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Abstract

Recent advancements in large language models (LLMs) have significantly
improved their reasoning abilities, particularly through techniques in-
volving search and backtracking. Backtracking naturally scales test-time
compute by enabling sequential, linearized exploration via long chain-of-
thought (CoT) generation. However, this is not the only strategy for scaling
test time-compute: parallel sampling with best-of-n selection provides
an alternative that generates diverse solutions simultaneously. Despite
the growing adoption of sequential search, its advantages over parallel
sampling—especially under a fixed compute budget—remain poorly un-
derstood. In this paper, we systematically compare these two approaches
on two challenging reasoning tasks: CountDown and Sudoku. Surpris-
ingly, we find that sequential search underperforms parallel sampling on
CountDown but outperforms it on Sudoku, suggesting that backtracking is
not universally beneficial. We identify two factors that can cause backtrack-
ing to degrade performance: (1) training on fixed search traces can lock
models intro suboptimal strategies, and (2) explicit CoT supervision can
discourage ‘implicit‘ (non verbalized) reasoning. Extending our analysis
to reinforcement learning (RL), we show that models with backtracking
capabilities benefit significantly from RL fine-tuning, while models without
backtracking see limited, mixed gains. Together, these findings challenge
the assumption that backtracking universally enhances LLM reasoning,
instead revealing a complex interaction between task structure, training
data, model scale, and learning paradigm.

1 Introduction
Recent studies (Kumar et al., 2024; Havrilla et al., 2024) propose teaching LLMs to cor-
rect mistakes through backtracking, enabling exploration of alternative solutions. Despite
growing popularity (DeepSeek-AI et al., 2025; Muennighoff et al., 2025), it remains unclear
whether correcting errors post-hoc via backtracking is ultimately more compute-efficient
at test time than directly learning the correct solution. Solving strategic games such as
CountDown and Sudoku requires extensive exploration of different solution paths, making
them ideal for analyzing the computational trade-offs of sequential versus parallel search.
In this work, we use these two games to conduct a controlled investigation to determine
whether backtracking is an effective way to scale test-time compute.

There are two primary strategies to scale LLMs’ test-time compute: sequential autoregressive
search (explicit backtracking within a chain-of-thought) and parallel sampling (generating
multiple independent solutions and selecting the best with best-of-n). While sequential
search allows the model to refine reasoning by learning from past mistakes, it comes at a cost:
due to the attention mechanism, the FLOPs required to generate CoT grow quadratically
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Figure 1: Backtracking performance varies significantly with task type and the application
of post-training reinforcement learning. (A) Training backtracking and direct solution
models on CountDown and Sudoku reveals task-dependent performance: under equal
test-time compute, backtracking (sequential search) underperforms direct solution with
best-of-n generation (parallel search) on CountDown, but outperforms it on Sudoku. (B)
Fine-tuning with GRPO consistently improves backtracking model performance across
compute budgets, but has mixed effects on the direct solution model.

with sequence length. Even when generating the same number of tokens, sequential search
incurs more FLOPs than parallel sampling. To compare these two strategies, we train (i)
backtracking models that learn from explicit search traces and use sequential search to
solve hard problems, and (ii) direct solution (i.e., no backtracking) models that learn solely
from correct solutions, using parallel search at test time. Equating test-time compute, we
observe contrasting results (Fig. 1 A): in CountDown, the backtracking model consistently
underperforms, whereas in Sudoku, it consistently outperforms the direct solution model.

Through controlled experiments, we identify two reasons teaching backtracking can inad-
vertently degrade performance. First, explicit backtracking reasoning traces bias models
toward prescribed search strategies, limiting exploration of potentially superior alternatives.
In CountDown, the backtracking model closely mimics training search paths, while the
direct solution model independently discovers more efficient strategies (Section 4.2). Second,
detailed backtracking traces encourage verbosity (producing lengthy yet ineffective reason-
ing chains), while discouraging internal "thinking" (implicit reasoning without outputting
CoT, Section 4.3). Beyond these factors, we demonstrate that model size and task-specific
characteristics also impact the effectiveness of backtracking (Section 5.1). Crucially, we
show that our contrastive observation between Sudoku and Countdown generalizes to
real-world tasks: such as math and science problem solving. We show that backtracking
is not always the most effective way to scale test-time compute (Appendix A) for general
reasoning models.

Extending beyond supervised learning, we evaluate reinforcement learning (RL) with Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), uncovering novel interactions be-
tween backtracking capabilities and RL. We show that the backtracking model discovers new,
effective search strategies through RL, achieving substantial performance improvements.
Conversely, the direct solution model improves one-shot accuracy but loses effectiveness in
parallel search, revealing a clear trade-off (Fig. 1 B). This finding shifts our understanding
of how backtracking influences a model’s potential to improve under RL, highlighting the
unique advantage of teaching backtracking for long-term reasoning capabilities.

Our controlled study on two strategic games provides a nuanced understanding of when
backtracking effectively scales test-time compute. Our main contributions are:

• We use CountDown and Sudoku as controlled testbeds to examine whether backtrack-
ing enables efficient test-time scaling. Under a fixed compute budget, backtracking
outperforms parallel search in Sudoku but underperforms in CountDown (Fig. 1 A).

• We identify two key factors affecting backtracking efficacy: (1) Prescribed search bias:
Training on detailed backtracking traces can unintentionally constrain models to subopti-
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Figure 2: Backtracking and direct solution for two different strategic games. Panel (a, b):
Example the search tree for CountDown and Sudoku. Solving both games require extensive
search in the solution space. Panel (c): The backtracking model is trained on the search
traces generated by a Depth-First-Search (DFS) algorithm. At test time, the model performs
sequential search. The direct solution model is trained on the correct solution only. At test
time, the model performs parallel search through temperature sampling and takes best-of-n.

mal search strategies. (2) Excessive verbosity: Explicit backtracking traces encourage
models to produce lengthy reasoning chains without improving reasoning ability.

• We demonstrate that reinforcement learning (GRPO) consistently enhances backtrack-
ing models by enabling discovery of novel solutions, whereas direct solution models
experience mixed outcomes (Fig. 1 B).

2 Related Work
See Appendix B for an extensive review on related work.

Scaling test-time compute . Prior work has explored scaling language model performance
at test time through parallel or sequential search strategies. Parallel methods rely on
independent sampling and selection via heuristics or reward models (Brown et al., 2024;
Irvine et al., 2023; Levi, 2024; Xin et al., 2024), while sequential methods refine reasoning
step by step using earlier outputs (Hou et al., 2025; Lee et al., 2025). Tree-based methods
such as MCTS bridge the two and often incorporate process-level reward models to guide
reasoning (Wu et al., 2024; Lightman et al., 2023). Our work contributes to this area by
comparing sequential (backtracking) and parallel search under fixed compute budgets.

Self-correction and backtracking. Language models can be trained to self-correct through
fine-tuning on revision data, synthetic augmentations, or reward-based learning (Saunders
et al., 2022; Qu et al., 2024; Welleck et al., 2022). Some approaches also introduce explicit
search or separate correction modules to guide revision (Yao et al., 2023b; Havrilla et al.,
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2024). We build on this line of work by studying backtracking as an implicit form of
self-correction, analyzing when learning to backtrack helps or hinders reasoning.

Reinforcement learning for LLM reasoning. Reinforcement learning has shown promise
in enabling language models to autonomously discover reasoning strategies, including
through simplified algorithms like GRPO (Shao et al., 2024; DeepSeek-AI et al., 2025). While
prior work has demonstrated strong results, it remains unclear which model properties
enable successful RL-based reasoning (Zelikman et al., 2022; Kazemnejad et al., 2024). Our
study addresses this gap by comparing how backtracking and no backtracking models
respond to RL fine-tuning, revealing asymmetric benefits.

