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Abstract

Accurate labels are critical for deriving robust machine learning models. Labels are used to
train supervised learning models and to evaluate most machine learning paradigms. In this
paper, we model the accuracy and cost of a common weak labeling process where annotators
assign presence or absence labels to fixed-length data segments for a given event class. The
annotator labels a segment as "present" if it sufficiently covers an event from that class,
e.g., a birdsong sound event in audio data. We analyze how the segment length affects
the label accuracy and the required number of annotations, and compare this fixed-length
labeling approach with an oracle method that uses the true event activations to construct
the segments. Furthermore, we quantify the gap between these methods and verify that in
most realistic scenarios the oracle method is better than the fixed-length labeling method in
both accuracy and cost. Our findings provide a theoretical justification for adaptive weak
labeling strategies that mimic the oracle process, and a foundation for optimizing weak
labeling processes in sequence labeling tasks.

1 Introduction

In supervised machine learning, labeled datasets are required for training and evaluation. During evaluation,
the accuracy of the labels determine the quality of the analysis. However, in practice, labels often contain
noise that varies with the input sample and label type. Noisy training labels present a persistent challenge
in machine learning (Liang et al., 2009; Song et al., 2022). Deep learning models, in particular, are prone to
overfitting noisy labels, raising questions about the nature of generalization (Zhang et al., 2021). Regular-
ization techniques such as dropout (Srivastava et al., 2014), data augmentation (Shorten & Khoshgoftaar,
2019), and weight decay (Krogh & Hertz, 1991) mitigate overfitting but fail to eliminate the performance
gap between training on noisy versus clean labels (Song et al., 2022).

Beyond the well-documented challenges posed by noisy training labels, inaccurate evaluation labels present
a significant, yet often overlooked, obstacle to reliable machine learning. When evaluation metrics are
computed against noisy ground truth, the apparent "best" performing model might simply be the one that
most closely reproduces the noise present in the evaluation set, rather than exhibiting superior generalization
capabilities. This very issue, where noisy evaluation labels can lead to the rejection of models that have
learned the true clean label distribution, is a central concern addressed by Görnitz et al. (2014). This can
lead to the selection of suboptimal models that perform well on the flawed evaluation data but generalize
poorly to unseen, cleaner data or data from real-world applications. Consequently, performance benchmarks
can be inflated and misleading, hindering meaningful comparisons between different approaches. Therefore,
understanding the characteristics of label noise, not just in the training data but also in the evaluation data,
is crucial for developing and selecting models that are truly effective and robust.

Labels are typically obtained through human annotation, a process that involves significant time and financial
investment, particularly for complex data like audio or time-series signals. In this work, we consider a form
of weak labeling where the annotator assigns presence or absence labels to predefined data segments. This
offers a practical and cost-effective approach for annotating large audio datasets (Martin-Morato & Mesaros,
2023). To reduce cost, weak labels avoid specifying precise boundaries within the data segments, focusing
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instead on general presence or absence of the target class. However, this simplification introduces noise into
the labels, especially for data with time-varying characteristics, such as audio signals, where events can occur
intermittently within the labeled segment (Turpault et al., 2021). Understanding and mitigating this noise
is critical to effectively leverage weak labels in downstream applications (Kumar & Raj, 2016).

The noise in weak labels can be categorized into two types: class label noise (mislabeling event presence
or absence in a segment) and segment label noise (mislabeling due to misaligned segment boundaries).
While class label noise has been extensively studied (Song et al., 2022; Zhang et al., 2021), the effects of
segment label noise remain underexplored. This type of noise significantly affects tasks such as sound event
detection (Hershey et al., 2021; Turpault et al., 2021; Shah et al., 2018) and medical image segmentation (Yao
et al., 2023). Strategies like pseudo-labeling (Dinkel et al., 2022), robust loss functions (Fonseca et al., 2019),
and adaptive pooling operators (McFee et al., 2018) aim to address challenges when training on weak labels.
However, fully understanding the impact of weak labels requires quantifying their accuracy (Shah et al.,
2018; Turpault et al., 2021).

Current methods typically estimate label noise rates after collecting labels (Song et al., 2022), employing
techniques like noise transition matrices (Li et al., 2021) or cross-validation (Chen et al., 2019). In contrast,
predicting label noise rates before data collection remains largely unexplored. This is particularly challenging
when the noise stems from human annotators, as it is difficult to formalize. In cases involving partially
automated processes, however, the noise introduced by the automated component can often be modeled
under specific assumptions.

In this work, we model the automated component of a commonly used weak labeling method for segmentation
tasks: fixed-length weak labeling (FIX). We quantify the segment label noise of this process, and study the
expected label accuracy. This method, commonly employed in sound event detection, involves annotators
providing presence or absence labels for fixed-length segments of the data (automated component), rather
than specifying precise event boundaries. By simplifying the labeling process, FIX weak labeling reduces
annotation effort but introduces segment label noise when segments misalign with the actual onsets and
offsets of events. To benchmark this approach, we compare it to an oracle weak labeling method, ORC weak
labeling, which assigns presence or absence labels to segments derived using the true onsets and offsets of
the events.

Figure 1 illustrates the trade-offs between annotation cost and label accuracy for the ORC and FIX weak
labeling methods. ORC weak labeling achieves perfect label accuracy by aligning the segments with the
ground truth presence events (green) using a minimal number of annotated segments. In contrast, FIX weak
labeling shows varying accuracy depending on segment length: shorter segments improve alignment (B = 30)
but require more annotations, while longer segments (B = 7) reduce cost at the expense of accuracy. In
addition, too short segments (B = 60) can lead to the annotator missing event presence. These trade-offs
are central to understanding how FIX weak labeling can be used effectively. By analyzing the FIX weak
labeling method, we provide a theoretical framework to guide data collection efforts.

In summary, our contributions include:

• Closed-form expressions for label accuracy and annotation cost in FIX and ORC weak labeling,
made tractable by assuming an annotator model and a simplified data distribution.

• A simulation study demonstrating that our theoretical framework generalizes to more complex data
distributions and serves as an upper bound for the accuracy of FIX weak labeling.

• A theoretical foundation for developing adaptive weak labeling methods that better approximate
ORC weak labeling, such as (Martinsson et al., 2024) for sound event detection and (Kim et al.,
2023) for image segmentation.

Our analysis focuses on one-dimensional data, and the assumptions are justified by common characteristics in
bioacoustic sound events. These time-localized, non-stationary animal vocalizations often require annotators
to hear significant portions of the sound to assign accurate presence labels. Note, however, that while our
framework is tailored to this domain, the principles extend to annotation of events in time in other data that
shares these characteristics.
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Figure 1: Resulting presence (red) and absence (white) labels from ORC and FIX weak labeling for an audio
recording with three presence events (green). ORC weak labeling assigns labels to ground truth segments,
achieving perfect label accuracy with B = 7 labels. FIX weak labeling, shown for different segment lengths
(B = 7, B = 30, B = 60), introduces segment label noise as segments misalign with events. Longer segments
reduce annotation cost but increase noise, while shorter segments align better but require more annotations.
Note that too short segments (B = 60) may lead to the annotator missing the presence of the event because
it does not cover a large enough fraction of it.

2 Problem Setting

The analysis is framed within a multi-pass binary labeling setting. Here, an annotator assigns binary labels
(presence or absence) to data segments based on the occurrence of specific sound events. The annotator model
abstracts how an annotator interacts with data by labeling segments, without requiring precise knowledge
of event boundaries. While inspired by time-localized and non-stationary sound events, this framework is
generalizable to any time series with similar characteristics.

It’s important to emphasize that, in this weak labeling setting, the concept of overlapping events is not
explicitly modeled. Overlapping events from the same class are treated as a single, longer presence event,
because presence/absence labels cannot differentiate between individual event instances. For instance, in an
audio recording with two birds calling simultaneously, this weak labeling framework simplifies the overlap
into a single ’present’ event. While this simplification is necessary when studying weak labeling in this
setting, it fundamentally restricts our ability to resolve polyphony (the identification of multiple overlapping
sound events). We leave the exploration of annotator models capable of providing richer labels to future
work; this is beyond the scope of our study.

2.1 The Assumed Data Distribution

A sound event e is defined by its start time ae ∈ R, end time be ∈ R, and class ce ∈ C, denoted as
e = (ae, be, ce). Audio recordings are assumed to have finite length T , and we assume that the events are
uniformly distributed locally in time (see Section 4.2 and Appendix A.4 for more details).

2.2 The Assumed Annotator Model

For a given sound event class c ∈ C, the annotator decides the presence or absence of an event e of class c
in a data segment q = (aq, bq), where dq = bq − aq is the fixed-length of the segment. We will refer to q as
a query segment because it is queried for a presence or absence label. Let lq ∈ {0, 1} denote the weak label
indicated by the annotator for query segment q, where lq = 1 indicates presence of an event of class c in q
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and lq = 0 indicates absence of that event class in q. Detecting the presence of an event requires observing
a sufficient fraction of the event within the query segment, formalized as follows:
Definition 1. The event fraction is the fraction of the total event duration de = be − ae that overlaps with
the query segment q,

h(e, q) = |e ∩ q|
de

, (1)

where e ∩ q is the intersection of (ae, be) and (aq, bq).
Definition 2. The presence criterion γ ∈ (0, 1] is the minimum event fraction required for the annotator to
detect the presence of e in q,

h(e, q) ≥ γ. (2)

The annotator assigns a presence label (lq = 1) to q if there is sufficient overlap with any presence event e
of class c (h(e, q) ≥ γ); otherwise, it assigns an absence label (lq = 0).

The parameter γ reflects the annotator’s sensitivity: lower γ values indicate sensitivity to smaller event frac-
tions, while higher values require larger fractions. This model of perceptual ability is particularly suited for
non-stationary events (e.g., a specific birdsong) where recognizing a relative portion of the event’s structure
is key, as opposed to stationary sounds (e.g., an engine hum) which might be identified after a fixed absolute
duration.

This framework captures variability in annotator behavior. For example, detecting "human speech" or "bird
song" may only require hearing a small fraction of the event (γ closer to 0), while recognizing specific phrases
or bird species might demand a near-complete observation (γ closer to 1). The value of γ thus depends
on the annotator and the complexity of the event class. This model provides a flexible yet precise way
to simulate annotator behavior and quantify their labeling performance. However, it is important to note
that this model is deterministic, focusing on temporal alignment between events and the query segment. In
practice, human annotation often involves stochastic factors, such as variability in perception and judgment,
which are not explicitly modeled here.

