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ABSTRACT

Currently the most powerful AI systems are aligned with human values via rein-
forcement learning from human feedback. Yet, reinforcement learning from human
feedback models human preferences as noisy samples from a single linear ordering
of shared human values and is unable to incorporate democratic AI alignment.
In particular, the standard approach fails to represent and reflect diverse and con-
flicting perspectives of pluralistic human values. Recent research introduced the
theoretically principled notion of quantile fairness for training a reinforcement
learning policy in the presence of multiple, competing sets of values from different
agents. Quite recent work provided an algorithm for achieving quantile fairness in
the tabular setting with explicit access to the full set of states, actions and transition
probabilities in the MDP. These current methods require solving linear programs
with the size of the constraint set given by the number of states and actions, making
it unclear how to translate this into practical training algorithms that can only take
actions and observe individual transitions from the current state. In this paper, we
design and prove the correctness of a new algorithm for quantile fairness that makes
efficient use of standard policy optimization as a black-box without any direct de-
pendence on the number of states or actions. We further empirically validate our
theoretical results and demonstrate that our algorithm achieves competitive fairness
guarantees to the prior work, while being orders of magnitude more efficient with
respect to computation and the required number of samples. Our algorithm opens a
new avenue for provable fairness guarantees in any setting where standard policy
optimization is possible.

1 INTRODUCTION

Reinforcement learning from human feedback is the most successful method currently available to
align powerful AI systems with human values and preferences (Christiano et al., 2017; Bai et al.,
2022). However, this method is designed for the setting where there is a single, consistent set of
human preferences, and the objective is to align the AI to a single reward function learned via noisy
samples of these preferences. Realistically, humans often have diverse or competing preferences, and
current alignment techniques that fail to take these differences into account can lead to undesirable
outcomes (Kirk et al., 2024). As a result there has been growing recognition of the need to develop
pluralistic alignment methods (Conitzer et al., 2024; Sorensen et al., 2024), that align AI systmes
by taking into account the existence of multiple different reward or utility functions representing
diverse human preferences. More generally, as powerful AI systems are further integrated into society,
it is crucial to develop algorithms for value alignment that aggregate diverse, competing human
preferences in a rigorous way.

The idea of policy aggregation presents an initial theoretical approach to the problem of value
alignment from the preferences of multiple agents (Alamdari et al., 2024). The main approach is
to apply rigorous methods from computational social choice theory to reinforcement learning with
multiple rewards. However, computational social choice typically deals with preference rankings over
discrete sets of alternatives, which cannot be applied to the continuous space of possible stochastic
policies in reinforcement learning. The key insight of Alamdari et al. (2024) is that one can still
compute a continuous analogue of a “ranking” for each agent, by assigning to each policy a score of q
if the agent receives a higher score than an q-fraction of all possible alternative policies. Critically, the
score q only depends on the relative ranking of policies in the MDP, and thus provides a theoretically
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principled way to compare preferences across different agents that may have very different reward
scales.

The prior approach to policy aggregation examines multiple approaches to designing mechanisms that
produce a fair policy given the notion of ranking described above. The authors show that there are
polynomial time algorithms to compute such policy aggregation mechanisms, under the assumption
that a full, explicit description of the MDP is available. That is, the mechanism needs to have access
to the table of transition probabilities in the MDP, and runs in time polynomial in the number of
states and actions. Such methods are clearly intractable in the deep learning setting, where it is
nevertheless still possible to perform policy optimization in practice. To design algorithms that can
be adapated more directly to such practical settings, one typically assumes black-box access to policy
optimization, i.e. to a subroutine that can optimize a policy in a given MDP. Then, the goal becomes
to design a provably efficient algorithm, meaning that the algorithm makes a polynomial number of
calls to the policy optimization subroutine, and has no other explicit access to the MDP in question.
Therefore, in this paper, we study the following question:

Are there provably correct algorithms for policy aggregation that make use of policy optimization as
a black-box?

Our main results provide a positive answer to the above question.

Our Results. The notion of fairness that we consider is that of quantile fairness introduced by
Babichenko et al. (2024). This notion states that a policy is q-quantile fair, if it provides return in the
top q-th quantile for each agent simultaneously. Alamdari et al. (2024) provides a provably efficient
algorithm to achieve q-quantile fair policy aggregation for the maximum possible value of q, when
given explicit access to the table of transition probabilities of the MDP. Our main result is an efficient
algorithm for q-quantile fair policy aggregation that only makes black-box use of policy optimization.
Theorem 1.1 (Informal). Given an MDP with n agents, each with a different reward function, there
is an algorithm that makes O(n) calls to a policy optimization subroutine, and returns a q-quantile
fair policy for the maximum possible value of q.

Technical Overview. To obtain this result, we first have to address a drawback of the initial
definition of q-quantile fair policy aggregation. The quantile q is defined by comparing a given
policy’s return to that of all possible alternative policies in the MDP. Algorithms for q-quantile
fairness thus naturally rely on the ability to estimate quantiles. This is achieved by Alamdari et al.
(2024) by sampling from a natural choice of uniform distribution on the set of all possible policies,
conditioned on achieving value in the q-th quantile for a given reward function. While such sampling
can be done in polynomial time given explicit access to the table of transition probabilities of the
MDP, it is intractable in general. In particular, we show in Section 5 that there are MDPs where
the fraction of policies with non-zero reward is exponentially small in the number of states of the
MDP. This result implies that uniform sampling to estimate the quantile function has exponential
sample complexity. To circumvent this issue, we instead consider q-quantile fairness with respect to
a different distribution on policies, induced by individually optimal policies for each agent. We then
prove in Section 6.1 that, using O(n) evaluations of a policy optimization subroutine, it is possible to
accurately estimate the quantile function for this distribution.

