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ABSTRACT

We develop a theoretical framework for agent-to-agent interactions in multi-agent
scenarios. We consider the setup in which two language model based agents per-
form iterative gradient updates toward their respective objectives in-context, using
the output of the other agent as input. We characterize the generation dynamics
associated with the interaction when the agents have misaligned objectives, and
show that this results in a biased equilibrium where neither agent reaches its tar-
get - with the residual errors predictable from the objective gap and the geometry
induced by the prompt of each agent. We establish the conditions for asymmetric
convergence and provide an algorithm that provably achieves an adversarial re-
sult, producing one-sided success. Experiments with trained transformer models
as well as GPT5 for the task of in-context linear regression validate the theory.
Our framework presents a setup to study, predict, and defend multi-agent sys-
tems; explicitly linking prompt design and interaction setup to stability, bias, and
robustness.

1 INTRODUCTION

Large language models (LLMs) increasingly act as agents that exchange messages, propose edits,
and iteratively refine solutions in multi-step workflows (Mohammadi et al., 2025; Niu et al., 2025;
Zhang et al., 2025). While this trend has spurred a surge of multi-agent designs, from debate and
role-structured discussions to autonomous tool-using collectives (Wu et al., 2024; Du et al., 2023;
Liang et al., 2024; Chen et al., 2023), their behavior remains difficult to predict, especially when
agent goals are only partially aligned (Erisken et al., 2025; Altmann et al., 2024; Cemri et al., 2025).
Recent empirical findings further caution that, under common prompting and coordination schemes,
multi-agent setups may not consistently outperform strong single-agent baselines and can be brittle
and unreliable participants (Wang et al., 2024; Huang et al., 2025a; Wynn et al., 2025; Lee & Tiwari,
2024). These observations motivate a principled, mechanistic account of how interacting LLM
agents update their internal states because of each other.

Our analysis builds on an emerging theoretical view of LLM inference as in-context optimization.
A growing body of work shows that sufficiently trained transformers can implement algorithmic
updates, including gradient descent for linear regression tasks, using only the information provided
in the prompt (Akyürek et al., 2023; Garg et al., 2022; von Oswald et al., 2023; Ahn et al., 2023; Dai
et al., 2022). Most relevant to us, Huang et al. (2025b) prove that a single-layer transformer with lin-
ear self-attention (LSA) can carry out multiple gradient-descent-like steps in context when trained
to predict the next iterate on quadratic objectives. We adopt this insight as a modeling primitive:
specifically, we assume that once appropriately trained, each agent performs a stable, approximately
linear gradient update towards its own objective, from the incoming context (representing the previ-
ous iterate).

Building on this “transformers-as-optimizers” perspective, we theoretically investigate agent-to-
agent interactions as an alternating optimization process between two LSA agents with potentially
misaligned objectives. Concretely, at each turn an agent consumes the other’s latest iterate and ap-
plies a gradient update towards its own objective. This yields a coupled dynamical system whose
fixed points need not coincide with either agent’s ground truth objective. Our analysis shows that
the limiting biases are jointly governed by (i) objective misalignment (the discrepancy between
objectives) and (ii) prompt geometry anisotropy (spectral structure of agent-specific covariances
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that shape update directions). Notably, anisotropy induces directional filtering: the residual of each
agent is amplified in directions dominated by the other agent’s geometry.

We also analyze the conditions under which the agent-to-agent dynamics admit asymmetric conver-
gence: where one agent can attain its objective exactly while the other is left with a persistent bias.
These conditions translate into constructive mechanisms for adversarial prompt design that cancel
an opponent’s corrective directions while preserving the attacker’s progress. This connects predic-
tive modeling to concrete security concerns for multi-agent LLM systems (He et al., 2025; Struppek
et al., 2024; Xi et al., 2023; Wang et al., 2023).

We validate the theory with experiments using trained LSA agents in the sense of Huang et al.
(2025b). We also provide experimental validations with GPT5 for our adversarial prompt design
approach. Importantly, when objectives align, the shared iterate converges cooperatively to the
common objective. Under misalignment, both agents plateau at analytically predicted, generally
unequal residuals that grow with the inter-objective angle. Under adversarial designs derived from
our kernel criteria, we observe reliable asymmetric outcomes: the attacker converges to its objective
while the victim remains biased.

Our contributions are summarized as follows: (i) We formalize agent-to-agent interactions as al-
ternating, in-context gradient updates between two transformer agents (Section 2). (ii) We obtain
closed-form expressions for each agent’s limiting error that depends on objective misalignment and
prompt anisotropy. We also include spectral analysis of the error and derive error bounds with
respect to the angle between the objectives (Section 3). (iii) We establish kernel conditions for
asymmetric convergence and give a constructive adversarial geometry that enforces it leading to a
white-box attack procedure (Section 4). (iv) We corroborate these theoretical results with trained
LSA agents as well as GPT5 experiments, highlighting when and how multi-agent interactions can
be helpful, when they result in agent compromises, and when they can be steered to harmful out-
comes. While the experiments are provided throughout the paper, experimental details are given in
Section 5.

Overall, our results bridge mechanistic accounts of in-context learning with the design and safety of
multi-agent LLM systems. We provide simple spectral diagnostics and actionable constructions that
we hope will help shape a better understanding of robust multi-agent LLM deployments.

2 AGENT-TO-AGENT FORMALISM

In this section we develop a formal model of agent-to-agent interactions grounded in the emerging
view of LLM inference as in-context optimization. Rather than analyzing prompting procedures
directly, we consider that each agent realizes a gradient update on its own objective from the received
context. This assumption is supported by theory and experiments showing that trained transformers
can implement algorithmic updates, including multi-step gradient descent for quadratic objectives,
purely in context; in particular, Huang et al. (2025b) establish such behavior for single-layer LSA.