2.3 Label Accuracy

Label accuracy measures the alignment between annotator-provided labels and ground truth labels:
Definition 3. The label accuracy is defined as

F (e, q, γ) =
{ |e∩q|

dq
, if lq = 1,

dq−|e∩q|
dq

, if lq = 0.
(3)

For instance, consider a 3-second query segment (dq = 3) that overlaps exactly one second (|e ∩ q| = 1) with
a 2-second sound event (de = 2) of the class bird song (c = “bird song”). The annotator assigns a presence
label (lq = 1) with label accuracy |e∩q|

dq
= 1

3 if half or less of the event needs to be in the query segment
(γ ≤ 0.5). Contrary, the annotator assigns an absence label (lq = 0) with label accuracy dq−|e∩q|

dq
= 3−1

3 = 2
3

if more than half of the event (γ > 0.5) needs to be in the query segment. This formulation isolates the
segment label noise (1 − F (e, q, γ)) introduced by the automated component (fixed-length segments) of the
FIX weak labeling method.

3 The Label Accuracy and Cost of ORC Weak Labeling

Let us start with the ORC weak labeling method. This method uses a priori information about the event
start and end times and is therefore not available in practice, but should be seen as an upper bound on what
can be achieved with weak labeling. The start and end times of the true presence and absence events are
used to construct the query segments:

QORC = {(a0, b0), (a1, b1), . . . , (aBORC−1, bBORC−1)} = {q0, . . . , qBORC−1}, (4)
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where (ai, bi) is the ith ground truth presence or absence event. The annotator indicates presence or absence
for each of these segments, which by construction results in the ground truth annotations, illustrated in
Figure 2. In the example, there are three target events (green), and four absence events, which means that
BORC = 7. In general BORC ∈ {2M − 1, 2M + 1}, where M denotes the number of presence events. The
number of absence events can be fewer than 2M + 1 if the recording starts or ends with a presence event,
however, for simplicity and without losing generality, we will consider BORC = 2M + 1 as the minimum
number of query segments needed for ORC to derive the ground truth. From an annotation cost perspective,
this is the most cautious choice, and it is also the most likely outcome. The query accuracy is 1 for each
query segment since by construction the fraction of correctly labeled data in each query segment will be 1
when given the correct presence or absence labels.

Figure 2: ORC weak labeling of an audio recording with three target events (M = 3) shown in green and four
absence events. The BORC = 7, query segments q0, . . . , q6 are derived from the ground truth segmentation
of the data, and therefore the label accuracy will by definition be 1.

In summary, the ORC weak labeling method produces annotations with label accuracy 1, using the minimum
number of query segments needed to achieve this. We use this as a reference on what can be achieved for
weak labeling data.

4 The Label Accuracy and Cost of FIX Weak Labeling

The outline of this section is as follows. In Section 4.1 we define the FIX labeling method. In Section 4.2
we derive a closed-form expression for the expected label accuracy of a query segment given that it overlaps
with a single event of deterministic event length. We note that it is only in the cases of overlap between a
query segment and an event that a presence label can occur under the assumed annotator model, and that
the expectation in label accuracy over these cases therefore can be viewed as the expected presence label
accuracy. For the remainder of the paper we will simply write expected label accuracy when referring to the
expectation over the overlapping cases, unless explicitly stated otherwise.

In the same section we derive the optimal query length with respect to the expected label accuracy, the
maximum expected label accuracy and the number of query segments needed (proxy for annotation cost). In
Section 4.3 we explain how the expression for expected label accuracy can be used in the case of a single event
of stochastic length, and in Section 4.4 we explain under which conditions this can be used when multiple
events can occur. Finally, we derive a closed form expression for the expected label accuracy of an audio
recording with multiple events of stochastic length in Section 4.5, and provide an alternative interpretation
of the theory in Section 4.6.

4.1 The FIX Weak Labeling Method

The FIX weak labeling method, commonly used in practice, splits the audio recording into fixed and equal
length query segments, and then an annotator is asked to provide either a presence or absence label for each
of the query segments. Let BFIX denote the number of query segments used, then the query segments for
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an audio recording of length T are defined as

QFIX = {(a0, b0), (a1, b1), . . . , (aBFIX−1, bBFIX−1)} = {q0, . . . , qBFIX−1}, (5)

where the start and end timings of each query segment is qi = (ai, bi) = (idq, (i + 1)dq) and the fixed query
segment length is dq = T/BFIX. We illustrate this in Figure 3, where the presence criterion for the annotator
is γ = 0.5. There are three presence events and four absence events, and using only BFIX = 7 query segments
results in annotations with an average label accuracy that is lower than 1.

Figure 3: Illustration of the FIX weak labeling method. The audio recording contains presence events
(green). The FIX method divides the recording into fixed-length query segments (e.g., q0 to q6). Note how
the alignment between segments and presence events affects the accuracy of presence labels (red hatched).

We want to find an expression for the expected label accuracy for a given data distribution and query segment
length. In addition, we want to understand the query length that maximize the expected label accuracy.

4.2 The Expected Label Accuracy of a Query Segment given Event Overlap

To derive a tractable closed-form expression we analyze a simplified data distribution, consisting of audio
recordings of length T that always contain a single event of deterministic length de. This is arguably the
simplest data distribution to annotate, and the results can therefore be viewed as an upper bound on the
expected label accuracy for any more complex data distribution.

The setup is illustrated in the upper panel of Figure 4, where a single event et of length de can occur at
any time t ∈ [0, T ] (indicated by the arrow). The bottom panel of Figure 4 shows the label accuracy for
a specific query segment (q2) as the end time (t) of the event varies. The area (A) highlighted in hatched
red indicates the label accuracy in the cases of overlap between the query segment and the event, and the
area in hatched green indicate the label accuracy in the cases of no overlap, which is by the definition of
the annotator model is always 1. Crucially, while this figure illustrates the accuracy for query segment q2,
the shape of this accuracy function remains the same for other query segments; only its position along the
x-axis would change.

To simplify the mathematical analysis, without loss of generality, we can fix the query segment to start
at time 0, q = (0, dq), and represent the event with its ending time t as et = (t − de, t). In this way,
t ∈ [0, de + dq] describes all possible overlap occurrences. That is, when t = 0 the event ends at the start
of the query segment, and when t = de + dq the event starts at the end of the query segment. To formalize
this, we can express the expected label accuracy in case of overlap by integrating over all possible event end
times (t) where overlap occurs:

Et∼p [F (et, q, γ)] =
∫ de+dq

0
F (et, q, γ)p(t)dt (6)

= 1
de + dq

∫ de+dq

0
F (et, q, γ)dt (7)

= A

de + dq
, (8)

6



Under review as submission to TMLR

Figure 4: Top panel: A single event (et) of length de can occur at various end times (t) within the
recording of length T . Bottom panel: The resulting label accuracy for query segment q2 (arbitrarily chosen
for illustration) of length dq as a function of the event’s end time (t). Overlap between the event and the
query segment leads to segment label noise and a reduced label accuracy, which in this case occur when
t ∈ [a2, a2 + de + dq] where a2 is the start time of q2. The red hatched area (A) represents the cumulative
label accuracy during these overlapping scenarios.

where t ∼ p denotes a random variable t distributed according to a distribution p, and p(t) denotes the
probability of realization t. We assume that the distribution of the relative offsets t between events and
overlapping query segments is uniformly distributed (empirically verified in Appendix A.4). There are two
sources of variation that makes this plausible: (i) the start time of the recording varies depending on when
the recording session was started, and (ii) the start time of the event varies depending on when the sound
source emits the event. Note that this assumption is likely to not hold if dq ≫ de, but that leads to very weak
labels which is not wanted in practice. Using this assumption we get p(t) = 1/(de + dq), and by observing
that the integral

∫ de+dq

0 F (et, q, γ)dt describes the hatched red area denoted A in Figure 4 we arrive at the
final expression in Eq. 8.

Remember that absence labels can occur when there is no overlap (always correct) and when there is overlap
but the presence criterion is not fulfilled, and presence labels can only occur when there is overlap and the
presence criterion is fulfilled. Therefore, inaccurate labels only occur in the case of overlap. The expected
label accuracy in the case of overlap therefore describes the accuracy of the labels when segment label noise
can occur, which happens around the boundaries of the true event.

In Appendix A.1 we show how to express A in terms of the event length de, the query segment length
dq and the presence criterion γ under the assumption that the annotator presence criterion can be fulfilled
(dq ≥ γde), and that it can not be fulfilled (dq < γde). Finally, we arrive at the following four main theorems:
Theorem 1. The expected label accuracy in case of overlap between a query segment q of length dq and a
single event e of deterministic length de is

f(dq) = Et∼p [F (et, q, γ)] =


de(2γdq−2γ2de+dq)

dq(de+dq) , if dq ≥ γde,
dq

de+dq
, if dq < γde,

(9)

when the presence criterion for the annotator is γ.

Proof. See Appendix A.1 for the proof. We show how to express the area A in Eq. 8 in terms of de, dq and
γ for the two assumptions: dq ≥ γde, and dq < γde.

Theorem 2. The query length that maximizes the expected label accuracy in case of overlap for a given
event length de is

d∗
q = deγ

2γ +
√

4γ2 + 4γ + 2
2γ + 1 . (10)
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Proof. See Appendix A.2 for the proof. We compute the derivative of f(dq) with respect to dq, and show
that d∗

q is the maximum.

Theorem 3. The maximum expected label accuracy in case of overlap between a query segment of length
dq and an event of length de when dq ≥ γde is

f∗(γ) = f(d∗
q) = 2γ

(
2γ + 1 −

√
4γ2 + 4γ + 2

)
+ 1. (11)

Proof. See Appendix A.3 for the proof. We substitute dq for d∗
q in Eq. 9.

Theorem 4. The number of queries B∗
FIX (cost) that are needed by FIX to maximize the expected label

accuracy in case of overlap for an audio recording of length T when de = 1 is

B∗
FIX = T

d∗
q

. (12)

Proof. T/B∗
FIX = d∗

q , which by Theorem 2 leads to maximum label accuracy.

