
OpenELM: An Efficient Language Model Family with Open Training and
Inference Framework

Sachin Mehta 1 Mohammad Hossein Sekhavat 1 Qingqing Cao 1 Maxwell Horton 1 Yanzi Jin 1 Chenfan Sun 1

Iman Mirzadeh 1 Mahyar Najibi 1 Dmitry Belenko 1 Peter Zatloukal 1 Mohammad Rastegari 1

Model Public dataset Open Model size Pre-training tokens Average acc. (in %)
Code Weights

OPT (Zhang et al., 2022) ✗ ✓ ✓ 1.3 B 0.2 T 41.49
PyThia (Biderman et al., 2023) ✓ ✓ ✓ 1.4 B 0.3 T 41.83
MobiLlama (Thawakar et al., 2024) ✓ ✓ ✓ 1.3 B 1.3 T 43.55
OLMo (Groeneveld et al., 2024) ✓ ✓ ✓ 1.2 B 3.0 T 43.57
OpenELM (Ours) ✓ ✓ ✓ 1.1 B 1.5 T 45.93

Table 1. OpenELM vs. public LLMs. OpenELM outperforms comparable-sized existing LLMs pretrained on publicly available datasets.
Notably, OpenELM outperforms the recent open LLM, OLMo, by 2.36% while requiring 2× fewer pre-training tokens. The average
accuracy is calculated across multiple tasks listed in Table 7b, which are also part of the OpenLLM leaderboard (Beeching et al., 2023).
Models pretrained with less data are highlighted in gray color.

Abstract
The reproducibility and transparency of large lan-
guage models are crucial for advancing open re-
search, ensuring the trustworthiness of results,
and enabling investigations into data and model
biases, as well as potential risks. To this end,
we release OpenELM, a state-of-the-art open lan-
guage model. OpenELM uses a layer-wise scaling
strategy to efficiently allocate parameters within
each layer of the model, leading to enhanced ac-
curacy. For example, with a budget of around one
billion parameters, OpenELM exhibits a 2.36%
improvement in accuracy compared to OLMo
while requiring 2× fewer pre-training tokens. Our
source code along with pre-trained model weights
and training recipes is available at https://
github.com/apple/corenet. OpenELM
HuggingFace models can be found at: https:
//huggingface.co/apple/OpenELM.

1. Introduction
Transformer-based (Vaswani et al., 2017) large language
models (LLMs) are revolutionizing the field of natural lan-
guage processing (Brown et al., 2020; Touvron et al., 2023).
These models are isotropic, meaning that they have the
same configuration (e.g., number of heads and feed-forward

1Apple.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

network dimensions) for each transformer layer. Though
such isotropic models are simple, they may not allocate
parameters efficiently inside the model.

In this work, we develop and release OpenELM, a family
of pre-trained and fine-tuned models on publicly available
datasets. At the core of OpenELM lies layer-wise scaling
(Mehta et al., 2020), enabling more efficient parameter al-
location across layers. This method utilizes smaller latent
dimensions in the attention and feed-forward modules of
the transformer layers closer to the input, and gradually
widening the layers as they approach the output.

Our release includes the complete framework, encompass-
ing data preparation, training, fine-tuning, and evaluation
procedures, alongside multiple pre-trained checkpoints and
training logs, to facilitate open research. Importantly,
OpenELM outperforms existing open LLMs that are pre-
trained using publicly available datasets (Table 1). For ex-
ample, OpenELM with 1.1 billion parameters outperforms
OLMo (Groeneveld et al., 2024) with 1.2 billion parameters,
by 2.36% while requiring 2× fewer pre-training tokens.

2. Pre-training
This section describes the framework, including model ar-
chitecture (§2.1), pre-training data (§2.2), training hyper-
parameters and evaluation (§2.3).

2.1. OpenELM architecture

We adopt the decoder-only transformer architecture. Fol-
lowing state-of-the-art LLMs, we: (1) do not use learnable
bias parameters in any fully-connected (a.k.a. linear) lay-

1

https://github.com/apple/corenet
https://github.com/apple/corenet
https://huggingface.co/apple/OpenELM
https://huggingface.co/apple/OpenELM

OpenELM: An Efficient Language Model Family with Open Training and Inference Framework

ers, (2) apply pre-normalization using RMSNorm (Zhang &
Sennrich, 2019) and also, use rotatory positional embedding
(ROPE) (Su et al., 2024) to encode positional information,
(3) use grouped query attention (GQA) (Ainslie et al., 2023)
instead of multi-head attention (MHA), (4) replace the feed
forward network (FFN) with SwiGLU FFN (Shazeer, 2020),
(5) use flash attention (Dao et al., 2022) for computing the
scaled dot-product attention, and (6) use the same tokenizer
as LLama (Touvron et al., 2023).

Existing LLMs use the same configuration for each trans-
former layer, resulting in a uniform parameter allocation
across layers. Unlike these models, each layer in OpenELM
has a different configuration (e.g., number of heads and feed
forward network dimension), resulting in variable number
of parameters in each layer. This lets OpenELM to better
utilize the available parameter budget for achieving higher
accuracies. We implement this non-uniform allocation of
parameters across layers using layer-wise scaling (a.k.a.
block-wise scaling in (Mehta et al., 2020)).

Layer-wise scaling. A standard transformer layer is com-
posed of multi-head attention (MHA) and feed-forward net-
work (FFN). For non-uniform allocation of parameters in
the transformer layer, we adjust the number of attention
heads and the FFN multiplier in each transformer layer.

