

000 CONVERGENCE DYNAMICS OF AGENT-TO-AGENT 001 INTERACTIONS WITH MISALIGNED OBJECTIVES 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 We develop and analyze a theoretical framework for agent-to-agent interactions
010 in a simplified in-context linear regression setting. In our model, each agent is in-
011 stantiated as a single-layer transformer with linear self-attention (LSA) trained to
012 implement gradient-descent-like updates on a quadratic regression objective from
013 in-context examples. We then study the coupled dynamics when two such LSA
014 agents alternately update from each other’s outputs under potentially misaligned
015 fixed objectives. Within this framework, we characterize the generation dynam-
016 ics and show that misalignment leads to a biased equilibrium where neither agent
017 reaches its target, with residual errors predictable from the objective gap and the
018 prompt-induced geometry. We further contrast this fixed objective regime with an
019 adaptive multi-agent setting, wherein a helper agent updates a turn-based objec-
020 tive to implement a Newton-like step for the main agent, eliminating the plateau
021 and accelerating its convergence. Experiments with trained LSA agents, as well
022 as black-box GPT-5-mini runs on in-context linear regression tasks, are consis-
023 tent with our theoretical predictions within this simplified setting. We view our
024 framework as a mechanistic framework that links prompt geometry and objective
025 misalignment to stability, bias, and robustness, and as a stepping stone toward
026 analyzing more realistic multi-agent LLM systems.
027

028 1 INTRODUCTION 029

030 Large language models (LLMs) increasingly act as *agents* that exchange messages, propose edits,
031 and iteratively refine solutions in multi-step workflows (Mohammadi et al., 2025; Niu et al., 2025;
032 Zhang et al., 2025). While this trend has spurred a surge of multi-agent designs, from debate and
033 role-structured discussions to autonomous tool-using collectives (Wu et al., 2024; Du et al., 2023;
034 Liang et al., 2024; Chen et al., 2023), their behavior remains difficult to predict, especially when
035 agent goals are only partially aligned (Erisken et al., 2025; Altmann et al., 2024; Cemri et al., 2025;
036 Kong et al., 2025). Recent empirical findings further caution that, under common prompting and
037 coordination schemes, multi-agent setups may not consistently outperform strong single-agent base-
038 lines and can be brittle and unreliable participants (Wang et al., 2024; Huang et al., 2025a; Wynn
039 et al., 2025; Lee & Tiwari, 2024). These observations motivate a principled, mechanistic account of
040 how interacting LLM agents update their internal states *because of* each other.
041

042 Our analysis builds on an emerging theoretical view of LLM inference as *in-context optimization*.
043 A growing body of work shows that sufficiently trained transformers can implement algorithmic
044 updates, including gradient descent for linear regression tasks, using only the information provided
045 in the prompt (Akyürek et al., 2023; Garg et al., 2022; von Oswald et al., 2023; Ahn et al., 2023; Dai
046 et al., 2022). Most relevant to us, Huang et al. (2025b) prove that a single-layer transformer with lin-
047 ear self-attention (LSA) can carry out *multiple* gradient-descent-like steps in context when trained
048 to predict the next iterate on quadratic objectives. We adopt this insight as a modeling primitive:
049 specifically, we assume that once appropriately trained, each agent performs a stable, approximately
050 linear *gradient* update towards its own objective, from the incoming context (representing the pre-
051 vious iterate). In the rest of the paper, “agent” refers specifically to such an LSA-based in-context
052 optimizer operating on a linear regression objective. We use this analytically tractable model as a
053 proxy for LLM-based agents

Building on this “transformers-as-optimizers” perspective, we theoretically investigate *agent-to-agent* interactions as an *alternating optimization* process between two LSA agents with potentially misaligned objectives. Concretely, at each turn an agent consumes the other’s latest iterate and applies a gradient update towards its own objective. In the resulting *fixed-objective* multi-agent regime, the coupled dynamics converge to biased fixed points whose residuals are jointly governed by (i) **objective misalignment** (the discrepancy between objectives) and (ii) **prompt geometry anisotropy** (spectral structure of agent-specific covariances that shape update directions); anisotropy induces directional filtering, amplifying each agent’s error along directions dominated by the *other* agent’s geometry. We also contrast this regime with an *adaptive* multi-agent regime in which a helper agent updates a turn-based objective and can implement Newton-like steps for the main agent, turning the same interaction formalism into a mechanism for cooperative acceleration rather than mutual degradation.

We then characterize the conditions under which the agent-to-agent dynamics admit *asymmetric convergence*: where one agent can attain its objective exactly while the other is left with a persistent bias. These conditions translate into constructive mechanisms for *adversarial prompt design* that cancel an opponent’s corrective directions while preserving the attacker’s progress. This connects predictive modeling to concrete security concerns for multi-agent LLM systems (He et al., 2025; Struppek et al., 2024; Xi et al., 2023; Wang et al., 2023).

