encapsulates
the complete geometric structure. To enable controllable part decomposition, we design a bounding
box-driven conditioning module that extracts part-specific cues from the specified spatial regions,
as illustrated in Figure 1. Specifically, we run P3-SAM Ma et al. (2025) to obtain part bounding
boxes and per-point semantic features. Then, we sample points Xinbox within the given bounding
box from the object point cloud. Xinbox is then encoded by a learnable encoder to form the part-level
condition fp. To improve the robustness to bounding box perturbations during inference, we apply
augmentations involving random translations and moderate scaling to the bounding boxes during
training. To facilitate coherent shape decomposition, we enhance input conditions by concatenating
shape tokens with semantic features. The enhanced object and part conditional features, f

′

o and f
′

p,
are defined as:

f
′

o = Concat(fo, Interp(Esem(X),X)),fo = Eo(X)

f
′

p = Concat(fp, Interp(Esem(X),Xinbox)),fp = Ep(Xinbox)
(2)

where Eo denotes the raw shape VAE encoder which is frozen during training. Ep represents the
learnable encoder in part condition extraction module. Esem represents for the semantic encoder in

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

P3-SAM. Note that to align with the shape tokens, the semantic feature is obtained by interpolated
using the down-sampled XYZ positions from the shape encoder output, c.f. Figure 1. To enhance the
robustness to the high-dimensional semantic feature, we apply random dropout for semantic feature.
It is worth noting that when extracting the part-level condition, the bounding box of a specific part
may contain points from adjacent parts. However, through the integration of point-wise semantic
features and inter-part attention (described in Section 3.2), our model enables mutual exclusion of
irrelevant points across different parts during the generation process.

Multi-Part Diffusion. We leverage multi-part diffusion to simultaneously generates latent tokens
for all parts O = Concatenate({zi}K1 ) ∈ RnK×C , where the object consists of K parts and each
part represented by n latent tokens denoted as zi ∈ Rn×C . Multi-part diffusion block repeats
N times and each block consists of one self-attention layer followed by two cross-attention layers
(see Figure 1). At even blocks, self-attention is conducted within each part, providing intra-part
awareness. At odd blocks, self-attention runs across all parts, exchanging inter-part information.
This design aligns with Lin et al. (2025). Formally it reads

Attnintra = softmax(
σq(zi)σk(zi)

T

√
d

)σv(zi),Attninter = softmax(
σq(zi)σk(O)T√

d
)σv(O) (3)

where σq , σk, and σv denote the query, key, and value projection layers, respectively, and d rep-
resents the hidden dimension of the attention tokens. The global condition f

′

o and part conditions
f

′

p are injected into the diffusion block by two cross-attention layers. We incorporate a learnable
part embedding to further enhance the distinctiveness of each part. Specifically, we initialize a part
embedding codebook E ∈ Rl×C and assign a unique embedding to each part. A part embedding
is repeated by n and added to the part’s token. To enable the decomposition of objects that contain
more parts than the maximum limit for a single object in the training dataset, during training, we set
l to a much larger number, and randomly assign a unique embedding to each part.

Training. We train the model using the flow matching objective Lipman et al. (2022). During the
forward process, Gaussian noise ε ∼ N (0, I) is added to the data z0 according to a noise level t,
resulting in zt = tz0 + (1− t)ε. The model is trained to predict the velocity field v = ε− z0 that
moves zt back toward z0, conditioned on both the global condition f

′

o and the part condition f
′

p.

L = Ez,t,ε

[∥∥∥(ε− z0)− vθ(zt, t,f
′

o,f
′

p)
∥∥∥2] (4)

where vθ denotes the denoising neural network. Given that the geometric complexity of an individ-
ual part is substantially lower than that of a complete object, we assign a reduced number of tokens
to each part during both the VAE fine-tuning process and X -Part training process.

3.3 PART EDITING

We further design a interactive part editing pipeline based on X-Part. Following Repaint Lugmayr
et al. (2022), we adopt a training-free method to achieve two kinds of editing: part split and part
adjust. The split operation refers to splitting the bounding box and generating several parts accord-
ingly. The adjust operation means adjusting a certain bounding box so that the part and adjacent
parts would be re-generated accordingly. Specifically, for parts indicated by the bounding box, their
latent tokens are resampled and denoised while keeping tokens of other parts unchanged.

4 EXPERIMENTS

Evaluation Metrics. We evaluate our method on 200 samples from the ObjaversePart-Tiny dataset,
each comprising rendered images and corresponding ground-truth part geometries. To assess geo-
metric quality, we employ Chamfer Distance (CD) and F-Score. The F-Score is computed at two
different thresholds [0.1, 0.05] to capture both coarse-level and fine-level geometric alignment. Prior
to metric computation, each object is normalized to the range [−1, 1]. To ensure pose-agnostic eval-
uation, we rotate each object by [0, 90, 180, 270] degrees and report the best score among these
orientations as the final metric.
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Figure 2: Qualitative shape decomposition results. Note that the input shapes for our method and
HoloPart are ground-truth watertight point clouds, while OmniPart leverages shapes produced by
Trellis Xiang et al. (2025).