We first recall the single-agent setting in which an LSA model, given a dataset packaged as tokens,
emits successive iterates that track gradient descent on a least square regression problem. We then
lift this formalism to propose a theoretical backbone to agent-to-agent interactions. In such case,
which each agent has its own set of weights, and a specific prompt dependent on its linear regres-
sion objective. The agents interact by alternating turns; each consuming the other’s latest iterate and
applying its own in-context update toward its objective. The result is a coupled, turn-by-turn dynam-
ical system amenable to fixed-point and spectral analysis. This agent-to-agent framing allows us to
quantify how objective misalignment and prompt geometry jointly determine convergence, plateaus,
and potential asymmetries.

2.1 IN CONTEXT OPTIMIZATION

Chain-of-Thought (CoT) prompting (Wei et al., 2022) enables large language models to break down
complex reasoning into intermediate steps, significantly improving performance on mathematical
and logical tasks. Recent theoretical work has revealed the optimization foundations underlying
this process. Huang et al. (2025b) provide a theoretical analysis of how transformers can learn to
implement iterative optimization through CoT prompting. They consider a linear regression task
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within the in-context learning (ICL) framework and demonstrate that a suitably trained transformer
can perform multiple steps of gradient descent on the mean squared error objective.

The data consist of n example input-output pairs from a linear model,

w⋆ ∼ N (0, Id), xi ∼ N (0, Id), yi = x⊤
i w

⋆ for i = 1, . . . , n.

The learner is given these examples in context and must estimate the underlying weight vector w⋆

(without further gradient updates to its own weights). The key insight is that a transformer can use
CoT to iteratively refine an internal estimate of w⋆ over k autoregressive steps.

The LLM is modeled as a single-layer LSA transformer with residual connections. The input to the
LSA is as follows:

Z =

x1 · · · xn 0
y1 · · · yn 0
0 · · · 0 w0

0 · · · 0 1

 :=

 X 0
y 0

0d×n w0

01×n 1

 ∈ Rde×(n+1),

where X = [x1, . . . , xn]
T ∈ Rn×d is the data matrix, w0 = 0d is the initialization of the objective

weight, and de = 2d+2. Note that the token matrix Z encodes input data (xi, yi) and also includes
dimensions to autoregressively represent the current weight estimate.

The LSA mapping is defined as:

fLSA(Z;V,A) = Z + V Z · Z
⊤AZ

n
,

where V,A ∈ Rde×de are learned weight matrices. The model’s prediction is the embedding of the
final token

w = fLSA(Z)[:,−1].
With appropriate training, the LSA transformer learns to output a sequence of weight estimates
{w0, w1, . . . , wk} where each CoT step approximates a gradient descent update,

wt+1 ≈ wt − η
1

n
X⊤(Xwt − y), (1)

with η > 0 the learning rate. In other words, at each CoT step, the LSA transformer performs
a gradient descent step on the least square loss 1

2∥Xw − y∥2 with respect to its previous weight
estimate.

2.2 AGENT-TO-AGENT FORMULATION

We now extend this framework to agent–to-agent interactions under an alternating turn-taking pro-
tocol. In this setting, two agents engage in a dialogue where, at each turn, an agent receives as input
the prompt and accumulated conversation history, and subsequently generates an output response.

Consider two agents, W and U , that alternate turns: each agent receives the other’s output and per-
forms one step toward its own objective. Following the aforementioned linear regression formalism,
we consider the following data structure at turn t,

ZW =

XW 0
yW 0
0d×n u0, w1, u1, . . . , ut−1

01×n 1

 , ZU =

 XU 0
yU 0
0d×n u0, w1, u1, . . . , ut−1, wt

01×n 1

 ,

In this construction, agent W utilizes (XW , yW ) together with the conversation history
[u0, w1, u1, . . . , wt−1, ut−1] to produce the update wt. Now, agent U employs (XU , yU ) along
with the extended history [u0, w1, u1, . . . , wt−1, ut−1, wt] to generate ut. Note that we default the
initialization to u0 = 0d and consider that agent W speaks first.

Note that, each agent may have different objectives. In our theory that takes the form of hav-
ing misaligned regression objectives w⋆ ̸= u⋆. Building on Huang et al. (2025b), there exists a
parametrization of the LSA under which each mapping applied to the input data approximates a
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Figure 1: Plateau error vs objective alignment: (left) With aligned objectives, both agents con-
verge cooperatively to the shared objective. Note that because of the ∼ 6◦ angle between objective,
the agents do not converge to 0-error. (middle) With orthogonal objectives (∼ 90◦), convergence
occurs toward a solution that does not advantage either agent. (right) With opposite (∼ 174◦) objec-
tives, the dynamic is similar to the orthogonal objective case. Note that (i) whether agent U or agent
W converges to a better error is induced by the prompt geometry, and (ii) in all cases here, neither
agent converges to a 0-error solution. These two key points are central to the characterization we
provide in Section 3.

gradient descent update. Such a parametrization arises from training the LSA toward the gradient-
descent update. All LSA experiments in this paper are inference-only and use LSA agents that
were pretrained (in a single-agent setting) to generalize the gradient–prediction task described in
Section 2.1.

