
Under review as a conference paper at ICLR 2022

PERSONALIZED PAGERANK MEETS GRAPH ATTEN-
TION NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

There has been a rising interest in graph neural networks (GNNs) for representa-
tion learning over the past few years. GNNs provide a general and efficient frame-
work to learn from graph-structured data. However, GNNs typically only use the
information of a very limited neighborhood for each node. A larger neighbor-
hood would be desirable to provide the model with more information. However,
increasing the size of the neighborhood is not trivial since neighborhood aggre-
gation over many layers leads to over-smoothing. In this work, we incorporate
the limit distribution of Personalized PageRank (PPR) into graph attention net-
works (GATs) to address this issue. Intuitively, message aggregation based on
Personalized PageRank corresponds to infinitely many neighborhood aggregation
layers. We show that our models outperform a variety ofbaseline models across
all datasets used for our experiments. Our implementation is publicly available
online.

1 INTRODUCTION

There has been a rising interest in graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al.,
2008) for representation learning over the past few years (Duvenaud et al., 2015; Atwood & Towsley,
2016; Bronstein et al., 2017; Monti et al., 2016). GNNs provide a general and efficient framework to
learn from graph-structured data. Thus, GNNs are easily applicable in problems where the data can
be represented as a set of nodes and the prediction depends on the relationships (edges) between the
nodes. Such problems include molecules, social networks, knowledge graphs, and recommendation
systems.

A GNN can be viewed as a message-passing network (Gilmer et al., 2017), where each node itera-
tively updates its state by interacting with its neighbors. GNN variants (Wu et al., 2019; Xu et al.,
2018a; Li et al., 2016) mostly differ in how each node aggregates the representations of its neigh-
bors and combines them with its own representation. Several works have been proposed to improve
the basic neighborhood aggregation scheme by using attention mechanisms (Kearnes et al., 2016;
Hamilton et al., 2018; Veličković et al., 2018), random walks (Abu-El-Haija et al., 2020; Ying et al.,
2018; Li et al., 2018), edge features (Kearnes et al., 2016; Gilmer et al., 2017; Schlichtkrull et al.,
2018) and making it more scalable on large graphs (Chen et al., 2018; Ying et al., 2018). However,
all of these methods only use the information of a very limited neighborhood for each node. A larger
neighborhood would be desirable to provide the model with more information.

Increasing the size of the neighborhood is not trivial since neighborhood aggregation in this scheme
is essentially a type of Laplacian smoothing and too many layers lead to over-smoothing (Li et al.,
2018). Xu et al. (2018b) highlighted the same problem by establishing a relationship between the
message passing algorithm of Graph Convolutional Network (GCN) by Kipf & Welling (2017) and
a random walk. Using this relationship we see that GCN converges to this random walk’s limit
distribution as the number of layers increases. The limit distribution is a property of the graph as
a whole, rather than the property of the starting node. As such GCN’s performance necessarily
deteriorates for a high number of layers (which means the aggregation over the larger size of the
neighborhood). Kipf & Welling (2017) also reported that the performance of GCNs decreases for
the number of layers beyond 2.

In this work, we incorporate the limit distribution of Personalized PageRank (PPR) (Page et al.,
1999) into GNNs to address these limits of the GNN family. Intuitively, message aggregation based

1

Under review as a conference paper at ICLR 2022

on Personalized PageRank corresponds to infinitely many neighborhood aggregation layers where
the node influence decays exponentially with each layer. Furthermore, we use an approximate Per-
sonalized PageRank matrix, which approximates the PPR matrix with a sparse matrix for scalability.

Now, to fully leverage the expressive power of GNNs, we incorporate this PPR matrix into Graph
Attention Networks (GATs) (Veličković et al., 2018). We call our model PPRGAT. GAT pioneered
the use of attention-based neighborhood aggregation, in one of the most popular GNN variants -
Graph Attention Network (GAT). In GAT, every node updates its representation by attending to its
neighbors using its own representation as to the query. This generalizes the standard averaging or
max-pooling of neighbors (Kipf & Welling, 2017; Hamilton et al., 2018), by allowing every node to
compute a weighted average of its neighbors according to the neighbor’s importance. The work of
Hamilton et al. (2018) also generalizes the Transformer’s (Vaswani et al., 2017) self-attention mech-
anism, from sequences to graphs. GAT is one of the most popular GNN architectures (Bronstein
et al., 2021) and is considered as the state-of-the-art neural architecture for learning with graphs
(Wang et al., 2019).