Next, given the ability to estimate quantiles, the algorithm of Alamdari et al. (2024) utilizes a linear
program defined over the states and actions of the MDP in order to compute a q-quantile fair policy.
In Section 6.2, we instead design a new algorithm for that utilizes the multiplicative weights update
method to achieve the same goal, while only requiring O(log n) calls to policy evaluation.

2 RELATED WORK

Most closely related to our work, the notion of fair policy aggregation was introduced by Alamdari
et al. (2024), which gave provably efficient algorithms in the setting where the transition function of
the MDP is given explicitly as a table of transition probabilities. Babichenko et al. (2024) defined the
notion of quantile fairness in computational social choice theory.

Due to the use of reinforcement learning from human feedback (Christiano et al., 2017; Bai et al.,
2022) for aligning the most advanced AI systems, notions of fairness in reinforcement learning with
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multiple rewards is closely related to the application of social choice theory to AI alignment (Conitzer
et al., 2024). Recent research in this direction has discovered that standard RLHF based on the
Bradley-Terry preference model (Bradley & Terry, 1952) implicitly aggregates reward functions
via the Borda count social-choice rule. Concurrent work has designed RLHF methods based on
computing the von Neumann winner policy (Swamy et al., 2024; Wang et al., 2023), which is
equivalent to the rule from social choice theory known as maximal lotteries (Freund & Schapire,
1997; Kreweras, 1965).

Early work on multi-objective reinforcement learning (While, 1982) developed algorithms that find
pareto-efficient policies. In the decades since, there has been extensive work on fairness in multi-
objective RL, with a significant focus on methods that combine multiple reward functions into a
single reward, which is then optimized (Reuel & Ma, 2024). The work of Zhang & Shah (2014)
uses a regularized maximin objective, which attempts to balance the sum of the rewards against the
maximization of the minimum reward. Ogryczak et al. (2013) study the Gini social welfare as its
reward combination method. More generally, there has been extensive work focused on various
other methods that numerically combine multiple reward functions into a single one e.g. the Gini
coefficient or the Nash welfare (Ju et al.; Hayes et al., 2022; Siddique et al., 2020). These methods
inherently assume that rewards can be normalized and compared across agents. However, when
inferring rewards from agent behavior, it is only possible to learn the rewards up to a positive affine
transformation. These reward-combining methods are not invariant to such transformations, while
the policy-aggregation methods we study are.

An entirely different notion of fairness in reinforcement learning is studied in Jabbari et al. (2017),
where there is only a single reward function, but the notion of fairness is not for the final policy,
but for the learning algorithm itself. That is, in an online-learning setting, each action taken during
learning may involve real-life consequences (e.g. a hiring decision) and the goal is to make fair
decisions in each state, while still rapidly converging to an optimal policy.

3 PRELIMINARIES

For a natural number n, we use the notation [n] = {1, . . . ,m}. A halfspace is a subset of Rn given
by an affine inequality {x ∈ Rn | w⊤x ≤ b}. A polytope K ⊆ Rn is the intersection of finitely
many halfspaces. The vertices of a polytope are the points which cannot be realized as the convex
combination of two distinct points in the polytope. A simplex in Rn is the convex hull of n + 1
linearly independent points, which form the vertices of the simplex. The centroid cK of a convex set
K is the uniform average over the points in the set

cK =
1

Vol(K)

∫
K
x dx.

When K = conv(v1, . . . , vn+1) is a simplex, the centroid takes a particularly simple form, given by
the average of the vertices cK =

∑n+1
i=1 vi. An algorithm of Cohen & Hickey (1979) shows that any

bounded polytope K can be decomposed into a union of simplices, such that any two simplices in
the decomposition intersect in a face, and all vertices of the simplices are vertices of the original
polytope. Furthermore, given any vertex vi of the polytope K, the decomposition can be chosen such
that vi is a vertex of every simplex in the polytope.

Multi-objective Markov Decision Process. The problem of producing a single policy to best
represent the preferences of multiple agents is modelled as a Multi-Objective Markov Decision
Process (MOMDP). An MOMDP M is given by a tuple (S,A,P, R1, . . . , Rn, ρ0, γ), where S
is a finite set of states, A is a finite set of actions, and P : S × A → ∆(S) is the probability
transition function, which gives the probability P(s′ | s, a) of transitioning to state s′ when action
a is taken in state s. Each function Ri : S × A → R is the reward function corresponding to the
i-th agent, ρ0 ∈ ∆(S) is the initial state distribution, and γ ∈ [0, 1] is the discount factor. A policy
π : S → ∆(A) assigns a probability π(a | s) of taking action a ∈ A in state s ∈ S. A policy π for
an MOMDP M induces a probability distribution on sequences s0, a0, s1, a1, . . . where s0 ∼ ρ0,
at ∼ π(· | st), and st+1 ∼ P(· | st, at). We will use the notation Prπ and Eπ to respectively denote
the probability and expectation with respect to this random sequence. The return Ji(π) for agent i
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under policy π is given by expected cumulative discounted reward with respect to Ri,

Ji(π) = (1− γ)E
π

[ ∞∑
t=1

γtRi(st, at)

]
where s0 ∼ ρ0.

We also consider the setting of average return, where the return for agent i under policy π is given by
the expected average reward

J avg
i (π) = lim

T→∞

1

T
E
π

[
T∑

t=1

Ri(st, at)

]
.