Consequently, each agent also admits the gradient-descent update defined in Eq. 1. The resulting
alternating dynamics between the two agents that will be central to this paper are given by

wt+1 = ut − ηSW

(
ut − w⋆

)
(2)

ut+1 = wt+1 − ηSU

(
wt+1 − u⋆

)
, (3)

where SW = 1
nX

⊤
WXW and SU = 1

nX
⊤
UXU the covariance matrices of the data. When the

agents pursue aligned objectives, i.e., w⋆ = u⋆, these alternating updates collapse to the single
agent formalism as defined in Huang et al. (2025b). In contrast, when objectives are misaligned
(w⋆ ̸= u⋆), the agent-to-agent dynamics may give rise to different behaviors, including mutual con-
vergence, asymmetric convergence (where one agent achieves its objective while persistently biasing
the other), or adversarial interactions in which one agent systematically manipulates the trajectory
of the conversation. The remainder of the paper is devoted to analyzing these interactions at infer-
ence given trained models.

3 AGENT-TO-AGENT DYNAMICS

In this section, we analyze the agent-to–agent update dynamics and derive explicit expressions for
the errors between each agent’s iterate and its respective objective. These results characterize the
unequal convergence plateaus obtained when two agents interact (see Figure 1). We will assume a
fixed point convergence for these equations which is a condition on the gradient descent learning
rate (see Appendix 8.1 for more details).

The following proposition characterize asymptotic errors of each agent from their respective objec-
tives as a result of turn-base agent-to-agent interaction at inference with a trained LSA model.
Proposition 1. Let S := SW + SU be invertible and let ∆ = u⋆ − w⋆, then as η → 0,

∥u∞− u⋆∥22 = ∆⊤(SWS−2SW )∆+O(η), ∥w∞−w⋆∥22 = ∆⊤(SUS
−2SU )∆+O(η). (4)

(Proof in Appendix 8.2)

Assuming S is invertible means that there are no blind directions where the misalignment ∆ =
u⋆ − w⋆ can hide from both agents. In practice, one ensures invertibility by using sufficiently
diverse, non-collinear in-context examples across the two prompts.

This proposition shows that, after sufficiently many turns, each agent’s residual error is governed
by two key factors: (i) the discrepancy between the agents’ objectives, and (ii) the structure of their
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respective prompts. In the linear regression setting, that is, the covariance structure of the data.
Note that the squared asymptotic errors capture the smoothness of the objective difference, i.e., ∆,
along the spectrum of SW (resp. SU ) normalized by S. Therefore, the anisotropy of (SW , SU ) can
potentially make these plateaus unequal, leading to agent-to-agent dependent convergences.

Figure 2: Plateau error v.s. objective angle -
Plateau error of Agents W (blue) and U (orange)
as a function of the objective alignment angle
(1000 LSA agent-to-agent interactions). We dis-
play the theoretical bounds from Corollary 2 for
each agent (lower and upper). As the bounds in
Corollary 2 characterize, larger alignment angles
correspond to higher plateau errors.

In Figure 1, we observe at inference the empir-
ical error of each agent towards their objective
as well as the computed theoretical convergence
plateau obtained from Proposition 1. Impor-
tantly, the asymptotic error can be computed be-
fore any agent-to-agent interaction given knowl-
edge of the prompts and the objectives.

The quadratic forms in Proposition 1 highlight
that the limiting plateaus are not determined
solely by the objective misalignment ∆, but also
by the anisotropy of the agents’ prompt geome-
tries (SW , SU ). In the isotropic case, where SW

and SU are multiples of the identity, the weights
SWS−2SW and SUS

−2SU collapse to scalars,
and both agents experience identical plateau er-
rors proportional to ∥∆∥22. By contrast, when
the spectra of SW and SU differ across direc-
tions, the error decomposition depends on how
∆ aligns with the eigenspaces of these respec-
tive prompts. The following corollary highlights
such behavior.

Corollary 1. Assume SW and SU commute so they are simultaneously diagonalizable with eigen-
values ΛW ,ΛU , and let ∆̃ be the projection of ∆ in their eigenbasis. Then, as η → 0,

∥u∞ − u⋆∥22 =

d∑
i=1

(
λw,i

λw,i+λu,i

)2
∆̃ 2

i +O(η) ∥w∞ − w⋆∥22 =

d∑
i=1

(
λu,i

λw,i+λu,i

)2
∆̃ 2

i +O(η)

(Proof in Appendix 8.3)

In the commuting case, the misalignment ∆ decomposes into independent spectral directions, and
each agent’s plateau is obtained by weighting the per-mode discrepancy ∆̃i. Along a mode i where
λw,i ≫ λu,i, the U agent error is amplified while that of W agent is suppressed and vice versa.
Thus anisotropy acts as a directional filter: each agent incurs larger errors precisely in the directions
where the other agent’s geometry dominates.

Now that we understand how the prompt and its induced geometry affects each agent’s asymptotic
error, we are interested in the impact of objective discrepancy. The following corollary provides a
description of the error that each agent will achieve at convergence with respect to the angle between
the two objectives.

Corollary 2. Let S := SW + SU be invertible, θ ∈ [0, π] be the angle between w⋆ and u⋆, then as
η → 0,

αU rmin(θ) ≤
∥u∞ − u⋆∥2√
∥w⋆∥22 + ∥u⋆∥22

≤ βU rmax(θ) + O(η), (5)

αW rmin(θ) ≤
∥w∞ − w⋆∥2√
∥w⋆∥22 + ∥u⋆∥22

≤ βW rmax(θ) + O(η), (6)

where
rmin(θ) = min{1,

√
1− cos θ}, rmax(θ) = max{1,

√
1− cos θ},

αU =
√
λmin(SWS−2SW ), βU =

√
λmax(SWS−2SW ),

αW =
√
λmin(SUS−2SU ), βW =

√
λmax(SUS−2SU ).