Assume that the standard transformer model with uniform
parameter allocation has N transformer layers and the di-
mensionality of the input to each layer is dmodel. The MHA
has nh heads and dimension of each head is dh = dmodel

nh
.

Also, the hidden dimension for FFN is dFFN = m · dmodel,
where m is a scalar FFN multiplier.

We introduce parameters α and β to scale the number of
attention heads nh and FFN multiplier m per layer respec-
tively. For the i-th layer, nh and m are computed as

ni
h =

αi · dmodel

dh
, mi = βi

where αi = αmin +
(αmax − αmin) · i

N − 1
,

and βi = βmin +
(βmax − βmin) · i

N − 1
, 0 ≤ i < N.

(1)

Here, αmin and αmax are the hyper-parameters that allow
us to scale the attention heads. Similarly, βmin and βmax let
us to vary the width of FFN layers. Therefore, varying the
configuration of standard transformer layers using α and β
results in non-uniform allocation of parameters in the model.
Note, setting αmin = αmax = 1.0 and mi = m produces
the standard uniform transformer model.

2.2. Pre-training data

For pre-training, we use public datasets. Specifically, our
pre-training dataset contains RefinedWeb (Penedo et al.,

2023), deduplicated PILE (Gao et al., 2020), a subset of
RedPajama (Computer, 2023), and a subset of Dolma v1.6
(Soldaini et al., 2024), totaling approximately 1.8 trillion
tokens. These details are also summarized in Appendix A.

On-the-fly tokenization and data filtering. Unlike pre-
vious approaches that utilize pre-tokenized data (Biderman
et al., 2023; Groeneveld et al., 2024), we filter and tokenize
text data on-the-fly. This facilitates seamless experimenta-
tion with various tokenizers, thereby significantly simplify-
ing prototyping and research endeavors. In our experiments,
we use the LLama tokenizer (Touvron et al., 2023).

To filter out low-length sequences, we apply two filtering
methods. The first method operates at the character-level,
checking if the number of characters in the sequence is
below a specified threshold. The second method operates
at the token-level, where it examines whether the sequence
contains fewer tokens than a specified threshold. Sequences
that are shorter than either of these thresholds are skipped.
In our experiments, we use 200 characters and 256 tokens
as character and token-level filtering thresholds.

2.3. Training and evaluation details

We train OpenELM variants for 350k iterations (or train-
ing steps) using CoreNet (formerly CVNets (Mehta et al.,
2022)). We use AdamW (Loshchilov & Hutter, 2017)
as an optimizer. We use a cosine learning rate schedule
(Loshchilov & Hutter, 2016), with warm up of 5k iterations,
and decay the final learning rate down to 10% of maximum
learning rate. We use a weight decay of 0.1 and gradient
clipping of 1.0. We train four variants of OpenELM (270M,
450M, 1.1B, and 3B), and for some, we use FSDP (Zhao
et al., 2023) and activation checkpointing (Chen et al., 2016).
We evaluate the accuracy using zero- and few-shot settings
across different tasks using LM Evaluation Harness (Gao
et al., 2021). Please refer to Appendix A for additional
pre-training and evaluation details.

3. Experimental Results
We evaluate the performance of OpenELM on zero-shot
and few-shot settings (Table 7). We compare OpenELM
with publicly available LLMs, namely PyThia (Biderman
et al., 2023), Cerebras-GPT (Dey et al., 2023), TinyLlama
(Zhang et al., 2024), OpenLM (Gururangan et al., 2023),
MobiLlama (Thawakar et al., 2024), and OLMo (Groen-
eveld et al., 2024). The works most closely related to ours
are MobiLlama and OLMo. These models are trained on
comparable dataset mixtures, with similar or larger number
of pre-training tokens.

In Figure 1, the accuracy of OpenELM is plotted against
training iterations for 7 standard zero-shot tasks. We ob-

2

OpenELM: An Efficient Language Model Family with Open Training and Inference Framework

50 100 150 200 250 300 350
Training iterations (in thousands)

22.5

25.0

27.5

30.0

32.5

35.0

Ac
cu

ra
cy

 (i
n

%
)

(a) ARC-c

50 100 150 200 250 300 350
Training iterations (in thousands)

40

45

50

55

60

Ac
cu

ra
cy

 (i
n

%
)

(b) ARC-e

50 100 150 200 250 300 350
Training iterations (in thousands)

50

55

60

65

Ac
cu

ra
cy

 (i
n

%
)

(c) BoolQ

50 100 150 200 250 300 350
Training iterations (in thousands)

40

50

60

70

Ac
cu

ra
cy

 (i
n

%
)

(d) HellaSwag

50 100 150 200 250 300 350
Training iterations (in thousands)

66
68
70
72
74
76
78

Ac
cu

ra
cy

 (i
n

%
)

(e) PIQA

50 100 150 200 250 300 350
Training iterations (in thousands)

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Ac
cu

ra
cy

 (i
n

%
)

(f) SciQ

50 100 150 200 250 300 350
Training iterations (in thousands)

52.5
55.0
57.5
60.0
62.5
65.0

Ac
cu

ra
cy

 (i
n

%
)

(g) WinoGrande 0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

270M
450M
1.1B
3B

OpenELM sizes

Figure 1. OpenELM’s performance across training iterations on standard zero-shot tasks. In the majority of tasks, the performance
of OpenELM shows improvement with increasing training duration. Furthermore, the model checkpoint obtained by averaging the last
five checkpoints, collected at intervals of 5k iterations, demonstrates comparable or slightly better performance (indicated by markers)
as compared to the last checkpoint obtained after 350k iterations.