To incorporate the PPR matrix into GAT, we consider two versions. First, we concatenate the PPR
matrix information to the node features xi, xj when we compute the attention score between node
i and node j if there is an edge between node i and node j. In this version, we use the original
adjacency matrix and the neighbors are identified by this adjacency matrix as in the standard GATs
(Veličković et al., 2018). Second, we replace the original adjacency matrix with the sparse approxi-
mate PPR matrix. In this version, only the top k indices (nodes) of i’s row of the approximate PPR
matrix are considered the neighbors of node i.

2 RELATE WORK

Our work builds upon a number of recent advancements in deep learning methods and Personalized
PageRank for graph-structured data. In this section, we first introduce our notation and then review
prior works related to the neighbor aggregation methods on graphs. Let G = (V,E) denote a graph
with a set of nodes V = {v1, · · · , vN}, connected by a set of edges E ⊆ V × V . Node features
are organized in a compact matrix X ∈ RN×D with each row representing the feature vector of one
node, where N is the number of nodes and D is the dimension of the features. Let A ∈ RN×N

denote the adjacent matrix that describes graph structure of G : Aij = 1 if there is an edge eij from
node i to node j, and 0 otherwise. By adding a self-loop to each node, we have Ã = A + IN to
denote the adjacency matrix of the augmented graph, where IN ∈ RN×N is an identity matrix.

For a semi-supervised node classification task, given a set of labeled nodes {(vi, yi), i = 1, · · · , n},
where yi is the label of node i and n < N , we learn a function f(X,A,W), parameterized by
W , that takes node features X and graph structure A as inputs and yields a node embedding matrix
H ∈ RN×D′

for all nodes in V , whereD′ is the dimension of the final representation. Subsequently,
H is fed to a classifier to predict the class label of each unlabeled node. To learn the model parameter
W , we typically minimize an empirical risk over all labeled nodes:

R =
1

n

∑
L(fi(X,A,W), yi), (1)

where fi(X,A,W) denotes the output of f(X,A,W) for node i and L(·) is a loss function, such as
the cross-entropy loss that measures the error between model predictions and class labels. Although
there exist many different GNN algorithms that can solve Equation 1, the main difference among
them is how the encoder function f(X,A,W) is defined.

2.1 NEIGHBOR AGGREGATION METHODS

Most of the graph learning algorithms are based on a neighbor aggregation mechanism. The basic
idea is to learn a parameter-sharing aggregator, which takes feature vector xi of node i and its
neighbors’ feature vectors xj , j ∈ Ni as inputs and outputs a new feature vector for the node i.
Essentially, the aggregator function aggregates lower-level features of a node and its neighbors and
generates high-level feature representations. The popular Graph Convolution Networks (GCNs)

2

Under review as a conference paper at ICLR 2022

(Kipf & Welling, 2017) fall into the category of neighbor aggregation. For a 2-layer GCN, its
encoder function can be expressed as:

f(X,A,W) = softmax
(
Âσ(ÂXW (0))W (1)

)
, (2)

where Â = D̃−
1
2 ÃD̃−

1
2 , Dii =

∑
j Ãij , and W (·)s are the learnable parameters of GCNs. Appar-

ently, GCNs define the aggregation coefficients as the symmetrically normalized adjacency matrix
Ã, and these coefficients are shared across all GCN layers. More specifically, the aggregator of
GCNs can be expressed as

h
(l+1)
i = σ

∑
j∈Ni

Ãijh
(l)
j W

(l)

 , (3)

where h(l)j is the hidden representation of node j at layer l , h(0) = X , and Ni denotes the set of all
the neighbors of node i, including itself.

Since a fixed adjacency matrix Â is used for feature aggregation, GCNs can only be used for the
transductive learning tasks, and if the graph structure changes, the whole GCN model needs to be
retrained or fine-tuned. To support inductive learning, GraphSage (Hamilton et al., 2018) proposes
to learn parameterized aggregators (e.g., mean, max-pooling or LSTM aggregator) that can be used
for feature aggregation on unseen nodes or graphs. To support large-scale graph learning tasks,
GraphSage uniformly samples a fixed number of neighbors per node and performs computation on
a sampled subgraph at each iteration. Although it can reduce computational cost and memory usage
significantly, its accuracies suffer from random sampling and partial neighbor aggregation.