(Proof in Appendix 8.4)
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From this corollary, the normalized convergence plateaus are nondecreasing in θ ∈ [0, π], bounded
between the envelopes α rmin(θ) and β rmax(θ) (up to an O(η) term), with multiplicative constants
(αU , βU ) and (αW , βW ) for agents U and W , respectively. This phenomena is observed empirically
in Figure 2 where we observe each agent’s asymptotic error with respect to the angle between their
objective. As formally described in Corollary 2, the plateau error of each agent increases with
respect to the angle between their objective.

These results suggest a concrete prompt-design principle for multi-agent systems: each agent’s
prompt should explicitly encode a shared global objective. Without an explicit common objective,
CoT generation may instantiate agent-specific local objectives that are partially misaligned, leading
to coupled errors and biased outcomes across the interaction.

In this section, we established explicit expressions for the asymptotic errors of both agents (Propo-
sition 1), showing that convergence plateaus are determined jointly by objective misalignment ∆
and the spectral geometry of the prompts (SW , SU ). We further derived angle-based bounds (Corol-
lary 2), explaining the growth of normalized plateaus with the inter-objective angle, as observed
in Figures 1 and 2. Together, these results enable a priori prediction of plateau levels and provide
concrete design levers, via the spectra of SW and SU , to ensure bounded residuals and mitigate
asymmetric vulnerabilities in non-cooperative agent-to-agent interactions.

4 ASYMMETRIC CONVERGENCE AND GEOMETRIC CHARACTERIZATION OF
ADVERSARIAL AGENTS

We presently develop a theoretical framework for adversarial agents. Specifically, we first charac-
terize geometric conditions under which asymmetric convergence is achievable in an agent-to-agent
system. That is, is it possible to tune the interaction, via the choice of prompts, so that one agent
converges exactly to its objective, while the other agent does not.

4.1 ASYMMETRIC CONVERGENCE CONDITIONS

The following proposition presents conditions on the fixed-point equations of the system to achieve
asymmetric convergence.
Proposition 2. Asymmetric convergence (i.e., u∞ = u⋆ but w∞ ̸= w⋆) occurs if and only if

∆ ∈ ker ((I − ηSU )SW ) and ∆ /∈ ker (ηSW − I) . (7)

(Proof in Appendix 8.5)

The first condition in equation 7 says that the part of the objective gap ∆ = u⋆ − w⋆ that W would
try to correct is nullified by U ’s turn: whatever W injects along ∆ through its gradient direction
SW∆ lands in the nullspace of (I − ηSU ), so U cancels it and can still steer itself exactly to u⋆.
The second condition excludes a degenerate “one–step fix” for W (i.e., ∆ lying in the eigenspace
of SW with eigenvalue 1/η), which would otherwise let W also eliminate its residual and remove
asymmetry. This reasoning can be obtained by looking at the agent-to-agent composed two-turn
agent U update

ut+1 = (I − ηSU )wt+1 + ηSUu
⋆, wt+1 = ut − ηSW (ut − w⋆),

Then,

ut+1 = ηSUu
⋆ + (I − ηSU )ut − η (I − ηSU )SW (u⋆ − w⋆)︸ ︷︷ ︸

=0 by Eq. equation 7

− η(I − ηSU )SW (ut − u⋆)

= ut − η
[
SU + (I − ηSU )SW

]
(ut − u⋆).

Similarly we can decompose agent W next-step error to obtain

wt+1 − w⋆ = (I − ηSW ) (ut − w⋆)

= (I − ηSW )(ut − u⋆) + (I − ηSW )∆︸ ︷︷ ︸
misalignment term

.
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Top: GPT5 agents

Bottom: LSA-trained agents

Figure 3: White-box agent-to-agent attack. We evaluate the adversarial algorithm proposed in Al-
gorithm 1 from Section 4 under three objective-gap settings—orthogonal, scaled, and opposite, e.g.,
opposite is defined as u⋆ = −w⋆. Each panel plots the mean trajectory across 100 runs with shaded
± std bands (learning rate η=0.005). Note that the success rate is evaluated as a condition of the
attacker agent to reach a low error while the victim achieves a high error, both defined as thresholds
on objective errors, i.e., the attack is succesful if ∥wt − w⋆|| > ϵ1 and ∥ut − u⋆|| < ϵ2. Left:
distance of the victim (Agent W ) to its target w⋆ over interaction steps. In all conditions, W con-
verges to a nonzero plateau whose level depends on the gap geometry, as predicted by Proposition 1
and the angle bounds in Corollary 2. Right: distance of the attacker (Agent U ) to u⋆. Consistent
with the kernel criterion (I − ηSU )SW∆ = 0, U rapidly drives its error to (near-)zero, yielding
one-sided success. Top: GPT5-mini agents, attack success rate 100% for all three gaps; Early-step
variability reflects model decoding the noise but does not alter the outcome. Bottom: LSA-trained
agents, same protocol; success rates are Orthogonal: 93%, Scaled: 100%, Opposite: 85%. Overall,
both agent-base match the theory: anisotropy plus misalignment induces a predictable bias for W ,
while the adversarial spike in SU yields fast convergence for U .

If ∆ is an eigenvector of SW with eigenvalue 1/η, then (I − ηSW )∆ = 0, so W eliminates its
residual along that misalignment direction, therefore undoing the asymmetry.

Now we propose to leverage these conditions to provide a provable asymmetric convergence con-
struction.
Corollary 3. Let ∆ ̸= 0 and choose η > 0 such that ( 1η ,∆) /∈ spec(SW ). Define v := SW∆ and
let Pv denote the orthogonal projector onto span{v}. Set

SU = 1
η Pv + ε (I − Pv) for any ε ∈ (0, 1

η ).