3D Shape Decomposition results. This experiment aims to evaluate and compare the geometric
decomposition capabilities of different methods, validating that our approach achieves a deeper
structural understanding and decomposition of objects while generating higher-quality part ge-
ometries. Our method takes a ground-truth watertight surface as input and automatically gen-
erates decomposed parts; We compute metrics between the generated parts and the ground-truth
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parts. We first compare against segmentation-based methods such as Sampart3D Yang et al. (2024)
and PartField Liu et al. (2025), which also take the same watertight mesh as input. The seg-
mented results are directly compared to the ground truth parts. In addition, we include genera-
tive methods such as HoloPart Yang et al. (2025a) and OmniPart Yang et al. (2025b). HoloPart
also uses the ground-truth watertight point cloud as input. Although OmniPart does not di-
rectly take a 3D shape as input, it first generates a coarse geometry and then performs part
decomposition. To eliminate the influence of segmentation quality, we replace the Sampart3D

Method CD↓ Fscore-0.1↑ Fscore-0.05↑

SAMPart3D 0.15 0.73 0.63
PartField 0.17 0.68 0.57
HoloPart 0.26 0.59 0.43
OmniPart 0.23 0.63 0.46
Ours 0.11 0.80 0.71

Table 1: Part decomposition results.

segmentation used in HoloPart with P3-SAM Ma et al.
(2025), and provide OmniPart with 2D part masks
rendered from the ground-truth parts. As shown in
Table 1, segmentation-based methods can decompose
part points on the input watertight surface but fail
to produce complete part geometries. Our method
outperforms all baselines in decomposition quality,
even when OmniPart is supplied with ground-truth 2D
masks. Furthermore, as illustrated in Figure 2, our ap-
proach significantly surpasses other methods in the ge-
ometric quality of the generated parts.

Method CD↓ Fscore-0.1↑ Fscore-0.05↑

Part123 0.42 0.36 0.20
HoloPart 0.09 0.88 0.73
PartCrafter 0.20 0.66 0.45
PartPacker 0.11 0.85 0.65
OmniPart 0.08 0.91 0.77
Ours 0.08 0.92 0.78

Table 2: Holistic shape generation results.

Image-to-3D Part Generation. Leveraging existing
image-to-3D generative models, we extend our method
to the task of image-to-3D part generation. Specif-
ically, given a reference image, we first generate a
watertight mesh using an off-the-shelf image-to-3D
model Zhang et al. (2024); Lai et al. (2025); Li et al.
(2025b), which is then fed into our pipeline for decom-
position into parts. Similar to the previous experiment,
we compare our approach not only against HoloPart
and OmniPart, but also against methods that directly
generate parts from images, such as PartPacker Tang
et al. (2025), PartCrafterLin et al. (2025), and Part123Liu et al. (2024). The input to OmniPart re-
mains consistent with the setup above, while both HoloPart and our method use the same generated
mesh as input. Since different methods may produce divergent part structures, making it difficult
to establish accurate correspondences with ground-truth parts. We compare only the overall object
geometry composed of all generated parts. As shown in Table 2, our method produces final objects
with higher geometric quality and better alignment to the ground truth. Figure 2 visually demon-
strates the structural plausibility and high quality of our results. Moreover, our decomposition is
more refined, often generating a larger number of semantically reasonable parts.

Part Editing. In Figure 4(a), we demonstrate the two types of part editing methods as described in
Section 3.3, which demonstrates the controllability of our proposed method.

Part-Aware UV Un-wrapping. UV unwrapping is an essential step in 3D content creation
pipelines. Fig. 4 compares the UV maps generated by unwrapping a holistic mesh and part-
decomposed meshes respectly. Part-decomposed mesh are processed by unwrapping each of the
part separatedly. Decomposing shapes into part greatly simplify Un-wrapping process and makeing
UV maps more compact and semantically meanningful.

Ablation Study As shown in Table 3, we conduct a series of ablation studies to validate the ef-
fectiveness of each component in our proposed framework, all of which contribute to improved
model performance. We analyze the roles of individual components in detail. The intra-part and
inter-part attention mechanism enhances the representation of part-level latents while maintaining
a global contextual view across all parts. The part embedding module introduces distinctiveness
among the latent representations of different parts. The object-level condition provides priors about
the overall geometry of the shape. Meanwhile, the part-level condition offers detailed information
indicating coarse part location and scale. Additionally, the semantic point feature supplies semantic
cues that facilitate structurally coherent shape decomposition. We further provide visualizations of
representative results in Figure 5 to illustrate the impact of each component.
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Figure 3: Qualitative shape decomposition results. Note that the input shapes for HoloPart and
Ours are obtained from Hunyuan3D-2.5 Lai et al. (2025), while OmniPart leverages shapes produced
by Trellis. PartCrafter and PartPacker do not rely on shapes.