For ϵ > 0, a policy π in an MOMDP is ϵ-Pareto optimal if for any other policy π′ there exists at least
one agent i such that Ji(π′) < Ji(π).

A mixed policy µ is a probability distribution over stochastic policies π. The return of a mixed policy
µ is given by Ji(µ) = Eπ∼µ[Ji(π)].

The state-action value occupancy measure. While the return of agent i under policy π is a
complicated function of π, it is a linear function of the state-action value occupancy measure
dπ : S ×A → R given by

dπ(s, a) = (1− γ)

∞∑
t=1

Pr
π
[st = s] γtπ(a | s).

In particular Ji(π) =
∑

s,a dπ(s, a)Ri(s, a) = ⟨dπ, Ri⟩.
Definition 3.1 (State-action value occupancy polytope). The state-action value occupancy polytope
O for an MOMDP M is the set of all state-action value measures dπ for some policy π in the
MOMDP M. This set is a convex polytope given by the constraints

O =

{
dπ | dπ ≥ 0,

∑
a

dπ(s, a) = (1− γ)ρ0(s, a) +γ
∑
s′,a′

P(s | s′, a′)dπ(s′, a′) ∀s ∈ S

 .

4 POLICY AGGREGATION OVER CONVEX SETS OF ALTERNATIVES

In classical social choice theory, there is a finite set C of m possible alternatives, and each agent i
has a strict ordering σi : [m] → C which means that for all j < j′ agent i prefers σi(j) to σi(j

′).
However, these methods cannot be directly applied to the policy aggregation problem, as there is in
fact a continuous set of stochastic policies π in an MOMDP.

The policy aggregation framework of Alamdari et al. (2024) is based on viewing the state-action
value occupancy polytope as the set of alternatives from which the n agents will choose a policy.
If Ji(π) > Ji(π

′) then agent i prefers policy π to policy π′, and if Ji(π) = Ji(π
′) then agent i is

indifferent between the two policies. Each return Ji therefore induces a weak preference ordering
on the policies π, and hence on the occupancy measures dπ ∈ O. The overall goal is to compute
a single policy in a way that is fair given the preference orderings of the n agents induced by the
rewards Ri. The individual preference orderings are invariant to positive affine transformations of the
rewards Ri, and thus any algorithm which only takes as input the preference orderings will always
output a policy invariant to the same set of transformations. This fact further allows us to assume that
each individual reward function Ri takes values in [0, 1], as this can always be achieved by a positive
affine transformation of the original reward.

In order to design fair aggregation policies over the occupancy polytope, we will first need a natural
generalization of the notion of a ranking from the finite alternative case. In particular, note that an
alternative c ∈ C is ranked in the j-th position by agent i if and only if a uniform random c′ ∈ C
is weakly preferred to c with probability j/m. This observation leads naturally to the following
definition.
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Definition 4.1 (Expected return distribution). Let M be an MOMDP and D be a probability distribu-
tion supported on the occupancy polytope O. For v ∈ R the expected return distribution of agent i is
given by the cumulative distribution function Fi,D(v) = Prdπ∼D [Ji(π) ≤ v] .

In words, the CDF Fi,D(v) encodes the total probability mass under D of policies that achieve returns
at most v.

The notion of fairness that we consider in this paper can now be defined in terms of the quantiles of
the expected return distributions for each agent.

Definition 4.2. Let D be a probability distribution over the occupancy polytope O of an MOMDP
M. For q ∈ [0, 1] a policy π is q-quantile fair with respect to D in M if Ji(π) ≥ F−1

i,D(q) for all
i ∈ [n]. A policy π is ϵ-max-quantile fair with respect to D if π is q-quantile fair with respect to D,
and there does not exist any q + ϵ-quantile fair policy.

Intuitively, q-quantile fairness means the that the policy π is preferred to at least a q-fraction of
alternatives by every agent i simultaneously. Definition 4.2 is a generalization of the definition of
q-quantile fairness of Alamdari et al. (2024), which considers the special case where D is the uniform
distribution over the occupancy polytope O. Our overall goal is to design algorithms that achieve
q-quantile fairness for as large a value of q as possible, which we refer to as max-quantile fairness.

5 FAIRNESS FROM DISTRIBUTIONS OVER THE OCCUPANCY POLYTOPE

In this section we consider the question of how best to choose the distribution D over the occupancy
polytope O that determines the notion of q-quantile fairness in Definition 4.2. We first show that
choosing the uniform distribution over O can lead to computationally intractable estimation problems
for estimating the quantile function F−1

i,D. We then show that choosing D to be uniform on the
polytope of individually optimal occupancy measures can resolve this issue.

5.1 THE DRAWBACKS OF UNIFORM D

In prior work D is chosen to be the uniform distribution over the entire state-occupancy polytope
(Alamdari et al., 2024). However, we will argue that this choice of D may not be particularly
meaningful in the setting where non-trivial learning is necessary to find a policy that achieves non-
trivial returns for each agent. For example, in typical deep reinforcement learning problems, a
randomly selected policy will achieve some trivial level of rewards, but training can converge to a
policy that does quite well and learns very complex behavior. Put another way, the number of samples
required to randomly draw a policy that performs well in deep reinforcement learning is prohibitively
large, and certainly much larger than the training budget of the typical RL algorithm.

In the scenario outlined above, less than a very small fraction of the occupancy polytope achieves
non-trivial rewards, which implies that random sampling to estimate Fi,D will yield little to no
information. We formalize this issue with the uniform distribution on O in the following theorem.