We validate the theory with experiments using trained LSA agents in the sense of Huang et al. (2025b). We also provide experimental validations with GPT-5-mini for our adversarial prompt design approach. Importantly, when objectives align, the shared iterate converges cooperatively to the common objective. Under misalignment, both agents plateau at analytically predicted, generally *unequal* residuals that grow with the inter-objective angle. Under adversarial designs derived from our kernel criteria, we observe reliable asymmetric outcomes: the attacker converges to its objective while the victim remains biased.

Our contributions are summarized as follows: (i) We formalize agent-to-agent interactions as alternating, in-context gradient updates between two transformer agents (Section 2). (ii) We obtain closed-form expressions for each agent’s limiting error that depends on global objective misalignment and prompt anisotropy. We also include spectral analysis of the error and derive error bounds with respect to the angle between the global objectives. We also extend the analysis by introducing local objectives and further demonstrate how a collaborative agent can accelerate convergence of the main agent beyond what the main agent can achieve by itself. (Section 3). (iii) We establish kernel conditions for *asymmetric convergence* and give a constructive adversarial geometry that enforces it leading to a white-box attack procedure (Section 4). (iv) We corroborate these theoretical results with trained LSA agents as well as GPT-5-mini experiments, highlighting when and how multi-agent interactions can be helpful, when they result in agent compromises, and when they can be steered to harmful outcomes. While the experiments are provided throughout the paper, experimental details are given in Section 5.

2 AGENT-TO-AGENT FORMALISM

In this section we develop a formal model of *agent-to-agent* interactions grounded in the emerging view of LLM inference as *in-context optimization*. Rather than analyzing prompting procedures directly, we consider that each agent realizes a *gradient* update on its own objective from the received context. This assumption is supported by theory and experiments showing that trained transformers can implement algorithmic updates, including multi-step gradient descent for quadratic objectives, purely in context; in particular, Huang et al. (2025b) establish such behavior for single-layer LSA.

We first recall the single-agent setting in which an LSA model, given a dataset packaged as tokens, emits successive iterates that track gradient descent on a least square regression problem. We then lift this formalism to propose a theoretical backbone to agent-to-agent interactions. In such case, which each agent has its own set of weights, and a specific prompt dependent on its linear regression objective. The agents interact by alternating turns; each consuming the other’s latest iterate and applying its own in-context update toward its objective. The result is a coupled, turn-by-turn dynamical system amenable to fixed-point and spectral analysis. This agent-to-agent framing allows us to quantify how *objective misalignment* and *prompt geometry* jointly determine convergence, plateaus, and potential asymmetries.

108 2.1 IN CONTEXT OPTIMIZATION
109

110 Chain-of-Thought (CoT) prompting (Wei et al., 2022) enables large language models to break down
111 complex reasoning into intermediate steps, significantly improving performance on mathematical
112 and logical tasks. Recent theoretical work has revealed the optimization foundations underlying
113 this process. Huang et al. (2025b) provide a theoretical analysis of how transformers can learn to
114 implement iterative optimization through CoT prompting. They consider a linear regression task
115 within the in-context learning (ICL) framework and demonstrate that a suitably trained transformer
116 can perform multiple steps of gradient descent on the mean squared error objective.

117 The data consist of n example input-output pairs from a linear model,

$$118 \quad w^* \sim \mathcal{N}(0, I_d), \quad x_i \sim \mathcal{N}(0, I_d), \quad y_i = x_i^\top w^* \quad \text{for } i = 1, \dots, n.$$

120 The learner is given these examples in context and must estimate the underlying weight vector w^*
121 (without further gradient updates to its own weights). The key insight is that a transformer can use
122 CoT to iteratively refine an internal estimate of w^* over k autoregressive steps.

123 The LLM is modeled as a single-layer LSA transformer with residual connections. The input to the
124 LSA is as follows:

$$126 \quad Z = \begin{bmatrix} x_1 & \cdots & x_n & 0 \\ y_1 & \cdots & y_n & 0 \\ 0 & \cdots & 0 & w_0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} := \begin{bmatrix} X & 0 \\ y & 0 \\ 0_{d \times n} & w_0 \\ 0_{1 \times n} & 1 \end{bmatrix} \in \mathbb{R}^{d_e \times (n+1)},$$

130 where $X = [x_1, \dots, x_n]^T \in \mathbb{R}^{n \times d}$ is the data matrix, $w_0 = 0_d$ is the initialization of the objective
131 weight, and $d_e = 2d + 2$. Note that the token matrix Z encodes input data (x_i, y_i) and also includes
132 dimensions to autoregressively represent the current weight estimate.