In summary, Theorem 1 gives us an expression f(dq) for the expected label accuracy when query segments
of length dq are used to detect events of length de and the presence criterion for the annotator is γ. We use
this to find the query segment length d∗

q that maximize the expected label accuracy, leading to Theorem 2.
Theorem 2 show the query segment length d∗

q that maximizes expected label accuracy for a given event
length and annotator criterion. Further, by inserting d∗

q into Theorem 1, f∗(γ) = f(d∗
q), we get Theorem 3,

which is the maximum achievable expected label accuracy for a given annotator criterion γ. We have omitted
the case dq < γde when deriving f∗(γ), since maximizing the expected label accuracy in the case when the
annotator presence criterion can not be fulfilled is not very interesting, since we can not get presence labels.
Note that f∗(γ) is a function of only γ, meaning that the maximum expected label accuracy is independent
of the target event length when considering a single deterministic event. Finally, Theorem 4 show that an
annotator needs to weakly label B∗

FIX query segments for each audio recording to achieve the maximum label
accuracy in expectation, which can be seen as a proxy for annotation cost.

There is arguably no simpler audio data distribution to annotate than when recordings only contain a single
event of deterministic length (except for when no event occurs at all). We can therefore treat f∗(γ) as an
upper bound on the maximum expected label accuracy for any audio distribution. We demonstrate this
empirically in the results in Section 6. However, in practice audio recordings often contain events that vary
both in length and number. Let us therefore consider how the derived theory can be useful also in these
cases.

4.3 Stochastic Event Length

Events may vary in length according to some event length distribution. Let p(de) denote the probability of
the outcome that an event has length de, and let de ∼ p(de) denote that de is a sample from that distribution.
The expected label accuracy over a distribution of event lengths for a given γ and query segment length dq

can then be computed as

Ede∼p(de) [f(dq)] =
∫ ∞

0
f(dq)p(de)dde. (13)

While we do not provide a closed form solution for this, we can solve the integral in Eq. 13 by numerical
integration. Note that d∗

q in Theorem 2 depends on the single event length de, and to find it for a distribution
we would need to solve Eq. 13 for a range of dq and find the one that leads to the best label accuracy.
However, for some event length distributions, setting de to the average of the distribution turns out to be a
good heuristic. We perform a simulation study in Section 6.1.2 to support these claims.
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Figure 5: Top panel: Two events (M = 2) of length de that are fixed in time within a recording of length T ,
and a query segment qt = (−dq + t, t). Bottom panel: The resulting label accuracy of qt for t ∈ [0, T − dq],
simulating that the qt can appear anywhere at random in time in relation to the events. As before, when
there is overlap between the query segment and an event the label accuracy is below 1, otherwise it is always
1.

4.4 Multiple Events

There may be multiple (M) events present in a given audio recording. In Figure 5 we show the label
accuracy for all possible occurrences of a query segment qt in a recording with two events (M = 2). Note
that we have put the subscript t on the query segment (qt) instead of the event as in the prior analysis. This
formulation is entirely equivalent, but when talking about multiple events it is more intuitive to consider
them as fixed in time for a given recording, and that the query segments occur relative them at random.
There are now two regions where overlap occurs, one around e1 and one around e2. On average we get
2A/2(de + dq) = A/(de + dq) = f(dq). That is, the theory we derived for the single event case explains the
multiple event case.

However, for this to hold we need to assume that for any event the closest other event is least dq away in
time. In Figure 5 this holds since the start of e2 is at least dq away from the end of e1. If this assumption
holds then the expected label accuracy for multiple events is f(dq). The assumption is plausible if events
are sparse in relation to dq. Note that d∗

q ∈ (0, de
2+

√
10

3 ] for γ ∈ (0, 1] according to Theorem 2. That is,
when considering the optimal query length d∗

q this assumption translates to that events should be no closer
than approximately 1.72de for γ = 1, 0.81de for γ = 0.5, and 0 for γ → 0. We perform a simulation study
in Section 6.1.3 to see the effect of breaking this assumption, and we leave it to future work to derive the
expected label accuracy in case of overlap for multiple events.

4.5 The Expected Label Accuracy of an Audio Recording

We now know the expected label accuracy of a query segment given event overlap, and how to use this for
a stochastic event lengths and multiple events. We can use this to derive an expression for the expected
label accuracy of and audio recording of finite length (T ) that has multiple (M) stochastic event lengths
(de ∼ p(de)).
Theorem 5. The expected label accuracy for an audio recording of length T , with M events of stochastic
event length de ∼ p(de) that are spaced at least dq apart is

Ede∼p(de)

[
−2Md2

eγ2

Tdq
+ 2Mdeγ

T
− Mdq

T
+ 1

]
. (14)

Proof. We will do this proof by picture. In Figure 5 we have two events (M = 2), in general for M events
the accumulated label accuracy in the cases of overlap is MA (the sum of the hatched red areas), the
total amount of overlapping cases is M(de + dq) and the total amount of non-overlapping cases is therefore
T − M(de + dq) for an audio recording of length T . In the case of no overlap, the label accuracy is always 1,
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which means that the accumulated label accuracy in the case of no overlap (sum of the green hatched areas)
is T − M(de + dq). Normalizing for the entire duration of the recording we arrive at

AM + T − M(de + dq)
T

= −2Md2
eγ2

Tdq
+ 2Mdeγ

T
− Mdq

T
+ 1, (15)

and as before we can simply compute an expectation over the event length distribution.

Theorem 5 tells us the expected label accuracy under FIX weak labeling with query segment length dq for
an audio recording of length T , with M events of stochastic event length de ∼ p(de). If we want to account
for class label noise, where the annotator gives the wrong label with probability ρ, this can be included by
simply scaling the whole expression in Eq. 14 by (1 − ρ). That is, the expected label accuracy for the cases
of overlap allows us to express a variety of things about the expected label accuracy of an audio recording.

However, note that we have T in the denominator of all terms except the term that is 1, meaning that if
we let T approach ∞, then the expected label accuracy approaches 1. That is, considering the accuracy of
both absence and presence labels equally can lead to hiding the effect that we want to understand in this
paper, which is the effect of dq on the accuracy of the presence labels. We could derive a balanced accuracy
in a similar way as above, but instead we choose to continue our analysis looking only at the expected label
accuracy in the case of overlap.

4.6 Expected Label Accuracy given Overlap when dq = δde

As a result of the proof for Theorem 3 in Appendix A.3 we get an alternative dimensionless interpretation
of the expected label accuracy when the query segment length is expressed as a factor of the event dq = δde,

f(δde) = (2γ + 1)δ − 2γ2

γ(1 + γ) , (16)

and an expression for the ratio that maximizes it

δ∗ =
d∗

q

de
= γ

2γ +
√

2γ2 + 2γ + 1
2γ + 1 . (17)

This alternative formulation illustrates that it is the ratio δ = dq/de that affects the expected label accuracy
of a single event, and not the absolute lengths dq and de. Further, we can use this interpretation to rewrite
Theorem 5 as

Eδ∼p(δ)

[
Mdδ (−δ + 2γ) − 2Mdγ2 + Tδ

Tδ

]
, (18)

where δ denotes a random variable with probability distribution p(δ).

5 Simulating the Label Accuracy of FIX Weak Labeling

To validate the theory, we simulated FIX labeling of various audio recording distributions and compared
the average simulated label quality with the theoretical results from Section 4.2. The code used for these
simulations is provided in the supplementary material.

We generated 1000 audio recordings of length T = 100 seconds for each configuration. The number of events,
M , and the event length distributions varied across simulations, as detailed below:

• Single Event with Deterministic Length: We simulated recordings with M = 1 event of
deterministic length de = 1 second.

• Single Event with Stochastic Length from Normal Distributions: We drew event lengths
from two normal distributions with the same mean but different variances (N (3, 0.1) and N (3, 1)),
and from two normal distributions with different means but the same variance (N (0.5, 0.1) and
N (5, 0.1)). For these simulations, M = 1.
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• Single Event with Stochastic Length from Gamma Distributions: We sample event lengths
from two gamma distributions (offset by 0.5 seconds due to computation cost) with different shape
parameters but the same scale parameter (Gamma(0.8, 1) + 0.5 and Gamma(0.2, 1) + 0.5) with
M = 1.

• Single Event with Stochastic Length from Real Length Sample: We used the event length
distributions for dog barks and baby cries from the NIGENS dataset (Trowitzsch et al., 2019) with
M = 1.

• Multiple Events with Deterministic Length: We simulated recordings with multiple events
(M = 30 and M = 50) where each event had a deterministic length of de = 1 second.

For recordings with stochastic event lengths or multiple events, the length of each of the M events was
sampled from the specified distribution. Each sampled event was then placed randomly within the recording.
The start time ae of each event was drawn uniformly at random from [0, T − de]. If multiple events were
present, overlapping events were merged into one presence event. For each generated audio recording,
we simulated FIX labeling using different annotator presence criteria γ ∈ [0.01, 0.99] and a range of query
segment lengths dq. The query segment lengths were linearly spaced between a small fraction of the minimum
event length observed in the distribution and a value several times the maximum observed event length.

We then computed the average label accuracy over the query segments that overlaps with an event in each
recording. For each query segment q we check if the annotator presence criterion (h(e, q) ≥ γ) is fulfilled for
any event e ∈ E, where E is the set of all events that overlap with q. If this is true for any of the events then
q is given a presence label (lq = 1) otherwise it is given an absence label (lq = 0). The label accuracy is then
computed in a similar way as in Eq. 3, but since we can now have multiple events overlapping with the same
query segment, we need to consider the union of all overlapping events ∪e∈Ee when computing the label
accuracy of assigning label lq to that query segment. The total amount of overlap becomes |(∪e∈Ee) ∩ q|
instead of |e ∩ q|. However, when M = 1 this is equivalent to Eq. 3 (|(∪e∈Ee) ∩ q| = |e ∩ q|), since |E| = 1.

In this way, we simulated the effect of breaking the assumption that events are spaced at least dq apart,
and could better understand the effect this had when compared to the derived theory. Finally, for each
considered γ, we empirically determined the maximum average label accuracy across all tested query lengths
and the corresponding optimal query length. These empirical results were then compared to the theoretical
predictions.

6 Results

In this section we present the results of the simulated annotation process, and show how these connect
to the derived theory. We start by looking at the expected label accuracy and the query segment length
that maximize the expected label accuracy for FIX and ORC weak labeling, and then we relate this to the
annotation cost.

6.1 Expected Label Accuracy given Overlap

We evaluate how different annotator presence criteria (γ) influence the achievable label accuracy given overlap
under FIX weak labeling. We first examine the case of a single event with a deterministic length, then extend
our simulation study to stochastic event lengths, and finally to multiple events occurring within the same
recording.