Theorem 5.1. There exists an MOMDP M with n ≥ 2 agents such that for every ϵ ≥
√

2|S|/n|S|−1

(1) There is a pareto optimal, (1− ϵ)-quantile fair policy π′ with respect to the uniform distribution
on O, such that one agent receives a (1− ϵ) fraction of their maximum return, while all other agents
receives less than a

√
|S|/(2n|S|+1) fraction of their maximum return. (2) There is a pareto optimal,

(1− ϵ)-quantile fair policy π∗ such that all agents receive a 1
n fraction of their maximum return.

The proof of Theorem 5.1 appears in Section C. To summarize, there is an MOMDP where q-quantile
fairness with respect to the uniform measure on O only provides meaningful constraints on the
returns when q is exponentially close to 1 as a function of the number of states. This is a significant
problem for current algorithms, which require estimating Fi,D from random samples, and thus will
have exponentially large sample complexity and runtime in order to achieve meaningful results using
q-quantile fairness in the MOMDP of Theorem 5.1.

A further drawback of current methods is that, to even generate a single approximately uniform
random sample from O requires running a Markov chain for sampling from convex bodies. However,
running such an algorithm requires an explicit description of the polytope O, which is not in general

5
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available for many MDPs of interest. In particular, such algorithms cannot be implemented efficiently
when given access to only a policy optimization subroutine for O. Notably, the mixing time of such
chains is polynomial in the dimension of the polytope, which for O is O(|S| · |A|). Such a mixing
time is completely impractical in settings with very large state spaces, where policy optimization may
nevertheless be possible.

5.2 CHOOSING D VIA INDIVIDUALLY OPTIMAL POLICIES

The difficulties described above in choosing D to be the uniform distribution on O arise both because
the set of occupancy measures achieving non-trivial rewards can have very small volume, and the task
of even drawing a single uniform sample from O may be intractable. We propose avoiding these issue
by choosing D to be the uniform distribution on a polytope derived from the occupancy measures of
individually optimal policies. We will prove that this guarantees that the sample complexity necessary
to estimate Fi,D for non-trivial fairness is bounded, and that there is an efficient sampling algorithm
for D. Our approach is to work in an embedding of a subset the occupancy polytope O defined by
individually optimal policies. First, we define the reward embedding, which maps each occupancy
measure dπ to the n-dimensional vector given by the returns of each agent.
Definition 5.2 (Reward embedding). Given an MOMDP M, the reward embedding is the mapping
Φ : O → Rn given by Φ(dπ) = (J1(π), . . . , Jn(π)).

The reward embedding captures the intuition that we only care about differences between two policies
π and π′ with regards to their returns for each agent i. Next, the main intuition is that we want to
focus on q-quantile fairness over a subset of policies that achieves good rewards. A natural candidate
is the polytope defined by the convex hull of individually optimal policies π∗

i for each reward Ri

respectively.
Definition 5.3 (Optimal reward embedding polytope). Let π∗

i be an optimal policy for agent i i.e.
π∗
i ∈ argmaxπ Ji(π). The optimal reward embedding polytope induced by π∗

1 , . . . π
∗
n is the set

K∗ = conv
(
{Φ(dπ∗

i
)}i∈[n]

)
⊆ Rn i.e. the reward embeddings of occupancy measures in the convex

hull of the individually optimal occupancy measures.

Finally, we choose D to be the distribution on O induced by the uniform distribution on K∗.
Definition 5.4 (Optimal occupancy distribution). The optimal occupancy distribution is given by
sampling a uniform random point x ∈ K, and the sampling a uniform random occupancy measure dπ
from the set Φ−1(x).

A few remarks are in order. First, an optimal reward embedding polytope K∗ is invariant to positive
affine transformations of the rewards, because the individually optimal policies π∗

i are. Thus, letting D
be the uniform distribution on K∗ preserves this invariance, a key requirement for policy aggregation.
Second, in order to estimate the expected return distribution Fi,D it is not necessary to sample from
Φ−1(x). By construction, for each agent i all the occupancy measures dπ ∈ Φ−1(x) give the same
return xi = Φ(dπ)i. Thus, in order to estimate Fi,D one needs only to sample uniformly from K∗.

In general, it may be that for some individually optimal occupancy measure, the embedding Φ(dπ∗
i
)

is in the interior of the induced polytope K∗, i.e. that Φ(dπ∗
i
) is a non-trivial convex combination of

the embeddings of some other occupancy measures Φ(dπ∗
j
). However, the next proposition shows

that every optimal reward embedding polytope can be assumed to be induced by individually optimal
occupancy measures dπ∗

i
that correspond to vertices of K∗.

Proposition 5.5. Let π∗
1 , . . . , π

∗
n be a set of individually optimal policies, and K∗ the induced optimal

reward embedding polytope. Then there is a set π′
1, . . . , π

′
n of individually optimal policies such

that every Φ(dπ′
i
) is a vertex of K∗. Furthermore, this set can be efficiently computed by evaluating

Ji(π
∗
j ) for all i, j.

The proof of Proposition 5.5 appears in Section A. We next show that choosing D to be uniform on
K∗ ensures the existence of a q-quantile fair policy π achieving non-trivial returns for each agent.
Theorem 5.6. Let π∗

1 , . . . , π
∗
n be individually optimal policies. For every MOMDP M there is a

policy π that is 1
e -quantile fair with respect to the uniform distribution on K∗. Furthermore, under π

every agent receives at least a 1
n -fraction of their maximum possible return.

The proof of Theorem 5.6 appears in Section B.
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6 AN EFFICIENT ALGORITHM FOR MAX-QUANTILE FAIR POLICY
AGGREGATION

In this section we design an efficient algorithm for computing a max-quantile fair policy with respect
to the optimal occupancy polytope, based on the multiplicative weights update method. In particular,
our algorithm solves a series of standard RL policy optimization problems, where the single reward
is given by a weighted combination R = w1R1 + . . . wnRn at each step.