3 Two strategic games: CountDown and Sudoku

3.1 CountDown

3.1.1 Game setup
The Game of CountDown has been frequently used as a testbed to study and evaluate LLM
reasoning (Gandhi et al., 2024; 2025; Yao et al., 2023a). In a CountDown game, the player is
given a set of candidate numbers and a target number (restricted to integers). The goal is
to reach the target by applying a sequence of arithmetic operations—addition, subtraction,
multiplication, or division—using the candidate numbers. Each number must be used
exactly once, and intermediate results can be reused in subsequent operations.

To algorithmically solve CountDown, we can represent the problem as a search tree (Fig. 2a).
Each node in the search tree corresponds to a state defined by the current set of available
numbers. At each step, the algorithm selects a pair of numbers from the set and applies one
of the four operations, replacing the pair with the resulting value to create a new state. This
process continues recursively until the target number is reached (correct leaf node) or all
combinations are exhausted (wrong leaf node). In this work, we play the CountDown with
four candidate numbers, and for each game, there are 1,152 possible search paths.

3.1.2 Data generation
We generate backtracking traces with Depth First Search (DFS) with a sum-heuristic (Gandhi
et al. (2024), further details in Appendix C.1). We generate a dataset of 500,000 CountDown
questions, and the DFS search correctly solves 57% of the questions. The backtracking trace
is a serialized version of DFS, listing all the tree nodes visited in the order of DFS traversal.
To construct the direct solution training data, we prune the backtracking traces to keep only
the correct solution path. With the pruning approach, we remove the exploratory parts of the
trace while preserving the answer format and scaffolding used in the backtracking model,
to ensure a fair comparison. We also ensure that the direct solution model does not see more
solved CountDown games, we include only the 285,000 questions (i.e., 500,000 × 0.57) that
DFS successfully solves. We provide examples of both training data in Appendix H.

3.2 Sudoku

3.2.1 Game setup
Sudoku is another prototypical strategic game used to study reasoning and search in LLMs
(Yao et al., 2023a; Long, 2023). In this work, we focus on hard 9 × 9 Sudoku boards, where
only about 20 of the 81 cells are pre-filled, making the search space substantially larger
(see Appendix C.1 for a description of Sudoku rules). To algorithmically solve Sudoku, we
represent the problem as a search tree (Fig. 2b). Each node corresponds to a partial board
state, where some cells have been filled. At each step, the algorithm selects an unfilled cell
and fills it with a candidate digit that satisfies Sudoku constraints in the current state. Each
valid assignment creates a new child node representing the updated board. The process
continues recursively until a complete, valid solution is reached (correct leaf node) or no
valid moves remain (wrong leaf node). The depth of the tree corresponds to the number of
empty cells, and the branching factor at each node depends on the number of unfilled cells
as well as how many digits are valid for each unfilled cell.
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Figure 3: Backtracking and direct solution models implement different search strategies
for CountDown. For test questions that model solves correctly, we measure the number of
mistakes made (i.e., wrong terminal nodes visited) before finding the correct solution. We
sort the test questions by number of mistakes made by DFS. Left: Trained on DFS traces, the
number of mistakes made by the backtracking model correlates with the DFS. Middle: In
contrast, the direct solution model solves a lot more problems with significantly fewer mis-
takes compared to DFS. Right: For a given number of mistakes made, we examine whether
two models solve the same set of question as DFS. Direct solution model implements a
search strategy significantly different from DFS.

3.2.2 Data generation
We follow the same procedure as CountDown to generate training data for both the back-
tracking and direct solution models. We use a DFS-based search algorithm, in combination
with a Sudoku solver that applies seven common human strategies (e.g., naked singles,
hidden pairs and etc, Papadimas. (2023) ) to eliminate candidates for unfilled cells. At each
node, we use the 7 strategies to eliminate candidates for unfilled cells, and then DFS chooses
an unfilled cell, makes a guess and continues solving recursively. This process continues
until the board is either solved or reaches a dead-end (i.e., an invalid state with no legal
moves). We use a dataset of 3M Sudoku puzzles from (Radcliffe, 2020), and the combined
DFS-solver approach successfully solves 98% of them. Since DFS successfully solves nearly
all puzzles, we train both models on 2.8M examples and reserve the last 200K for validation
and testing. We provide further details on Sudoku training data generation in Appendix
C.1 and data examples in Appendix H.

3.3 Model and training
We use Qwen2.5-style model architectures (Yang et al., 2024) with RoPE positional encoding
(Su et al., 2021) and Group Query Attention (GQA) (Ainslie et al., 2023). To maximize
parameter efficiency, we design custom tokenizers for both games, significantly reducing
the size of the language modeling head. This allows us to train smaller models than prior
work (Gandhi et al., 2024; Shah et al., 2024) while maintaining comparable performance
on both tasks. For CountDown, we use a 17M parameter model with a context length of
4096 tokens; for Sudoku, we use a 38M model with the same context length. See Appendix
C.3 for model architecture and an exhaustive list of training hyperparameters. We train all
models until validation loss converges (see Appendix G.3).

4 Empirical trade-offs of backtracking
We first demonstrate that backtracking models do not universally outperform the direct
solution models (Section 4.1) because backtracking models are restricted to learn a prescribed
way of search (Section 4.2). We then identify two factors (Sections 4.3) showing how we
might improve test-time scaling for backtracking models.

4.1 Backtracking is not always beneficial
Evaluation metrics. We evaluate model performances using solving accuracy on 200
unseen problems with binary scores (either correct or incorrect, no partial credits, see
appendix C.1). We use FLOPs to compare inference costs (see Appendix D for FLOPs
computation). For the backtracking model, we allow models to autoregressively generate
and measure how many problems the model finds the correct solution at various CoT
lengths (ranging from 1024 to 4096 tokens). For the direct solution model, we generate
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n solutions in parallel through temperature sampling at T = 0.7, and examine whether
the model has found the correct solution within n attempts (i.e., best-of-n). Best-of-n is a
suitable choice in those two games, a case where solving the task is hard but verification is
trivial. In general, our analysis applies to tasks where verification can be easily done with
an external verifier at test-time. This is definitely not always the case, and we leave the
study of problems where test-time verification is not as easy to future work. In those tasks,
one might need to consider majority voting or other strategies. See Appendix E for further
discussions.

Results. In Fig. 1 A, we observe distinct scaling behaviors for the two models. For both
games, the direct solution model’s test accuracy scales linearly with increased test-time com-
pute (measured on a logarithmic scale). This scaling behavior indicates that through parallel
sampling, the backtracking model generates diverse solutions that search through different
solution paths. Conversely, the backtracking model exhibits sub-linear scaling: Longer
solution traces disproportionately yield smaller accuracy improvements. We attribute the
sub-linear scaling to two causes. First, as reasoning chains become longer, the backtracking
model might struggle to effectively track visited states and efficiently search through the
solution space. Second, when models perform sequential search, the computation cost
grows quadratically with CoT length (due to the attention mechanism, see Appendix D),
and this further makes backtracking model less effective for scaling up test time compute.
Overall, for CountDown, the direct solution model consistently outperforms its backtrack-
ing counterpart. However, this trend is reversed in Sudoku, where the backtracking model
consistently achieves higher accuracy.

4.2 Backtracking model learns both the good and the bad
When teaching a child to correct math mistakes, the child understands that the goal is the
correct answer—not making and then fixing errors. Humans have meta-cognitive awareness
that models lack. Models trained via next-token prediction simply imitate the traces they see,
including making the mistake before fixing it. In CountDown, this poses a key limitation: the
backtracking model learns to follow the specific search paths seen in training. While some
tasks—like shortest path finding—have optimal strategies we can supervise directly (e.g.,
Dijkstra’s algorithm), most reasoning tasks, including CountDown, lack such guarantees.
As a result, the model may be constrained by the inefficiencies in the backtracking data. In
contrast, the direct solution model, trained only on correct answers, is free to discover more
efficient strategies. In our subsequent analysis, we concretely show how the direct solution
model successfully bypasses many inefficient search and backtracking steps learned by the
backtracking model.