6.1.1 Single Event with Deterministic Length

The simulated results are derived using the simulation setup described in section 5, with M = 1 (a single
event) and de = 1 (deterministic length). In Figure 6, we show the maximum expected label accuracy
given overlap (left) and the corresponding query length that maximize the label accuracy (right) for different
γ. f∗(γ) is the maximum expected label accuracy achievable with annotator presence criterion γ for the
considered event length. We can see that the simulated average label accuracy closely follows the expected
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label accuracy, and that the corresponding segment length leading to this maximum is the same in theory
and simulation.

Figure 6: In the left panel we show the maximum expected label accuracy, f∗(γ), for different γ, and the
average maximum label accuracy from the simulations. In the right panel we show the query length that
leads to this maximum label accuracy in theory, for de = 1, and in simulation. The theory follows the
simulations well.

In Figure 6 we see that if the annotator needs to hear more than 50% of the sound event to detect presence
(γ = 0.5) then the highest achievable label accuracy is f∗(0.5) ≈ 0.76. This means that on average there is
around 34% segment label noise around the presence labels. We also see that the query length that gives
the maximum label accuracy is d∗

q ≈ 0.81. The gap to the ORC weak labeling method which always gives a
label accuracy of 1, is large especially for large γ. In general, we can see how the maximum label accuracy
deteriorates with a growing γ, and which query segment length to choose to maximize label accuracy in
expectation.

6.1.2 Single Event with Stochastic Length

We now consider stochastic event lengths. We do this to better understand the effect of the event length
distribution on the maximum expected label accuracy and the optimal query length. We solve the integral in
Eq. 13 by numerical integration over different event length distributions, and compare with the theory derived
for a single deterministic event length and simulations. In each figure we present the derived theoretical rules
f∗(γ) and d∗

q for the simplified event length distribution, the results from integration of Eq. 13 with different
event length distributions p(de) (numerical), and the simulated results using the procedure described in
section 5 (simulated) where event lengths are sampled from different distributions. Note that, since d∗

q is
derived for a deterministic event length de, and require a choice of this value, we set de to the average event
length (µ) for each distribution in these experiments as a heuristic. We then present the maximum expected
label accuracy for different γ (left in figures) and the query segment length that maximizes the expected
label accuracy (middle in figures), and the histogram for the considered event length distributions (right in
figures).

In Figure 7 and Figure 8 we see that the mean and variance of the normal distribution have a small (if any)
effect on the maximum expected label accuracy, but the mean does affect which query segment length that
maximizes the expected label accuracy. We also see that d∗

q follows the simulated and numerical optimal
query length well for all considered normal distributions, when de is set to the average event length (µ) for
the considered event length distribution. The average event length can be used as a heuristic value if we
only know the average and not the true distribution to integrate over.

In Figure 9 we can see that a gamma distribution does affect the maximum expected label accuracy, and
that simply setting de to the average event length of the distribution leads to underestimating the optimal
query length. Since it is not possible to optimize for both short and long events at the same time using FIX
weak labeling, this type of distribution is quite challenging.

12



Under review as submission to TMLR

Figure 7: We validate the theory for stochastic event lengths drawn from two normal distributions with
different means, but the same variance. We show the expected label accuracy (left panel), the optimal query
length (middle panel), and the considered event length distributions (right panel).

Figure 8: We validate the theory for stochastic event lengths drawn from two normal distributions with
different variance, but the same mean. We show the expected label accuracy (left panel), the optimal query
length (middle panel), and the considered event length distributions (right panel).

Figure 9: We validate the theory for stochastic event lengths drawn from two gamma distributions with
different shape parameters, but the same scale parameter. We show the expected label accuracy (left panel),
the optimal query length (middle panel), and the considered event length distributions (right panel).
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Figure 10: Barking dog and crying baby event length distributions from the NIGENS dataset (Trowitzsch
et al., 2019). These annotations have been made with a strong guarantee for high quality onsets and offsets.

Figure 11: We validate the theory for multiple events of length de = 1. We show the expected label accuracy
(left panel), the optimal query length (middle panel), and the considered event length distributions (right
panel). Note that presence events longer than 1 can occur if two or more events overlap. We sample 30
events with event length de = 1 occur at random for each audio recording in this simulation.

In Figure 10 we validate the theory against a real sample of event lengths from either baby cries or dog barks.
Numerical integration between the derived expression and the histogram predicts the simulations well.

6.1.3 Multiple Events with Stochastic Length

In these simulations we allow multiple events to occur in the same recording (M > 1). In Figure 11 we show
the results of sampling 30 events of length de = 1 for each audio recording. This does have a an effect on the
expected maximum label accuracy and the corresponding query length, but not (that) large. In Figure 12
we show the results of sampling 50 events of length de = 1 for each audio recording. This is an extreme case,
where the event density of the recording is very high.

6.2 Annotation Cost for Maximum Expected Label Accuracy given Overlap

Achieving maximum expected label accuracy comes at a cost, and understanding this cost trade-off is essential
for practical annotation efforts. The cost model we employ accounts for both the time spent listening to
audio and the effort required to label presence or absence events.
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Figure 12: We validate the theory for multiple events of length de = 1. We show the expected label accuracy
(left panel), the optimal query length (middle panel), and the considered event length distributions (right
panel). Note that presence events longer than 1 can occur if two or more events overlap. We sample 50
events with event length de = 1 occur at random for each audio recording in this simulation.

6.2.1 Formalizing the Cost Model

The derived theory for the optimal query length allows us to analyze the cost of achieving maximum expected
label accuracy under different annotator models for FIX weak labeling. We assume that the whole audio
recording of length T is listened to. The key difference in cost between the FIX and ORC weak labeling
method is the number of segments (B) that need to be given a presence or absence label. We formalize a
cost model as:

C(T, B) = (1 − r)T + rB, (19)
where 1 − r represents the cost of listening to one second of audio (cost per second), and r represents the
cost of answering a query (cost per query). The term (1 − r)T therefore represents the cost of listening to
T seconds of audio, and the term rB the cost of assigning B presence or absence labels. Using this cost
model, we calculate the cost of annotating an audio recording of length T with M sound events of length
de = 1 using either FIX or ORC weak labeling. For FIX, the number of queries that maximize expected
label accuracy is given by B∗

FIX = T/d∗
q (see Theorem 4). For ORC, achieving an expected label accuracy of

1 requires at least B∗
ORC = 2M + 1 queries.

In practice, we do not know the number of events M . To explore potential overestimation of M when,
for example, using a weak labeling process that tries to mimic ORC weak labeling, we model BORC as a
multiple of the necessary number of queries: BORC = sB∗

ORC, where s ∈ {1, 2, 4, 8} represents the degree of
overestimation. This approach captures scenarios where the number of events are either precisely estimated
(s = 1) or significantly overestimated (s = 8) during the annotation process. In practice, BORC could be
set based on a bound on M . For example, by estimating a maximum expected number of sound events in a
recording, Mmax, based on knowledge of typical event density, or characteristics of the audio recording. We
assume that overestimation by more than a factor of 8 is unlikely. The relative cost between FIX and ORC
weak labeling can then be computed as:

CFIX

CORC
= C(T, B∗

FIX)
C(T, BORC) , (20)

where a ratio larger than 1 indicates that FIX is more costly than ORC, and a ratio smaller than 1 indicates
that FIX is less costly than ORC.

6.2.2 Effect of annotator criteria (γ) and cost ratio (r).

Figure 13 (left) shows the relative cost for varying annotator criteria γ ∈ [0.1, 1]. As γ → 0.1, the cost of
FIX increases sharply, reflecting the need for an infinitely large number of queries to achieve an expected
label accuracy of 1. In practice, achieving perfect accuracy with FIX is infeasible due to the associated cost.
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Figure 13: The relative cost of FIX and ORC for varying annotator criteria γ (left), and cost ratios r (right).
The default parameters are: T = 100, r = 0.5, M = 1 and γ = 0.5. We simulate overestimating the number
of needed queries BORC = s(2M + 1) by a factor of s for s ∈ {1, 2, 4, 8} to see how this affects the relative
cost. The cost of FIX is greater than the cost of ORC above the dashed red line where the cost ratio is 1.

Figure 14: The relative cost of FIX and ORC for varying number of sound events M (left) and recording
lengths T (right). The default parameters are: T = 100, r = 0.5, M = 1 and γ = 0.5. We simulate
overestimating the number of needed queries BORC = s(2M + 1) by a factor of s for s ∈ {1, 2, 4, 8} to see
how this affects the relative cost. The cost of FIX is greater than the cost of ORC above the dashed red line
where the cost ratio is 1.

For higher γ, the cost of FIX becomes more comparable to ORC. However, combining this with Theorem 3
reveals that FIX can either match ORC in cost but with lower expected accuracy or achieve similar accuracy
at a much higher cost.

The right panel of Figure 13 examines the impact of the cost ratio r. Across all tested values, ORC remains
less costly than FIX in the default setting (T = 100, r = 0.5, γ = 0.5, M = 1). This confirms that the
relative cost advantage of ORC is robust to changes in r.

6.2.3 Effect of number of events (M) and recording length (T ).

Figure 14 explores the impact of M and T on the relative cost. In the left panel, we see that for s = 1, ORC
is less costly than FIX when the number of events is below 60. However, as s increases to 8, FIX becomes
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less costly when at most 10 events are present. These results indicate that the relative cost depends heavily
on the density of sound events in the recording and the estimated annotation budget for ORC.

In the right panel, varying T shows a similar trend. For shorter recordings (high event density), ORC loses
its cost advantage. However, it’s important to note that the maximum achievable expected label accuracy
with FIX under default settings (γ = 0.5) is f∗(0.5) ≈ 0.76, whereas ORC achieves 1.0. In such cases, the
additional cost of ORC may be justified by the significantly higher label quality.

While these results indicate that the relative cost depends on the sound event density, we should remember
that we are considering weak labeling of presence events. This implies that all M events in this analysis are
treated as non-overlapping, as the annotation task does not consider temporal overlaps for this analysis. The
scenario of M > 60 non-overlapping events of length 1 in a recording of length T = 100 is therefore unlikely
in practice. Similarly, estimating 10 events as 80 (modeled by s = 8) for an audio recording of length T = 100
represents a substantial overestimation and seems improbable given the capabilities of modern sound event
detection tools.

7 Related Work

This work introduces a framework for characterizing segmentation label noise in FIX weak labeling, a largely
unexplored area. Below, we review studies addressing noisy labels and approaches to mitigate their effects,
with a focus on weak labeling in audio and related domains.