133 The LSA mapping is defined as:

$$135 \quad f_{\text{LSA}}(Z; V, A) = Z + VZ \cdot \frac{Z^\top AZ}{n},$$

138 where $V, A \in \mathbb{R}^{d_e \times d_e}$ are learned weight matrices. The model's prediction is the embedding of the
139 final token

$$140 \quad w = f_{\text{LSA}}(Z)[:, -1].$$

141 With appropriate training, the LSA transformer learns to output a sequence of weight estimates
142 $\{w_0, w_1, \dots, w_k\}$ where each CoT step approximates a gradient descent update,

$$144 \quad w_{t+1} \approx w_t - \eta \frac{1}{n} X^\top (Xw_t - y), \quad (1)$$

146 with $\eta > 0$ the learning rate. In other words, at each CoT step, the LSA transformer performs
147 a gradient descent step on the least square loss $\frac{1}{2} \|Xw - y\|^2$ with respect to its previous weight
148 estimate.

149 It is important to note that the affine updates under study in this paper do not rely on architectural lin-
150 earity of the agents but on the linear regression objective. For quadratic losses, the gradient-descent
151 rule is inherently affine, and any sufficiently expressive model trained to perform such in-context op-
152 timization (including full transformers) will implement an affine update in the representation space.
153 Thus, the linearity here reflects the structure of the task-level gradient dynamics, not a simplification
154 of model architecture.

155 2.2 AGENT-TO-AGENT FORMULATION
156

157 We now extend this framework to agent-to-agent interactions under an alternating turn-taking pro-
158 tocol. In this setting, two agents engage in a dialogue where, at each turn, an agent receives as input
159 the prompt and accumulated conversation history, and subsequently generates an output response.

161 Consider two agents, W and U , that alternate turns: each agent receives the other's output and per-
forms one step toward its own objective. Following the aforementioned linear regression formalism,

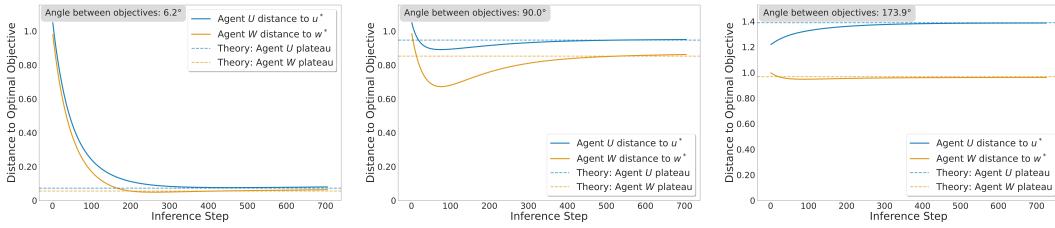


Figure 1: **Plateau error vs objective alignment:** (left) With aligned objectives, both agents converge cooperatively to the shared objective. Note that because of the $\sim 6^\circ$ angle between objective, the agents do not converge to 0-error. (middle) With orthogonal objectives ($\sim 90^\circ$), convergence occurs toward a solution that does not advantage either agent. (right) With opposite ($\sim 174^\circ$) objectives, the dynamic is similar to the orthogonal objective case. Note that (i) whether agent U or agent W converges to a better error is induced by the prompt geometry, and (ii) in all cases here, neither agent converges to a 0-error solution. These two key points are central to the characterization we provide in Section 3.

we consider the following data structure at turn t ,

$$Z_W = \begin{bmatrix} X_W & 0 \\ y_W & 0 \\ 0_{d \times n} & u_0, w_1, u_1, \dots, u_{t-1} \\ 0_{1 \times n} & 1 \end{bmatrix}, \quad Z_U = \begin{bmatrix} X_U & 0 \\ y_U & 0 \\ 0_{d \times n} & u_0, w_1, u_1, \dots, u_{t-1}, w_t \\ 0_{1 \times n} & 1 \end{bmatrix},$$

In this construction, agent W utilizes (X_W, y_W) together with the conversation history $[u_0, w_1, u_1, \dots, w_{t-1}, u_{t-1}]$ to produce the update w_t . Now, agent U employs (X_U, y_U) along with the extended history $[u_0, w_1, u_1, \dots, w_{t-1}, u_{t-1}, w_t]$ to generate u_t . Note that we default the initialization to $u_0 = 0_d$ and consider that agent W speaks first.

Note that, each agent may have different objectives. In our theory that takes the form of having misaligned regression objectives $w^* \neq u^*$. Building on Huang et al. (2025b), there exists a parametrization of the LSA under which each mapping applied to the input data approximates a gradient descent update. Such a parametrization arises from training the LSA toward the gradient-descent update. All LSA experiments in this paper are inference-only and use LSA agents that were pretrained (in a single-agent setting) to generalize the gradient-prediction task described in Section 2.1.