6.1 SAMPLING AND ESTIMATING QUANTILES

As a first step, we need an algorithm for estimating the quantile function F−1
i,D when D is the

optimal occupancy distribution. Such an algorithm follows directly from an efficient algorithm for
sampling from the optimal occupancy distribution, which we introduce in this subsection. The main
high-level point is that computing returns Jj(π

∗
i ) for all i and j gives an explicit description of

K∗ as a polytope in n dimensions, and so standard methods for sampling from a polytope apply.
While in general this requires Markov chain Monte Carlo, we emphasize that in the case where
the vectors Φ(dπ∗

i
) are linearly independent there is a fast, exact sampling method. This case is of

particular interest, because for complex practical MDPs with noisy reward estimates, it the vectors
Φ(dπ∗

i
) = (J1(π

∗
i ), . . . , Jn(π

∗
i )) will be linearly independent with high probability. See Proposition

E.1 in Section E for a formal statement and proof. This is especially likely to be the case when the
reward functions themselves are noisy estimates learned from preferences of the individual agents, as
is standard practice in RLHF.

Algorithm 1 Sampling from the optimal occupancy distribution
1: Input: MOMDP M, desired number of samples S
2: Compute the n individually optimal policies π∗

i ∈ argmaxπ Ji(π) for i ∈ [n].
3: If for any policy Φ(dπ∗

i
) is not a vertex of K∗ use the method of Proposition 5.5 to replace it with

an individually optimal policy that is a vertex.
4: for s = 1 to S do
5: if The vectors Φ(dπ∗

i
) are linearly independent. then

6: Sample n independent Exp(1) random variables αj for j ∈ [n].
7: Let βj =

αj∑n
k=1 αk

.
8: Let vi,s =

∑n
j=1 βjJi(π

∗
j ) for i ∈ [n].

9: else
10: Use the hit-and-run Markov chain to sample an approximately uniform point x ∈ K∗.
11: Let vi,s = xi

12: end if
13: end for
14: Return: The vi,s which are S samples for each of n agents for the value Ji(π) for π ∼ D.

Algorithm 1 gives the algorithm for sampling from K∗. When the vectors Φ(dπT
i
) are linearly

independent, K∗ is a simplex with n vertices. The uniform distribution on simplex is well-known to
be given by picking n independent Exp(1) random variables, normalizing them to sum to one, and
selecting the point given by the resulting convex combination of the vertices (Devroye, 2006). When
K∗ is a general polytope, the hit-and-run Markov Chain obtains an approximately uniform sample
in Õ(n3) iterations (Lovász, 1999), each of which requires solving Õ(1) n× n linear programs to
determine membership of a point in K∗ (see Section F). We give these results formally in Theorems
6.1 and 6.2 below.

Theorem 6.1. If the vectors {Φ(dπ∗
i
)}ni=1 are linearly independent then for each i the set {vi,s}Ss=1

returned by Algorithm 1 is an exactly uniform random sample from Ji(π) where π ∼ D. Further, the
algorithm requires n calls to a policy optimization subroutine, and otherwise runs in O(n2) time.

Theorem 6.2. If the vectors {Φ(dπ∗
i
)}ni=1 are not linearly independent, then for each i the set

{vi,s}Ss=1 returned by Algorithm 1 is an approximately random sample from Ji(π) with π ∼ D. In
this case the algorithm requires n calls to a policy optimization subroutine, and requires Õ(n3)
solves of an explicit linear program with n variables and n constraints.

7
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Algorithm 2 Optimal occupancy quantile estimation
1: Input: MOMDP M, q ∈ [0, 1], target accuracy ϵ
2: Draw O

(
(q(1− q)/ϵ)2

)
samples vi,s using Algorithm 1.

3: For each i sort vi,s.
4: Return: v∗i = vi,⌊q·s⌋ as an estimate of F−1

i,D(q) for each i ∈ [n].

Algorithm 3 Efficient q-quantile fairness
1: Input: MOMDP M, q ∈ [0, 1], target welfare U , target accuracy ϵ
2: Set w0

i = 1
n for i ∈ [n], u0 = 0.

3: Set T = log(n+ 1)/ϵ2, and η =
√

log(n+ 1)/T .
4: Use Algorithm 2 to get an estimate vi of F−1

i,D(q) for i ∈ [n].
5: for t = 1 to T do
6: Compute πt ∈ argmaxπ

∑
i(w

t
i + ut)Ji(π).

7: Update wt+1
i = wt

i · exp(η(vi − Ji(πt))).
8: Update ut+1 = ut · exp (η (U −

∑n
i=1 Ji(πt)))

9: end for
10: Let µ be the mixed policy given by the uniform distribution over πt for t ∈ [T ].
11: Return: If µ is (q − ϵ)-quantile fair, and achieves total welfare U − ϵ return µ, otherwise return

“infeasible”.

Finally, given the ability to sample from D, we can use standard quantile estimators to compute F−1
i,D

from samples. Algorithm 2 gives pseudocode for quantile estimation. The most important point is
the sample complexity of O(q(1− q)/ϵ2) required to estimate F−1

i,D(q) to within accuracy ϵ.