7.1 Understanding Noisy Labels

Noisy labels are a partial description of the target model, influencing its performance. Early work by Liang
et al. (2009) introduced the concept of measurements for conditional exponential families, encompassing
labels and constraints for model learning with minimal human input—a goal shared by this work.

In deep learning, the ability of models to overfit noisy labels has prompted studies into the relationship
between noise rate and generalization (Zhang et al., 2021; Chen et al., 2019). Research on class label noise
often assumes a noise transition matrix (Li et al., 2021) but rarely considers spatially correlated errors like
those arising in segmentation tasks (Yao et al., 2023). For audio, Hershey et al. (2021) demonstrated that
training on strongly labeled data yields better results than weakly labeled data, highlighting the need for
precise labels, particularly in evaluation. In multi-modal tasks, such as audio-visual video parsing, a key
challenge is modality-specific label noise, where a video-level tag may apply to the audio stream but not the
visual, or vice versa (Cheng et al., 2022; Zhou et al., 2024). Our work focuses specifically on characterizing
the segment label noise that arises from the temporal misalignment between fixed-length query segments and
true event boundaries.

7.2 Mitigating Noisy Labels

Several strategies address noisy labels, including regularization techniques like dropout (Srivastava et al.,
2014), data augmentation (Shorten & Khoshgoftaar, 2019), and specialized loss functions (Fonseca et al.,
2019). For weakly labeled audio, Dinkel et al. (2022) proposed a pseudo-labeling approach, iteratively refining
labels to improve training performance. Despite these advances, most methods focus on training labels and
offer limited insights into noisy evaluation labels, underscoring the need for frameworks that quantify label
noise, such as the one proposed in this work.

7.3 Strong vs. Weak Labeling

Strong labeling, where the annotator provides the event boundaries and the class label, while often precise,
is resource-intensive and subject to annotator variability (Mesaros et al., 2017). In bioacoustics, experts
use spectrograms for efficient annotation (Cartwright et al., 2017), but the reliance on specialists limits
scalability. Weak labeling, by contrast, simplifies the annotation task, which is especially important for
crowd-sourced annotations, enabling broader data collection (Martin-Morato & Mesaros, 2023). However,
segment label noise, especially at event boundaries, remains a significant challenge.
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Dataset Task Fixed Length
CHIME (Foster et al., 2015) Single-pass multi-label 4 seconds
AudioSet (Gemmeke et al., 2017) Single-pass multi-label 10 seconds
MAESTRO Real (Martin-Morato & Mesaros, 2023) Single-pass multi-label 10 seconds
OpenMIC-2018 (Humphrey et al., 2018) Multi-pass binary-label 10 seconds

Table 1: Large-scale audio datasets using variations of FIX weak labeling.

Large-scale audio datasets employing FIX weak labeling are summarized in Table 1. Two common annotation
tasks are single-pass multi-label and multi-pass binary-label annotation (Cartwright et al., 2019). Single-pass
multi-label annotation asks annotators to recognize the presence of multiple event classes during a single pass
through the data. In contrast, multi-pass binary-label annotation asks annotators to detect the presence or
absence of a single event class at a time through multiple passes through the data.

Cartwright et al. (2019) studied the trade-offs between these tasks and found that binary labeling is preferable
when high recall is required. For example, AudioSet (Gemmeke et al., 2017) employs single-pass multi-
label annotation with non-overlapping 10-second segments, which limits temporal resolution. Conversely,
MAESTRO Real (Martin-Morato & Mesaros, 2023) uses overlapping 10-second segments with a 9-second
overlap, increasing the accuracy of the derived labels.

The choice of segment length and overlap significantly impacts the utility of weak labeling. For example,
while overlapping segments increase label accuracy (Martin-Morato & Mesaros, 2023), they still fail to
distinguish events occurring close in time. Current work aims to better understand the effect of different
choices of the segment length for FIX weak labeling.

7.4 Contributions of This Work

Existing research focuses predominantly on class label noise or assumes noise independence. This work ex-
tends these efforts by characterizing segment label noise specific to FIX weak labeling, providing a foundation
for improving both training and evaluation processes in weakly labeled datasets.

8 Discussion

FIX labeling has been employed in many works, with varying degrees of complexity. Theorem 2 provides a
useful rule of thumb for selecting the best segmentation length for a given event length, and Eq. 13 provides
a way to use this theorem to analyze stochastic event length distributions. Our results suggest that, in most
cases, knowing the average event length provides a good estimate, but understanding the (approximate)
distribution of event lengths improves the analysis.

Implications for Practical Annotation

The analysis highlights the trade-offs in label accuracy and annotation cost between FIX and ORC weak
labeling. While FIX can be less costly under specific conditions (e.g., high event density), these conditions
are unlikely to occur in real-world annotation tasks. Furthermore, even in cases where FIX is less costly,
its significantly lower label accuracy (f∗(0.5) ≈ 0.76 vs. 1.0 for ORC) can negate its cost advantage. This
gap represents the "accuracy cost of weakness" that is inherent to any non-adaptive weak labeling strategy.
This gap only increases when dq is chosen sub-optimally, which is often the case in practice due to budget
considerations. Given the rarity of extreme event densities and the importance of high-quality labels, ORC
is likely the better theoretical choice for most annotation tasks.

However, ORC weak labeling is not available in practice since it uses the true event boundaries. This provides
a clear theoretical justification for developing adaptive weak labeling methods, which aim to approximate
the ORC process. For instance, methods that use active learning or change-point detection to define query
boundaries (Martinsson et al., 2024; Kim et al., 2023) are practical attempts to bridge the gap between FIX
and ORC. Martinsson et al. (2024) empirically evaluates an adaptive change-point detection method (A-
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CPD) and compares that to FIX weak labeling and ORC weak labeling, showing the benefit of an adaptive
weak labeling method for annotation of sound events. Our work provides the tools to quantify the maximum
potential accuracy gain for such methods over a simple FIX baseline, offering a principled way to evaluate
the trade-off between the complexity of an adaptive strategy and its achievable accuracy. Future research
should focus on mitigating the potential biases when modeling ORC weak labeling (e.g., annotation errors,
overfitting to sparse events) while retaining its theoretical advantages.

Implications for Model Evaluation

Despite the extensive focus on noisy training labels, evaluation labels are often implicitly assumed to be
perfect. As emphasized in the introduction, inaccurate evaluation labels present a significant challenge.
When noise is present in both training and evaluation data, we risk selecting models that merely replicate
the evaluation noise, potentially overlooking those with superior generalization abilities. This echoes the
central concern highlighted by Görnitz et al. (2014). We can use Theorem 3 to understand the properties
of the best performing model when the evaluation data contains FIX weak labels. For example, for γ = 0.5
the annotations will at most have an expected label accuracy of f∗(0.5) ≈ 0.76. The “best” performing
model will therefore be a model that mimics this specific noise profile. Our theory thus provides a better
understanding of the target that models are optimizing for when evaluated on weakly labeled data.

This is also relevant for standard sound event detection (SED) evaluation metrics, such as the segment-based
F1 score (Mesaros et al., 2016), which divide audio into fixed-length segments. When using ground truth
labels for evaluation, we effectively have an annotator with γ → 0. The expected label accuracy then becomes
f(dq) = de/(de +dq), where dq is the segment length. This formula shows that a small dq minimizes segment
label noise, but choosing a very small segment length negates the desired effect of mitigating temporal
imprecision in the ground truth and also increases computational cost. The theory presented here can help
inform such trade-offs.

Theoretical Properties and Validation

The expression for expected label accuracy derived in this paper applies to the simplest scenario, where only
a single event with deterministic length is present. In all of our results, we observe that f∗(γ) is greater
than or equal to the expected and average label accuracy that FIX weak labeling achieve for more complex
distributions. This suggests that f∗(γ) can be considered an upper bound for a given annotation process.
However, a formal proof showing that adding more events or introducing event length variability leads to a
harder distribution to annotate is beyond the scope of this paper.

To connect this theoretical framework to a real-world setting, we conducted an empirical analysis using the
weakly and strongly labeled versions of the AudioSet dataset, as detailed in Appendix A.5. By treating
the 10-second weak labels of AudioSet as the output of a FIX process, we calculated the empirical label
accuracy against the corresponding strong labels. Our theoretical model, when applied to the event length
distribution of the "Animal" class, accurately predicted this empirical accuracy for a presence criterion of
γ ≈ 0.26. This serves as an empirical validation of our framework on a large-scale dataset.

Generalization and Future Directions

While our work is grounded in audio event detection, the core principles are broadly generalizable because
the mathematics depends only on two fundamental quantities: the event duration de, and the query segment
length dq. These quantities can be directly mapped to other domains, e.g., video action spotting, electro-
cardiography, seismology, or high-frequency trading. Consequently, our core results (Theorems 1-3) transfer
directly to these domains, provided three conditions hold: (i) the events uniformly distributed locally in
time, making the uniform relative offset a reasonable model (as empirically verified in Appendix A.4), (ii)
the annotation process relies on observing a minimum fraction γ of an event, and (iii) the events are suf-
ficiently sparse. This framework can also be extended to higher dimensions, such as analyzing the weak
labeling of rectangles in images or cubes in point clouds.
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Finally, if the same presence criterion γ is applicable for all event classes, Theorem 1 applies to the joint event
length distribution. However, real-world presence criteria for different event classes may vary, requiring more
complex models. Future empirical studies on annotator behavior could help refine this model and improve
its practical applicability.

9 Conclusions

This study introduces a novel theoretical framework for understanding the trade-offs between label accuracy
and annotation cost in weak labeling methods, particularly focusing on sound event detection where weak
labeling is often employed to reduce annotation costs. We specifically compared fixed-length (FIX) and
oracle (ORC) approaches.

We have demonstrated that FIX weak labeling, while cost-effective in specific scenarios, is inherently limited
by segment label noise. The expressions we derived theoretically provide actionable insights into optimizing
segment length for maximizing expected label accuracy under FIX. However, these results also underscore
the fundamental trade-offs: shorter segments improve alignment with event boundaries but significantly
increase annotation cost, while longer segments reduce cost at the expense of accuracy. In addition, how
short these segments can be chosen depends on the ability of the annotator to detect presence of fractions
of the events. In contrast, ORC labeling achieves perfect accuracy but can incur higher costs if events are
very dense and the number of events are overestimated.

Our findings have several practical implications:

• Annotation Strategy: FIX weak labeling remains a robust, scalable choice for many practical
applications. However, when high label accuracy is essential, ORC weak labeling—or adaptive
methods approximating it—should be prioritized.