Consequently, each agent also admits the gradient-descent update defined in Eq. 1. The resulting alternating dynamics between the two agents that will be central to this paper are given by

$$w_{t+1} = u_t - \eta S_W (u_t - w^*) \quad (2)$$

$$u_{t+1} = w_{t+1} - \eta S_U (w_{t+1} - u^*), \quad (3)$$

where $S_W = \frac{1}{n} X_W^\top X_W$ and $S_U = \frac{1}{n} X_U^\top X_U$ the covariance matrices of the data. When the agents pursue aligned objectives, i.e., $w^* = u^*$, these alternating updates collapse to the single agent formalism as defined in Huang et al. (2025b). *In contrast, when objectives are misaligned ($w^* \neq u^*$), the agent-to-agent dynamics may give rise to different behaviors, including mutual convergence, asymmetric convergence (where one agent achieves its objective while persistently biasing the other), or adversarial interactions in which one agent systematically manipulates the trajectory of the conversation.* The remainder of the paper is devoted to analyzing these interactions at inference given trained models.

3 AGENT-TO-AGENT DYNAMICS

In this section we study the alternating agent-to-agent update dynamics in our in-context linear regression model. We first analyze the *fixed-objective* multi-agent regime, where each agent’s target (w^*, u^*) is held constant, and derive *explicit* expressions for their asymptotic errors, which explain the unequal convergence plateaus observed when two misaligned agents interact (see Figure 1) and

yield angle-based bounds (Figure 2). We then turn to an *adaptive* multi-agent regime in which a helper agent updates a turn-based objective for the main agent and can implement Newton-like accelerated steps (Figure 3). Throughout, we assume convergence to a fixed point, which imposes a standard condition on the gradient-descent stepsize.

The following proposition characterize asymptotic errors of each agent from their respective objectives as a result of turn-base agent-to-agent interaction at inference with a trained LSA model.

Proposition 1. *Let $S := S_W + S_U$ be invertible and let $\Delta = u^* - w^*$, then as $\eta \rightarrow 0$,*

$$\|u_\infty - u^*\|_2^2 = \Delta^\top (S_W S^{-2} S_W) \Delta + O(\eta), \quad \|w_\infty - w^*\|_2^2 = \Delta^\top (S_U S^{-2} S_U) \Delta + O(\eta). \quad (4)$$

(Proof in Appendix 9.2)

Assuming S is invertible means that there are no blind directions where the misalignment $\Delta = u^* - w^*$ can hide from both agents. In practice, one ensures invertibility by using sufficiently diverse, non-collinear in-context examples across the two prompts.

This proposition shows that, after sufficiently many turns, each agent’s residual error is governed by two key factors: (i) the discrepancy between the agents’ objectives, and (ii) the structure of their respective prompts. In the linear regression setting, that is, the covariance structure of the data. Note that the squared asymptotic errors capture the smoothness of the objective difference, i.e., Δ , along the spectrum of S_W (resp. S_U) normalized by S . Therefore, the anisotropy of (S_W, S_U) can potentially make these plateaus unequal, leading to agent-to-agent dependent convergences.

In an LLM, an analogous notion of prompt geometry can be defined directly in representation space. Given a prompt $P = (t_1, \dots, t_n)$ and its embedding representations $h_1, \dots, h_n \in \mathbb{R}^d$, one can form a second-moment matrix $S(P) = \frac{1}{n} \sum_{i=1}^n h_i h_i^\top$, whose dominant directions and anisotropy reflect which linguistic structures (semantic fields, styles, task types) are repeatedly instantiated by the prompt. For example, a prompt dominated by arithmetic expressions, by code snippets, or by legalistic text will emphasize different subspaces in representation space. In our LSA model, the matrices S_W and S_U play this role for the feature vectors appearing in each agent’s prompt. Recent empirical taxonomies of multi-agent failures, such as MAST (Cemri et al., 2025), identify *system design issues*, including flawed role specifications and ambiguous prompts, as a primary source of breakdown; in our framework, these design choices manifest as misaligned effective objectives (w^*, u^*) and ill-designed geometries (S_W, S_U) , and Proposition 1 shows that such misalignment inevitably induces biased plateaus even when each agent is individually competent.

In Figure 1, we observe at inference the empirical error of each agent towards their objective as well as the computed theoretical convergence plateau obtained from Proposition 1. Importantly, the asymptotic error can be computed before any agent-to-agent interaction given knowledge of the prompts and the objectives.

The quadratic forms in Proposition 1 highlight that the limiting plateaus are not determined solely by the objective misalignment Δ , but also by the anisotropy of the agents’ prompt geometries (S_W, S_U) . In the isotropic case, where S_W and S_U are multiples of the identity, the weights $S_W S^{-2} S_W$ and $S_U S^{-2} S_U$ collapse to scalars, and both agents experience identical plateau errors proportional to $\|\Delta\|_2^2$. By contrast, when the spectra of S_W and S_U differ across directions, the error decomposition depends on how Δ aligns with the eigenspaces of these respective prompts. The following corollary highlights such behavior.

