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Abstract

Current parameterized image representations embed visual
information along the semantic boundaries and struggle
to express the internal detailed texture structures of im-
age components, leading to a lack of content consistency
after image editing and driving. To address these chal-
lenges, this work proposes a novel parameterized repre-
sentation based on hierarchical image proxy geometry, uti-
lizing multi-layer hierarchically interrelated proxy geomet-
ric control points to embed multi-scale long-range struc-
tures and fine-grained texture details. The proposed rep-
resentation enables smoother and more continuous inter-
polation during image rendering and ensures high-quality
consistency within image components during image editing.
Additionally, under the layer-wise representation strategy
based on semantic-aware image layer decomposition, we
enable decoupled image shape/texture editing of the targets
of interest within the image. Extensive experimental results
on image vectorization and editing tasks demonstrate that
our proposed method achieves high rendering accuracy of
general images, including natural images, with a signifi-
cantly higher image parameter compression ratio, facilitat-
ing user-friendly editing of image semantic components.

1. Introduction

The utilization of implicit functions for encoding image
shape and texture information has gained significant atten-
tion in recent years [4, 7, 23, 27, 29]. This is primarily
due to the fact that implicit neural network models rep-
resent images as functions defined over a continuous do-
main, independent of grid-based image sampling/rendering,
which allows for highly precise representation of image
content. Additionally, because the implicit parameters are
much sparser than the original pixel-wise RGB values, such
approach also achieves image compression. However, im-
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Figure 1. Illustration of our motivation. Traditional methods
heavily rely on stacking a large number of shapes to approxi-
mate textures due to the lack of shape-aware texture modeling,
which not only results in low quality texture representation but
also makes image editing extremely challenging. Chen et al. [6]
propose to embed textures at shape contour points for improving
texture representation, but this approach is still limited to simple
artistic images. Additionally, due to the lack of layer-wise model-
ing and the sparse texture interpolation, it fails to support precise
image editing. This work explores a multi-layer multi-scale tex-
ture embedding with the help of hierarchically related proxy geo-
metric nodes, tailored for high quality reconstruction of complex
natural images with lightweight parameters, which also ensures
high-fidelity image shape/texture editing.

plicit image representations inherently function as black-
box mapping models, lacking alignment between the im-
age’s semantic components and corresponding representa-
tion parameters. As a result, such representations are not
conducive to image content editing, as users are unable to
manipulate specific local components of the image.

To achieve editable representations, recent works pro-
pose vectorized image representation (image vectorization)
frameworks [6, 11, 12, 15, 19, 21, 30, 33]. The prin-
ciple behind this approach is to use a collection of vec-
torized geometric primitives like Bézier shapes to repre-
sent the image explicitly. Traditional vectorization algo-
rithms [11, 12, 18, 21, 24, 30, 31], due to the lack of
shape-aware texture modeling, require stacking of numer-
ous shapes to approximate image textures, which not only
reduces the representation accuracy but also makes subse-
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quent image editing extremely difficult. To achieve more
precise texture representation and editability, recent schol-
ars [10] propose to decouple images into shape and tex-
ture parameters through spatially distributing implicit tex-
ture parameters into multiple control points along Bézier
shape contors, allowing for the interpolation-based implicit
mapping of textures within the shape. Unfortunately, al-
though the implicit representation enhanced by distributed
explicit control nodes improves the accuracy of texture sam-
pling, the texture codes are primarily embedded along the
contours (or semantic boundaries), making it difficult to
establish a stable (coordinate-to-feature) mapping support
domain for the internal areas of image components. This
leads to two significant challenges: 1) Due to weak texture
expression capacity, the above framework can only model
textures for simple artistic images, performing poorly on
categories like natural images with more complex texture
and structures; 2) The coupling of texture mapping network
parameters with the sparse spatial distribution of control
points leads to the texture being overfitted to fixed spatial
locations, resulting in significant distortion when resam-
pling internal textures after shape editing (e.g., stretching
and deformation), which does not support general image
editing. Additionally, most existing vectorized image rep-
resentations share the common issue of lacking a semantic
layer concept, making it challenging to reconstruct reason-
able images after editing a single visual target.