• Adaptive Techniques: Theoretical justification for adaptive weak labeling methods, e.g., methods
based on active learning or iterative refinement, that mimic ORC weak labeling, which suggests
promising avenues for improving annotation efficiency without compromising accuracy.

• Evaluation Criteria: Our analysis highlights the potential biases introduced by segment-level label
noise in evaluating sound event detection models. Therefore, carefully aligning evaluation criteria
with the intended model properties is critical.

Future research should address several limitations and extensions identified in our study. Developing practical
approaches that reliably mimic ORC weak labeling by estimating the query segments without introducing
a lot of unwanted bias in the labels remains an open challenge. Additionally, extending this framework to
multi-dimensional data and multiple presence classes could broaden its applicability to other domains, such
as medical imaging and point clouds.

In conclusion, the insights presented in this work offer a foundation for optimizing weak labeling processes,
balancing cost and accuracy to meet the needs of diverse machine learning applications. By refining anno-
tation strategies and leveraging adaptive methods, researchers can enhance the quality of labeled datasets.
This, in turn, will drive advancements in supervised learning across domains, building upon the foundational
understanding presented in this work.
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A Appendix

We do not include all simplifications of expressions in the proofs, but we do provide the code for a sym-
bolic mathematics solver (SymPy) at GitHub1, where all results can be verified. The notebook named
“symbolic_verification_of_analysis.ipynb” can be used to verify the analysis.

A.1 Proof of Theorem 1

We will derive an expression for the expected query segment accuracy given overlap with a single event in
terms of de, dq, and γ, under all possible assumptions which will prove Theorem 1.

Proof. We need to consider two main assumptions. The first assumption is that the presence criterion for
the annotator can be fulfilled, that is, dq ≥ γde, and the second assumption is that the annotator presence
criterion can not be fulfilled, that is, dq < γde. This happens if the query segment length is so short that it
can never cover a large enough fraction of the event of interest to make presence detection feasible.

Assumption 1. The annotator presence criterion can be fulfilled (dq ≥ γde).

Under this assumption there are two possible cases for the relation between dq and de, either the event
length is longer or equal to the query segment length, de ≥ dq (case i), or the event length is shorter than the
query segment length, de < dq (case ii). In Figure 15, we plot the query segment accuracy, F (et, q, γ), for
t ∈ [0, de +dq] for case (i) on the left, and case (ii) on the right. We describe in more detail in Appendix A.1.1
how the query segment accuracy behaves as a function of different amounts of overlap between the query
segment and the event. Briefly, what we see in Figure 15 is that initially there is arbitrarily little overlap
(t(i)

0 and t
(ii)
0 ), an absence label is given to the query segment and the accuracy is therefore 1. Then the

accuracy decrease linearly with the amount of overlap until the presence criterion is fulfilled and a presence
label is given (t(i)

1 and t
(ii)
1 ). After that, the accuracy linearly increase with the amount of overlap between

the event and query segment until we reach a ceiling for the accuracy when either the whole query segment
is inside the event (t(i)

2 ) or the query segment covers the whole event (t(ii)
2 ). Finally, the overlap between the

query segment and the event starts to decrease again (t(i)
3 and t

(ii)
3 ), and everything is symmetrical.

We continue by dropping the case superscripts show in the figure for A1, . . . , A3 and t0, . . . , t5, and only
provide the full proof for case (i), but the proof for case (ii) is similar. In both cases the area A in Eq. 8 can
be divided into five distinct parts:

A = 2A1 + 2A2 + A3, (21)

where A1 and A2 are counted twice due to symmetry.

1link will be added for camera-ready, for now see the supplementary material
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Figure 15: Assuming dq ≥ deγ, we plot the query segment accuracy, F (et, q, γ), for t ∈ [0, de + dq], where
t0 = 0 and t5 = de + dq. Case (i) where de ≥ dq is shown in the left panel, and case (ii) where de < dq is
shown in the right panel.

The variables t0, t1, . . . , t5, represent the different states t of overlap where the discontinuities of F (et, q, γ)
occur, and using these we can express the areas as the following integrals:

A1 =
∫ t1

t0

F (et, q, γ)dt =
∫ t5

t4

F (et, q, γ)dt, (22)

and

A2 =
∫ t2

t1

F (et, q, γ)dt =
∫ t4

t3

F (et, q, γ)dt, (23)

due to symmetry, and

A3 =
∫ t3

t2

F (eq, q, γ)dt. (24)

We use that the query segment accuracy F (et, q, γ) is linear in each interval, which means that the areas
can be expressed as

A1 =
F (et0 , q, γ) + F (et1− , q, γ)

2 (t1 − t0), (25)

A2 =
F (et1+ , q, γ) + F (et2 , q, γ)

2 (t2 − t1), (26)

and

A3 = F (et2 , q, γ) + F (et3 , q, γ)
2 (t3 − t2), (27)

where t− indicate that we approach the discontinuity at t from below and t+ from above. We now only
need to express t0, . . . , t3 and F (et0 , q, γ), . . . , F (et3 , q, γ) in terms of de, dq and γ to conclude the proof. For
brevity, these have been provided in Table 2. See section A.1.1 for details on how to express these in terms
of dq, de and γ.

We provide the steps for case (i), and leave the derivation for case (ii) to the reader. We substitute the
expressions for case (i), provided in Table 2, into equations Eq. 25-27, and the resulting expressions for the
areas A

(i)
1 , A

(i)
2 , and A

(i)
3 into Eq. 21 which give
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Case (i), de ≥ dq Case (ii), de < dq

t
(i)
0 = 0 F (e(i)

t0
, q, γ) = 1 t

(ii)
0 = 0 F (e(ii)

t0
, q, γ) = 1

t
(i)
1 = γde F (e(i)

t−
1

, q, γ) = dq−γde

dq
t
(ii)
1 = γde F (e(ii)

t−
1

, q, γ) = dq−γde

dq

t
(i)
2 = dq F (e(i)

t+
1

, q, γ) = γde

dq
t
(ii)
2 = de F (e(ii)

t+
1

, q, γ) = γde

dq

t
(i)
3 = de F (e(i)

t2
, q, γ) = 1 t

(ii)
3 = dq F (e(ii)

t2
, q, γ) = de

dq

F (e(i)
t3

, q, γ) = 1 F (e(ii)
t3

, q, γ) = de

dq

Table 2: A summary of the derived expressions for t0, . . . , t3 and F (et0 , q, γ), . . . , F (et3 , q, γ) for each case.
F (et−

1
, q, γ) and F (et+

1
, q, γ) denotes the limits when approaching t1 from below and above respectively.

A(i) = 2
2(1 + dq − γde

dq
)γde + 2

2(1 + γde

dq
)(dq − γde) + (de − dq)

= (2dq − γde)γde

dq
+ (dq + γde)(dq − γde) 1

dq
+ (de − dq)

= 1
dq

(2γdqde − γ2d2
e +��d

2
q − γ2d2

e + dedq −��d
2
q)

= 1
dq

(2γdqde − 2γ2d2
e + dedq)

= de

dq
(2γdq − 2γ2de + dq).

Finally, by substituting A for A(i) in Eq. 8 we arrive at

A(i)

de + dq
= de(2γdq − 2γ2de + dq)

dq(de + dq) (28)

which shows that Eq. 9 holds for case (i) under the assumption that dq ≥ γde. Similarly, this also holds for
case (ii).

Assumption 2. The annotator presence criterion can not be fulfilled (dq < γde).

When the presence criterion can not be fulfilled we never get any presence labels, this means that the fraction
of the query segment that overlaps with an event is always incorrectly given an absence label. When the
query segment completely overlaps with an event the query segment accuracy will be 0 (seen between t1 and
t2 in Figure 16).

t0 t1 t2 t3
t

0.00

0.25

0.50

0.75

1.00

F(
e t

,q
,

)

A1 A1

dq < de

Figure 16: Assuming that dq < γde, we plot the query segment accuracy, F (et, q, γ), for t ∈ [0, de + dq],
where t0 = 0 and t3 = de + dq.
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The area A1 is counted twice due to symmetry. The discontinuity at t1 occurs for the smallest t ∈ [0, de +dq]
for which F (et, q, γ) = 0, which happens for the smallest t for which the whole query segment overlaps with
the event |e ∩ q| = dq at t = dq. We therefore have that t1 − t0 = t3 − t2 = dq.

When there is no overlap between the query segment and the event giving a presence label is always correct,
thus F (et0 , q, γ) = 1. However, giving an absence label to a query segment that completely overlaps with an
event gives the query segment accuracy 0, thus F (et1 , q, γ) = 0. The total area under the curve is therefore
2A1 = dq and by normalizing with t3 − t0 = de + dq, we get dq/(de + dq), which proves the dq < γde case of
Eq. 9, and concludes the proof.

A.1.1 Details on the expressions in Table 2

This section provides a detailed explanation of the values presented in Table 2. For each case (i) and (ii), we
will define the specific time points t0, t1, t2, t3 where the query segment accuracy function F (et, q, γ) changes,
and explain the corresponding value of the function at these points based on the overlap between the event
et and the query segment q. The states t4 and t5 are analogous to t1 and t0, respectively, and therefore not
illustrated. The difference is that the amount of overlap between the query segment and event decreases
(instead of increases) when approaching these states.

Case (i): de ≥ dq

Figure 17: An illustration of how the sound event et and the query segment q overlap at the four distinct
states t = t0, . . . , t3 for case (i) where de ≥ dq.

• t
(i)
0 : At t

(i)
0 = 0, the end of the event et aligns perfectly with the beginning of the query segment q.

This means there is no overlap between the event and the query segment (|e
t

(i)
0

∩ q| = 0). Therefore,
assuming the annotator absence criterion applies, the query segment accuracy is F (e

t
(i)
0

, q, γ) =
dq−|e

t
(i)
0

∩q|

dq
= dq−0

dq
= 1.

• t
(i)
1 : The time t

(i)
1 = γde represents the point where the annotator presence criterion is first met.

Before this point (t < t
(i)
1 ), the overlap |et ∩ q| is less than γde, and the query segment accuracy is

given by F (et, q, γ) = dq−|et∩q|
dq

. As t approaches t
(i)
1 from the left, |et ∩ q| approaches γde, hence

limt→t−
1

F (et, q, γ) = dq−γde

dq
. At t = t

(i)
1 , the presence criterion is met, and the accuracy function

switches to F (et, q, γ) = |et∩q|
dq

. As t approaches t
(i)
1 from the right, |et ∩ q| is slightly greater than

γde, and limt→t+
1

F (et, q, γ) = γde

dq
. This transition is visually represented in Figure 17 at time t = t1.