Model Model size Pretraining tokens ARC-c ARC-e BoolQ HellaSwag PIQA SciQ WinoGrande Average Average w/o SciQ

OpenELM (Ours) 0.27 B 1.5 T 26.45 45.08 53.98 46.71 69.75 84.70 53.91 54.37 49.31
MobiLlama (Thawakar et al., 2024) 0.50 B 1.3 T 26.62 46.04 55.72 51.06 71.11 83.60 53.20 55.34 50.63
OpenELM (Ours) 0.45 B 1.5 T 27.56 48.06 55.78 53.97 72.31 87.20 58.01 57.56 52.62
TinyLlama (Zhang et al., 2024) 1.10 B 3.0 T 30.12 55.25 57.83 59.20 73.29 - 59.12 - 55.80
OpenLM (Gururangan et al., 2023) 1.00 B 1.6 T 31.00 56.00 65.00 61.00 74.00 - 60.00 - 57.83
MobiLlama (Thawakar et al., 2024) 0.80 B 1.3 T 28.84 49.62 60.03 52.45 73.18 85.90 55.96 58.00 53.35
MobiLlama (Thawakar et al., 2024) 1.26 B 1.3 T 31.91 56.65 60.34 62.18 74.81 89.10 59.27 62.04 57.53
OLMo (Groeneveld et al., 2024) 1.18 B 3.0 T 31.06 57.28 61.74 62.92 75.14 87.00 59.98 62.16 58.02
OpenELM (Ours) 1.08 B 1.5 T 32.34 55.43 63.58 64.81 75.57 90.60 61.72 63.44 58.91
OpenELM (Ours) 3.04 B 1.5 T 35.58 59.89 67.40 72.44 78.24 92.70 65.51 67.39 63.18

(a) Results on zero-shot tasks with respect to the standard metrics defined in Table 7a.
Model Model size Pretraining tokens ARC-c HellaSwag MMLU TruthfulQA-mc2 WinoGrande Average

Cerebras-GPT (Dey et al., 2023) 0.26 B 5.1 B 22.01 28.99 26.83 45.98 52.49 35.26
OPT (Zhang et al., 2022) 0.35 B 0.2 T 23.55 36.73 26.02 40.83 52.64 35.95
OpenELM (Ours) 0.27 B 1.5 T 27.65 47.15 25.72 39.24 53.83 38.72

Pythia (Biderman et al., 2023) 0.41 B 0.3 T 24.83 41.29 25.99 40.95 54.38 37.49
MobiLlama (Thawakar et al., 2024) 0.50 B 1.3 T 29.52 52.75 26.09 37.55 56.27 40.44
OpenELM (Ours) 0.45 B 1.5 T 30.20 53.86 26.01 40.18 57.22 41.50

MobiLlama (Thawakar et al., 2024) 0.80 B 1.3 T 30.63 54.17 25.2 38.41 56.35 40.95
Pythia (Biderman et al., 2023) 1.40 B 0.3 T 32.68 54.96 25.56 38.66 57.30 41.83
MobiLlama (Thawakar et al., 2024) 1.26 B 1.3 T 34.64 63.27 23.87 35.19 60.77 43.55
OLMo (Groeneveld et al., 2024) 1.18 B 3.0 T 34.47 63.81 26.16 32.94 60.46 43.57
OpenELM (Ours) 1.08 B 1.5 T 36.69 65.71 27.05 36.98 63.22 45.93

OpenELM (Ours) 3.04 B 1.5 T 42.24 73.28 26.76 34.98 67.25 48.90

(b) Results on OpenLLM Leaderboard tasks with respect to the metrics defined in Table 7b.
Model Model size Pretraining tokens ARC-c CrowS-Pairs HellaSwag MMLU PIQA RACE TruthfulQA WinoGrande Average

OpenELM (Ours) 0.27 B 1.5 T 27.65 66.79 47.15 25.72 69.75 30.91 39.24 53.83 45.13

MobiLlama (Thawakar et al., 2024) 0.50 B 1.3 T 29.52 65.47 52.75 26.09 71.11 32.15 37.55 56.27 46.37
OpenELM (Ours) 0.45 B 1.5 T 30.20 68.63 53.86 26.01 72.31 33.11 40.18 57.22 47.69

MobiLlama (Thawakar et al., 2024) 0.80 B 1.3 T 30.63 66.25 54.17 25.2 73.18 33.68 38.41 56.35 47.23
MobiLlama (Thawakar et al., 2024) 1.26 B 1.3 T 34.64 70.24 63.27 23.87 74.81 35.02 35.19 60.77 49.73
OLMo (Groeneveld et al., 2024) 1.18 B 3.0 T 34.47 69.95 63.81 26.16 75.14 36.75 32.94 60.46 49.96
OpenELM (Ours) 1.08 B 1.5T 36.69 71.74 65.71 27.05 75.57 36.46 36.98 63.22 51.68

OpenELM (Ours) 3.04 B 1.5 T 42.24 73.29 73.28 26.76 78.24 38.76 34.98 67.25 54.35

(c) Results on LLM360 tasks with respect to the metrics defined in Table 7c.

Table 2. Comparison of OpenELM with publicly available LLMs across various evaluation frameworks.. We chose MobiLlama and
OLMo as our baselines because they are pre-trained on public datasets using a similar or larger number of tokens. We evaluate OpenELM,
MobiLlama, and OLMo using the same LM evaluation harness version. Results for other models in Table 2a and Table 2b are taken from
their official GitHub repositories and the OpenLLM leaderboard (Beeching et al., 2023), respectively. Best task accuracy for each model
category is highlighted in bold. Models pre-trained with less data are highlighted in gray color.