2.2 GRAPH ATTENTION NETWORKS

Recently, attention networks have achieved state-of-the-art results in many computer vision and nat-
ural language processing tasks, such as image captioning (Xu et al., 2015b) and machine translation
(Bahdanau et al., 2014). By using learnable weights on each input, the attention mechanism can
decide how much attention to give to each input in order to gather the most useful information.
Extending the attention mechanism to graph-structured data, Graph Attention Networks (GATs)
(Veličković et al., 2018) utilize an attention-based aggregator to generate attention coefficients over
all neighbors of a node for feature aggregation. In particular, the aggregator function of GATs is
similar to that of GCNs:

h
(l+1)
i = σ

∑
j∈Ni

a
(l)
ij h

(l)
j W

(l)

 , (4)

except that (1) a(l)ij is the attention coefficient of edge eij at layer l, assigned by an attention function
rather than by a predefined Ã, and (2) different layers utilize different attention functions, while
GCNs share a predefined Ã across all layers. To increase the capacity of attention mechanism,
GATs further exploit multi-head attentions for feature aggregation: each head works independently
to aggregate information, and all the outputs of multi-heads are then concatenated to form a new
feature representation for the next layer. In principle, the learned attention coefficient can be viewed
as an importance score of an edge.

In GAT (Veličković et al., 2018), a scoring function e : Rd × Rd → R computes a score for every
edge (j, i), which indicates the importance of the features of the neighbor j to the node i:

e(hi, hj) = LeakyReLU(aT · [Whi||Whj]) (5)

where a ∈ R2d′ ,W ∈ Rd
′×d are learned, and || denotes vector concatenation. These attention

scores are normalized across all neighbors j ∈ Ni using softmax, and the attention function is

3

Under review as a conference paper at ICLR 2022

defined as:

αij = softmaxj(e(hi, hj)) =
exp(e(hi, hj))∑

j′∈Ni
exp(e(hi, hj′)

) (6)

Then, GAT computes a weighted average of the transformed features of the neighbor nodes (fol-
lowed by a non-linearity σ) as the new representation of node i, using the normalized attention
coefficients:

h′i = σ

∑
j∈Ni

αij ·Whj

 (7)

Later, Brody et al. (2021) pointed out that the ranking of attention coefficients in Equation (6 is
global for all nodes in the graph, and is unconditioned on the query node. This attention coefficient
can be considered static attention. Brody et al. (2021) proposed GATv2, which modifies Equation
(5) to

e(hi, hj) = aTLeakyReLU(W · [hi||hj]) (8)
and showed that it can yield dynamic attention using this simple modification.

In our work, we implement our PPRGAT for these two versions: GAT (Veličković et al., 2018)
and GATv2 (Brody et al., 2021). We will call the second version (PPRGAT applied to GATv2) as
PPRGATv2 if the distinguishment is needed. We show that PPRGAT outperforms both baselines.

2.3 PERSONALIZED PAGERANK AND GNNS

Despite their success of GNNs, over-smoothing is a common issue faced by GNNs (Li et al. (2018)),
which means that the representations of the graph nodes of different classes would become indis-
tinguishable when stacking multiple layers, which hurts the model performance. Veličković et al.
(2018) showed that the model performance of GCNs decreases if the number of layers goes beyond
2. Due to these reasons, GNNs typically only use the information of a very limited neighborhood for
each node. A larger neighborhood would be desirable to provide the model with more information.

In order to address this issue, there have been efforts to incorporate Personalized PageRank into
GNNs recently. Personalized PageRank (Page et al., 1999) is a standard tool for finding vertices
in a graph that are most relevant to a query. To personalize PageRank, one adjusts node weights
or edge weights that determine teleport probabilities and transition probabilities in a random surfer
model. The idea is to use the Personalized PageRank limit distribution, instead of the original edges,
as the weights to aggregate the node features. Specifically, Klicpera et al. (2019) proposes ”Predict
then Propagate” methods: It first predicts the node representations using a simple MLP, and then
aggregates these node representations using Personalized PageRank limit distributions. Bojchevski
et al. (2020) uses a similar approach, except that it pre-compute the limit distributions and uses only
top k important nodes for scalability.

3 PROPOSED METHOD: PPRGAT

In this section, we define our problem and introduce our new model, PPRGAT.