To address these challenges, this work proposes a new
representation framework based on multi-layer hierarchi-
cal image proxy geometry. First, we utilize the capabilities
of currently available large semantic understanding mod-
els [17, 32] to achieve semantic layering of the input image,
facilitating image editing and image reassembly after im-
age manipulation. Second, for each semantic component,
we sample multiple hierarchically interrelated image proxy
nodes (i.e., from control points on the external boundary of
the target component to internal mesh points) through adap-
tive Bézier control points fitting and dynamic multi-scale
mesh refinement constrained by boundary Bézier curves
and the internal distribution of geometric information. Then
we embed implicit representation parameters of image in-
formation at various scales into these distributed multi-scale
proxy geometric nodes. During image decoding and recon-
struction, the implicit parameters provided by the relevant
proxy geometric nodes are fused to generate a mapping
from coordinates to pixel values, achieving more continu-
ous and smoother interpolation results with multi-scale im-
age content integration. Compared to previous distributed
embedding representation frameworks, our approach offers
a more stable support domain for the implicit mapping func-
tion thanks to the proxy nodes’ ability to integrate multi-
scale envelope shape structure and internal details of se-
mantic components. As a result, our method supports accu-

rate texture representation for natural images with complex
textures, maintains high-quality texture consistency within
image components during editing, and facilitates more pre-
cise image texture editing and target manipulation. Ex-
tensive experimental results on image vectorizaion and im-
age editing tasks (across various benchmarks including Im-
ageNet [28]) demonstrate the high rendering accuracy of
the proposed framework for general image, including natu-
ral images, as well as its user-friendly capabilities for im-
age shape/texture editing. In addition, we also make com-
parisons with neural implicit image representations, our
method achieves significantly better reconstruction quality
with a higher parameter compression ratio, which signifi-
cantly demonstrates the effectiveness and efficiency of our
representation.

2. Related Works

Image Vectorization. Image Vectorization, as a bridge be-
tween rasterized pixel images and scalable vector graph-
ics, has evolved significantly over recent years. Empir-
ical algorithms often capture image contours and model
textures as iterative optimization problems, such as diffu-
sion curves [24, 31] and gradient meshes [18, 28]. Dif-
fvg [19] introduces a differentiable rasterizer that facilitates
the use of machine/deep learning techniques for image vec-
torization. Subsequent methods [5, 6, 10, 11, 21, 25, 30]
widely adopt closed Bézier shapes as fundamental prim-
itives, obtaining a series of Bézier control points through
neural network training or iterative parameter optimization.
LIVE [21] is a remarkable work that achieves layer-wise
image vectorization. However, the hierarchical structure
in LIVE lacks semantic information, and each layer relies
on the stacking of numerous irregular shapes, making it
impossible for image editing. SuperSVG [12] creatively
uses a ViT-based model [9] to predict shape parameters in
a feedforward manner, achieving good reconstruction ac-
curacy for natural images. However, neural network-based
approaches require significant computational resources and
are difficult to generalize to arbitrary images. In our work,
we propose an optimization-based framework to decompose
images into semantic-aware layers and explore complex
image textures with multi-scale texture embedding, which
achieves high-fidelity image vectorization results for arbi-
trary images, endowed with easy-editability.

Neural Implicit Image Parameterization. Most image
vectorization algorithms rely on shape stacking to represent
textures, lacking efficient modeling for complex textures.
Alternatively, another category of image parameterization
algorithms (i.e., neural implicit representation [4, 6, 7, 23,
27, 29]) approach the problem from an implicit represen-
tation perspective, achieving efficient coordinate-to-texture
mapping through joint optimization of texture features and
a decoding function. Deep image prior [29] is a pioneer-
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ing work to utilize a deep network with millions of pa-
rameters to accurately fit images. SIREN [27] uses MLPs
with periodic activation functions to represent images, re-
quiring highly redundant MLP parameters for reasonable
image reconstruction. Chen et al. [6] propose a shape-
anchored distributed texture representation, achieving sig-
nificant parameter compression. However, texture features
distributed along semantic boundaries struggle to capture
the internal texture structure of image components. As a
result, [6] is limited to simple artistic images and performs
poorly on natural images. In addition, representations men-
tioned above do not possess image editing capabilities. Our
method introduces hierarchical geometric nodes to embed
image textures in a multi-layer multi-scale manner, enabling
efficient reconstruction of natural images with minimal pa-
rameters, endowed with easy image editing ability.