3

OpenELM: An Efficient Language Model Family with Open Training and Inference Framework

serve an overall increase in accuracy with longer training
durations across most tasks. Additionally, the checkpoint
obtained by averaging the last five checkpoints, collected
at intervals of 5000 iterations, demonstrates comparable or
slightly better accuracy compared to the final checkpoint ob-
tained after 350k iterations. This improvement is likely due
to noise reduction through weight averaging. Consequently,
we use the averaged checkpoint for our main evaluations
in Table 2, instruction tuning experiments in Table 9, and
parameter-efficient tuning experiments in Table 10.

The results in Table 2 span across various evaluation frame-
works, and highlights OpenELM’s effectiveness over ex-
isting methods. For instance, an OpenELM variant with
1.1 billion parameters achieves 1.28% (Table 2a), 2.36%
(Table 2b), and 1.72% (Table 2c) higher accuracy com-
pared to OLMo with 1.2 billion parameters. Remarkably,
OpenELM achieves this level of accuracy while using 2×
less pre-training data.

Please refer to Appendix B for additional results on instruc-
tion and parameter-efficient fine-tuning.

4. Benchmarking
We benchmark OpenELM on two consumer-grade devices:
(1) NVIDIA RTX 4090 GPU and and (2) Apple Macbook
Pro (see Appendix C for additional details about hardware
and evaluation set-up).

Tables 3a and 3b shows the benchmarking results on GPU
and MacBook Pro respectively. Despite OpenELM’s higher
accuracy for a similar parameter count, we observe that
it is slower than OLMo. While the primary focus of this
study is reproducibility rather than inference performance,
we did comprehensive profiling to understand the bottle-
necks. Our analysis reveals that a significant portion of
OpenELM’s processing time can be attributed to our naive
implementation of RMSNorm (Table 4). Specifically, naive
RMSNorm implementation results in many individual ker-
nel launches each of which processes a small input, rather
than a launch of a single, fused kernel, as would be the case
with e.g. LayerNorm. By replacing the naive RMSNorm
with Apex’s RMSNorm (NVIDIA Corporation, 2024), we
observe a notable increase in OpenELM’s throughput. How-
ever, a substantial performance gap persists compared to
the models that use optimized LayerNorm, in part because
(1) OpenELM has 113 RMSNorm layers as compared to
33 LayerNorm layers in OLMo and (2) Apex’s RMSNorm
is not optimized for small inputs. To further illustrate the
performance degradation attributable to RMSNorm, we re-
placed the LayerNorm in OLMo with RMSNorm, and ob-
served a significant drop in generation throughput. In future
work, we plan to explore optimization strategies to further
improve the inference efficiency of OpenELM.

Model Model size Throughput (Tokens per second)

Prompt Generation Total

OPT (Zhang et al., 2022) 0.35 B 6524.17 214.11 220.21
OpenELM (Ours) 0.27 B 6427.27 159.67 165.85

MobiLlama (Thawakar et al., 2024) 0.50 B 3423.25 136.35 146.86
OpenELM (Ours) 0.45 B 5211.35 128.46 133.42

MobiLlama (Thawakar et al., 2024) 0.80 B 4151.75 126.01 130.08
Pythia (Biderman et al., 2023) 1.40 B 4501.85 139.65 143.83
MobiLlama (Thawakar et al., 2024) 1.26 B 4938.29 142.96 147.67
OLMo (Groeneveld et al., 2024) 1.18 B 7151.65 203.40 209.26
OpenELM (Ours) 1.08 B 3681.73 92.15 95.72

OpenELM (Ours) 3.04 B 2712.56 70.11 72.82

(a) Results on NVIDIA CUDA / Linux.

Model Throughput (Tokens per second)

Prompt Generation Total

OpenELM-0.27B 1151.41 212.40 218.45
OpenELM-0.27B-4bit 803.99 256.35 262.70

OpenELM-0.45B 910.61 147.26 151.57
OpenELM-0.45B-4bit 883.19 197.81 203.16

OpenELM-1.08B 508.56 78.72 81.04
OpenELM-1.08B-4bit 554.17 117.90 121.14

OpenELM-3.04B-bf16 234.96 33.96 34.97
OpenELM-3.04B-bf16-4bit 211.32 60.33 61.83

(b) Results for the MLX port on Apple macOS.

Table 3. Benchmark measurements of OpenELM compared
to other similar LLMs in its class.. On CUDA, we evaluate
OpenELM, MobiLlama, and OLMo using the CoreNet version of
OpenELM and HuggingFace for the other two. On macOS, we
only provide results for the MLX version of OpenELM.

Model Normalization layer Throughput (Tokens per second)

(# Invocations per token) Prompt Generation Total

OLMo LayerNorm (33) 7151.65 203.40 209.26
RMSNorm-Naive (33) 5360.56 171.41 176.92

OpenELM (Ours)
LayerNorm (113) 4697.50 130.34 135.38

RMSNorm-Naive (113) 3681.73 92.15 95.72
RMSNorm-Apex (113) 4280.66 113.42 117.81

Table 4. Normalization layers are a bottleneck. The throughput
of both OLMo-1.18B and OpenELM-1.08B significantly decreases
with the naive RMSNorm PyTorch implementation compared to
highly optimized LayerNorm (Ba et al., 2016). Although Apex’s
(NVIDIA Corporation, 2024) RMSNorm implementation leads to
notable throughput improvements compared to the naive imple-
mentation, a considerable performance gap persists compared to
LayerNorm. This highlights the substantial optimization potential
for future endeavors. The number of invocations per token for each
normalization layer is indicated next to the layer name in brackets.