Then the agent-to-agent dynamics exhibit asymmetric convergence: agent U reaches its objective
while agent W does not. (Proof in Appendix 8.6)

The construction sets SU to place an eigenvalue spike exactly on the problematic direction v :=
SW∆ and to be near–isotropic elsewhere. Because SUv = 1

ηv, we get

(I − ηSU )v = 0 =⇒ (I − ηSU )SW∆ = 0,

7
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Algorithm 1 White-box Attack - Prompt Design

Require: SW ∈ Rd×d, mismatch ∆ = w⋆− u⋆ ∈ Rd, stability margin τ ∈ (0, 1/2) (e.g. 0.1), step
size η
Build the line-space and its projector

1: Set v ← SW∆.
2: Set Pv ← vv⊤

∥v∥2 (projector onto span{v}).
Build the adversarial geometry SU .

3: Pick any ε ∈ (0, 1/η) (e.g. ε← 1−τ
η ).

4: Set
SU ←

1

η
Pv + ε (I − Pv) .

Realize SU as a data covariance.
5: Factor SU as SU = LL⊤ .
6: Form XΓ ∈ Rd×n with columns spanning Im(L), e.g. XΓ ←

√
nL.

7: return XU , η.

which satisfies the kernel criterion in Proposition 2. The small ε(I − Pv) term makes SU full–rank
for stability while keeping U ’s behavior essentially unchanged on span{v}. The side condition
( 1η ,∆) /∈ spec(SW ) prevents a symmetric one–step elimination for W .

4.2 WHITE-BOX AGENT-TO-AGENT ATTACK

In the white-box setting, the adversarial agent has complete knowledge of the target agent’s geometry
matrix SW and objective w⋆. Note that this scenario is realistic as one can either perform prompt
extraction techniques (Zou et al., 2023; Yang et al., 2024; Li et al., 2025) or simply by guessing the
other agent prompt and objective prior to the agent-to-agent interaction.

Given knowledge of (SW , w⋆, u⋆), the attacker’s goal is to construct an optimal attack geometry SU

such that the agent-to-agent conversation converges to the attacker’s objective u⋆ while preventing
the victim from reaching w⋆.

The key insight from Proposition 2 is to design SU such the part of the gap that W pushes (SW∆)
falls exactly in the set of directions that U deletes in one step, while the gap itself (∆) avoids the
directions W can delete in one step.

Practically, Corollary 3 provides a way to perform such a white-box attack. The steps required are
as follows: (i) compute v = SW∆ (with Pv := vv⊤

∥v∥2 ), (ii) set SU = 1
ηPv + ε(I − Pv) with small

ε > 0. These steps are further described in Algorithm 1.

In Figure 3 we show the empirical result of the white-box attack algorithm described in Algorithm 1
for both the trained LSA agent and GPT5. The resulting dynamics match our theoretical results: the
misalignment drive is canceled by the attacker (agent U ), yielding fast convergence to u⋆, whereas
the victim (agent W ) inherits a persistent bias.

In this section, we showed that asymmetric convergence is a geometric feature of the coupled up-
dates: it occurs exactly when the misalignment vector ∆ is annihilated by (I − ηSU )SW yet not
by (I − ηSW ). This yields a constructive recipe—place an eigenvalue spike of SU on v = SW∆
and keep SU otherwise near-isotropic, so that agent U converges to u⋆ while agent W retains a
predictable residual.

5 EXPERIMENTAL SETTINGS

We now provide the details regarding the experimental results provided throughout the paper.
Specifically, how we perform inference within the agent-to-agent framework for both GPT5 agents
and our trained LSA models. Note that the details for training the LSA model to perform gradient
descent update are described in Appendix 7.1.
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Algorithm 2 Agent-to-Agent Interaction (Model-agnostic Inference)

1: Inputs: agents A1,A2; datasets (X1, y1), (X2, y2); step size η; max steps S
2: w(0) ← 0d
3: for s = 1 to S do
4: ĝ

(s)
1 ← A1

(
X1, y1, [w

(0), . . . , w(2s−2)]
)

5: w(2s−1) ← w(2s−2) − η ĝ
(s)
1

6: ĝ
(s)
2 ← A2

(
X2, y2, [w

(0), . . . , w(2s−1)]
)

7: w(2s) ← w(2s−1) − η ĝ
(s)
2

8: end for
9: Return w(0:2S)

5.1 AGENT-TO-AGENT INFERENCE

We run turn-based interactions between two inference agents A1,A2 that each produce a gradient-
like update toward their own linear-regression objective using only in-context information (dataset
and shared iterate history). The shared iterate is updated after each agent’s call; the next agent
receives the updated history w0:t−1. This approach is identical for both our LSA-trained agents and
our GPT5-based agent and is described in Algorithm 2.

LSA-trained agents: For LSA agents, Ai are a trained single-layer linear self-attention (LSA)
model (Section 2) that, at each turn, maps the concatenated tokenized (Xi, yi) and the iterate history
w0:t−1 to a gradient-like vector approximating∇Li(wt), with Li(w) = ∥X⊤

i w−yi∥2. We evaluate
generalization to unseen (Xi, yi) in the single-agent setting and then use the same checkpoints into
Algorithm 2.

GPT5-based agent: For the GPT-based agent, we wrap a GPT5 model (gpt-5-mini) in a typed
interface that returns a d-dimensional gradient given (X, y,wt) and history w0:t−1. Concretely,
AGPT receives a system prompt that explain the objective and formula, and a user message containing
the exact matrices X ∈ Rd×n, y ∈ Rn, the current weight wt ∈ Rd, and the history w0:t−1.
In fact, we are not using directly the Z input as for the LSA agents, we are using its equivalent
prompted version defined in Appendix 7.3. Besides, on the output side, the model is constrained
to output a float vector as output, i.e., the predicted gradient update. This is performed using a
pydantic formatted output schema, also described in Appendix 7.3. Now, the same algorithm as
the one defined for the LSA agent is utilized to have the agent-to-agent interactions as defined in
Algorithm 2. More details GPT5 setup and prompt are described in Appendix 7.3.