• t
(i)
2 : At t

(i)
2 = dq, the entire query segment q is fully contained within the event et. This means the

overlap is maximal: |e
t

(i)
2

∩ q| = dq. Since the presence criterion is met, the query segment accuracy

is F (e
t

(i)
2

, q, γ) =
|e

t
(i)
2

∩q|

dq
= dq

dq
= 1. This behavior is visually represented in Figure 17 at time t = t2,

where the green box representing the event fully covers the red box representing the query segment.

• t
(i)
3 : At t

(i)
3 = de, the entire query segment q still fully overlaps with the event et. Similar to t2,

the overlap is |e
t

(i)
3

∩ q| = dq, and therefore F (e
t

(i)
3

, q, γ) =
|e

t
(i)
3

∩q|

dq
= dq

dq
= 1. This is depicted in

Figure 17 at time t = t3.
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Case (ii): de < dq

Figure 18: An illustration of how the sound event et and the query segment q overlap at the four distinct
states t = t0, . . . , t3 for case (ii) where de < dq.

• t
(ii)
0 : At t

(ii)
0 = 0, the end of the event et aligns perfectly with the beginning of the query segment

q. There is no overlap (|e
t

(ii)
0

∩ q| = 0). Assuming the annotator absence criterion applies, the query

segment accuracy is F (e
t

(ii)
0

, q, γ) =
dq−|e

t
(ii)
0

∩q|

dq
= dq−0

dq
= 1.

• t
(ii)
1 : The time t

(ii)
1 = γde again marks the point where the annotator presence criterion is first met.

Before this (t < t
(ii)
1 ), the overlap |et ∩ q| < γde, and F (et, q, γ) = dq−|et∩q|

dq
. Approaching t

(ii)
1 from

the left, |et ∩ q| → γde, thus limt→t−
1

F (et, q, γ) = dq−γde

dq
. At t = t

(ii)
1 , the criterion is met, and the

function becomes F (et, q, γ) = |et∩q|
dq

. Approaching from the right, |et ∩ q| is slightly greater than
γde, so limt→t+

1
F (et, q, γ) = γde

dq
. This transition is shown in Figure 18 at t = t1.

• t
(ii)
2 : At t

(ii)
2 = de, the beginning of the event et aligns with the beginning of the query segment q.

At this point, the overlap is maximal, as the entire event is contained within the query segment:
|e

t
(ii)
2

∩ q| = de. Since the presence criterion is met, the query segment accuracy is F (e
t

(ii)
2

, q, γ) =
|e

t
(ii)
2

∩q|

dq
= de

dq
. This situation is illustrated in Figure 18 at t = t2.

• t
(ii)
3 : At t

(ii)
3 = dq, the end of the event et aligns with the end of the query segment q. Similar

to t
(ii)
2 , the entire event is contained within the query segment, so the overlap is |e

t
(ii)
3

∩ q| = de.

Consequently, the query segment accuracy is F (e
t

(ii)
3

, q, γ) =
|e

t
(ii)
3

∩q|

dq
= de

dq
. This corresponds to the

state depicted in Figure 18 at t = t3.

Understanding these key time points and the corresponding query segment accuracy values is crucial for
calculating the area under the curve, which represents the expected query segment accuracy.

A.2 Proof of Theorem 2

Proof. We start by finding a unique critical point d∗
q which makes f ′(d∗

q) = 0 when dq ≥ γde. We then
show that d∗

q is a global maximum by analyzing the boundaries of f(dq) on its’ domain when dq ≥ γde.
We show that f(d∗

q) ≥ f(γde) and that f(d∗
q) ≥ limdq→∞ f(dq). Since d∗

q is a unique critical point we
conclude that it must be a global maximum of the function f(dq) when dq ≥ γde. Lastly, we show that
f(d∗

q) ≥ f(γde) ≥ f(dq) when dq < γde which proves that d∗
q is a global maximum of the function f(dq) for

dq > 0.

1. Finding the unique critical point d∗
q.

To find the critical points, we need to compute the derivative of f(dq) with respect to dq and set it to zero.
Let N(dq) = de(−2deγ2 + 2dqγ + dq) and D(dq) = dq(de + dq). Then f(dq) = N(dq)

D(dq) . Using the quotient
rule, the derivative is given by:

f ′(dq) = N ′(dq)D(dq) − N(dq)D′(dq)
[D(dq)]2
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First, we find the derivatives of the numerator and the denominator:

N ′(dq) = d

ddq
[de(−2deγ2 + 2dqγ + dq)]

= de(0 + 2γ + 1)
= de(2γ + 1)

D(dq) = dq(de + dq) = dedq + d2
q

D′(dq) = d

ddq
[dedq + d2

q]

= de + 2dq

Now, we plug these into the quotient rule formula:

f ′(dq) = [de(2γ + 1)][dq(de + dq)] − [de(−2deγ2 + 2dqγ + dq)][de + 2dq]
[dq(de + dq)]2

To find the critical points, we set f ′(dq) = 0, which means the numerator must be zero:
[de(2γ + 1)][dq(de + dq)] − [de(−2deγ2 + 2dqγ + dq)][de + 2dq] = 0

Since de > 0, we can divide by de:
(2γ + 1)dq(de + dq) − (−2deγ2 + 2dqγ + dq)(de + 2dq) = 0

Expanding the terms:
(2γ + 1)(dedq + d2

q) − (−2d2
eγ2 − 4dedqγ2 + 2dedqγ + 4d2

qγ + dedq + 2d2
q) = 0

2γdedq + 2γd2
q + dedq + d2

q − (−2d2
eγ2 − 4dedqγ2 + 2dedqγ + 4d2

qγ + dedq + 2d2
q) = 0

Collecting and rearranging the terms to form a quadratic equation in dq:
(2γ + 1 − 4γ − 2)d2

q + (2γ + 1 + 4γ2 − 2γ − 1)dedq + 2d2
eγ2 = 0

(−2γ − 1)d2
q + (4γ2)dedq + 2d2

eγ2 = 0
(2γ + 1)d2

q − 4γ2dedq − 2d2
eγ2 = 0

Using the quadratic formula dq = −b±
√

b2−4ac
2a , where a = 2γ + 1, b = −4deγ2, c = −2d2

eγ2:

dq = 4deγ2 ±
√

(−4deγ2)2 − 4(2γ + 1)(−2d2
eγ2)

2(2γ + 1)

= 4deγ2 ±
√

16d2
eγ4 + 8(2γ + 1)d2

eγ2

4γ + 2

= 4deγ2 ±
√

16d2
eγ4 + 16d2

eγ3 + 8d2
eγ2

4γ + 2

= 4deγ2 ±
√

8d2
eγ2(2γ2 + 2γ + 1)

4γ + 2

= 4deγ2 ± 2de|γ|
√

4γ2 + 4γ + 2
2(2γ + 1)

Since γ > 0, we have |γ| = γ:

dq = 4deγ2 ± 2deγ
√

4γ2 + 4γ + 2
2(2γ + 1)

= 2deγ2 ± deγ
√

4γ2 + 4γ + 2
(2γ + 1)

= deγ
2γ ±

√
4γ2 + 4γ + 2
2γ + 1
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We note that
√

4γ2 + 4γ + 2 = 2
√

γ2 + γ + 0.5 > 2
√

γ2 = 2γ, which means that we need to choose the
positive sign for dq > 0 to be true. The value of dq that makes the derivative zero is therefore uniquely
defined by:

dq = de γ
2 γ +

√
4 γ2 + 4 γ + 2
2 γ + 1 ≥ deγ,

where the last inequality holds because
√

4γ2 + 4γ + 2 = 2
√

γ2 + γ + 0.5 ≥ 1.

2. Analyze the function at the boundaries of its’ domain.

To understand why this critical point corresponds to a maximum, we analyze the function f(dq) as dq at
the boundaries of its domain.

2a. f(dq) when dq = γde (dq ≥ γde).

f(γde) =
de

(
2(γde)γ − 2deγ2 + (γde)

)
(γde) (de + γde)

=
de

(
2deγ2 − 2deγ2 + γde

)
(γde) (de + γde)

= de (γde)
(γde) (de + γde)

= d2
eγ

(γde)de(1 + γ)

= 1
1 + γ

.

2b. f(dq) as dq → ∞ (dq ≥ γde).

We want to evaluate the limit of f(dq) as dq approaches infinity:

lim
dq→∞

f(dq) = lim
dq→∞

de(−2deγ2 + (2γ + 1)dq)
dedq + d2

q

Divide the numerator and the denominator by the highest power of dq in the denominator, which is d2
q:

lim
dq→∞

f(dq) = lim
dq→∞

de

(
− 2deγ2

d2
q

+ 2γ+1
dq

)
de

dq
+ 1

As dq → ∞, the terms 2deγ2

d2
q

, 2γ+1
dq

, and de

dq
all approach 0. Thus,

lim
dq→∞

f(dq) = de(0 + 0)
0 + 1 = 0

This means that as dq becomes very large, the function f(dq) approaches 0.

2c. Showing that f(d∗
q) ≥ f(γde).

We want to show that f(d∗
q) ≥ f(γde). Or equivalently, that f(d∗

q) − f(γde) ≥ 0. From Theorem 3 we know
that f(d∗

q) = 2γ
(

2γ + 1 −
√

4γ2 + 4γ + 2
)

+1, and from 2a we know that f(γde) = 1
1+γ . After substitution

and some algebraic manipulation, we get

γ

(
4γ2 + 6γ + 3

1 + γ
− 2

√
4γ2 + 4γ + 2

)
≥ 0.

Since γ > 0, it suffices to show that

4γ2 + 6γ + 3
1 + γ

≥ 2
√

4γ2 + 4γ + 2.
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Squaring both sides of the above inequality and simplifying, we obtain the equivalent inequality(
4γ2 + 6γ + 3

1 + γ

)2

≥ 4(4γ2 + 4γ + 2).

After further algebraic manipulations (which we leave to the reader), we arrive at the inequality

(2γ + 1)2 ≥ 0.

Since (2γ + 1)2 ≥ 0 holds for all γ, and the previous steps are all equivalences, we conclude that

f(d∗
q) − f(γde) ≥ 0

for 0 < γ ≤ 1, and therefore,
f(d∗

q) ≥ f(γde).

2d. Showing that f(d∗
q) ≥ limdq→∞ f(dq).