Our work is inspired by GAT described in Section 2.2 and Personalized PageRank described in
Section 2.3. We incorporate Personalized PageRank limit distribution into the attention coefficients
in GAT layers. In this way, GNNs can be aware of the whole graph structure and learn more efficient
attention weights.

3.1 APPROXIMATE PPR DISTRIBUTION AS SPARSE MATRIX

Personalized PageRank matrix is defined by

Πppr = α
(
In − (1− α)D−1A

)−1
(9)

Each row π(i) := Πppr
i,: is equal to the Personalized PageRank vector of node i. We are interested

in efficient and scalable algorithms for computing (an approximation) of Personalized PageRank.

4

Under review as a conference paper at ICLR 2022

Random walk sampling (Fogaras et al., 2005) is one such approximation technique. While simple
to implement, in order to guarantee at most ε absolute error with probability of 1 − 1

n , we need

O
(

logn
ε2

)
random walks.

For this work, we adopt the approach by Andersen et al. (2006). It offers a good balance of scalabil-
ity, approximation guarantees, and ease of distributed implementation. They show that π(i) can be
weakly approximated with a low number of non-zero entries using a scalable algorithm that applies
a series of operations that can be executed in a distributed manner.

When the graph is strongly connected π(i) is non-zero for all nodes. Nevertheless, we can obtain a
good approximation by truncating small elements to zero since most of the probability mass in the
Personalized PageRank vectors π(i) is localized on a small number of nodes (Andersen et al., 2006;
Nassar et al., 2015). Thus, we can approximate π(i) with a sparse vector and in turn approximate
Πppr with a sparse matrix.

Once we obtain an approximation Πε of Πppr we can either use it directly to propagate information,
or we can renormalize it via D

1
2 ΠεD−

1
2 to obtain an approximation of the matrix Πsym.

We additionally truncate Πε to contain only the top k largest entries for each row π(i). We call
it Πε,k. Note that this computation can be parallelized for each node i and hence computationally
efficient. Furthermore, we only need to pre-compute Πε,k once before training and use it during
training.

3.2 GAT LAYER WITH PPR MATRIX

Recall the importance of the features of the neighbor j to the node i in GAT is Equation (5). To
incorporate the PPR matrix information into the GAT layer, we modify this to

e(hi, hj) = LeakyReLU(aT · [Whi||Whj ||Πε,k
ij]) (10)

Using this simple modification, we can naturally incorporate the global graph structure into the local
GAT layer.

We also apply the same approach to GATv2 (Brody et al., 2021). For this, Equation (8) is modified
to

e(hi, hj) = aTLeakyReLU(W · [hi||hj ||Πε,k
ij]) (11)

We call this model as PPRGATv2.

Now, when we normalize the attention scores across all neighbors j ∈ Ni as in Equation (6) and
aggregate the features as in Equation (7), we consider two approaches for the definition of neighbors
Ni. First, the default version is to aggregate over the top-k nodes of π(i). Second, we aggregate over
the original neighbors defined by the original adjacency matrix. We call this variant PPRGAT-local,
PPRGATv2-local, respectively.

4 EXPERIMENTS

We compare our proposed model against a wide variety of GAT based models and PPR based mod-
els. Specifically, GAT based baselines include GAT (Veličković et al., 2018) and GATv2 (Brody
et al., 2021), and PPR based baselines include (A)PPNP Klicpera et al. (2019) and PPRGo (Bo-
jchevski et al., 2020). For our proposed model, we evaluate the four variants described in Section 3:
PPRGAT, PPRGAT-loc , PPRGATv2, and PPRGATv2-loc.

4.1 DATASETS

Transductive learning We test the models on the three standard citation network benchmark
datasets: Cora, Citeseer, and Pubmed (Sen et al., 2008). For these datasets, we follow the trans-
ductive experimental setup of Yang et al. (2016). In all of these datasets, nodes correspond to docu-
ments, and edges correspond to citations. Node features correspond to elements of a bag-of-words
representation of a document. Each node has a class label. While large graphs do not necessarily
have a larger diameter (Leskovec et al., 2005), note that these graphs indeed have average shortest

5

Under review as a conference paper at ICLR 2022

Figure 1: Illustration of PPRGAT. First, we precompute Πε,k from the adjacency matrix. Second,
Πε,k
ij , xi, xj are used together to generate the attention score from node j to nose i in the GAT layer.

The model is trained end-to-end.