6.2 COMPUTING A MAX-QUANTILE FAIR POLICY

In this section we utilize the ability to efficiently estimate F−1
i,D to design efficient algorithms achieving

max quantile fairness. Algorithm 3 takes as input a values q, U ∈ [0, 1] and returns a (q− ϵ)-quantile
fair mixed policy µ achieving total welfare at least U − ϵ. The algorithm is an instance of the
multiplicative weights update (MWU) method from online convex optimization. Algorithm 4 then
uses Algorithm 3 as a subroutine to binary search for a welfare maximizing ϵ-max-quantile fair mixed
policy.

Algorithm 4 Efficient max-quantile fairness
1: Input: MOMDP M, target accuracy ϵ
2: Binary search over q ∈ [0, 1] for the maximum value q∗ such that running Algorithm 3 with

q = q∗ and U = 0 does not return “infeasible”.
3: Binary search over U ∈ [0, 1] for the maximum value U∗ such that running Algorithm 3 with

q = q∗ and U = U∗ does not return “infeasible”.
4: Return the mixed policy µ output by Algorithm 3 when U = U∗ and q = q∗.

Theorem 6.3. The mixed policy µ returned by Algorithm 3 is q − ϵ-quantile fair, and achieves total
welfare at least U − ϵ.

The proof appears in SectionD.

7 EXPERIMENTS

In this section we run experiments comparing our efficient max-quantile fairness algorithm to the
original max-quantile fairness algorithm of Alamdari et al. (2024). Because we consider different
distributions on policies for our definition of max-quantile fairness, the policies output by the two
algorithms will in general be different. The environment is the same factory monitoring MDP used
by Alamdari et al. (2024) (available under the MIT license), which is itself a modification of an
environment introduced by D’Amour et al. (2020). The setup involves monitoring m = 5 warehouses

8
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Efficient
Max-Quantile

Original
Max-Quantile Egalitarian Utilitarian

Nash Welfare 0.701± 0.015 0.654± 0.010 0.4655± 0.0581 0.5736± 0.0471
Gini Coefficient 0.087± 0.007 0.066± 0.003 0.2126± 0.0209 0.2020± 0.0182

q∗ 0.883± 0.055 0.999± 0.001 N/A N/A

Table 1: Nash welfare, Gini coefficient, for the efficient max-quantile fairness, original max-quantile
fairness, egalitarian and utilitarian algorithms. Max-quantile q∗ is reported for the two max-quantile
fairness algorithms.

to prevent incidents, where only one warehouse can be monitored in each time-step, and each of
n = 10 agents incurs different costs for an incident in each warehouse. Warehouses can be in one
of three states normal, risky, or incident. Every unmonitored warehouse has some probability of
transferring from normal to risky, and from risky to incident. Monitoring a risky warehouse resets it to
the normal state. At the beginning of each experiment, the transition probabilities and the agent costs
are randomly sampled from the same set of values as used in Alamdari et al. (2024). The wallclock
time to achieve max-quantile fairness via our method in this setting is approximately 10 minutes on
a laptop with an Intel core ultra 7 and 32 GB of RAM. This contrasts with the reported runtime of
approximately 2 hours utilizing 20 parallel threads on an AMD EPYC 7502 32-Core Processor with
258GiB system memory reported by the prior method of Alamdari et al. (2024).

Figure 1 shows the sorted returns for each of the agents under the two different algorithms. All
agents, except the lowest return one, receive larger rewards under our method. This is consistent with
the intuition that choosing D to be induced by the uniform distribution on K∗ will tend to lead the
algorithm to consider higher-return policies for each agent.

Figure 1: Sorted and normalized returns for each
of 10 agents monitoring 5 factories.

In Table 1 we report the Nash welfare, Gini co-
efficient, and the maximum quantile q∗ achieved
for the normalized agent returns for both our ef-
ficient algorithm and the original max-quantile
fair algorithm. As a baseline point of compar-
ison we also include the classic utilitarian al-
gorithm (which maximizes the sum of the re-
wards), and the egalitarian algorithm (which
maximizes the minimum reward). Both vari-
ants of max-quantile fairness outperform these
baseline methods. Additionally, the results on
q∗ confirm that the issue identified in Theo-
rem 5.1 is present in this environment. Even
with 5 · 105 randomly sampled policies, we get
q∗ = 1− ϵ for ϵ = 0.001, indicating that nearly
all of the policies sampled uniformly from O
achieve low returns. In contrast, the maximum
quantile found by our algorithm is q∗ = 0.883,
indicating that under the uniform distribution on K∗ one cannot do better than achieving returns in
the top 12% for each agent simultaneously. These results indicate that the sample-complexity for
estimating F−1

i,D via sampling from K∗ is reasonable, while that of sampling from O grows rapidly.

8 DISCUSSION AND FUTURE WORK

We have designed an efficient algorithm for max-quantile policy aggregation. That is, in any
situation where standard single-reward reinforcement learning is possible, our algorithm provides a
theoretically-founded method for producing a single policy that aggregates the preferences of multiple
agents in a provably fair way. One main limitation of our work, is the question of how to obtain the
individual reward functions in practical settings, especially for RLHF. Typical RLHF treats human
preference rankings from multiple raters as noisy estimates of a single ground-truth reward, and it is
an open question how best to learn estimates for multiple different rewards in a representative way.
Our algorithm can be directly plugged into an RLHF pipeline where multiple reward models are
available. One can simply use any existing policy optimization algorithm in place of the subroutine
from our algorithms.

9
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A PROOF OF PROPOSITION 5.5

In this section we prove Proposition 5.5.