We combine the results from 2a-2c to get

f(d∗
q) ≥ f(γde)

= 1
1 + γ

≥ 0
= lim

dq→∞
f(dq).

2e. f(dq) as dq → (γde)− (dq < γde).

Since we are approaching γde from the left, we have that f(dq) = dq/(de + dq). This function is continuous
for dq < γde, so the limit is given by the direct substitution:

lim
dq→(γde)−

dq

de + dq
= γde

de + γde

= γde

de(1 + γ)
= γ

1 + γ

2f. Showing that f(γde) ≥ f(dq) when dq < γde. We start by noting that f(γde) = 1
1+γ ≥ γ

1+γ =
limdq→(γde)− . Now it is sufficient to show that f(dq) = dq/(dq + de) is strictly decreasing for decreasing dq,
which we do by computing the derivative of f(dq) with respect to dq using the quotient rule:

f ′(dq) = (dq + γ)(1) − dq(1)
(dq + γ)2

= dq + γ − dq

(dq + γ)2

= γ

(dq + γ)2 .

Since γ > 0 and (dq + γ)2 > 0 for all dq > 0, we have f ′(dq) > 0 for all dq > 0. This implies that the
function f(dq) is strictly increasing on the interval (0, ∞). Therefore, if 0 < c ≤ b, it must be the case that
f(c) ≤ f(b). Moreover, since c < b, f(c) < f(b). Thus, for any b > 0, f(b) > f(c) for all 0 < c ≤ b. Now let
0 < dq = c ≤ γde = b.

3. Combining everything (2a-2f)
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We have derived a unique critical point d∗
q ≥ γde by setting the first derivative of f(dq) to zero. We have

then shown that f(d∗
q) is greater than or equal to f(dq) at the limits of its’ domain when dq ≥ γde. Finally,

we show that f(d∗
q) ≥ f(γde) ≥ f(dq) when dq < γde. Therefore, the value of dq that is the global maximum

of f(dq) when dq > 0 is:

d∗
q = de γ

2 γ +
√

4 γ2 + 4 γ + 2
2 γ + 1

A.3 Proof of Theorem 3

Proof. From Theorem 2 we have that

d∗
q =

de γ
(

2 γ +
√

4 γ2 + 4 γ + 2
)

2 γ + 1

maximizes the function
f(dq) =

de

(
−2 de γ2 + (2 γ + 1) dq

)
dq

(
de + dq

) .

We wish to show that the maximum label accuracy given overlap, f∗(γ) = f
(
d∗

q

)
, is

2 γ
(

2 γ + 1 −
√

4 γ2 + 4 γ + 2
)

+ 1.

1. Express f(dq) in terms of a dimensionless variable.

Define
δ = dq

de
.

Then
dq = δ de, de + dq = de (1 + δ),

and
f(dq) = f(δ de) =

de

(
−2 de γ2 + (2 γ + 1) δ de

)
(δ de)

(
de + δ de

) = −2 γ2 + (2 γ + 1) δ

δ
(
1 + δ

) .

We can therefore write
f(δ) = −2 γ2 + (2 γ + 1) δ

δ (1 + δ) .

2. Identify the optimal dimensionless query length δ∗.

From Theorem 2, we know that

d∗
q =

de γ
(
2 γ +

√
4 γ2 + 4 γ + 2

)
2 γ + 1 .

Dividing both sides by de gives

δ∗ =
d∗

q

de
= γ

2 γ +
√

4 γ2 + 4 γ + 2
2 γ + 1 .

We need to show that
f

(
δ∗)

= 2 γ
(

2 γ + 1 −
√

4 γ2 + 4 γ + 2
)

+ 1.

3. Compute f(δ∗) explicitly.
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Let
N(δ) = −2 γ2 + (2 γ + 1) δ, D(δ) = δ (1 + δ).

Then f(δ) = N(δ)
D(δ) .

1. Numerator at δ∗.

N
(
δ∗)

= −2 γ2 + (2 γ + 1) δ∗ = −2 γ2 + (2 γ + 1)
[
γ

2 γ +
√

4 γ2 + 4 γ + 2
2 γ + 1

]
.

Inside the brackets, (2 γ + 1) cancels:

N
(
δ∗)

= −2 γ2 + γ
(
2 γ+

√
4 γ2 + 4 γ + 2

)
= −2 γ2 + 2 γ2 + γ

√
4 γ2 + 4 γ + 2 = γ

√
4 γ2 + 4 γ + 2.

2. Denominator at δ∗.

D(δ) = δ (1 + δ).
Hence,

D
(
δ∗)

= δ∗
(

1 + δ∗
)

=
[
γ

2 γ +
√

4 γ2 + 4 γ + 2
2 γ + 1

][
1 + γ

2 γ +
√

4 γ2 + 4 γ + 2
2 γ + 1

]
.

The second bracket becomes a single fraction:

1 + γ
2 γ +

√
4 γ2 + 4 γ + 2

2 γ + 1 =
(2 γ + 1) + γ

(
2 γ +

√
4 γ2 + 4 γ + 2

)
2 γ + 1 .

Combining, we get

D
(
δ∗)

= γ
2 γ +

√
4 γ2 + 4 γ + 2

2 γ + 1 × (2 γ + 1) + 2 γ2 + γ
√

4 γ2 + 4 γ + 2
2 γ + 1 .

So

D
(
δ∗)

= γ
(2 γ +

√
4 γ2 + 4 γ + 2)

(
2 γ + 1 + 2 γ2 + γ

√
4 γ2 + 4 γ + 2

)
(2 γ + 1)2 .

3. Form the ratio. Thus,

f
(
δ∗)

= N(δ∗)
D(δ∗) = γ

√
4 γ2 + 4 γ + 2

γ
(2 γ+

√
4 γ2+4 γ+2)

(
2 γ+1+2 γ2+γ

√
4 γ2+4 γ+2

)
(2 γ+1)2

.

Cancel the common factor γ, invert the denominator and multiply:

f
(
δ∗)

=
√

4 γ2 + 4 γ + 2 (2 γ + 1)2

(2 γ +
√

4 γ2 + 4 γ + 2)
(
2 γ + 1 + 2 γ2 + γ

√
4 γ2 + 4 γ + 2

) .

You can verify by direct expansion (or by a symbolic algebra tool which we provide in the supple-
mentary material) that√

4 γ2 + 4 γ + 2 (2 γ + 1)2

(2 γ +
√

4 γ2 + 4 γ + 2)
(
2 γ + 1 + 2 γ2 + γ

√
4 γ2 + 4 γ + 2

) = 2 γ
(

2 γ +1−
√

4 γ2 + 4 γ + 2
)

+ 1.

Thus
f

(
δ∗)

= 2 γ
(

2 γ + 1 −
√

4 γ2 + 4 γ + 2
)

+ 1,

which proves that
f∗(γ) = f

(
d∗

q

)
= 2 γ

(
2 γ + 1 −

√
4 γ2 + 4 γ + 2

)
+ 1.

Hence, Eq. 11 holds, completing the proof.
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A.4 Empirical Analysis of Uniform Relative Offset Distribution Between Events and Overlapping
Segments

We empirically verify that the relative offset between events and overlapping query segments can be modeled
well by a uniform distribution. An event is denoted by e = (ae, be, ce), where ae is the start time, be is
the end time, and ce is the class, where ce ∈ {"dogs", "baby"}. Similarly, a query segment is denoted by
q = (aq, bq). We define the event distribution using the labeled start times of different sound event classes
from the NIGENS Trowitzsch et al. (2019) dataset, but we fix the event length de to the median event
length of the respective sound class to respect the deterministic event length assumption. We then verify
that the relative offset between the events and the overlapping segments, defined as bq − ae, is uniform
over the range [0, de + dq]. To simulate realistic scenarios that maintain a reasonable label accuracy, we let
dq ∈ { de

10 , de, 10de}. That is, the query segment is not larger than 10 times the median event length. Note
that if dq ≫ de then the uniform relative offset assumption is not expected to hold, but that also means that
the label accuracy will be very low which is not wanted in practice. We present the results in Figure 19.
For both sound event classes the distribution looks flat for all three choices of dq, meaning that it can be
modeled well by a uniform distribution, verifying that this is a plausible assumption in practical scenarios.

Figure 19: The distribution of relative offsets between events and overlapping query segments for dog (left)
and baby (right) sound event classes from the NIGENS Trowitzsch et al. (2019) dataset. We use the
annotated relative start times of the events, and fix the event length de to the median event length for the
respective event class. The distribution looks flat and can be modeled well with a uniform distribution.

A.5 Empirical Analysis of Theory

In an attempt to empirically validate the theory we have compared the weakly labeled version of Au-
dioSet Hershey et al. (2017) with the strongly labeled version Hershey et al. (2021). The weakly labeled
version of AudioSet uses 10 second segments, corresponding to dq = 10. A subset of AudioSet has been
strongly labeled by indicating start and end times of the weakly labeled events. For each strongly labeled
event, we compare the strong label to the weak label to compute the accuracy. That is, if the weakly labeled
segment of length dq indicates the presence of an event, and the corresponding strong label for that event has
length de, then the accuracy is de

dq
for that event. We compute this accuracy for all sound events correspond-

ing to the "Animal" class, and take the average. The theoretical accuracy for a given annotator criterion
γ is derived by taking the numerical average over the event lengths for the "Animal" class to estimate the
numerical integration over the event length distribution presented Eq. (13).

The results are shown in Figure 20. Note that the query segment is not chosen to maximize label accuracy
as in previous analysis. Since dq = 10 it is longer than most ’Animal’ events in AudioSet and restricts the
maximum event length that can be annotated to de ≤ dq as can be seen in the right panel of Figure 20.
In the left panel of Figure 20 we see that the label accuracy of the weakly labeled version of AudioSet falls
within the range predicted by the theory for γ ∈ (0, 1]. Assuming that the theory is correct would indicate
that γ = 0.26 is the presence criterion that best models the weak labeling process of AudioSet. While these

33



Under review as submission to TMLR

results do not reject the proposed theory we would need to empirical estimate γ based on real annotators to
properly validate it. This is considered as out of scope for this paper, but would be interesting future work.

Figure 20: The theoretical prediction of the label accuracy for different γ (left) when averaging over the event
length distribution (right) for the animal events in the strongly labeled subset of AudioSet. The empirical
accuracy (dashed blue line) indicates the label accuracy that was derived by comparing the weakly labeled
version of AudioSet with the strongly labeled version. The empirical label accuracy falls within the range
predicted by the theory.
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