5. Conclusion
This work introduces OpenELM, a decoder-only trans-
former based open language model. The OpenELM uses
a layer-wise scaling method for efficient parameter alloca-
tion within the transformer model, resulting in improved
accuracy compared to existing models. Additionally, we
release the entire framework open, including training logs,
multiple checkpoints, pre-training configurations, and MLX
inference code. This extensive release aims to empower the
open research community, facilitating future research effors.

4

OpenELM: An Efficient Language Model Family with Open Training and Inference Framework

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bartolome, A., Martin, G., and Vila, D. Notus. https:
//github.com/argilla-io/notus, 2023.

Beeching, E., Fourrier, C., Habib, N., Han, S.,
Lambert, N., Rajani, N., Sanseviero, O., Tun-
stall, L., and Wolf, T. Open llm leader-
board. https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard,
2023.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Computer, T. Redpajama: An open source recipe
to reproduce llama training dataset, 2023. URL
https://github.com/togethercomputer/
RedPajama-Data.

Cui, G., Yuan, L., Ding, N., Yao, G., Zhu, W., Ni, Y., Xie, G.,
Liu, Z., and Sun, M. Ultrafeedback: Boosting language
models with high-quality feedback, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dey, N., Gosal, G., Khachane, H., Marshall, W., Pathria, R.,
Tom, M., Hestness, J., et al. Cerebras-gpt: Open compute-
optimal language models trained on the cerebras wafer-
scale cluster. arXiv preprint arXiv:2304.03208, 2023.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff, N.,
Phang, J., Reynolds, L., Tang, E., Thite, A., Wang, B.,
Wang, K., and Zou, A. A framework for few-shot lan-
guage model evaluation, September 2021. URL https:
//doi.org/10.5281/zenodo.5371628.

Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kinney,
R., Tafjord, O., Jha, A. H., Ivison, H., Magnusson, I.,
Wang, Y., et al. Olmo: Accelerating the science of lan-
guage models. arXiv preprint arXiv:2402.00838, 2024.

Gururangan, S., Wortsman, M., Gadre, S. Y., Dave,
A., Kilian, M., Shi, W., Mercat, J., Smyrnis, G.,
Ilharco, G., Jordan, M., Heckel, R., Dimakis, A.,
Farhadi, A., Shankar, V., and Schmidt, L. OpenLM:
A minimal but performative language modeling (lm)
repository, 2023. URL https://github.com/
mlfoundations/open_lm/. GitHub repository.

Hannun, A., Digani, J., Katharopoulos, A., and Collobert,
R. MLX: Efficient and flexible machine learning on
apple silicon, 2024. URL https://github.com/
ml-explore.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., and Chen, W. Lora: Low-rank adapta-
tion of large language models. ArXiv, abs/2106.09685,
2021. URL https://api.semanticscholar.
org/CorpusID:235458009.

5

https://github.com/argilla-io/notus
https://github.com/argilla-io/notus
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://github.com/mlfoundations/open_lm/
https://github.com/mlfoundations/open_lm/
https://github.com/ml-explore
https://github.com/ml-explore
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009

OpenELM: An Efficient Language Model Family with Open Training and Inference Framework

Hu, Z., Lan, Y., Wang, L., Xu, W., Lim, E.-P., Lee,
R. K.-W., Bing, L., and Poria, S. Llm-adapters:
An adapter family for parameter-efficient fine-tuning
of large language models. ArXiv, abs/2304.01933,
2023. URL https://api.semanticscholar.
org/CorpusID:257921386.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. Race:
Large-scale reading comprehension dataset from exami-
nations. arXiv preprint arXiv:1704.04683, 2017.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. arXiv preprint
arXiv:2109.07958, 2021.

Liu, T., Zhao, Y., Joshi, R., Khalman, M., Saleh, M., Liu,
P. J., and Liu, J. Statistical Rejection Sampling Improves
Preference Optimization, January 2024. URL http://
arxiv.org/abs/2309.06657. arXiv:2309.06657
[cs].

Liu, Z., Qiao, A., Neiswanger, W., Wang, H., Tan, B.,
Tao, T., Li, J., Wang, Y., Sun, S., Pangarkar, O., et al.
Llm360: Towards fully transparent open-source llms.
arXiv preprint arXiv:2312.06550, 2023.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Mehta, S., Ghazvininejad, M., Iyer, S., Zettlemoyer, L., and
Hajishirzi, H. Delight: Deep and light-weight transformer.
arXiv preprint arXiv:2008.00623, 2020.

Mehta, S., Abdolhosseini, F., and Rastegari, M. Cvnets:
High performance library for computer vision. In Pro-
ceedings of the 30th ACM International Conference on
Multimedia, pp. 7327–7330, 2022.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Nangia, N., Vania, C., Bhalerao, R., and Bowman, S. R.
Crows-pairs: A challenge dataset for measuring so-
cial biases in masked language models. arXiv preprint
arXiv:2010.00133, 2020.

NVIDIA Corporation. Apex: A pytorch extension with tools
for mixed precision training and more. GitHub, 2024.
URL https://github.com/NVIDIA/apex.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
neural information processing systems, volume 32, 2019.

Penedo, G., Malartic, Q., Hesslow, D., Cojocaru, R., Cap-
pelli, A., Alobeidli, H., Pannier, B., Almazrouei, E., and
Launay, J. The refinedweb dataset for falcon llm: out-
performing curated corpora with web data, and web data
only. arXiv preprint arXiv:2306.01116, 2023.