Proof of Proposition 5.5. Because K∗ = conv {Φ(dπ∗
i
)}ni=1, every vertex of K∗ is given by Φ(dπ∗

i
)

for one of the individually optimal policies π∗
i . Let j be the smallest index such that Φ(dπ∗

j
) is in the

relative interior of K∗, and let
∑

i ̸=j αiΦ(dϕ∗
i
) = Φ(dϕ∗

j
) be a convex combination of the vertices of

K∗ that yields Φ(dϕ∗
j
). Thus, by the definition of Φ,

Jj(π
∗
j ) =

∑
i̸=j

αiJj(π
∗
i ).

By optimality of π∗
j with respect to Jj , Jj(π∗

i ) ≤ Jj(π
∗
j ) for all i. Therefore, for every i with αi ≥ 0

it must be that Jj(π∗
i ) = Jj(π

∗
j ). Choose any such i with αi ≥ 0, and let π′

j = π∗
i , and π′

i = π∗
i for

i < j. Now inductively applying the same argument yields the desired set of optimal policies π′
i

where each Φ(dπ′
i
) is a vertex of K∗.

Testing whether a point is in the relative interior of a polytope, and computing the convex combination
αi witnessing this can both be solved via a linear program with variables α and n × n constraint
matrix derived from the n× n matrix of returns Ji(π∗

j ) (see Section F). Hence, the overall algorithm
runs in time polynomial in n given access to a subroutine for finding the optimal policies π∗

j .

B PROOF OF THEOREM 5.6

In this section we prove Theorem 5.6, which shows that q-quantile fairness over the optimal occu-
pancy polytope enjoys improved fairness guarantees when compared to the entire state-action value
occupancy polytope.

Proof of Theorem 5.6. The proof of Theorem 2 of Alamdari et al. (2024) shows via Grünbaums’s
inequality that any policy π corresponding to the centroid of a polytope K achieves 1

e -quantile fairness
with respect to the uniform distribution on K.

We now turn to the question of the return of each agent. By Proposition 5.5 the individually optimal
policies π∗

1 , . . . , π
∗
n can be assumed to be vertices of K∗. Cohen & Hickey (1979) proves that any

polytope can be decomposed into a union of simplices with disjoint interiors such that the vertices of
each simplex in the decomposition are vertices of the polytope. Furthermore, the decomposition can
be chosen such that for any single vertex v of the polytope, every simplex in the decomposition has v
as a vertex.

Thus, for any individually optimal policy π∗
i , the polytope K∗ can be decomposed into a set of

simplices ∆k, each of which has Φ(dπ∗
i
) as a vertex. Let vi,k denote the i-th vertex of the simplex

∆k in the decomposition. The centroid cK∗ of the polytope K∗ can therefore be written as

cK∗ =
1

Vol(K∗)

∫
K∗

x dx =
∑
k

1

Vol(K∗)

∫
∆k

x dx

=
∑
k

Vol(∆k)

Vol(K∗)
· 1
n

n∑
i=1

vi,k.

The final equality uses the fact that the centroid of a simplex is the average of its vertices. Since
Φ(dπ∗

i
) appears as a vertex of each ∆k, we conclude the centroid of K∗ can be written as a convex

combination of the vertices, such that Φ(dπ∗
i
) receives weight at least 1

n . Recall that by positive
affine invariance we may assume that all returns are non-negative. Thus, the policy π induced by any
occupancy measure dπ ∈ Φ−1(cK∗) achieves return at least 1

nJ(π
∗
i ).

C PROOF OF THEOREM 5.1

In this section we prove Theorem 5.1, demonstrating the sample-complexity issues with the original
approach to estimating the expected return distribution.
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Proof of Theorem 5.1. Define M as follows. There are n agents identified with [n]. The state-space
S is a chain s1, . . . , sm of m states, and the action space has size n, denoted {a1, . . . , an}. For each
state sj with j ≤ m− 1, each action ai with i ≥ 2 transitions to state s1, and action a1 transitions to
state sj+1, both yielding zero rewards for all agents. For state sm all actions transition to state s1 and
action ai yields reward 1 for agent i and reward 0 for all other agents. The initial state distribution ρ0
puts all probability mass on s1.

A uniformly randomly chosen occupancy measure dπ induces a policy that takes action aj in state si
with probability pij , where fore each i ∈ [m], the vector (pi1, . . . , pin) is an independent, uniformly
random sample from the standard simplex with n vertices. Thus, E[pi1] = 1/n for all i, because
the centroid of the standard simplex on n vertices is (1/n, . . . , 1/n). When starting from state
s1, the policy π must select action a1 m times in a row to reach state sm. Any other choice
transitions the agent back to state s1. Thus for any action aj , we have dπ(sm, aj) ≤

∏m
i=1 pi1.

Hence E[dπ(sm, aj)] ≤
∏m

i=1 E[pi1] = n−m. Let ϵ ≥
√

2mn/nm. By Markov’s inequality
Pr[dπ(sm, aj) ≥

√
1/(2mn · nm)] ≤ ϵ. But state sm is the only state where any agent can receive

rewards, and the reward received is at most 1. Thus, Prdπ∼O[Ji(π) ≥
√
1/(2mn · nm)] ≤ ϵ for

each agent i. Hence, the quantile function satisfies F−1
i,D(1− ϵ) ≤

√
1/(2mn · nm).

Next, consider the policy π′ that takes action 1 in every state si with i ≤ m, and in state sm takes
action 1 with probability (1− ϵ) and a uniform random action in {a2, . . . ,n } otherwise. The policy
π′ is pareto optimal, because it visits sm the only state with any rewards with maximum possible
probability, and hence any deviation which increases one player’s reward will decrease another’s.
Further, π′ is (1 − ϵ)-quantile fair because every agent receives return at least ϵ/(m(n − 1)) >√
2/(mn · nm) ≥ F−1

i,D(1− ϵ).