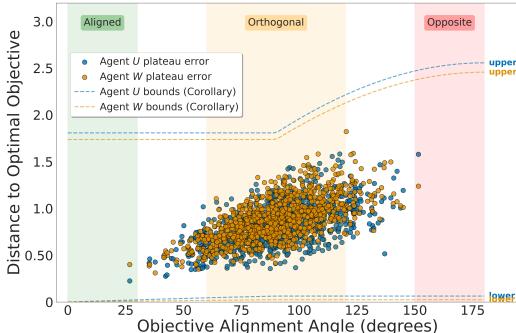


Figure 2: **Plateau error v.s. objective angle** - Plateau error of Agents W (blue) and U (orange) as a function of the objective alignment angle (1000 LSA agent-to-agent interactions). We display the theoretical bounds from Corollary 2 for each agent (lower and upper). As the bounds in Corollary 2 characterize, larger alignment angles correspond to higher plateau errors.

270 **Corollary 1.** Assume S_W and S_U commute so they are simultaneously diagonalizable with eigen-
 271 values Λ_W, Λ_U , and let $\tilde{\Delta}$ be the projection of Δ in their eigenbasis. Then, as $\eta \rightarrow 0$,
 272

$$273 \quad \|u_\infty - u^*\|_2^2 = \sum_{i=1}^d \left(\frac{\lambda_{w,i}}{\lambda_{w,i} + \lambda_{u,i}} \right)^2 \tilde{\Delta}_i^2 + O(\eta) \quad \|w_\infty - w^*\|_2^2 = \sum_{i=1}^d \left(\frac{\lambda_{u,i}}{\lambda_{w,i} + \lambda_{u,i}} \right)^2 \tilde{\Delta}_i^2 + O(\eta)$$

275 (Proof in Appendix 9.3)

277 In the commuting case, the misalignment Δ decomposes into independent spectral directions, and
 278 each agent’s plateau is obtained by weighting the per-mode discrepancy $\tilde{\Delta}_i$. Along a mode i where
 279 $\lambda_{w,i} \gg \lambda_{u,i}$, the U agent error is *amplified* while that of W agent is *suppressed* and vice versa.
 280 Thus anisotropy acts as a directional filter: each agent incurs larger errors precisely in the directions
 281 where the other agent’s geometry dominates.

282 Now that we understand how the prompt and its induced geometry affects each agent’s asymptotic
 283 error, we are interested in the impact of objective discrepancy. The following corollary provides a
 284 description of the error that each agent will achieve at convergence with respect to the angle between
 285 the two objectives.

286 **Corollary 2.** Let $S := S_W + S_U$ be invertible, $\theta \in [0, \pi]$ be the angle between w^* and u^* , then as $\eta \rightarrow 0$,

$$287 \quad \alpha_U r_{\min}(\theta) \leq \frac{\|u_\infty - u^*\|_2}{\sqrt{\|w^*\|_2^2 + \|u^*\|_2^2}} \leq \beta_U r_{\max}(\theta) + O(\eta), \quad (5)$$

$$289 \quad \alpha_W r_{\min}(\theta) \leq \frac{\|w_\infty - w^*\|_2}{\sqrt{\|w^*\|_2^2 + \|u^*\|_2^2}} \leq \beta_W r_{\max}(\theta) + O(\eta), \quad (6)$$

291 where

$$293 \quad r_{\min}(\theta) = \min\{1, \sqrt{1 - \cos \theta}\}, \quad r_{\max}(\theta) = \max\{1, \sqrt{1 - \cos \theta}\},$$

$$294 \quad \alpha_U = \sqrt{\lambda_{\min}(S_W S^{-2} S_W)}, \quad \beta_U = \sqrt{\lambda_{\max}(S_W S^{-2} S_W)},$$

$$295 \quad \alpha_W = \sqrt{\lambda_{\min}(S_U S^{-2} S_U)}, \quad \beta_W = \sqrt{\lambda_{\max}(S_U S^{-2} S_U)}.$$

296 (Proof in Appendix 9.4)

298 From this corollary, the normalized convergence plateaus are *nondecreasing* in $\theta \in [0, \pi]$, bounded
 299 between the envelopes $\alpha r_{\min}(\theta)$ and $\beta r_{\max}(\theta)$ (up to an $O(\eta)$ term), with multiplicative constants
 300 (α_U, β_U) and (α_W, β_W) for agents U and W , respectively. This phenomena is observed empirically
 301 in Figure 2 where we observe each agent’s asymptotic error with respect to the angle between their
 302 objective. As formally described in Corollary 2, the plateau error of each agent increases with
 303 respect to the angle between their objective.