Image Geometry. This work explores image geometry,
particularly in relation to triangulation in 2D domain [3, 13,
14, 20, 26]. Triwild [14] introduces a robust 2D meshing
method that generates curved triangles capable of reproduc-
ing smooth feature curves. This work utilizes Triwild con-
strained by Bézier shapes to explore local image geometry
within each layer, enabling multi-scale texture embedding.

3. Methodology

3.1. Overview

Our framework is illustrated in Fig. 2. We parameterize
any input image I € R">#*3 jnto texture embeddings dis-
tributed at multi-layer hierarchical geometric control points
and a decoding function with parameters ¢ which decodes
textures in a coord-to-rgb manner:

I~{{R:i,Rs,..,R.},0}, (1

where L is the number of image layers. R; denotes the i-th
image layer and takes the form: R; = {B;, G, F;}, where
B; means the Bézier shape to fit layer boundary, G; denotes
the multi-scale proxy nodes within B; and F'; denotes the
distributed texture features. The technical details are elabo-
rated in the following sections.

3.2. Semantic-aware Image Layer Decomposition

Current image vectorization algorithms [12, 21, 25, 30]
frequently stack and couple numerous redundant shapes,
which obscures the relationships and hierarchies among
image components, resulting in challenges for easy image
editing. For example, changing the color or shape of a spe-
cific region may inevitably alter overlapping shapes, caus-
ing unintended disruptions.

The above observation motivates us to propose a
semantic-aware image layer decomposition module that de-
composes the input image I into a series of background
regions and foreground regions. To achieve this, we first

employ the Segment Anything Model (SAM) [17] to gener-
ate a series of separate image regions: {M, M..., M} =
SAM(I), where M, € {0,1}">* represents the i—th im-
age layer (as mask). Next, we utilize the Depth Anything
Model [32] to generate the depth map of the input image and
calculate the average depth value d; for each masked region
M. Then we cluster all regions into two sorted clusters
(i.e., background and foreground areas) via k-means clus-
tering [16]:

({0, MLy (MY, MY = cluster({dy, ...dL}).
2
Hence, we decompose the input image into L, foreground
layers and Lo background layers sorted by average depth
values and can render the image layer by layer according
to this depth ordering during subsequent texture parameter
optimization process, enabling the separation of the back-
ground and various foreground semantic components.

3.3. Hierarchical Parameterized Image Geometry

For each image layer M ;, we aim to efficiently fit its edges
using a single Bézier shape (Sec. 3.3.1). Additionally, to
capture complex local structures, we also employ hierarchi-
cally related proxy geometry within the shape (Sec. 3.3.2).

3.3.1. Adaptive Bézier Shape Fitting

Existing image vectorization methods [5, 6, 21, 25] often
require a predefined number of segments per shape to si-
multaneously optimize a large number of Bézier shapes.
However, the number of segments is difficult to define: too
few segments limit the expressive power of the shapes, ne-
cessitating extensive shape stacking to represent complex
geometries, while too many segments lead to parameter
redundancy and optimization challenges. In contrast, we
model each layer as a single shape with an adaptive control
point optimization strategy, thus we can fit any shape with
an arbitrary number of control points adaptively and avoid
shape stacking, which not only enhances the accuracy and
parameter efficiency of Bézier shapes, but also facilitates
easy editing of image semantic components.