Finally, the policy π∗ that takes action 1 in every state si with i ≤ m− 1 and a uniformly random
action in state sm receives average return 1

n|S| for all agents i, and which is a 1
n -fraction of the

maximum possible average return of 1
|S| for each agent.

D PROOF OF THEOREM 6.3

In this section we provide the proof of Theorem 6.3 regarding the correctness of Algorithm 4.

Proof of Theorem 6.3. We first show that our algorithm is an instance of the multiplicative weights
update (MWU) method, and the proof then follows from standard regret bounds for MWU Freund &
Schapire (1997); Hazan et al. (2016). The n+1 values wt

i , u
t are the weights. The losses in each step

are given by lti(πt) = Ji(πt)− vi corresponding to the wt
i weights, and ct(πt) =

∑n
i=1 Ji(πt)− U

corresponding to the ut weight. Let W t = ct +
∑n

i=1 w
t
i be the total weight in step t. For any policy

π, the expected loss in step t given by the weights is then

L(wt, ut, π) =
1

W t

(
utct(π) +

n∑
i=1

wt
i l
t
i(π)

)

=
1

W t

∑
i

(wt
i + ut)Ji(π)−

1

W t

(
utU + wt

ivi
)

The second term above has no dependence on π, and the scaling factor of 1
W t also does not affect the

maximum over π, hence

argmax
π

L(wt, ut, π) = argmax
π

∑
i

(wt
i + ut)Ji(π). (1)

Let us assume that there exists a policy π∗ that is q-quantile fair, and achieves total welfare U .
Otherwise, Algorithm 3 will necessarily output “infeasible”. The regret bounds for MWU imply that
for any set of weights w∗, u∗,

1

T

T∑
t=1

L(wt, ut, πt)− 1

T

T∑
t=1

L(w∗, u∗, πt) ≤ log(n+ 1)√
T

(2)
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In each step of Algorithm 3, (1) implies that πt ∈ argmaxπ L(w
t, ut, π). Thus,

1

T

T∑
t=1

L(wt, ut, πt) ≥ 1

T

T∑
t=1

L(wt, ut, π∗) ≥ 0

where the final inequality follows from the fact that π∗ is both q-quantile fair, and achieves total
welfare U , i.e. lti(π

∗) ≥ 0 and ct(π∗) ≥ 0. Hence, the regret bound (2) implies that

1

T

T∑
t=1

L(w∗, u∗, πt) ≥ − log(n+ 1)√
T

= −ϵ

for any choice of weights w∗,u∗. For each i, specializing the above inequality to the n cases where
w∗

i = 1, w∗
j = 0 for j ̸= i, and u = 0, implies that the mixed policy µ satisfies Ji(µ) ≥ vi − ϵ.

Specializing to the case wi = 0 for all i, and u = 1, implies that µ satisfies
∑

i Ji(µ) ≥ U − ϵ as
desired.

E LINEAR-INDEPENDENCE FOR NOISY ESTIMATES OF {Φ(dπ∗
i
)}ni=1

In this section we provide a formal statement and proof showing that rewards estimated by sampling
multiple runs of a policy in a stochastic MDP will lead to linear independence of the {Φ(dπ∗

i
)}ni=1

with high probability. This is of significant practical relevance, because computing the expected
rewards of standard deep reinforcement learning policies is essentially always done by computing the
empirical mean of multiple sampled evaluation runs, which have non-trivial variance.

Proposition E.1. Assume that each entry of the vectors {Φ(dπ∗
i
)}ni=1 is estimated by taking multiple

independent samples of the stochastic reward Jj(π
∗
i ), and these stochastic reward estimates are

continuous random variables with non-zero variance σi,j . Then this estimate of {Φ(dπ∗
i
)}ni=1

converges to a distribution on vectors that are linearly independent with probability 1.

Proof. Note that each coordinate of each Φ vector is an independent stochastic estimate of the returns
of policy π∗

i under reward function Jj computed by averaging the rewards over multiple independent
runs. Each such estimate converges to a Gaussian distribution with variance σi,j > 0 by the central
limit theorem. Thus, the matrix obtained by stacking all the Φ vectors together is equal to an n× n
matrix of the true mean returns, plus independent Gaussian distributed noise with non-zero variance
added to each coordinate. Such a matrix is full rank with probability 1 (see for example Rudelson
& Vershynin (2008)), and hence the Φ vector estimates converge to a distribution that is linearly
independent with probability 1.

F ADDITIONAL DETAILS ON LINEAR PROGRAMS FOR MEMBERSHIP IN K∗

Both Proposition 5.5 and Algorithm 1 rely on solving an n × n linear program for the problems
related to membership of a point in K∗. In this section we provide the linear programs in question.
First, for Proposition 5.5, it is necessary to determine if a point Φ(dπ∗

i
) is a convex combination of the

other vertices of K∗, and if so to determine the weights αj of the convex combination. This problem
can be expressed via the following system of linear inequalities in the variables αj for j ∈ [n]:∑

j ̸=i

αjΦ(dπ∗
j
) = Φ(dπ∗

i
)

n∑
j=1

αj = 1

αj ≥ 0 ∀j ∈ [n]

which is the problem of finding a feasible solution to an n× n linear program.

Similarly, the hit-and-run walk used for sampling in Algorithm 1 in the case that K∗ is not a simplex
relies on the ability to test whether a given point v ∈ K∗. This problem can be solved by the following
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n× n linear program:
n∑

j=1

αjΦ(dπ∗
j
) = v

n∑
j=1

αj = 1

αj ≥ 0 ∀j ∈ [n].
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