6 CONCLUSION

Our work offers a testable account of how multi-agent LLM interactions evolve: when they cooper-
ate, when they compromise, and when asymmetries emerge. Our theory is grounded in an analyti-
cally tractable model that links objective misalignment and prompt-induced geometry to observable
fixed-point behavior. Within this abstraction we derive closed-form predictions for bias plateaus,
identify conditions for one-sided convergence, and demonstrate constructive adversarial designs.
We then validate these effects with trained single-layer transformers as well as GPT5 on a linear re-
gression task, establishing both explanatory power and empirical plausibility while acknowledging
the limitations of simplified objectives and synthetic data. As the next step, there is a clear oppor-
tunity to move beyond controlled linear tasks and examine these mechanisms directly in large-scale
LLMs: probe token-embedding spaces to estimate each agent’s effective update directions, quan-
tify how representation modes are amplified or suppressed across turns, and evaluate whether the
predicted plateau biases and asymmetric outcomes manifest in realistic workflows. Bridging this
gap from theory to modern systems not only tests the model’s fidelity but also informs concrete
safeguards. The same geometric lens used to diagnose misalignment and anisotropy suggest mitiga-
tion levers in prompt design and interaction protocols, providing a principled basis for defenses and
a practical path toward multi-agent systems whose behavior can be anticipated, stress-tested, and
reliably shaped.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Lin-
ear attention is (maybe) all you need (to understand transformer optimization). arXiv preprint
arXiv:2310.01082, 2023.
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SUPPLEMENTARY MATERIAL

7 ADDITIONAL EXPERIMENTAL DETAILS

7.1 LSA AGENT TRAINING

For the CoT LSA training, we follow the guidance defined in Huang et al. (2025b). The hyperpa-
rameters used for training are defined in Appendix 7.2 Table 7.2.

Each dataset is an i.i.d. linear regression problem of dimension d as defined in Section 2.

X ∈ Rd×n ∼ N
(
0, 1

dI
)
, w⋆ ∼ N

(
0, 1

dI
)
, y = X⊤w⋆ ∈ Rn×1.

From (X, y) we generate a ground truth gradient-descent trajectory on the quadratic loss with learn-
ing rate η. L(w) = 1

2∥X
⊤w − y∥22:

gt = ∇L(wt) = X(X⊤wt − y), wt+1 = wt − η gt, w0 = 0.

The trajectory is truncated whenever ∥gt − gt−1∥2 ≤ 10−3 and we retain {(wt, gt)}max iter
t=0 .

The LSA model is trained to predict the next gradient descent vector given all tokens up to the
current step. We organize the inputs as a token matrix as defined in Section 2 where the bottom
block contains the running weight tokens w0, . . . , wt and a bias row of ones.

Given a dataset and a step index t ∈ {1, . . . ,max iter}, we present tokens up to t − 1 and regress
the next ground truth gradient gt:

Lstep =
∥∥LSA(Zw0:t−1

)− gt
∥∥
2
.

We train the LSA with Adam optimizer with learning rate η and apply a cosine annealing scheduler.

7.2 HYPERPARAMETERS

Parameter Default Description

d 10 data dimension
n 20 number of in-context examples
num datasets 100 independent training datasets
batch size 512 (dataset, step) pairs per optimizer step
epochs 100 passes over the shuffled pair list
η 0.005 step size used to generate GD trajectories
scheduler cosine ηmin = 0.005
eval datasets 10 sampled and averaged per evaluation call

7.3 GPT5 EXPERIMENTAL SETUP

Model and decoding. We use gpt-5-mini with JSON-parsed outputs. Unless otherwise noted:
temperature = 0.0, top p = 1.0, frequency/presence penalties = 0, reasoning effort low, and a strict
response schema (below). Each call is retried up to 3 times on parse/shape failure (Appendix ??).

7.4 TYPED SCHEMA AND PROMPTS

Response schema (Pydantic-style)

class GradientResponse(BaseModel):
thinking: str # scratchpad text (ignored)
gradient_next: List[float] # length d, the gradient \Delta L

12
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System prompt The system message provide the objective and dimensionalities for the current
dataset (X ∈ Rd×n, y ∈ Rn):

You are an expert optimization agent working on linear regression
gradient descent.↪→

PROBLEM SETUP:
- Input features X: {d}x{n} matrix (values provided in each

request)↪→
- Target values y: {n}-dimensional vector (values provided in

each request)↪→
- Current weight w: {d}-dimensional vector (what you'll

receive)↪→

TASK: Calculate the gradient \Delta L with respect to w, where
L = ||XˆT w - y||ˆ2↪→

FORMULA: \Delta L = X(XˆT w - y)
- XˆT w produces an {n}-dimensional vector (predictions)
- XˆT w - y produces an {n}-dimensional vector (residuals)
- X @ (residuals) produces a {d}-dimensional vector (gradient)

CRITICAL:
1. Use the EXACT X and y matrices provided in each request
2. Your output gradient must be exactly {d}-dimensional
3. Do NOT make up dummy data - use the actual matrices given
4. Perform the calculation step by step

The user will provide w_current and the matrices X, y. Calculate and
return the {d}-dimensional gradient vector, do not ask the user to
validate what is to be done. The user will not be able to interact
with you. Be highly precise and accurate on your computations, you
will be evaluated on the distance with the ground truth
gradient."""