4.2.1 Backtracking model finds the solution with fewer mistakes
Measuring number of mistakes. We compare the number of mistakes made by: (1) DFS
(used to generate backtracking data), (2) the backtracking model, and (3) the direct solution
model. For DFS and the backtracking model, mistakes are counted as the number of
incorrect terminal nodes explored before finding the correct solution. For the direct solution
model, mistakes correspond to how many parallel samples (n in best-of-n) are needed. 1

Comparing search strategies. We sort the 200 test problems based on mistakes made by
DFS and plot mistakes for both models. Fig. 3 left compares DFS search and backtracking
model. The number mistakes made by the backtracking model is correlated with the
DFS backtracking trace. This observation is not surprising given that the backtracking
model is trained on these traces. However, this result is interesting when we compare it
against the direct solution model (Fig. 3 middle). The direct solution model solves most
problems within fewer than 10 attempts—far fewer compared to DFS or the backtracking
model. Fig. 3 right quantifies these observations. Specifically, for a fixed mistake budget, we
use Jaccard Index to measure whether the model solves a similar set of problems as DFS
solves. The backtracking model closely mirrors DFS search (high set similarity), whereas
the direct solution model diverges significantly (low set similarity). Together with superior
performance of the direct solution model, we conclude that the direct solution model learns
more efficient search strategies, avoiding unnecessary explorations of wrong paths.

1Mistakes are counted only for problems solved correctly by the model.
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Figure 4: Two different variations to improve backtracking model. (a). We hypothesize
that the backtracking model can think one step ahead without sacrificing its ability to
search. Therefore, we shorten the search trace by skipping the last search step. (b). Two
data variations that improve the backtracking model. Mixed-backtrack model trained on a
diverse set of search strategies. Think-backtracking model trained on shortened DFS trace.

4.3 Two ways to improve backtracking model

Training on diverse set of search strategies. Our analysis suggests a clear direction for
improving the backtracking model: using better search strategies to improve backtracking
traces. Beyond DFS, we explored alternatives including Breadth-First Search (BFS) and
various heuristic methods (see Appendix G.1). Despite these efforts, no single search
strategy significantly outperformed DFS. Inspired by Gandhi et al. (2024), we trained a
variant of the backtracking model—mix-backtrack model—-using a diverse mixture of BFS
and DFS strategies (32 in total), aiming to help the model discover more optimal search
patterns.

Backtracking model thinks less and talks more. Apart from learning suboptimal search
strategies, another inefficiency in the backtracking model is caused by the model learns to
be excessively verbose. Specifically, by requiring the model to explicitly output every step
of the DFS, we may prevent it from internalizing part of the reasoning process. Concretely,
we hypothesize that for CountDown, the model can internally plan at least one step ahead,
allowing it to shorten its explicit reasoning trace without losing its ability to perform DFS.
To test hypothesis, we train a variation—the think-backtrack model—on shortened DFS traces,
skipping one intermediate step (Fig. 4, A).

Mix-strategy results. Fig. 4 (B) compares this mixed-strategy model against the original
backtracking and direct solution models. We also include a training data upper bound,
representing perfect execution of the mixed search strategies. The mixed-strategy model
improves over the original backtracking model and closely approaches its training-data
upper bound. However, even with deliberate attempts to optimize search strategies, sur-
passing the performance of the direct solution model remains challenging. This experiment
underscores the inherent difficulty in identifying superior handcrafted search traces.

Think-backtrack results. Fig. 4 (B) also compares the performance of the think-backtrack
model. By encouraging the model to internalize parts of the reasoning process, the think-
backtrack model achieves performances comparable to the direct solution model. This result
suggests that models with backtracking ability might produce long but ineffective CoT.
By training the model to avoid making the mistakes at the first place, we reduce model
verbosity without sacrificing its search capability, and in turn improving test-time-compute
scaling. As an additional evidence, in Appendix G.2, we show that the think-backtrack
model solves a superset of test problems solved by the original backtrack model.
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Figure 5: Different scaling behaviors for backtracking versus direct solution model.
CountDown (A). Backtracking model performance does not improve as we scale up model
size. (B). The direct solution model improves (C). Direct solution model consistently outper-
forms backtracking model. Sudoku (D, E). Both models’ performances improve as we scale
up model size. (F). Direct solution model consistently underperforms backtracking model.

5 Model size and tree depth impact the efficacy of backtracking

While we’ve shown that backtracking might lead to ineffective test-time scaling, other
factors also shape its effectiveness. In Section 5.1, we show that backtracking and direct
solution models scale differently with model sizes. To explain the contrasting outcomes
(Fig. 1 A) between CountDown and Sudoku, in Appendix F, we show that task differ-
ences—particularly search tree depth—play a key role: deeper tasks like Sudoku benefit
more from backtracking.

5.1 Dependence on model size
We now investigate how model size impacts the performance of backtracking and direct
solution models. We evaluate four model scales—3M, 17M, 38M, and 144M—by propor-
tionally increasing the number of attention heads, embedding dimensions, and number of
attention layers. Detailed model configurations can be found in Appendix C.2.

CountDown. Scaling up model size improves the performance of the direct solution
model (Fig. 5 B) across all test-time-compute budgets. When trained exclusively on correct
solutions, larger models can independently discover highly effective search strategies. In
contrast, the backtracking model shows no improvements with increased model sizes (Fig. 5
A). The lack of improvement from model scaling can be explained by training data: The
performance of backtracking model is constrained by the quality of the backtracking traces
used for training. As previously seen in Fig. 4 (right), the 17M backtracking model is already
approaching the performance ceiling that is set by the training data. Training larger models
on the same backtracking data would not lead to further performance improvements. Due
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to different scaling behaviors between backtracking and direct solution models, the gap in
performances between two types of models widens with increasing model sizes (Fig. 5 C).

Sudoku. Similar to CountDown, the performances of direct solution models improve with
increased model sizes (Fig. 5 E). Unlike CountDown, however, the backtracking model also
significantly benefits from scaling (Fig. 5 D). This difference can again be explained by exam-
ining the backtracking training data. Sudoku is inherently more complex than CountDown.
The DFS backtracking traces successfully solve 97% of test boards—far exceeding the current
performance of all four tested model sizes. Because the backtracking model for Sudoku has
not yet reached training data performance ceiling, increased model capacity leads to im-
proved results. On the other hand, due to the complexity and large search space of the game,
the backtracking models’ performance gains start to diminish as the search traces become
longer. As a result, the backtracking model consistently outperforms the direct solution
model across scales, but the advantages diminishes at larger compute budgets (Fig. 5 E).

6 GRPO: Learning beyond the imitation game

So far, we have shown that under supervised learning, backtracking is not always optimal
for scaling test-time compute. We now explore how further training both backtracking and
direct solution models with reinforcement learning leads to qualitatively different outcomes.

6.1 Continue training models with GRPO
Recently, RL has become a popular approach to further enhance LLMs performance on
challenging benchmarks such as MATH (Hendrycks et al., 2021) and AIME (AIME, 2024).
Here, we study the effects of RL in a controlled setting, focusing on how it impacts a
model’s backtracking behaviors (sequential search) and as well as a model’s parallel search
capability (sampling with best-of-n). We take the CountDown backtracking and direct
solution models, which have been trained to convergence under the supervised learning
objective (see Appendix G.3 for training curves). We then continue training each model
using GRPO (Shao et al., 2024), following verl’s (Sheng et al., 2024) implementation. We
perform GRPO on the same training data used for the supervised learning. As before, we
evaluate performance across different test-time compute budgets.