Table 1: Summary of the graph datasets used in the experiments
Cora Citeseer Pubmed PPI

Task Transductive Transductive Transductive Inductive
Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) 56944 (24 graphs)
Edges 5429 4732 44338 818716
Features/Node 1433 3703 500 50
Classes 7 6 3 121 (multilabel)
Training Examples 140 120 60 44906 (20 graphs)
Validation Examples 500 500 500 6514 (2 graphs)
Test Examples 1000 1000 1000 5524 (2 graphs)

path lengths between 5 and 10 and therefore a regular two-layer GCN cannot cover the entire graph.
This characteristic make these citation datasets useful to evaluate the effectiveness of introducing
PPR information into the shallow layers of GNNs.

Inductive learning We test the models on protein-protein interaction (PPI) dataset that consists of
graphs corresponding to different human tissues (Zitnik & Leskovec, 2017). In this task, the testing
graphs remain completely unobserved during training.

Table 1 summarizes the graph datasets used in the experiments.

4.2 EXPERIMENTAL SETUP

For fair comparisons, for all of our 4 variants of PPRGAT, we use the same hyperparameters as the
GAT based baselines and PPR based baselines if possible. Specifically, GAT based setup is for our
4 variants of PPRGAT and the two baselines: GAT and GATv2. PPR based setup is applicable to
our 4 variants of PPRGAT and the two baselines: (A)PPNP and PPRGo. More details are described
below.

4.2.1 TRANSDUCTIVE LEARNING

Common setup All the models are initialized using Glorot initialization (Glorot & Bengio, 2010).
We use an early stopping strategy on validation loss, with a patience of 100 epochs.

GAT related setup We apply a two-layer GAT model. For the first layer, we use 8 features and 8
attention heads. And it’s followed by a ReLU (Xu et al., 2015a). For the second layer, the number
of output features is the same as the number of classes. Also for the second layer, we use 1 head
except for PubMed. For PubMed, we use 8 output attention heads, following the observation from

6

Under review as a conference paper at ICLR 2022

Table 2: Classification accuracies (in %) of different node classification algorithms on the citation
datasets. Results are the averages of 10 runs.

Model Cora Citeseer Pubmed
GAT 83 70.8 79
GATv2 82.9 71.6 78.7
APPNP 83.3 71.8 80.1
PPRGo 74.2 65.6 70.7
PPRGAT 83.9 72.5 80.4
PPRGAT-loc 84 72.2 80.1
PPRGATv2 83.8 72.4 80.5
PPRGATv2-loc 83.9 72.1 80.2

Monti et al. (2016). Then we apply softmax nonlinear activation for the final output. Furthermore,
dropout (Srivastava et al., 2014) with p = 0.6 is applied to both layers’ inputs and the normalized
attention coefficients

PPR related setup We use teleport parameter α = 0.25 for all datasets. For the approximation Πε

of Πppr, we use ε = 10−4. Furthermore, for the truncated Πε,k of Πε introduced in Section 3.1, with
k = 32. In other words, we keep only the top 32 elements of each PPR distribution π(i)

4.2.2 INDUCTIVE LEARNING

Common setup All the models are initialized using Glorot initialization (Glorot & Bengio, 2010).
We use an early stopping strategy on micro-F1 (inductive) score on the validation sets, with a pa-
tience of 100 epochs.

GAT related setup For the inductive learning task (PPI dataset), we apply a three-layer GAT model.
Both of the first two layers consist of K = 4 attention heads computing 256 features (for a total
of 1024 features), followed by an ELU nonlinearity. The final layer is used for the multi-label
classification. For this final layer, we use 6 attention heads computing and 121 features each, that
are averaged and followed by a sigmoid activation. As observed by Veličković et al. (2018), the
training sets for the PPI dataset are sufficiently large, and we found no need to apply dropout for
regularization.

PPR related setup We use teleport parameter α = 0.25. For the approximation Πε of Πppr, we use
ε = 10−4. Furthermore, for the truncated Πε,k of Πε introduced in Section 3.1, with k = 32. In
other words, we keep only the top 32 elements of each PPR distribution π(i)

4.3 EVALUATION RESULTS

The results of our comparative evaluation experiments are summarized in Tables 2 and 3. The
experiment results successfully demonstrate our models outperform the baselines across all four
datasets. This is in line with our expectations as per the discussion 3. It is important to note that our
models outperform the baseline on the PPI dataset. This implies that the approximate PPR matrix
of the unseen data along side the learned weights can still efficiently predict the outputs

5 CONCLUSION

We have introduced PPRGAT, novel convolution-style neural networks that operate on graph-
structured data. It incorporates the PPR information into the Graph Attention Networks (GATs).
In this way, PPRGAT utilizes the full potential of GATs, while incorporating the whole adjacency
matrix information via PPR matrix, even with the shallow GAT layers. Approximating the PPR
matrix is very efficient following the approach by Andersen et al. (2006), and it can be parallelized.
Furthermore, computing the PPR matrix can be considered as a preprocess step before starting the
training. This PPR matrix is stored in memory and reused during the training. This implies that
PPRGATs are scalable at the same level of GATs.