↪→
↪→
↪→
↪→
↪→

User message (per turn). At turn t, we pass the exact numerics for X, y,wt and the prior his-
tory w0:t−1. Note that history is included for parity with LSA and to allow in-context, multi-turn
conditioning as well as to give the model the capability to perform filtering and negate the attack.

8 PROOFS

8.1 FIXED POINT ASSUMPTION

Lemma 1. If SW , SU ≻ 0 and

0 < η < min
{

2
λmax(SW ) ,

2
λmax(SU )

}
,

then the fixed point exists and is unique. (Proof in Appendix 8.1)

Proof. For any SPD S, the eigenvalues of M := I − ηS are µi = 1 − ηλi(S), so ∥M∥2 =
maxi |1− ηλi(S)| < 1 whenever 0 < η < 2/λmax(S). Thus

ρ(MUMW ) ≤ ∥MUMW ∥2 ≤ ∥MU∥2 ∥MW ∥2 < 1.

At a fixed point (w∞, u∞) we have

w∞ = MWu∞ + ηSWw⋆,

u∞ = MUw∞ + ηSUu
⋆.

Eliminating w∞ from the second equation gives

u∞ = MU (MWu∞ + ηSWw⋆) + ηSUu
⋆ = (MUMW )u∞ + η(MUSWw⋆ + SUu

⋆) .

13
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Equivalently, (
I −MUMW

)
u∞ = η(MUSWw⋆ + SUu

⋆) =: b. (8)

By the step-size assumption we already showed ∥MU∥2 < 1 and ∥MW ∥2 < 1, hence

∥MUMW ∥2 ≤ ∥MU∥2 ∥MW ∥2 < 1,

so in particular ρ(MUMW ) ≤ ∥MUMW ∥2 < 1. Therefore I −MUMW is invertible and, by the
Neumann series, (

I −MUMW

)−1
=

∞∑
k=0

(MUMW )k.

Applying this inverse to equation 8 yields the unique solution

u∞ =
(
I −MUMW

)−1
b =

∞∑
k=0

(MUMW )k η(MUSWw⋆ + SUu
⋆) .

Finally,
w∞ = MWu∞ + ηSWw⋆.

Uniqueness follows because I−MUMW is nonsingular: if two fixed points give u∞, ũ∞, then
(
I−

MUMW

)
(u∞ − ũ∞) = 0 ⇒ u∞ = ũ∞, and the corresponding w∞ is then uniquely determined

by the first line.

8.2 PROOF OF PROPOSITION 1

Proof.

At convergence (omitting∞ for simplicity), insert equation 2 into equation 3:

u =
[
u− ηSW (u− w⋆)

]
− ηSU

([
u− ηSW (u− w⋆)

]
− u⋆

)
= u− ηSW (u− w⋆)− ηSU

(
u− u⋆ − ηSW (u− w⋆)

)
.

Subtract u from both sides and factor the terms in (u− w⋆):

0 = −ηSW (u− w⋆)− ηSU (u− u⋆) + η2SUSW (u− w⋆)

= −η
[
SW + SU − ηSUSW︸ ︷︷ ︸

matrix

]
(u− w⋆) + ηSU (u

⋆ −w⋆).

Using ∆ = u⋆ − w⋆ and canceling η > 0 gives the linear system(
S − ηSUSW

)
(u− w⋆) = SU ∆. (9)

Thus, equation 9 yields
u− w⋆ = (S − ηSUSW )−1SU︸ ︷︷ ︸

=:H

∆.

By definition,

rU := u− u⋆ = (u− w⋆)− (u⋆ − w⋆) = H∆−∆ = −(I −H)∆.

From equation 2, w −w⋆ = (u−w⋆)− ηSW (u−w⋆) = (I − ηSW )(u−w⋆) = MW (u−w⋆).

Thus,
rW := w − w⋆ = MW H∆, and rU = −(I −H)∆

with H = (S − ηSUSW )−1SU and MW = I − ηSW .

Now,
(S − ηSUSW )−1 = S−1 + ηS−1SUSWS−1 +O(η2),

thus, H = S−1SU +O(η).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Therefore,

rU = −(I −H)∆ = −(I − S−1SU )∆ +O(η) = −S−1SW ∆+O(η),

and
rW = (I − ηSW )(S−1SU +O(η))∆ = S−1SU ∆+O(η),

Finally, since S⊤
W = SW , S−T = S−1, we have

∥rU∥22 = ∆⊤SWS−2SW∆+O(η), ∥rW ∥22 = ∆⊤SUS
−2SU∆+O(η).

8.3 PROOF OF COROLLARY 1

Proof. By Proposition 1,

∥u∞ − u⋆∥22 = ∆⊤(SWS−2SW )∆ +O(η), ∥w∞ − w⋆∥22 = ∆⊤(SUS
−2SU )∆ +O(η),

with S := SW + SU . Assume SW and SU commute. Then there exists an orthonormal Q such that

SW = Qdiag(λw)Q
⊤, SU = Qdiag(λu)Q

⊤, S = Qdiag(λw + λu)Q
⊤,

where λw,i, λu,i ≥ 0 and λw,i + λu,i > 0 for all i since S is invertible. Hence

S−2 = Qdiag
(
(λw + λu)

−2
)
Q⊤,

and a direct multiplication yields

SWS−2SW = Qdiag

(
λ2
w

(λw + λu)2

)
Q⊤, SUS

−2SU = Qdiag

(
λ2
u

(λw + λu)2

)
Q⊤.