Press, O. and Wolf, L. Using the output embedding to im-
prove language models. arXiv preprint arXiv:1608.05859,
2016.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Man-
ning, C. D., and Finn, C. Direct Preference Optimiza-
tion: Your Language Model is Secretly a Reward Model,
December 2023. URL http://arxiv.org/abs/
2305.18290. arXiv:2305.18290 [cs].

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Proceed-
ings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 3505–3506,
2020.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Sap, M., Rashkin, H., Chen, D., LeBras, R., and Choi, Y.
Socialiqa: Commonsense reasoning about social interac-
tions. arXiv preprint arXiv:1904.09728, 2019.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkinson,
D., Authur, R., Bogin, B., Chandu, K., Dumas, J., Elazar,
Y., et al. Dolma: An open corpus of three trillion tokens
for language model pretraining research. arXiv preprint
arXiv:2402.00159, 2024.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Thawakar, O., Vayani, A., Khan, S., Cholakal, H., Anwer,
R. M., Felsberg, M., Baldwin, T., Xing, E. P., and Khan,
F. S. Mobillama: Towards accurate and lightweight fully
transparent gpt. arXiv preprint arXiv:2402.16840, 2024.

Ting, H. W. Accuracy not matched for llama1-7b. GitHub is-
sue, 2024. https://github.com/EleutherAI/
lm-evaluation-harness/issues/1294.

6

https://api.semanticscholar.org/CorpusID:257921386
https://api.semanticscholar.org/CorpusID:257921386
http://arxiv.org/abs/2309.06657
http://arxiv.org/abs/2309.06657
https://github.com/NVIDIA/apex
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
https://github.com/EleutherAI/lm-evaluation-harness/issues/1294
https://github.com/EleutherAI/lm-evaluation-harness/issues/1294

OpenELM: An Efficient Language Model Family with Open Training and Inference Framework

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Tunstall, L., Beeching, E., Lambert, N., Rajani, N.,
Huang, S., Rasul, K., Rush, A. M., and Wolf, T.
The alignment handbook. https://github.com/
huggingface/alignment-handbook, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Welbl, J., Liu, N. F., and Gardner, M. Crowdsourc-
ing multiple choice science questions. arXiv preprint
arXiv:1707.06209, 2017.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jer-
nite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

yang Liu, S., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F., Cheng, K.-T., and Chen, M.-H. Dora: Weight-
decomposed low-rank adaptation. ArXiv, abs/2402.09353,
2024. URL https://api.semanticscholar.
org/CorpusID:267657886.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama:
An open-source small language model. arXiv preprint
arXiv:2401.02385, 2024.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C.-C., Xu, M.,
Wright, L., Shojanazeri, H., Ott, M., Shleifer, S., et al.
Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

7

https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:267657886
https://api.semanticscholar.org/CorpusID:267657886

OpenELM: An Efficient Language Model Family with Open Training and Inference Framework

A. Additional pre-training details
A.1. Pre-training datasets

Table 5 represents the dataset mix used for pre-training
OpenELM together with the number of tokens in each data
source.

Source Subset Tokens

RefinedWeb 665 B

RedPajama

Github 59 B
Books 26 B
ArXiv 28 B
Wikipedia 24 B
StackExchange 20 B
C4 175 B

PILE 207 B

Dolma

The Stack 411 B
Reddit 89 B
PeS2o 70 B
Project Gutenberg 6 B
Wikipedia + Wikibooks 4.3 B

Table 5. Dataset used for pre-training OpenELM.

A.2. Pre-training hyper-parameters

The pre-training hyper-parameters for different OpenELM
configurations are given in Table 6.

270M 450M 1.1B 3B

Dimension dmodel 1280 1536 2048 3072
Num. of layers N 16 20 28 36
Head dimension dh 64 64 64 128
αmin, αmax (Equation (1)) 0.5, 1.0
βmin, βmax (Equation (1)) 0.5, 4.0
Normalization layer RMSNorm
Positional embeddings RoPE
Attention variant Grouped query attention
Activation SwiGLU
Context length 2048
Batch size (tokens) approx. 4M
Weight tying (Press & Wolf, 2016) yes

Warm-up iterations 5,000
Training steps 350,000
Warm-up init. LR 0.000001
Max. LR 0.0053 0.0039 0024 0.0012
Min. LR 10% of the max. LR
Loss function Cross-entropy
Optimizer AdamW (β1=0.9, β2=0.95, ϵ = 1.e− 8)
Weight decay 0.1

Activation checkpointing ✗ ✓ ✓ ✓
FSDP ✗ ✗ ✗ ✓
GPUs 128 128 128 128
GPU Type A100 H100 A100 H100
GPU Memory 80 GB 80 GB 80 GB 80 GB
Training time (in days) 3 3 11 13

Table 6. Pre-training details for different variants of OpenELM.

A.3. Evaluation details

Following previous works, we evaluate the performance
across different tasks using LM Evaluation Harness (Gao
et al., 2021)1:

• Standard zero-shot tasks. We consider 7 standard
common-sense reasoning tasks: ARC easy and challenge
(Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), SciQ
(Welbl et al., 2017), and WinoGrande (Sakaguchi et al.,
2021).

• OpenLLM leaderboard tasks. We use 5 tasks from
OpenLLM leaderboard (Beeching et al., 2023): ARC
challenge, HellaSwag, MMLU (Hendrycks et al., 2020),
TruthfulQA (Lin et al., 2021), and WinoGrande.