6.2 Backtracking model discovers new search strategies
Figure 1 C shows that the backtracking model post GRPO sees an performance boost across
all test-compute budgets. The post-GRPO model (dark red) reaches an accuracy comparable
to the pre-GRPO direct solution model (light blue). This improvement is surprising for two
reasons: (1) at maximum compute (4096 tokens), the model solves nearly 70% of the test
set—exceeding the performance of the DFS strategy used to generate training data (57%);
and (2) the model was trained on questions it has already seen during supervised learning,
with no new problems introduced during GRPO.

These gains suggest that the backtracking model, once freed from the constraints of predict-
ing next token on DFS traces, can now discover better search strategies. To concretely show
that the backtracking model post-GRPO learns search strategies different from DFS training
traces, we revisit the mistake-counting analysis from Section 4.2.1 (Figure 3). For each test
problem, we compute the number of mistakes as before (i.e., counting how many incorrect
terminal nodes are explored before reaching a correct solution). Using the same set similarity
measure as before, we quantify the strategy deviation in Figure 6 (left). The smaller Jaccard
index values confirm that through GRPO, the backtracking model has learned new and
more effective search behaviors. In Appendix G.4, we also show the per-problem scatter
plot as done in Figure 3.

6.3 Direct solution model specializes at pass@1
We now show that compared to backtracking models, GRPO has remarkably different effects
on direct solution models. As shown in Figure 1 C, the direct solution model post-GRPO
achieves strong performance at the smallest compute budget (pass@1), solving 42.5% of
unseen CountDown puzzles (82 out of 200 test problems). None of the handcrafted search
strategies (Appendix G.1) can reach such high accuracy. To understand the impressive gain
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Figure 6: GRPO has different effect on backtracking versus direct solution model Left:
After GRPO, the backtracking model’s search strategy starts to deviate away from the DFS
search. Right: For problems the pre-GRPO direct solution model (blue) have a non-zero
pass@k solving probabilities, the post-GRPO direct solution model (red) solves with pass@1.

on 1-shot performance, we examine those 82 problems, and discover that the pre-GRPO
direct solution model was able to find correct solution by sampling best-of-n (with n ≤ 64).
We now examine a model’s solving probabilities (i.e., measuring pass@k rate out of the
64 generations). We compare the pass@k rate for the diret solution model pre and post
GRPO, shown in Figure 6, right. We rank the 200 test problems by the pre-GRPO model’s
solving probabilities. For problems that the pre-GRPO model has a non-zero pass@k rate,
the post-GRPO model can solve most of them with pass@1.

However, this improvement in 1-shot performance comes with a substantial trade-off:
the model loses its ability to generate diverse solutions. As a result, when we perform
parallel search using best-of-n, the direct solution model post-GRPO fail to explore different
solution paths, hurting its test-time-scaling effectiveness. Therefore, test-time compute
scaling becomes ineffective as we increase compute bugdets, forming a sharp contrast to
the backtracking model’s consistent improvements across the full compute budget.

7 Conclusion and discussions
In this work, we conducted a controlled empirical investigation into the efficacy of teaching
backtracking to large language models (LLMs) as a method for scaling test-time computation.
Using two strategic games, CountDown and Sudoku, we demonstrated that backtracking
does not universally outperform parallel solution strategies; rather, its effectiveness depends
significantly on task characteristics, model scale, and training approach. Appendix A, we
show that our resuls in synthetic setting generalize: even in real-world reasoning tasks,
backtracking is not always beneficial. Additionally, our reinforcement learning experiments
uncovered a unique synergy between backtracking capabilities and RL-based training,
enabling models to discover novel strategies.

Limitations and future work. While our experiments relied on two strategic games (Count-
Down and Sudoku) and models trained from scratch—common practices for controlled
studies—an important avenue for future research is extending our findings to complex, real-
world reasoning tasks such as coding and mathematical problem-solving. For future work,
developing precise ways to characterize tasks that benefit from backtracking will be valuable
for guiding model training. Finally, while we intentionally created a dichotomy between
pure backtracking and direct-solution models, real-world applications may require hybrid
strategies that dynamically choose between direct generation and explicit search based
on problem complexity. Investigating whether LLMs can autonomously optimize their
reasoning modes, particularly through reinforcement learning paradigms, is a promising
future direction for improving the flexibility and efficiency of model reasoning.
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Figure 7: Evaluating backtracking on real LLMs. Left: On MATH-500, we compare the S1
model (fine-tuned on backtracking traces) using sequential decoding with budget forcing,
against its base model (Qwen2.5-32B-Instruct) using parallel sampling. The backtracking
model underperforms at low compute but narrows the gap at higher budgets. Right: On
GPQA, the same backtracking setup outperforms parallel sampling in a multiple-choice
reasoning setting. This comparison generalizes our conclusion from synthetic settings to
real LLMs.

A Backtracking Analysis on Math Reasoning with LLMs
A.1 Experimental Setup
To complement our synthetic experiments, we conduct an evaluation on real-world math
problems to examine whether backtracking remains effective under equal test-time com-
pute. We compare two approaches:

• Backtracking model: fine-tuned on solution traces that include explicit self-correction
and step-by-step reflection.

• Direct solution model: the base model without backtracking fine-tuning, using parallel
sampling (with majority voting for final correct answer) at inference.

To control test-time compute, we use the budget forcing technique introduced in (Muen-
nighoff et al., 2025). This enables a fair comparison across models with differing reasoning
styles.

Backtracking Model. We adopt the S1 checkpoint from Muennighoff et al. (2025), a
model trained on solution traces distilled from DeepSeekR1. These traces exhibit explicit
backtracking behaviors—identifying and correcting earlier mistakes. We generate outputs
with temperature T = 0.7 under budget forcing and evaluate on the MATH-500.

Direct Solution Model. For fair comparison, we use the same base model as S1—Qwen2.5-
32B-Instruct—without backtracking fine-tuning. We sample N = 1 to 8 completions with
temperature T = 0.7, and report both Best-of-N and Majority Vote accuracy.

Results and Interpretation
Figure 7 (left) presents accuracy under matched compute budgets. We observe that at low
compute budgets the backtracking model underperforms due to its verbose reasoning
traces. At higher budgets, backtracking matches and slightly exceeds the performance
of parallel sampling. This mirrors trends observed in the CountDown (Section 4.3), and
suggests that while backtracking introduces overhead, it yields benefits when sufficient
compute is available.

To form a sharp contrast, we reproduce results from (Muennighoff et al., 2025) on
GPQA-Diamond (Figure 7, right), which shows that the same backtracking model signifi-
cantly outperforms parallel sampling—even at lower budgets—in a multiple-choice setting.
This contrast highlights that the effectiveness of backtracking is task-dependent.
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This real-world evaluation supports our synthetic findings: backtracking improves perfor-
mance under compute constraints, but its advantage depends on the task structure. On
open-ended math problems, the benefit is most pronounced at higher budgets. On struc-
tured tasks like multiple-choice QA, gains can appear even earlier. Overall, our conclusions
generalize beyond synthetic settings.

B Related Work Extended
B.1 Test-time computation scaling
A growing body of work has explored how to improve language model performance by
scaling test-time computation. These approaches typically fall into two broad categories:
parallel and sequential search. Parallel methods sample multiple solutions independently
and select the best one using predefined criteria—such as majority voting or external reward
models—as seen in Best-of-N techniques (Brown et al., 2024; Irvine et al., 2023; Levi, 2024).
These methods often rely on outcome-based reward models that score complete solutions
(Xin et al., 2024; Ankner et al., 2024).