Specifically, we first detect the shape boundary points
E;, = {ex} and sample 3m points from them as initial-
ization of control points for an m—segment Bézier shape
B; = {si1,..., sim}, Where each segment s;; is parameter-
ized by four control points {p{;, p};, p;;,p};} and we can
sample points in this segment uniformly by:

Bij = {bi(t) =) _ (i) (1—t)*°t°py;}, 3)

o=0

where ¢ € [0, 1] denotes the sampling coefficient. The
points sampled across the entire shape can be denoted as
B, = U;":lIB%ij. We then calculate the Chamfer distance
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Figure 2. Overview of our framework. We propose a novel vectorized image representation to embed multi-scale image texture features
on multi-layer hierarchically related geometric control points. With such representation, the texture at arbitrary position in the continuous
image domain can be decoded with a geometry-aware interpolation method and a lightweight decoding function.

between [E; and B; to optimize control point positions:

Z min [|b — el + Z min [le — bl @
beB; eckE;
After optimizing for a number of epochs, we compute a per-
segment error for the Bézier shape:

Z lIbs(2)

where e;;;: € E; represents the boundary point that is closest
to the shape point b;;. For each segment s;; with err(s;) >
7, we sample three points {p;;,p;’, p;;’} along the segment
and insert them into the control point sequence, thus split-
ting the segment into two segments s;;; and 8”2, which
are parameterlzed by control points {p;, p;;,p,;,p;; } and
{pi?.p} pi;, p};}, respectively. We repeat the above pro-
cess until the error of any segment is less than 7 and then
obtain the optimized B;.

— eijtll3, (5)

err(si;)

3.3.2. Dynamic Multi-scale Proxy Geometry Generation

Previous methods [6, 21] represent image geometry by fit-
ting only the image edges, which not only fail to cap-
ture complex local geometry but also cannot embed in-
tricate internal textures. To address this, we propose to
place proxy triangles within shapes. Considering that uni-
formly distributing triangles internally struggles to bal-
ance the trade-off between representation accuracy and ef-
ficiency, we introduce an interrelated multi-scale triangu-
lation method to capture both global and local geometric
information efficiently with fewer parameters, facilitating
stable shape/texture representation inside shapes.
Specifically, we first employ the Triwild algorithm [14],
using the Bézier curves as boundary constraints, to triangu-
late the interior of the layer. During triangulation process,
relative edge length [, is a key parameter that controls the
density of the generated triangles (please refer to [14] for
more details). Considering that the texture of background

layers tends to be smoother, while foreground layers often
exhibit richer textures, we assign different base edge lengths
for background and foreground layers respectively, i.e. I
and I]. Thus we obtain the hierarchy-1 proxy geometry:

Gl ={V},T;} = Triwild(M;, B;,1}), (6)

where V| denotes the collection of the hierarchy-1 proxy
vertices and T'; represents the proxy triangle elements.

We believe that regions with higher geometric informa-
tion density should be represented with more finer/smaller
triangles. Hence, we perform dynamic multi-scale triangle
refinement on the hierarchy-1 triangle elements and gen-
erate hierarchical proxy geometric nodes. In our method,
we use gradient magnitudes extracted by the Sobel filter
to measure geometric information density. Specifically, we
first generate a gradient map for M ;. Next, for each triangle
ti; € T;, we identify the pixels covered and generate pixel-
level gradient magnitudes. If ¢;; covers more than one pixel
and the average gradient magmtude of t}; exceeds a spec-
ified threshold, we refine t;; by sampling a vertex on each
of its three edges, thus dividing it into four smaller trian-
gles. Generally, we set the threshold as the average gradient
magnitude within M ;. Performing the above operation in
parallel for all triangles yields the hierarchy-2 proxy geo-
metric nodes, which can be described as:

G = {VI, T} = Refine(V1,T}). ™

We can perform the above process recursively to obtain
proxy geometric nodes with multiple hierarchical levels for
each image layer M ;. The generated hierarchical proxy ge-
ometry can be denoted as:

G =Ul,GY, ®)

where x € {b, f} denotes foreground/background layers.
G;7 = {V7 T} denotes the hierarchy-j proxy geome-
try for M ;. In our experiments, we set h® = 2 and b/ = 3.
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3.4. Neural Texture Parameterization