• LLM360 leaderboard tasks. We use 7 tasks from
LLM360 leaderboard (Liu et al., 2023) for evaluation:
ARC challenge, CrowS-Pairs (English version) (Nangia
et al., 2020), HellaSwag, WinoGrande, MMLU, PIQA,
and RACE (Lai et al., 2017).

These evaluation frameworks, built on top of LM Evaluation
Harness, allows us to comprehensively evaluate OpenELM
in terms of reasoning (e.g., ARC-c, HellaSwag, and PIQA),
knowledge understanding (e.g., MMLU and RACE), and
misinformation & bias (e.g., TruthfulQA and CrowS-Pairs).
While there may be some overlap in tasks among these
frameworks, they primarily differ in the few-shot settings,
as outlined in Table 7.

B. Additional results
This section provides additional results on instruction and
parameter-efficient tuning tasks.

B.1. Instruction Tuning

We use the cleaned variant of UltraFeedback (Cui et al.,
2023; Bartolome et al., 2023) dataset that consists of 60k
prompts for instruction tuning. We do instruction tuning us-
ing Alignment Handbook library (Tunstall et al., 2023). For
optimization, we use either the statistical rejection sampling
method (Liu et al., 2024) or the direct preference optimiza-
tion method (Rafailov et al., 2023).

Hyper-parameters. We conducted a grid search to de-
termine optimal values for the learning rate and training
epochs. For the learning rate, we explored values in the
range of [2e-5, 3e-5, 5e-5, 8e-5, 1e-4], while for training
epochs, we investigated the range of [3, 5, 8, 10]. The final

1We use commit dc90fec of https://github.com/
EleutherAI/lm-evaluation-harness

8

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

OpenELM: An Efficient Language Model Family with Open Training and Inference Framework

Task Metric

ARC-c Normalized accuracy
ARC-e Normalized accuracy
BoolQ Accuracy
HellaSwag Normalized accuracy
PIQA Normalized accuracy
SciQ Accuracy
WinoGrande Accuracy

(a) Standard zero-shot metrics

Task Metric Num. few
shot examples

ARC-c Normalized accuracy 25
HellaSwag Normalized accuracy 10
MMLU Accuracy 5
TruthfulQA-mc2 Accuracy 0
WinoGrande Accuracy 5

(b) OpenLLM leaderboard

Task Metric Num. few
shot examples

ARC-c Normalized accuracy 25
CrowsPairs-En PCT stereotype 25
HellaSwag Normalized accuracy 10
WinoGrande Accuracy 5
MMLU Accuracy 5
PIQA Normalized accuracy 0
RACE Accuracy 0

(c) LLM360

Table 7. Tasks and metrics used for evaluating OpenELM.

270M 450M 1.1B 3B

Batch size 8
Training epochs 5 8 5 10
Learning rate 2e-5 3e-5 5e-5 1e-4
Loss function hinge hinge sigmoid hinge

DeepSpeed Zero3 (Rasley et al., 2020) ✗ ✓ ✓ ✓
GPUs 8
GPU Type A100 A100 A100 A100
GPU Memory 40 GB 40 GB 40 GB 80 GB
Training time (in hours) 2.5 4.3 6.6 14.2

Table 8. Instruction tuning details for different variants of
OpenELM.

recipe selected is the one that yielded the highest average
accuracy across various tasks as presented in Table 7a and
Table 7c. We finetune all the models with BFloat16 as a data
type. We use activation checkpointing along with gradient
accumulation with a step size of two. We use the AdamW
optimizer with default beta values. We use the cosine learn-
ing rate scheduler with a warm-up ratio of 0.1, and we set
the weight decay to 0 and loss temperature beta to 0.01.
We set the maximum context length to 1024 and maximum
prompt length to 512. Other hyper-parameters are included
in Table 8.

Results. Table 9 shows that instruction tuning consistently
improves OpenELM’s average accuracy by 1-2% across
different evaluation frameworks.

B.2. Parameter-efficient fine-tuning (PEFT)

We use the CommonSense reasoning training and evaluation
setup (Hu et al., 2023). This setup provides 170k training
samples across 8 multiple-choice datasets for PEFT studies
with different methods, including LoRA (Hu et al., 2021)
and DoRA (yang Liu et al., 2024). We integrate OpenELM
with these methods, and finetune the resulting model for
three epochs using 8 NVIDIA H100 GPUs. Table 10 shows
that PEFT methods can be applied to OpenELM. LoRA and
DoRA deliver similar accuracy on average across the given
CommonSense reasoning datasets.

C. Additional benchmarking details
Hardware. We benchmark on modern, consumer-grade
hardware with BFloat16 as the data type. Specifically,
CUDA benchmarks were performed on a workstation with
an Intel i9-13900KF CPU, equipped with 64 GB of DDR5-
4000 DRAM, and an NVIDIA RTX 4090 GPU with 24 GB
of VRAM, running Ubuntu 22.04. PyTorch v2.2.2 (Paszke
et al., 2019) was used, with the most recent versions of
models and the associated libraries. HuggingFace Trans-
formers v4.39.3 (Wolf et al., 2020) was used to benchmark
HuggingFace models. We did not use Torch Inductor for
model compilation.

To benchmark OpenELM models on the Apple silicon, we
used an Apple MacBook Pro with an M2 Max system-on-
chip and 64GiB of RAM, running macOS 14.4.1. We ported
the code and model weights to Apple MLX v0.10.0 (Hannun
et al., 2024). To maximize the throughput, lazy evaluation
was used in MLX with 8 tokens evaluated at a time.