In contrast, sequential methods iteratively refine reasoning by conditioning on previous
attempts. This class includes stepwise improvement methods(Ankner et al., 2024; Hou et al.,
2025; Lee et al., 2025), where each new trajectory builds on earlier outputs, enabling the
model to adapt its reasoning dynamically. Other research works have also explored using
the search process itself to improve model reasoning capabilities, either during inference or
by integrating the feedback into training(Wang et al., 2024; Luo et al., 2024). While these
methods can reduce redundancy, they typically require more compute per sample and may
suffer from compounding errors.

Tree-based approaches, such as Monte Carlo Tree Search (MCTS) and guided beam search,
represent a hybrid between parallel and sequential strategies(Gandhi et al., 2024; Liu et al.,
2023; Zhang et al., 2023; Zhou et al., 2023; Choi et al., 2023; Xie et al., 2023). These methods
often leverage process reward models, which assign value to intermediate reasoning steps
rather than full outputs(Lightman et al., 2023; Wang et al., 2024; Wu et al., 2024). REBASE(Wu
et al., 2024), for example, uses a process reward model to guide exploration and pruning
in tree search, and has been shown to outperform both sampling-based methods and
traditional MCTS.

B.2 Self-correction and backtracking
Search and backtracking are inherently tied to self-correction, as they enable models to
revisit earlier decisions and recover from errors—a critical capability for multi-step reason-
ing. Teaching language models to self-correct has been approached through fine-tuning on
revision demonstrations from humans or stronger models(Saunders et al., 2022; Ye et al.,
2023; Qu et al., 2024), as well as through synthetic data generation and handcrafted aug-
mentation(Paul et al., 2023; Wang et al., 2023; Lee et al., 2023). Reward-based methods
provide another avenue, using outcome- or process-level signals to differentiate good and
bad reasoning trajectories, often framed as implicit policy learning(Welleck et al., 2022;
Akyürek et al., 2023; Zhang et al., 2024). Some methods further incorporate search, critique
generation, or separate correction modules to enhance reasoning quality(Yao et al., 2023b;
Havrilla et al., 2024). In contrast, using two structured games, we investigate the tradeoffs
of teaching models to backtrack via search traces versus allowing them to learn purely from
correct solutions.

B.3 Reinforcement learning for LLM reasoning
Reinforcement learning (RL) has emerged as a powerful framework for improving the
reasoning abilities of language models. While early work applied off-policy and on-policy
RL methods to guide models toward verifiable outcomes(Zelikman et al., 2022; Kazemnejad
et al., 2024), recent approaches have shown that even simplified algorithms like GRPO
can lead to significant performance gains and the emergence of in-context search behavior
(DeepSeek-AI et al., 2025; Shao et al., 2024; DeepSeek-AI et al., 2025). These advances
suggest that RL can help models autonomously discover more effective reasoning strategies,
even without explicit reward models or structured search. However, not all models benefit
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equally from RL, and it remains unclear what properties make a model amenable to learning
through reinforcement. Our work contributes to this question by examining how back-
tracking models, when trained with GRPO, can discover novel solution strategies—while
no-backtracking models show limited or mixed gains.

C Experiment details

C.1 Additional details on game, data generation

CountDown tree size computation. CountDown has an exponentially growing search
space with respect to the number of candidate numbers. If the current state has N available
numbers, there are (N

2 )× 4 possible actions (selecting a pair and one of four operations),
and the depth of the tree is N − 1. For games with four candidate numbers, the complete
search tree contains 1,152 nodes.

CountDown search. To generate DFS search data, we use a sum heuristic to guide the
search order and prune nodes. This heuristic measures the distance between the sum
of all input numbers and the target number, and prunes a node if the absolute distance
exceeds the target. This approach is inspired by Gandhi et al. (2024), who also consider an
alternative—the multiply heuristic—which measures the minimum distance between the
input set and the factors of the target. However, in our experiments, both heuristics yield
similar performance: for a fixed number of visited nodes, DFS with either heuristic solves
approximately the same number of games.

Sudoku rule. In a Sudoku game, the player is given a 9 × 9 grid in which each cell must
be filled with a digit from 1 to 9. The puzzle is subject to three constraints: each row, each
column, and each of the nine 3 × 3 subgrids must contain all digits from 1 to 9 exactly
once. Given a partially filled grid, the objective is to fill in the remaining cells such that all
constraints are satisfied.

Sudoku data and tokenization. To represent the Sudoku board for language models,
we encode each cell as a position-value pair: (x, y) = v, where (x, y) denotes the grid
location and v is the cell’s value. The model receives the initial board as a list of known
(x, y) = v pairs and generates the solution by predicting the values for the remaining cells.
We generate backtracking traces by serializing the full DFS traversal. For the direct solution
model, we prune each trace to include only the final solution path.

Scoring. For CountDown, a solution is correct only if it adheres to game rules and correctly
achieves the target number. For Sudoku, correctness requires fully solving the board, with
no partial credit given for incomplete but correct boards. Models are tested on 200 unseen
problems per game. The same scoring function is used as the reward function in GRPO
(Section 6)

C.2 Additional details on model architecture

Model hyperparameters can be found in Table 1.

Model Size Hidden Size Layers Attn Heads Intermediate Size KV Heads

3M 256 6 4 512 1
17M 512 8 4 1024 1
38M 512 10 8 2048 2
144M 1024 12 8 3072 2

Table 1: Qwen2.5-style architecture configurations for the four model sizes used in our
experiments.

C.3 Training hyperparameter

Training hyperparameters can be found in Table 2. We train all models on 2 NVIDIA H100
80GB HBM3 GPUs.

17



Published as a conference paper at COLM 2025

Hyperparameter Value

Optimization
Learning rate 1 × 10−5

Weight decay 0.01
Learning Rate Schedule

Scheduler type Cosine
Warmup steps 1

Training Setup
Epochs 30
Batch size (backtracking model) 32
Batch size (direct solution model) 64
Context length (backtracking model) 4096
Context length (direct solution model) 512

Tokenizer
Tokenizer size (CountDown) 74
Tokenizer size (Sudoku) 110

Table 2: Training hyperparameters used for all experiments. Batch size and context length
vary based on model type.

D FLOP computation
To compare backtracking and direct solution models under a fixed compute budget, we
estimate inference FLOPs based on model architecture and generation length T. We use a
simplified transformer FLOP computation that accounts for per-token operations across all
layers.

Below is a list of architectural and generation parameters:

• dmodel: hidden dimension
• dkv: key/value dimension 2

• dff: intermediate (feedforward) dimension
• L: number of layers
• T: number of generated tokens (i.e., context length)
• N: number of sequences generated (e.g., in best-of-N sampling)

D.1 Step-by-step FLOPs Calculation
1. Per-layer linear FLOPs per token. We break down the linear FLOPs for each transformer
layer into attention and MLP components:

• Self-attention:
– Query projection: dmodel × dmodel
– Key projection: dmodel × dkv
– Value projection: dmodel × dkv
– Output projection: dmodel × dmodel

This results in a total of:

FLOPsattention-linear = 2d2
model + 2dmodeldkv

• MLP (Feedforward):
MLP layers include following components:
– Gate projection
– Up projection
– Down projection
Each of these MLP layers costs: dmodel × dff, giving:

FLOPsmlp = 3dmodeldff
2key/value dimension is different from hidden dimension because of GQA (Ainslie et al., 2023)
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Combining both components, the total per-token linear cost per layer is:

FLOPslinear = 2d2
model + 2dmodeldkv + 3dmodeldff

2. Quadratic attention cost. Self-attention involves computing interactions between all
token pairs, resulting in a quadratic cost:

FLOPsattention = dmodel ·
T(T + 1)

2

3. Total generation cost per sequence. Each token attends to all previous tokens across all
L layers. The generation cost for a single sequence is:

FLOPsgen = L · (FLOPslinear · T + FLOPsattention)

4. Total inference FLOPs. For N sequences (e.g., best-of-N sampling), the total inference
cost is:

FLOPstotal = N · FLOPsgen

We do not include auxiliary operations such as token embedding and softmax, weight norm,
as their contribution is negligible compared to the transformer layers. All FLOPs reported
in our experiments use this formula, with model configurations listed in Table 1.