Figure 4: Demonstration of two representative applications of our method. Subfigure (a) shows
the results of bounding box-controlled part generation, while subfigure (b) illustrates improved UV
unwrapping performance achieved through part-based decomposition.
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Method Part-level Overall-level
CD ↓ F1-0.1 ↑ F1-0.05 ↑ CD ↓ F1-0.1 ↑ F1-0.05 ↑

W/o part embedding 0.13 0.78 0.68 0.04 0.97 0.92
W/o object-cond 0.12 0.79 0.70 0.03 0.97 0.93
W/o part-cond 0.27 0.57 0.47 0.03 0.98 0.95
W/o semantic-feat 0.12 0.78 0.69 0.04 0.97 0.92
W/o inter-part self-attn 0.12 0.79 0.70 0.03 0.97 0.94
Ours 0.11 0.80 0.71 0.02 0.98 0.96

Table 3: Based on the ground-truth bounding boxes, we compute part-level and object-level metrics
for different modules on the ObjaversePart-Tiny dataset.

Figure 5: Part generation results under different module ablation settings.

5 CONCLUSION AND LIMITATION

Conclusion We introduce X -Part, a purely geometry-based part generation framework that takes
bounding boxes as input to decompose complete 3D objects into structured parts. Compared to
existing approaches, our method better preserves geometric quality and fidelity in the generated
parts, while also offering easier integration into 3D content creation pipelines, thereby significantly
reducing the complexity of downstream tasks. Additionally, our method allows users to alter part
decomposition strategies by adjusting bounding boxes, thereby enabling more intuitive control and
flexible editing. To enhance the model’s structural understanding, we incorporate semantic point
features that provide high-level shape semantics. Our approach supports the generation of up to 50
distinct parts, which sufficiently covers most practical application scenarios.

Limitation Our method currently relies on geometric cues for decomposition and lacks guidance
from physical principles, which may limit its ability to meet certain application-specific decompo-
sition requirements. Additionally, since the latent codes of all parts are processed simultaneously
through the diffusion model, inference time increases with the number of parts, posing a challenge
for real-time usage when handling high-part-count objects.

9
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

All technical contributions, including the methodology, equations, and results, are solely the work
of the authors.

A.2 IMPLEMENTATION DETAILS

Network Architecture The DiT module consists of 21 DiT blocks, where skip connections are
implemented by concatenating latent features along the channel dimension. During training, the
number of tokens per part is set to 512, consistent with the VAE fine-tuning configuration. The
self-attention layers at odd indices are configured to perform inter-part attention, thereby enhancing
awareness of other parts. For the cross-attention modules, both the object condition and the part
condition are represented with 2,048 tokens, providing detailed guidance for the generation process.
The part embedding codebook contains 50 entries, and a unique embedding is randomly assigned
to each part latent during both training and inference. In addition, we employ a Mixture-of-Experts
(MoE) model for the linear output layers of the first six network blocks to efficiently enhance the
learning capacity in the latent space.

Training Our model is initialized from a pre-trained object generator, with its self-attention parame-
ters loaded as the starting point. We use the Adam optimizer with a learning rate of 1e−4 and apply
gradient clipping with a maximum norm of 1.0 to enhance training stability. The model was trained
for approximately four days on 128 H20 GPUs. To further improve robustness, we randomly drop
semantic features with a probability of 0.3, and independently apply a 0.1 dropout probability to the
object condition, the part condition, or both during training. Additionally, we apply data augmenta-
tion to the bounding boxes by introducing random translations sampled from a uniform distribution
U(−0.05, 0.05) and scaling factors sampled from the interval [0.9, 1.1].

Dataset Curation We use the part dataset introduced in P3-SAM Ma et al. (2025), which contains
nearly 2.3 million objects with ground truth part segmentation. To create training pairs, each part
of an object, as well as the object itself, is remeshed into a watertight mesh. A dataset of this scale
significantly enhanced the generalizability of our diffusion-based shape decomposition method.
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Figure 6: More results. The left column shows the input images, the middle column displays the
object meshes generated by Hunyuan3D-2.5 Lai et al. (2025), and the right column presents the
decomposition results obtained by our X -Part framework.
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Figure 7: More results. The left column shows the input images, the middle column displays the
object meshes generated by Hunyuan3D-2.5 Lai et al. (2025), and the right column presents the
decomposition results obtained by our X -Part framework.
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Figure 8: More results. The left column shows the input images, the middle column displays the
object meshes generated by Hunyuan3D-2.5 Lai et al. (2025), and the right column presents the
decomposition results obtained by our X -Part framework.
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