Evaluation. We provide two separate measurements for
token throughput (measured in terms of tokens processed
per second): (1) prompt processing (pre-fill), and (2) token
generation. Additionally, we also report the total combined
throughput. We benchmark all models sequentially, and
execute one full “dry run” generating 1024 tokens for the
first model, since we found that this significantly increases
the throughput of generation for subsequent models. Be-
fore measurement for each individual model, we warm up
the model by executing a single forward pass to allow the
frameworks to perform further auto-tuning, if any. In all
experiments, we use key-value caching and generate 1024
tokens in addition to the prompt tokens in all tests. Static
key-value cache was used whenever supported. The same
prompt was used for all runs, resulting in prompt lengths of
35-36 tokens (depending on the tokenizer).

9

OpenELM: An Efficient Language Model Family with Open Training and Inference Framework

Model Size Instruction Tuned? ARC-c ARC-e BoolQ HellaSwag PIQA SciQ WinoGrande Average

0.27 B ✗ 26.45 45.08 53.98 46.71 69.75 84.70 53.91 54.37
✓ 30.55 46.68 48.56 52.07 70.78 84.40 52.72 55.11

0.45 B ✗ 27.56 48.06 55.78 53.97 72.31 87.20 58.01 57.56
✓ 30.38 50.00 60.37 59.34 72.63 88.00 58.96 59.95

1.08 B ✗ 32.34 55.43 63.58 64.81 75.57 90.60 61.72 63.44
✓ 37.97 52.23 70.00 71.20 75.03 89.30 62.75 65.50

3.04 B ✗ 35.58 59.89 67.40 72.44 78.24 92.70 65.51 67.39
✓ 39.42 61.74 68.17 76.36 79.00 92.50 66.85 69.15

(a) Results on zero-shot tasks with respect to the metrics defined in Table 7a.
Model Size Instruction Tuned? ARC-c HellaSwag MMLU TruthfulQA WinoGrande Average

0.27 B ✗ 27.65 47.15 25.72 39.24 53.83 38.72
✓ 32.51 51.58 26.70 38.72 53.20 40.54

0.45 B ✗ 30.20 53.86 26.01 40.18 57.22 41.50
✓ 33.53 59.31 25.41 40.48 58.33 43.41

1.08 B ✗ 36.69 65.71 27.05 36.98 63.22 45.93
✓ 41.55 71.83 25.65 45.95 64.72 49.94

3.04 B ✗ 42.24 73.28 26.76 34.98 67.25 48.90
✓ 47.70 76.87 24.80 38.76 67.96 51.22

(b) Results on OpenLLM Leaderboard tasks with respect to the metrics defined in Table 7b.
Model Size Instruction Tuned? ARC-c CrowS-Pairs HellaSwag MMLU PIQA RACE TruthfulQA WinoGrande Average

0.27 B ✗ 27.65 66.79 47.15 25.72 69.75 30.91 39.24 53.83 45.13
✓ 32.51 66.01 51.58 26.70 70.78 33.78 38.72 53.20 46.66

0.45 B ✗ 30.20 68.63 53.86 26.01 72.31 33.11 40.18 57.22 47.69
✓ 33.53 67.44 59.31 25.41 72.63 36.84 40.48 58.33 49.25

1.08 B ✗ 36.69 71.74 65.71 27.05 75.57 36.46 36.98 63.22 51.68
✓ 41.55 71.02 71.83 25.65 75.03 39.43 45.95 64.72 54.40

3.04 B ✗ 42.24 73.29 73.28 26.76 78.24 38.76 34.98 67.25 54.35
✓ 47.70 72.33 76.87 24.80 79.00 38.47 38.76 67.96 55.73

(c) Results on LLM360 tasks with respect to the metrics defined in Table 7c.

Table 9. Instruction tuning improves OpenELM’s accuracy across different model sizes.

Model Size PEFT ARC-c ARC-e BoolQ HellaSwag PIQA SIQA WinoGrande OBQA Average

0.27 B LoRA 24.57 26.60 62.14 24.84 50.05 42.02 49.88 28.00 38.51
DoRA 26.19 28.07 62.20 25.22 50.11 44.42 50.12 31.20 39.69

0.45 B LoRA 28.67 29.88 62.29 25.85 52.39 49.59 50.91 33.20 41.60
DoRA 28.33 30.39 62.26 25.12 52.29 49.28 50.83 32.00 41.31

1.08 B LoRA 45.14 61.11 61.77 77.95 72.31 69.70 61.64 59.20 63.60
DoRA 44.11 61.49 61.68 78.92 71.38 69.04 64.01 58.80 63.68

3.04 B LoRA 46.93 66.25 62.48 81.22 75.19 70.62 65.51 58.20 65.80
DoRA 46.50 66.46 62.35 80.84 75.73 70.83 63.77 58.20 65.59

Table 10. OpenELM with PEFT. Both LoRA and DoRA demonstrate comparable performance when OpenELM is finetuned on
CommonSense reasoning benchmark. It’s important to note that these fine-tuning results, obtained using the evaluation setup of LLM-
Adapters (Hu et al., 2023), differ from the results in Tables 2 and 9. This is because the results in Tables 2 and 9 are obtained under zero-
and few-shot settings using LM Evaluation Harness. Note that we did not use social interactions QA (SIQA; (Sap et al., 2019)) and
OpenBookQA (OBQA; (Mihaylov et al., 2018)) in Tables 2 and 9 because of evaluation issues with LLama tokenizer in LM Evaluation
Harness (see (Ting, 2024)).

10