To efficiently represent precise textures with fewer param-
eters, we follow distributed implicit representation meth-
ods [4, 6, 23] to explore image texture in a coordinate-to-
color manner. In our framework, we abandon the approach
that distributes texture features on fixed discrete grids or
along Bézier curves which solely describe the image edges.
In contrast, we distribute texture features on hierarchically
interrelated geometric control points to embed multi-scale
long-range structures and fine-grained texture details.
Specifically, to capture the global texture information
of layer M;, we sample certain points from the bound-
ary Bézier shape B; as texture control points. To reduce
the number of parameters and ensure a uniform distribution
along the contour, we sample one point in each segment
to store/embed global texture features FY = [fY,,..., f9 ].
To capture the rich local textures within the layer, we also
store/embed texture features at all the multi-scale proxy ver-
tices (i.e., V';) within the layer: F! = [f Ly ,fv“] where
v; means the vertices of all the hierarchical trlangles men-
tioned in Sec. 3.3 and n denotes the number of vertices.
Consequently, we parameterize the texture information
of each image as hierarchical texture feature vectors (i.e.,
F; = [FY, F!]) embedded at geometric control points, along
with a lightweight decoding function ¢y : [x, fq]
to map features to texture values, where x is the queried
coordinate and f, denotes the corresponding feature vec-
tor at the queried point, which can be obtained through a
geometry-aware interpolation method. Specifically, for ar-
bitrarily positioned query point in M; with coordinate x,
we follow [6] to use inverse distance weighting method to
interpolate its global texture feature from features stored at
Bézier control points:

Zz R T ©)

w(z,py) Y

where p;; means the texture control point sampled from
the j-th segment. w(-,-) is the inverse distance weight-
ing function. For local texture features, we first use the
barycentric coordinate algorithm to locate the triangle el-
ement t;; = [v];,v};,v};] that covers point & within all the
hierarchical proxy triangles (i.e., T';). We then use barycen-
tric coordinate interpolation to obtain the local texture fea-
ture of point x:

3
DL @
k=1

where (\J', A2 \i4:3) denotes the barycentric coordinate
vector of point z with respect to triangle element ¢;; and f'
means the local feature vectors at each vertex of ¢;;. Thus,
for any query point &, we can interpolate its texture fea-
tures: fo = [f%, f.]. Then the texture value at point = can
be predicted through a decoding function ¢g.

Thanks to hierarchical texture embedding on both edge
control points and multi-scale proxy geometric nodes
within shapes, our implicit texture embedding is highly ro-
bust. Also, the texture of each layer is represented solely by
the features stored at its own geometric points. Such layer-
wise strategy significantly accelerates the convergence of
texture parameters, and facilitates efficient image editing.

3.5. Representation Parameters Optimization

For geometric parameters, the coordinates of Bézier con-
trol points and multi-scale triangles are obtained as stated
in Sec. 3.3. For texture parameters, we follow [4, 6] to treat
each pixel [i, j] as a coordinate «;; in normalized continu-
ous image space. For each point, we search its correspond-
ing layer according to the layer order defined in Eqn. 2
and then obtain its hierarchical features f, ., as described
in Sec. 3.4. It is noted that we only need to assess the po-
sitional relationship between the pixel coordinates and the
Bézier shapes, eliminating the need to store a binary mask
for each layer. Then we can predict the texture value at
pixel [z, j] with the decoding function ¢y. To capture high-
frequency texture details, we follow [22] to incorporate po-
sition encoding at the input. Additionally, to avoid fitting
texture information to absolute coordinates and to maintain
hierarchical editability of the image, we encode the local

coordinates of each pixel in the corresponding triangle:

Ty = U([wi — vg,,, @iy — V3, Tij —vg,,]), (1)
where U denotes the parameter-free encoding function as
defined in [22]. v;” means the vertices of the triangle that

covers x;; and [, -] denotes concatenation. Hence the out-
put image I can be described as:
10, j] = ¢0([&is, fo,,))- (12)

Then we can use pixel-wise error to optimize the texture
features of all image layers (i.e., F = [F1,..., F'.]) and the
parameters 6 of the decoding function simultaneously. The
optimization objective can be denoted as:

in ||I — IJ|3. 1
{I};}g}ll [12 13)