E Majority voting versus best-of-n
In this work, we primarily use the best-of-n metric to evaluate the direct solution model.
This metric is suitable for tasks where verifying the correctness of a solution is trivial,
whereas solving the task itself is challenging. Many real-world problems, such as coding
tasks and combinatorial optimization, fall into this category. Conversely, for problems
where verification is difficult, metrics such as majority voting may be more appropriate.

To illustrate this point, we additionally evaluate the CountDown direct solution model using
both metrics in Figure 8. For majority voting, we generate n solutions per test problem,
select the most frequently occurring solution (breaking ties randomly), and evaluate its
correctness.

We find that the majority-voting performance closely approximates the direct solution
model’s one-shot accuracy (i.e., best-of-n with n=1). However, majority voting is less
suitable for our task for several reasons. First, the CountDown game frequently has multiple
correct solutions, so selecting the majority solution path can fail to detect cases where the
model generates different but equally valid solutions. Second, while majority voting is
appropriate in real-world LLM scenarios—such as mathematical reasoning—where distinct
solution paths converge to the same final boxed answer, in our synthetic setting, where
models are trained from scratch, majority voting essentially becomes a noisy proxy for
greedy decoding (sampling at temperature T = 0). Thus, we expect and observe majority
voting accuracy to closely track pass@1 accuracy.

In summary, given the characteristics of our task and the controlled experimental setup,
best-of-n remains a valid and preferred metric for evaluating direct solution models.

F Dependence on depth of the search tree
F.1 Search tree depth
Why do backtracking models perform well on Sudoku but underperform on CountDown,
even when both are trained on DFS search traces? We argue that task characteristics—
particularly those beyond our control in real—world settings—play a key role in determining
whether backtracking is test-time-compute-efficient. A major difference between the two
games lies in the depth of their search trees (Figure 2). In hard Sudoku puzzles, only 20 out
of 81 cells are pre-filled, leaving 50–60 cells to solve. This results in deep search trees with
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Figure 8: Majority voting versus best-of-n for CountDown direct solution model. For
CountDown, verification is much easier than solving the problem. Therefore, best-of-n
as a performance is justified. Additionally, we also examine majority voting performance.
However, CountDown solutions are not unique, majority voting is not the most suitable
way to measure model performances.
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Figure 9: The efficacy of backtracking depends on search tree depth. Left: We introduce
a variation of the CountDown game—stacked CountDown—to increase the search tree
depth. In the original CountDown game (solid bars), the direct solution model consistently
outperforms the backtracking model, shown by a positive performance gap. In the stacked
version (slanted bars), this gap is significantly reduced or even reversed, indicating that
backtracking becomes more compute-efficient at greater depths. Right: We introduce a
variation of Sudoku—easy Sudoku—where the initial board has more pre-filled cells to
decrease the search tree depth. In the original setting, the 38M direct solution model (bottom,
solid bars) underperforms the backtracking model. In the shallow Sudoku variant (slanted
bars), the performance gap narrows across compute budgets. For the 17M models (top), the
results are less conclusive.

extensive trial-and-error, with many backtracking steps. In contrast, CountDown (in our
setup) uses 4 candidate numbers, limiting the search tree depth to just 3. We hypothesize
that backtracking models excels at tasks with deeper search trees, while shallow trees make
parallel strategies (i.e., direct solution model) more effective. To test this, we design a variant
of CountDown with increased search depth and a variant of Sudoku with reduced depth.

F.2 A deeper CountDown

Set up To increase the search tree depth in CountDown, one might naively scale up the
number of candidate numbers. However, this approach quickly leads to exponential growth
in tree width: with 4 candidates, the tree contains 1,152 nodes; with 5 candidates, it grows
to 46,080. To prevent the exponential growth in the number of search paths, we design a
stacked CountDown variant that increases depth while controlling tree width. In this setup,
the player is given 8 candidate numbers and a final target. The first 4 numbers must be used
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to reach the 5th number ("a partial goal"), and the remaining 4 numbers must then be used
to reach the final target. This effectively stacks two CountDown problems, increasing depth
without combinatorial explosion. We generate training data for both backtracking and
no-backtracking models following the same procedure as in Section 3.1.2, with examples
provided in Appendix H (Figure 16). We train a 17M as well as a 38M model until validation
loss has converged, and test on 200 unseen problems.

Results In Figure 9 (left), we compare the performance gap between the direct solution
model and the backtracking model, measured by the difference in test accuracy. In the
original CountDown setting (solid bars), the direct solution model consistently outperforms
the backtracking model across all test compute budgets. However, in the stacked Count-
Down variant (slanted bars), the performance gap narrows significantly—and in some cases,
reverses. The sign reverse indicates the backtracking model now outperforms the direct so-
lution model. These results support our hypothesis: in CountDown, backtracking becomes
more compute-efficient as the search tree depth increases. We observe this trend across both
17M and 38M models.

F.3 A shallower Sudoku

Set up To reduce the search tree depth in Sudoku, we generate easier boards by increasing
the number of initially filled cells. Specifically, we take the original 3M Sudoku dataset
Radcliffe (2020) and apply the direct solution model (Section 3.2.2) to correctly fill 10
additional cells. This increases the average number of pre-filled cells from 20 to around 30,
effectively decreasing search tree depth. We generate both backtracking and direct solution
training data following the same procedure in Section 3.2.2. Models with 17M and 38M
parameters are trained to convergence and evaluated on 200 unseen problems.

Results In Figure 9 (right), we show the performance gap between the direct solution and
backtracking models, measured by the difference in test accuracy. In the original (hard)
Sudoku setting, the 38M direct solution model consistently underperforms the backtracking
model, as indicated by the negative gaps (solid green bars). In the shallow-Sudoku variant
(slanted bars), these gaps are reduced across all test-time compute budgets for the 38M model.
The trend is less clear for the 17M model, where the performance difference remains small
in both settings. Overall, these results support our hypothesis: in Sudoku, backtracking
becomes more test-time-compute-efficient when the search tree is deeper.

G Additional results

G.1 Exploring different CountDown strategies

We analyze different search strategies for CountDown, including DFS and BFS with varying
beam widths. For each strategy, we tokenize the resulting backtracking trace and measure
number of tokens used in each search trace. The goal is to identify which strategy that
finds correct solutions with the fewest tokens (Figure 10). The results show no clear winner.
BFS with a smaller beam width produces shorter traces by exploring fewer nodes, but this
comes at the cost of missing correct solutions more frequently. Increasing the beam width
improves solution coverage but leads to longer traces due to broader exploration.

In contrast, DFS produces more uniformly distributed trace lengths but suffers from a
specific failure mode: it may prune the correct path early and terminate prematurely. These
failures appear as short but incorrect traces, visible as the left-most orange bars in Figure 10
(bottom).

G.2 Compare think-backtrack and backtrack

Table 3 further shows a confusion matrix comparing the original and think-backtrack models.
The backtracking model solves 102 test problems in total with maximum test-time compute
budget (4096 tokens). Out of those 102 problems, the think-backtrack model solves most of
them. This evidence further shows that by training on shortened search traces, the model
learns to internalize parts of its thinking without sacrificing performances.
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Figure 10: Examine different search strategies for CountDown. Beyond DFS, we exper-
iment with Bread-First-Search (BFS) with different beam widths. We tokenize the search
trace and measure the number of tokens as search length. There is not one search algorithm
that is optimal to generate both short and correct solution traces.