304 From Proposition 1, the asymptotic squared errors can be written as $\|u_\infty - u^*\|_2^2 =$
 305 $\Delta^\top S_W S^{-2} S_W \Delta$, $\|w_\infty - w^*\|_2^2 =$
 306 $\Delta^\top S_U S^{-2} S_U \Delta$, where $\Delta = u^* - w^*$ encodes
 307 the discrepancy between the two prompt-
 308 induced objectives and S_W, S_U are determined
 309 by the prompt geometries. Thus, for fixed
 310 prompt geometries, both agents’ plateau errors
 311 grow quadratically with the size of the objective
 312 gap $\|\Delta\|_2$, and are further amplified when Δ
 313 has large components along eigen-directions
 314 where $S_W S^{-2} S_W$ or $S_U S^{-2} S_U$ have large
 315 eigenvalues. Corollary 2 then shows that,
 316 after normalizing by $\|w^*\|_2^2 + \|u^*\|_2^2$, these
 317 plateau errors are nondecreasing functions of
 318 the alignment angle θ between w^* and u^* . In
 319 our LSA model, both Δ and the geometries
 320 S_W, S_U are fully determined by the prompts
 321 (system instructions and in-context examples)
 322 given to each LSA agent.

323 These results yield a concrete prompt-design
 324 principle for multi-agent systems: construct the

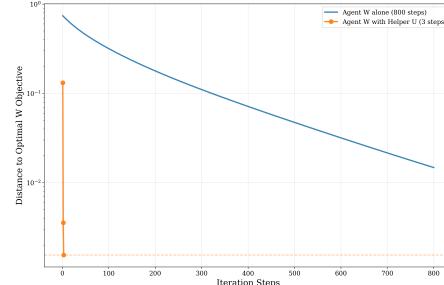


Figure 3: **Cooperative Agents** - We compare the convergence of a single agent W (blue) to the same agent interacting with a cooperative helper U for only 3 alternating steps (orange). The helper’s objective is updated dynamically at each turn using only turn-local quantities $(u_t, w_{t+1}, S_W, S_U, \eta)$. Following the analytic construction in Corollary 3, the helper computes a temporary target $u_t^* = w_{t+1} - [I + (\eta S_U)^{-1}(I - \eta S_U)]z_{t+1}$. This LSA-agents experiment highlights the fact that a helper agent can improve another agent’s convergence rate by shaping turn-based objectives.

system and task prompts so that the effective objectives realized in-context are as aligned as possible (small $\|\Delta\|_2$ and small θ), for example by explicitly encoding a shared global objective and avoiding components that pull w^* and u^* in different directions.

Up to this point, we have assumed that each agent’s objective (w^*, u^*) is fixed throughout the interaction. In this *fixed-objective* regime, Proposition 1 and Corollary 2 show that any misalignment inevitably induces nonzero plateaus, so alternating updates cannot improve either agent beyond its single-agent optimum. We now turn to a different regime in which one agent is allowed to *adapt its objective turn-by-turn*: the helper agent U can choose a local target u_t^* at each interaction step. In this adaptive setting, the same linear dynamics can produce genuinely helpful behavior, with the helper agent accelerating the main agent W ’s convergence beyond what it is able to achieve itself, instead of degrading it.

We consider the aforementioned alternating agent-to-agent dynamic, but we now considering that the helper agent U can adapt its target u_t^* over time, that is, the two agent system in Eq. 3 is now defined as,

$$w_{t+1} = u_t - \eta S_W (u_t - w^*), \quad u_{t+1} = w_{t+1} - \eta S_U (w_{t+1} - u_t^*). \quad (7)$$

At the *helper turn* t , agent U has access only to the turn-local quantities $(u_t, w_{t+1}, S_W, S_U, \eta)$.

Corollary 3. *At the helper turn t , define z_{t+1} as the solution of the linear system*

$$S_W z_{t+1} = \left(S_W - \frac{1}{\eta} I \right) (w_{t+1} - u_t),$$

which depends only on the turn-local quantities $(u_t, w_{t+1}, S_W, \eta)$. If the U -agent (helper) chooses its turn-specific target

$$u_t^* = w_{t+1} - \left[I + (\eta S_U)^{-1} (I - \eta S_U) \right] z_{t+1},$$

the helper drives the agent-to-agent system directly to agent W optimum, i.e., w^ . (Proof in Appendix 9.5)*

This corollary shows that, by shaping a turn-based objective, the helper agent can implement a Newton-like update for the main agent’s quadratic objective using only turn-based information, yielding a substantial acceleration in convergence (Figure 3). Importantly, the helper does not require privileged knowledge of w^* : it constructs its intermediate target solely from observable turn-local quantities (the current iterate, the previous iterate, and the prompt-induced geometries). This stands in stark contrast to the fixed-objective regime studied earlier, where agent-to-agent interaction inevitably yields biased plateaus. Allowing turn-adaptive objectives transforms the same interaction mechanism into a form of cooperative acceleration. Practically, this suggests that multi-agent LLM systems should be designed so that agents can compute or infer helpful intermediate objectives, such as surrogate losses or predicted error directions, rather than being restricted to static, pre-specified goals. Note that, this turn-local helper design directly echoes the “inter-agent misalignment” failures in MAST (Cemri et al., 2025) instead of each agent pursuing a hidden fixed target, the helper’s objective u_t^* is explicitly conditioned on the main agent’s current state, providing exactly the correction that the main agent needs at that step and thereby repairing the breakdown in information flow that MAST associates with collapsed “theory of mind”.