After parameter optimization, we can efficiently per-
form shape and texture editing for natural images with
complex texture, which are not achieved by current SO-
TAs [6, 12, 21]. For instance, we can perform image shape
editing by manipulating the Bézier control points (e.g.,
translating, rotating and scaling). We then map the pix-
els covered by the transformed shapes back to the coordi-
nate space of corresponding geometric nodes to interpolate
texture features, which effectively ensures in-shape texture
consistency. Additionally, we can achieve texture transfer
from M ; to M ; by mapping the pixels of M to the coordi-
nate space of geometric nodes of M ; for new texture feature
interpolation, while ensuring the consistency of structure in-
side M ;. Please refer to Sec. 4.3 for more details.
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4. Experiments

Datasets. Most image vectorization methods [5, 19, 25]
are limited to images with extremely simple textures like
Icon [2] and Emojis [1]. Recent works [6, 11, 21] extend
their methods to Clipart images with slightly more complex
textures. SuperSVG [12] utilizes the natural images of Im-
ageNet [8] for training and evaluation. We compare our
method with SOTAs on all the datasets mentioned above.
Implementation Details. We initialize 4—segment Bézier
shape for each layer, i.e., m = 4. During adaptive Bézier
shape fitting, we optimize for a total of 2000 epochs and
calculate the per-segment error every 500 epochs. We set
the error threshold 7 = 2e — 3. For Triwild algorithm, we
set base edge lengths as [ = 0.2,1] = 0.05. We set the
dimension of texture features as 16, the dimension of co-
ordinate embedding as 66, and the ¢y is a two-layer MLP
with input dimension 82, hidden dimension 128 and output
dimension 3. We optimize the texture parameters for 2000
epochs and the entire pipeline takes an average of 5 minutes
for each natural image on ImageNet.

4.1. Comparison with Image Vectorization Methods

We compare our method with current SOTA methods (i.e.,
DVG [19], LIVE [21], O&R [11], S-SVG [12] and Chen et
al. [6]) on image vectorization task. For Emojis&Icon
datasets, we use MSE distance as the metric. For Clipart
and ImageNet benchmark, we use MSE, PSNR, LPIPS and
SSIM as metrics. Note that S-SVG [12] only releases part of
its source code, thus we directly use the best results reported
in their paper (4000 shapes). In addition, increasing the
shape number has only a limited effect on the performance
of Chen et al. [6] (as demonstrated in their paper), thus we
use their 512-shape version considering their GPU mem-
ory usage and optimization time. For other compared meth-
ods, we use 512 shapes on Clipart and 4000 shapes on Im-
ageNet. Quantitative comparisons are shown in Tab. | and
Tab. 2. We can observe that our method significantly outper-
forms other methods across all metrics. In particular, exist-
ing methods are significantly short in natural image recon-
struction compared to ours, which can be attributed to that
previous approaches either stack shapes [11, 12, 19, 21] to
represent textures or encode textures into sparse edge con-
trol points [6]. In contrast, our method employs multi-layer
multi-scale interrelated geometric control points to encode
both global information and local texture details, achieving
superior reconstruction quality. We also show some quali-
tative comparisons in Fig. 3. We can see that Chen et al. [6]
can only reconstruct very smooth textures and fail to cap-
ture complex texture details due to lack in texture control
points within shapes (e.g., the intricate texture of eyes and
bird’s feathers). Our method can capture intricate and com-
plex textures thanks to hierarchical texture embedding.

Dataset ‘ DVG Im2Vec LIVE O&R Chen Ours

Emoji 9.24 25.81 1.61 1.44 0.63 0.12
Icon 28.52 32.90 2.42 2.23 0.70 0.11

Table 1. Image vectorization results on Emoji&Icon datasets.
MSE (x1073) results are reported. All compared methods use 10
shapes. Our method achieves significantly better results.

Dataset | Method | Time | MSE| PSNRt LPIPS| SSIM{t
DVG | 75 | 218 2660 02998 0.8542
LIVE | 902 | 1.92 2717 02633 0.8742
Clipart. | O&R | 109 | 1.64 2785 02599 0.8739
Chen | 292 | 055 3259 02109 09182
Ours | 43 | 017 3770  0.0835 0.9590
DVG | 898 | 2.63 2580 03823 0.8459
LIVE | >1000| 291 2536 04076 0.8443
O&R | 813 | 298 2526 04058 0.8464
S-SVG - 140  29.96 02496 0.9028
Chen | 343 | 156 28.07 02593 0.8717
Ours | 52 | 037 3432 01082 0.9333

ImageNet.