T-B Correct T-B Incorrect

B Correct 83 19
B Incorrect 41 57

Table 3: Confusion matrix between Think-Backtrack (T-B) and Backtrack (B) models.

G.3 Supervised learning training curve
During training, we set the maximum epochs to 30 epochs and allow early stopping. All
models converge before 30 epochs and we early stop training when the validation loss has
converged on log-log scale. Figure 11, 12 show the training curve for both models and for
CountDown and Sudoku.

G.4 Additional GRPO plots
In Figure 3 (Section 4.2.1), we used the number of mistakes as a proxy for comparing search
strategies. To further demonstrate that the backtracking model fine-tuned with GRPO
discovers new strategies, we repeat the same analysis in Figure 13 (right). Compared to the
original backtracking model (Figure 13, left), the post-GRPO model solves many problems
with a different number of mistakes than the number of mistakes made by DFS. This shift
indicates that the model is no longer tightly aligned with the original search trace and has
discovered alternative, more diverse solution paths. Figure 6 (left) quantifies the above
qualitative observation.

H Data sample
Figure 14 shows an example of a CountDown game and the training data. Figure 15 shows
an example of a Sudoku game and the training data. Figure 16 shows an example of
stacked-CountDown variation and the training data.
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Figure 11: CountDown validation loss. Left: Backtracking model. Right: Direct solution
model.
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Figure 12: Sudoku validation loss. Left: Backtracking model. Right: Direct solution model.

0 50 100 150 200
Test Sample Index

0

10

20

30

40

Nu
m

be
r o

f M
ist

ak
es

DFS Backtracking Trace
Backtracking Model (Before GRPO)

0 50 100 150 200
Test Sample Index

0

10

20

30

40

Nu
m

be
r o

f M
ist

ak
es

DFS Backtracking Trace
Backtracking Model (After GRPO)

Figure 13: Backtracking model can discover some new search strategies. Post GRPO,
the backtracking model discover new strategies: In the right panel, for each problem, the
post-GRPO model makes a different number of mistakes compared to DFS trace.
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Example of a CountDown game

Target: 16 Candidates: [96, 11, 78, 22]

DFS Search Trace

Current State: 16:[96, 11, 78, 22], Operations: []
Exploring Operation: 96-78=18, Resulting Numbers: [11, 22, 18]
Generated Node #0,0: 16:[11, 22, 18] Operation: 96-78=18
Moving to Node #0,0
Current State: 16:[11, 22, 18], Operations: ['96-78=18']
Exploring Operation: 22-11=11, Resulting Numbers: [18, 11]
Generated Node #0,0,0: 16:[18, 11] Operation: 22-11=11
Moving to Node #0,0,0
Current State: 16:[18, 11], Operations: ['96-78=18', '22-11=11']
Exploring Operation: 18-11=7, Resulting Numbers: [7]
7,16 unequal: No Solution
Moving to Node #0,0,0
Current State: 16:[18, 11], Operations: ['96-78=18', '22-11=11']
Exploring Operation: 18+11=29, Resulting Numbers: [29]
29,16 unequal: No Solution
Moving to Node #0,0
Current State: 16:[11, 22, 18], Operations: ['96-78=18']
Exploring Operation: 18-11=7, Resulting Numbers: [22, 7]
Generated Node #0,0,1: 16:[22, 7] Operation: 18-11=7
Moving to Node #0,0,1
Current State: 16:[22, 7], Operations: ['96-78=18', '18-11=7']
Exploring Operation: 22-7=15, Resulting Numbers: [15]
15,16 unequal: No Solution
Moving to Node #0,0,1
Current State: 16:[22, 7], Operations: ['96-78=18', '18-11=7']
Exploring Operation: 22+7=29, Resulting Numbers: [29]
29,16 unequal: No Solution
Moving to Node #0,0
Current State: 16:[11, 22, 18], Operations: ['96-78=18']
Exploring Operation: 22/11=2, Resulting Numbers: [18, 2]
Generated Node #0,0,2: 16:[18, 2] Operation: 22/11=2
Moving to Node #0,0,2
Current State: 16:[18, 2], Operations: ['96-78=18', '22/11=2']
Exploring Operation: 18-2=16, Resulting Numbers: [16]
16,16 equal: Goal Reached

Direct Solution Trace

Current State: 16:[96, 11, 78, 22], Operations: []
Exploring Operation: 96-78=18, Resulting Numbers: [11, 22, 18]
Generated Node #2: [11, 22, 18] from Operation: 96-78=18
Current State: 16:[11, 22, 18], Operations: ['96-78=18']
Exploring Operation: 22/11=2, Resulting Numbers: [18, 2]
Generated Node #3: [18, 2] from Operation: 22/11=2
Current State: 16:[18, 2], Operations: ['96-78=18', '22/11=2']
Exploring Operation: 18-2=16, Resulting Numbers: [16]
16,16 equal: Goal Reached

Figure 14: Example of training data for CoutnDown. Top: game setup. Middle: full DFS
search trace for training backtracking model. Bottom: correct solution path for training direct
solution model.
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Initial Board
7 1 2 4 9 8 6 3 5

9 6 4 1 3 5 2 7 8

5 8 3 7 2 6 1 9 4

8 7 6 9 5 4 3 1 2

2 3 9 8 6 1 4 5 7

4 5 1 3 7 2 9 8 6

3 2 8 5 4 9 7 6 1

1 4 7 6 8 3 5 2 9

6 9 5 2 1 7 8 4 3

Solved Board

Example of a Sudoku game

START (0, 0) = 7 (0, 2) = 2 (0, 3) = 4 (0, 8) = 5 (1, 3) = 1 (1, 7) = 7 (2, 1) = 8
(2, 2) = 3 (2, 7) = 9 (3, 4) = 5 (3, 7) = 1 (4, 0) = 2 (4, 2) = 9 (4, 8) = 7 (5, 3)
= 3 (5, 5) = 2 (6, 2) = 8 (6, 4) = 4 (7, 1) = 4 (7, 2) = 7 (7, 4) = 8 (7, 8) = 9
(8, 0) = 6 (8, 3) = 2 (8, 4) = 1 (8, 8) = 3 solving