7

Under review as a conference paper at ICLR 2022

Table 3: Classification micro-F1 scores (in %) of different node classification algorithms on the PPI
dataset. Results are the averages of 10 runs.

Model PPI
GAT 96.5
GATv2 96.3
APPNP 96.7
PPRGo 87.8
PPRGAT 97.5
PPRGAT-loc 97.1
PPRGATv2 97.4
PPRGATv2-loc 97.1

There are several potential improvements and extensions to PPRGATs. First, statistically analyzing
the relation between PPR matrix distribution, original attention score, and the attention score using
PPR matrix will provide the intuition behind what makes PPRGATs better than the other baselines.
Second, there have been some works on graph sparsification (Calandriello et al., 2018; Chakeri et al.,
2016; Rong et al., 2020; Hasanzadeh et al., 2020; Zheng et al., 2020). It will be interesting to see
how the truncated PPR matrix will compare with the subgraph after these graph sparsification.

REFERENCES

Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-gcn: Multi-scale graph
convolution for semi-supervised node classification. In uncertainty in artificial intelligence, pp.
841–851. PMLR, 2020.

Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In
2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 475–
486. IEEE, 2006.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in neural
information processing systems, pp. 1993–2001, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. 2014.

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with
approximate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, 2020. ACM.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Daniele Calandriello, Alessandro Lazaric, Ioannis Koutis, and Michal Valko. Improved large-scale
graph learning through ridge spectral sparsification. In International Conference on Machine
Learning, pp. 688–697. PMLR, 2018.

Alireza Chakeri, Hamidreza Farhidzadeh, and Lawrence O Hall. Spectral sparsification in spectral
clustering. In 2016 23rd international conference on pattern recognition (icpr), pp. 2301–2306.
IEEE, 2016.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling, 2018.

8

Under review as a conference paper at ICLR 2022

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for
learning molecular fingerprints. Advances in neural information processing systems, 2015.

Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. Towards scaling fully personal-
ized pagerank: Algorithms, lower bounds, and experiments. Internet Mathematics, 2(3):333–358,
2005.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs, 2018.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna
Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive connection sam-
pling. In International conference on machine learning, pp. 4094–4104. PMLR, 2020.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):
595–608, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrink-
ing diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining, pp. 177–187, 2005.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations, 2016.

F Monti, D Boscaini, J Masci, E Rodola, J Svoboda, and MM Bronstein. Geometric deep learning
on graphs and manifolds using mixture model cnns. Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016.

Huda Nassar, Kyle Kloster, and David F Gleich. Strong localization in personalized pagerank vec-
tors. In International Workshop on Algorithms and Models for the Web-Graph, pp. 190–202.
Springer, 2015.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. deep graph convolutional networks on node clas-
sification,” in International Conference on Learning Representations (ICLR),, 2020.

9

Under review as a conference paper at ICLR 2022

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Improving graph attention networks
with large margin-based constraints. arXiv preprint arXiv:1910.11945, 2019.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. CoRR, abs/1505.00853, 2015a.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International conference on machine learning, pp. 2048–2057. PMLR, 2015b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 5453–5462. PMLR, 10–15 Jul
2018b.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’18, pp. 974–983, New York, NY, USA, 2018. Association for Computing Machin-
ery. ISBN 9781450355520.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):190–198, 2017.

A APPENDIX

You may include other additional sections here.

10

	Introduction
	Relate work
	Neighbor Aggregation Methods
	Graph Attention Networks
	Personalized PageRank and GNNs

	Proposed Method: PPRGAT
	Approximate PPR Distribution as Sparse Matrix
	GAT layer with PPR matrix

	Experiments
	Datasets
	Experimental Setup
	Transductive learning
	Inductive learning

	Evaluation Results

	Conclusion
	Appendix