Table 2. Image vectorization results on Clipart and ImageNet.
MSE (x1073) and other image reconstruction metrics are re-
ported. Our method achieves best results across all metrics, es-
pecially on complex natural images. S-SVG is based on deep net-
work training, thus we do not compare its running time. The time
(mins) is tested on an NVIDIA GeForce RTX 3090 GPU.

4.2. Comparison with Implicit Representations

We compare our method with implicit image representa-
tion algorithms (i.e., SIREN [27], Grid-based method and
Chen et al. [6]) on the ImageNet dataset. We use 3—layer
and 5—layer version of SIREN for comparison. For grid-
based method, we follow [6] to utilize the framework of
LIIF [4] to perform zero-shot image reconstruction, which
stores feature vectors on fixed grids and decodes the fea-
tures with a 2—layer MLP. We demonstrate the effective-
ness and efficiency of our method by comparing recon-
struction quality and the number of implicit parameters on
the ImageNet dataset. Quantitative results are reported in
Tab. 3. The results indicate that our method achieves signif-
icantly higher reconstruction metrics than counterparts with
a highly compressed parameter count. Notably, compared
to Chen et al. [6], although we place many proxy geometric
points within each shape, our layer-wise strategy to model
each image layer as a single shape allows us to save a sub-
stantial number of Bézier control points (Chen et al. [6]
need several hundreds of 4—segment shapes for a natural
image while our method needs only a few shapes/image
layers). In Fig. 4, we present a visual comparison with
methods that have similar number of parameters to ours.
SIREN [27] exhibits noticeable blurring and a lack of high-
frequency details when the number of MLP layers is insuf-
ficient as it fits all information into MLP parameters, disre-
garding the explicit image structure and texture distribution.
For grid-based method that stores features on fixed grids, a
large number of features is needed to achieve acceptable
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Raster

Figure 3. Qualitative comparison on natural images. We use red boxes to emphasize the differences. Our representation can express
complex image details. The results of S-SVG [12] are directly obtained from their paper. Please zoom in for more details.

Method |MSEJ, PSNRT LPIPS| SSIM?T Codes.] Params.]
SIREN-3 } 2.50 26.02  0.2773  0.8267 - 50307

SIREN-5 | 1.70  27.70  0.2605 0.8688 - 83331

LIIF-/8 6.58  21.82  0.5059 0.6347 4096 68099
LIIF-/4 310  25.09 0.2920 0.8241 16384 264707

Chen-256 | 1.64  27.85 0.2595 0.8692 3072 58115
Chen-512 | 1.56  28.07 02593 0.8717 6144 113411

Ours | 037 3432 0.1082 09333 2106 48919

Table 3. Comparison with general implicit image represen-
tations. MSE (x10~2) and other reconstruction results on Ima-
geNet benchmark are reported. “Codes” denotes the number of
feature vectors utilized. “Params” denotes the number of param-
eters. “SIREN” does not distribute feature vectors. “SIREN-x"
means the SIREN version with x layers. In “LIIF-/%”, the “x” de-
notes the proportion of the spatial dimension of the original image
to the grids storing feature vectors as defined in [6].

reconstruction results, which is very inefficient. Chen et
al. [6] fail to model intricate texture details due to the sparse
texture embedding. Our method achieves high parameter
compression while preserving high reconstruction quality
by utilizing multi-layer and multi-scale texture embedding.

4.3. Easy Image Editing

Easy image editing for natural images is a very challeng-
ing task in image vectorization area. Current methods such

Input SIREN-3 LIIF-/8 Chen-256

Figure 4. Qualitative comparison on natural images. We visu-
alize examples of methods with the same order of magnitude of
parameters. Please zoom in for more details.

as LIVE [21] and SuperSVG [12] lack texture modeling,
requiring extensive shape stacking to represent natural im-
ages, which makes it impossible to precisely edit specific
areas of interest. Chen et al. [6] decouple image geome-
try and texture and embed texture codes into image edge
points, enabling the editing of simple images such as Emo-
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Chen et al. Ours
Decompose Edit Shape

Chen et al.