DFS Search Trace

SOL_START (4, 4) = 6 (8, 2) = 5 (4, 3) = 8 (8, 1) = 9 (8, 5) = 7 GUESS: (0, 1) [1, 6] = 1 (0, 1) = 1 GUESS:
(0, 4) [3, 9] = 3 (0, 4) = 3 GUESS: (0, 6) [6, 8] = 6 (0, 6) = 6 (0, 7) = 8 (8, 7) = 4 (0, 5) = 9 (1, 4) =
2 (1, 8) = 4 (2, 4) = 7 (3, 5) = 4 (4, 5) = 1 (5, 4) = 9 (8, 6) = 8 (1, 2) = 6 (1, 6) = 3 (3, 3) = 7 (1, 1)
= 5 (1, 5) = 8 (2, 0) = 4 (4, 1) = 3 (4, 7) = 5 (5, 6) = 4 (5, 7) = 6 (5, 8) = 8 (6, 1) = 2 (7, 7) = 2 (1,
0) = 9 (3, 0) = 8 (3, 1) = 6 (3, 8) = 2 (5, 1) = 7 (5, 2) = 1 (2, 8) = 1 (3, 6) = 9 (5, 0) = 5 (6, 8) = 6
(2, 6) = 2 NO_CANDIDATE: (3, 2) NO CANDIDATE: (0, 6) REVERT: (0, 6) [6, 8] = NONE GUESS: (0, 6) [6, 8] = 8
(0, 6) = 8 (0, 7) = 6 (8, 6) = 4 (8, 7) = 8 (0, 5) = 9 (1, 4) = 2 (1, 6) = 3 (1, 8) = 4 (2, 4) = 7 (3, 5) =
4 (4, 5) = 1 (4, 6) = 5 (5, 4) = 9 (5, 6) = 6 (5, 7) = 4 (5, 8) = 8 (1, 2) = 6 (3, 3) = 7 (3, 8) = 2 (4,
1) = 3 (5, 2) = 1 (6, 1) = 2 (6, 7) = 5 (7, 7) = 2 (1, 1) = 5 (1, 5) = 8 (2, 0) = 4 (2, 8) = 1 (3, 0) =
8 (3, 1) = 6 (3, 6) = 9 (5, 0) = 5 (5, 1) = 7 (6, 8) = 6 (7, 6) = 1 (1, 0) = 9 (2, 6) = 2 (6, 3) = 9 (6,
5) = 3 (6, 6) = 7 (7, 0) = 3 (6, 0) = 1 NO_CANDIDATE: (3, 2) NO_CANDIDATE: (0, 6) revert: (0, 6) [6, 8] =
NO_CANDIDATE NO_CANDIDATE: (0, 4) REVERT: (0, 4) [3, 9] = NONE GUESS: (0, 4) [3, 9] = 9 (0, 4) = 9 (5, 4)
= 7 (2, 4) = 2 (3, 3) = 9 (3, 5) = 4 (4, 5) = 1 (1, 4) = 3 (3, 2) = 6 (5, 1) = 5 (1, 1) = 6 (1, 2) = 4 (2,
0) = 5 (2, 5) = 6 (4, 1) = 3 (5, 2) = 1 (6, 1) = 2 (0, 5) = 8 (1, 0) = 9 (1, 5) = 5 (2, 3) = 7 (3, 0) = 8
(3, 1) = 7 (3, 8) = 2 (5, 0) = 4 (7, 5) = 3 (1, 8) = 8 (3, 6) = 3 (5, 8) = 6 (6, 5) = 9 (6, 8) = 1 (7, 0) =
1 (0, 6) = 6 (0, 7) = 3 (1, 6) = 2 (2, 8) = 4 (5, 7) = 8 (6, 0) = 3 (7, 6) = 5 (8, 7) = 4 (2, 6) = 1 (4, 6)
= 4 (4, 7) = 5 (5, 6) = 9 (6, 6) = 7 (6, 7) = 6 (7, 3) = 6 (7, 7) = 2 (8, 6) = 8 (6, 3) = 5 SOL END

Correct Solution

SOL_START (4, 4) = 6 (8, 2) = 5 (4, 3) = 8 (8, 1) = 9 (8, 5) = 7 (0, 1) = 1 (0, 4) = 9 (5, 4) = 7 (2, 4) =
2 (3, 3) = 9 (3, 5) = 4 (4, 5) = 1 (1, 4) = 3 (3, 2) = 6 (5, 1) = 5 (1, 1) = 6 (1, 2) = 4 (2, 0) = 5 (2, 5)
= 6 (4, 1) = 3 (5, 2) = 1 (6, 1) = 2 (0, 5) = 8 (1, 0) = 9 (1, 5) = 5 (2, 3) = 7 (3, 0) = 8 (3, 1) = 7 (3,
8) = 2 (5, 0) = 4 (7, 5) = 3 (1, 8) = 8 (3, 6) = 3 (5, 8) = 6 (6, 5) = 9 (6, 8) = 1 (7, 0) = 1 (0, 6) = 6
(0, 7) = 3 (1, 6) = 2 (2, 8) = 4 (5, 7) = 8 (6, 0) = 3 (7, 6) = 5 (8, 7) = 4 (2, 6) = 1 (4, 6) = 4 (4, 7) =
5 (5, 6) = 9 (6, 6) = 7 (6, 7) = 6 (7, 3) = 6 (7, 7) = 2 (8, 6) = 8 (6, 3) = 5 SOL_END

Figure 15: Example of training data for Sudoku game. Top: initial puzzle setup. Middle:
full search trace with guesses and backtracking (tabs used). Bottom: final correct solution.
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Example of a stacked-CountDown game

Target: 96 Candidates: [22, 77, 24, 48, 31, 12, 36, 35]

DFS Search Trace

Current State: 96:[22, 77, 24, 48, 31, 12, 36, 35], Operations: []
Exploring Operation: 77-48=29, Resulting Numbers: [22, 24, 29, 31, 12, 36, 35]
Generated Node #0,0: 96:[22, 24, 29, 31, 12, 36, 35] Operation: 77-48=29
Moving to Node #0,0
Current State: 96:[22, 24, 29, 31, 12, 36, 35], Operations: ['77-48=29']
Exploring Operation: 22+24=46, Resulting Numbers: [29, 46, 31, 12, 36, 35]
Generated Node #0,0,0: 96:[29, 46, 31, 12, 36, 35] Operation: 22+24=46
Moving to Node #0,0,0
Current State: 96:[29, 46, 31, 12, 36, 35], Operations: ['77-48=29', '22+24=46']
Exploring Operation: 46-29=17, Resulting Numbers: [17, 31, 12, 36, 35]
17,31 unequal
Moving to Node #0,0
...
...
Current State: 96:[29, 2, 31, 12, 36, 35], Operations: ['77-48=29', '24-22=2']
Exploring Operation: 29+2=31, Resulting Numbers: [31, 31, 12, 36, 35]
31,31 equal
Current State: 96:[31, 12, 36, 35], Operations: []
Exploring Operation: 36-35=1, Resulting Numbers: [31, 12, 1]
Generated Node #0,0: 96:[31, 12, 1] Operation: 36-35=1
Moving to Node #0,0
Current State: 96:[31, 12, 1], Operations: ['36-35=1']
Exploring Operation: 31+1=32, Resulting Numbers: [12, 32]
Generated Node #0,0,0: 96:[12, 32] Operation: 31+1=32
Moving to Node #0,0,0
Current State: 96:[12, 32], Operations: ['36-35=1', '31+1=32']
Exploring Operation: 12+32=44, Resulting Numbers: [44]
44,96 unequal: No Solution
...
...
Exploring Operation: 4*24=96, Resulting Numbers: [96]
96,96 equal: Goal Reached

Direct Solution Trace

Current State: 96:[22, 77, 24, 48, 31, 12, 36, 35], Operations: []
Exploring Operation: 77-22=55, Resulting Numbers: [55, 24, 48, 31, 12, 36, 35]
Generated Node #2: [55, 24, 48, 31, 12, 36, 35] from Operation: 77-22=55
Current State: 96:[55, 24, 48, 31, 12, 36, 35], Operations: ['77-22=55']
Exploring Operation: 48-24=24, Resulting Numbers: [55, 24, 31, 12, 36, 35]
Generated Node #3: [55, 24, 31, 12, 36, 35] from Operation: 48-24=24
Current State: 96:[55, 24, 31, 12, 36, 35], Operations: ['77-22=55', '48-24=24']
Exploring Operation: 55-24=31, Resulting Numbers: [31, 31, 12, 36, 35]
31,31 equal
Current State: 96:[31, 12, 36, 35], Operations: []
Exploring Operation: 35-31=4, Resulting Numbers: [4, 12, 36]
Generated Node #2: [4, 12, 36] from Operation: 35-31=4
Current State: 96:[4, 12, 36], Operations: ['35-31=4']
Exploring Operation: 36-12=24, Resulting Numbers: [24, 4]
Generated Node #3: [24, 4] from Operation: 36-12=24
Current State: 96:[24, 4], Operations: ['35-31=4', '36-12=24']
Exploring Operation: 4*24=96, Resulting Numbers: [96]
96,96 equal: Goal Reached

Figure 16: Example of training data for stacked-CoutnDown (Appendix F). Top: game
setup. Middle: full DFS search trace for training backtracking model. Bottom: correct solution
path for training direct solution model.
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