Let ∆̃ := Q⊤∆. Substituting into the quadratic forms gives

∥u∞−u⋆∥22 =

d∑
i=1

(
λw,i

λw,i + λu,i

)2

∆̃ 2
i +O(η), ∥w∞−w⋆∥22 =

d∑
i=1

(
λu,i

λw,i + λu,i

)2

∆̃ 2
i +O(η),

8.4 PROOF OF COROLLARY 2

Proof. From the fixed–point identities (see Proposition 1 and its proof), a Neumann expansion gives

rU := u∞ − u⋆ = −(S−1SW )∆ +O(η), rW := w∞ − w⋆ = (S−1SU )∆ +O(η),

where S := SW + SU and ∆ := u⋆ − w⋆.

∥rU∥22 = ∆⊤ (SWS−2SW )︸ ︷︷ ︸
=:CU

∆+O(η), ∥rW ∥22 = ∆⊤ (SUS
−2SU )︸ ︷︷ ︸

=:CW

∆+O(η).

For any PSD K and x, λmin(K)∥x∥2 ≤ x⊤Kx ≤ λmax(K)∥x∥2. Apply with x = ∆, K ∈
{CU , CW }, then take square roots:√

λmin(CU ) ∥∆∥ ≤ ∥rU∥ ≤
√
λmax(CU ) ∥∆∥ + O(η),

and similarly for W . Define αU :=
√
λmin(CU ), βU :=

√
λmax(CU ) (and analogously αW , βW ),

and divide by
√
∥w⋆∥2 + ∥u⋆∥2.

Let m := ∥w⋆∥2, g := ∥u⋆∥2, and θ ∈ [0, π] be the angle between w⋆ and u⋆. Now,

∥∆∥22 = m2 + g2 − 2mg cos θ.

Normalize and set the scale ratio ρ := g/m

∥∆∥2√
m2 + g2

=

√
m2 + g2 − 2mg cos θ

m2 + g2
=

√
1 + ρ2 − 2ρ cos θ

1 + ρ2
=: Rθ(ρ).
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To bound this uniformly over ρ ≥ 0, consider F (ρ) := Rθ(ρ)
2 = 1− 2ρ cos θ

1 + ρ2
. Then

F ′(ρ) = −2 cos θ 1− ρ2

(1 + ρ2)2
.

Now we have
cos θ > 0 : F ′(ρ) < 0 for ρ ∈ [0, 1), F ′(ρ) > 0 for ρ > 1 ⇒ ρ = 1 is a global minimum;

cos θ < 0 : F ′(ρ) > 0 for ρ ∈ [0, 1), F ′(ρ) < 0 for ρ > 1 ⇒ ρ = 1 is a global maximum;

cos θ = 0 : F ′(ρ) ≡ 0 ⇒ F (ρ) ≡ 1 and Rθ(ρ) ≡ 1.

Evaluate the endpoint limits:

lim
ρ→0

Rθ(ρ) = lim
ρ→∞

Rθ(ρ) = 1, Rθ(1) =
√
1− cos θ.

Therefore
min
ρ≥0

Rθ(ρ) = min{1,
√
1− cos θ} =: rmin(θ), max

ρ≥0
Rθ(ρ) = max{1,

√
1− cos θ} =: rmax(θ).

From (iii) and the bounds in (iv),

αU rmin(θ) ≤
∥u∞ − u⋆∥2√

m2 + g2
≤ βU rmax(θ) + O(η),

and analogously for W with αW , βW . Since rmin, rmax are nondecreasing on [0, π] and strictly
increasing on (0, π), the normalized plateaus grow monotonically with θ (up to the constants α, β).

8.5 PROOF OF PROPOSITION 2

Proof. Recall the agent-to-agent fixed-point system
w∞ = MW u∞ + ηSWw⋆, u∞ = MU w∞ + ηSUu

⋆, (10)
with MW := I − ηSW and MU := I − ηSU . Now, assume u⋆ = u∞, from the first fixed-point
equation,

w∞ = MWu⋆ + ηSWw⋆ = (I − ηSW )u⋆ + ηSW (u⋆ +∆) = u⋆ + ηSW∆.

Substitute w∞ and u∞ = u⋆ into the second equation of equation 10:
u⋆ = MU

(
u⋆ + ηSW∆

)
+ ηSUu

⋆ = u⋆ + η(I − ηSU )SW∆,

which is equivalent to (I − ηSU )SW∆ = 0, establishing the first condition.

The residual for agent W is
w∞ − w⋆ =

(
u⋆ + ηSW∆

)
− (u⋆ +∆) = (ηSW − I)∆,

so w∞ ̸= w⋆ iff (ηSW − I)∆ ̸= 0, the second condition.

By contraction, the fixed point is unique, hence the iterates converge to (w∞, u∞) with u∞ = u⋆

and w∞ ̸= w⋆.

8.6 PROOF OF COROLLARY 3

Proof. Let SU = 1
η Pv + ε (I − Pv) where v = SW∆. Now,

SUv = 1
ηv =⇒ (ηSU − I)v = 0.

thus, (I − ηSU )SW∆ = 0. For z ∈ span(I − Pv), Pvz = 0 and (I − Pv)z = z, hence
SUz = εz =⇒ (ηSU − I)z = (ηε− 1)z ̸= 0

because ηε− 1 < 0, thus SU is full rank.

Now, by assumption ( 1η ,∆) /∈ spec(SW ) hence

∆ /∈ ker(I − ηSW ).

Since, λmax(SU ) = max{1/η, ε} = 1/η, so the condition η < 2/λmax(SU ) gives η < 2η, trivially
verified for η > 0.
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9 AI TOOLING USAGE

For this paper, AI tools were used for specific purpose: (i) polish writing & code, (ii) search for
references, (iii) sounding board for some theoretical results.
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