In this section, we established explicit expressions for the asymptotic errors of both agents (Proposition 1), showing that convergence plateaus are determined jointly by objective misalignment Δ and the spectral geometry of the prompts (S_W, S_U) . Corollary 2 further explains the monotonic growth of normalized plateau errors with the inter-objective angle, providing a predictive lens on non-cooperative agent-to-agent interactions. Taken together, these results characterize the *fixed-objective* multi-agent regime, where misalignment cannot be corrected during inference and residual errors are unavoidable.

Our cooperative construction (Corollary 3) shows that misalignment need not be inherent: in an *adaptive-objective* regime, a helper agent can update a turn-local objective using only observable quantities to realize Newton-like acceleration for the main agent. This demonstrates that the same interaction interface can yield either misalignment-induced degradation or cooperative convergence gains, depending on whether agent objectives are fixed or allowed to adapt. This dichotomy highlights a practical design principle for LLM-based multi-agent systems: prompt structures that stabilize or align objectives mitigate harmful fixed-point biases, while agents capable of constructing turn-local surrogate objectives can actively enhance one another’s optimization dynamics.

378 **4 ASYMMETRIC CONVERGENCE AND GEOMETRIC CHARACTERIZATION OF**
 379 **ADVERSARIAL AGENTS**
 380

381 We presently develop a theoretical framework for adversarial agents. Specifically, we first charac-
 382 terize geometric conditions under which *asymmetric convergence* is achievable in an agent-to-agent
 383 system. That is, is it possible to tune the interaction, via the choice of prompts, so that one agent
 384 converges exactly to its objective, while the other agent does not.
 385

386 **4.1 ASYMMETRIC CONVERGENCE CONDITIONS**
 387

388 The following proposition presents conditions on the fixed-point equations of the system to achieve
 389 asymmetric convergence.
 390

Proposition 2. *Asymmetric convergence (i.e., $u_\infty = u^*$ but $w_\infty \neq w^*$) occurs if and only if*

$$391 \quad \Delta \in \ker((I - \eta S_U) S_W) \quad \text{and} \quad \Delta \notin \ker(\eta S_W - I). \quad (8)$$

392 *(Proof in Appendix 9.6)*

393 The first condition in equation 8 says that the part of the objective gap $\Delta = u^* - w^*$ that W would
 394 try to correct is *nullified* by U ’s turn: whatever W injects along Δ through its gradient direction
 395 $S_W \Delta$ lands in the nullspace of $(I - \eta S_U)$, so U cancels it and can still steer itself exactly to u^* .
 396 The second condition excludes a degenerate “one-step fix” for W (i.e., Δ lying in the eigenspace
 397 of S_W with eigenvalue $1/\eta$), which would otherwise let W also eliminate its residual and remove
 398 asymmetry. This reasoning can be obtained by looking at the agent-to-agent composed two-turn
 399 agent U update $u_{t+1} = (I - \eta S_U)w_{t+1} + \eta S_U u^*$, $w_{t+1} = u_t - \eta S_W(u_t - w^*)$ thus,
 400

$$401 \quad u_{t+1} = \eta S_U u^* + (I - \eta S_U)u_t - \eta \underbrace{(I - \eta S_U) S_W (u^* - w^*)}_{= 0 \text{ by Eq. equation 8}} - \eta(I - \eta S_U) S_W(u_t - u^*).$$

402 Similarly we can decompose agent W next-step error to obtain
 403

$$404 \quad w_{t+1} - w^* = (I - \eta S_W)(u_t - u^*) + \underbrace{(I - \eta S_W) \Delta}_{\text{misalignment term}}.$$

405 If Δ is an eigenvector of S_W with eigenvalue $1/\eta$, then $(I - \eta S_W)\Delta = 0$, so W eliminates its
 406 residual along that misalignment direction, therefore undoing the asymmetry.
 407

Corollary 4. *If the asymmetric convergence condition is not exactly satisfied, i.e., $(I - \eta S_U) S_W \Delta = r$ with
 408 $r \neq 0$ then,*

$$409 \quad \|u_\infty - u^*\| \leq \|(S_U + (I - \eta S_U) S_W)^{-1}\| \|r\|.$$

410 *Moreover,*

$$411 \quad w_\infty - w^* = (I - \eta S_W)\Delta - (I - \eta S_W)(S_U + (I - \eta S_U) S_W)^{-1}r,$$