Input Chen et al. Decompose

Add shape Texture Texture

Recons.
econs. +Trans.+Rot. Transfer Transfer

Figure 5. Some examples on easy image editing task. We com-
pare editing results with Chen et al. [6] above the dashed line.
Chen et al. [6] suffer from significant texture distortion during
editing. We also show some examples of ours below the dashed
line. We use red boxes to indicate the edited shapes and red ar-
rows to indicate texture transfer. Please zoom in for details.

jis [1] and Icons [2]. In this section, we compare with [6]
on image editing task and the results are shown in Fig. 5.
We observe that the original method of [6] also results in
shape stacking, making editing unreasonable. For fair com-
parisons, we modify the pipeline of [6] by first segmenting
the region of interest and then fitting it individually with a
single shape. We then transform shapes by adjusting control
points (columns 3 and 4) and transfer textures by migrating
features (columns 5 and 6) as depicted in Sec. 3.5. We can
see that [6] results in severe texture distortion when shapes
are deformed and does not support precise texture trans-
fer between different shapes, which can be attributed to the
sparse texture embedding and distance-based interpolation,
which results in a discontinuous coordinate-to-texture map-
ping. In contrast, our method allows for easy shape editing
while preserving detailed texture consistency and smooth
texture transfer between shapes because of the stable tex-
ture representation with multi-layer multi-scale texture em-
bedding and the layer-wise Bézier fitting strategy.

4.4. Ablation Study

Component Analyses. We first conduct experiments to ex-
plore the effectiveness of the crucial modules in the pro-
posed framework. The results are shown in Tab. 4. We
can see that when using only edge control points without
internal triangles (“Edge-only”), reconstruction results on
natural images deteriorate significantly. Employing a sin-
gle level of internal triangles within shapes yields competi-
tive results with relatively few parameters. Utilizing multi-
scale triangles further enhances reconstruction quality with
only a minimal increase in parameters, which demonstrates
the effectiveness of our multi-scale scheme. We also con-
duct the ablated version without Bézier fitting, where we di-
rectly perform Trilwild algorithm on the entire image (“Tri-

Edge  Edge+  Edge+ Tri w/o Pos IDW

-only  SinTri MulTri  -only Enc. -Tri

MSE 1.13 0.54 0.37 0.65 0.93 0.43
Params. | 15097 36067 48919 34501 40727 48919

Table 4. Component analyses on feature embedding methods.
“SinTri” and “MulTri” denotes single-scale triangles and multi-
scale triangles respectively. “IDW-Tri” means using inverse dis-
tance weighting interpolation within triangles. MSE (x10~?) re-
sults and parameter counts on ImageNet are reported.
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Figure 6. Parameter analyses. MSE (x 10~3) results (blue) and
parameter counts (red) on ImageNet are reported.

only”). With a similar parameter count, this version exhibits
reduced reconstruction quality on natural images. This
demonstrates the effectiveness of our layer-wise strategy
and multi-level feature fusion at both shape edges and inte-
riors. We also demonstrate the effectiveness of the position
encoding scheme and the interpolation method based on
barycentric coordinates, which further enhance our method.
Parameter Analyses. We investigate how the texture fea-
ture dimension, the hidden dimension and the number of
MLP layers affect the reconstruction results. The results
are shown in Fig. 6. We observe that, due to our efficient
multi-layer multi-scale texture feature embedding, the im-
provement in reconstruction quality from higher texture fea-
ture dimensions or higher hidden dimensions is minimal.
Additional MLP layers further enhance the performance of
our method. Considering the trade-off between reconstruc-
tion quality and parameter counts, using a two-layer MLP
proves to be highly efficient.

5. Conclusion

This work presents a novel efficient image representation to
parameterize any image into layer-wise texture embeddings
distributed at multi-layer geometric control points. Exten-
sive experiments on various tasks and benchmarks demon-
strate that our representation effectively reconstructs com-
plex natural images with significant parameter compression,
while enabling precise and easy image editing.
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