412 *(Proof in Appendix 9.7)*

413 From this corollary, we obtain that W ’s plateau equals the exact-case value $(I - \eta S_W)\Delta$ up to an
 414 $O(\|r\|)$ correction and U ’s plateau grows linearly with the residual $\|r\|$ in the approximate regime.
 415 Therefore the asymmetric convergence decays smoothly as the alignment condition not satisfied.
 416

417 Now we propose to leverage these conditions to provide a provable asymmetric convergence con-
 418 struction.
 419

Corollary 5. *Let $\Delta \neq 0$ and choose $\eta > 0$ such that $(\frac{1}{\eta}, \Delta) \notin \text{spec}(S_W)$. Define $v := S_W \Delta$ and let P_v
 420 denote the orthogonal projector onto $\text{span}\{v\}$. Set*

$$421 \quad S_U = \frac{1}{\eta} P_v + \varepsilon(I - P_v) \quad \text{for any } \varepsilon \in (0, \frac{1}{\eta}).$$

422 *Then the agent-to-agent dynamics exhibit asymmetric convergence: agent U reaches its objective while agent
 423 W does not. (Proof in Appendix 9.8)*

424 The construction sets S_U to place an *eigenvalue spike* exactly on the problematic direction $v :=$
 425 $S_W \Delta$ and to be near-isotropic elsewhere. Because $S_U v = \frac{1}{\eta} v$, we get
 426

$$427 \quad (I - \eta S_U)v = 0 \implies (I - \eta S_U)S_W \Delta = 0,$$

428 which satisfies the kernel criterion in Proposition 2. The small $\varepsilon(I - P_v)$ term makes S_U full-rank
 429 for stability while keeping U ’s behavior essentially unchanged on $\text{span}\{v\}$. The side condition
 430 $(\frac{1}{\eta}, \Delta) \notin \text{spec}(S_W)$ prevents a symmetric one-step elimination for W .
 431

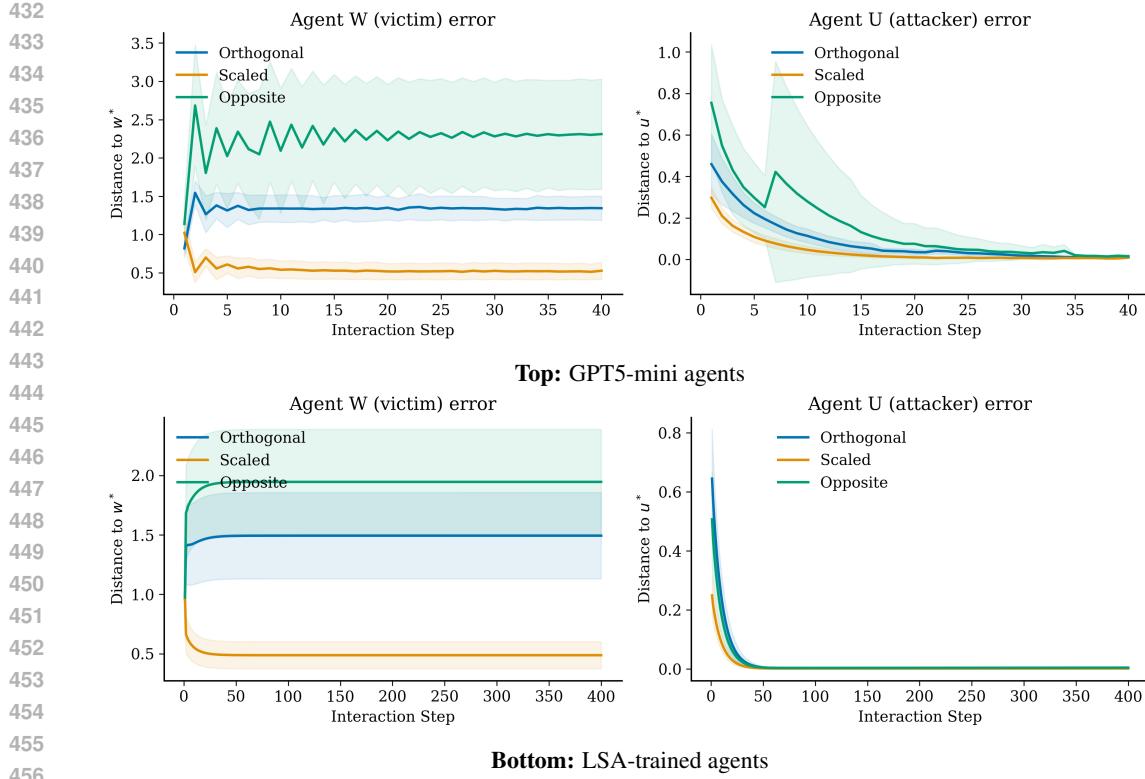


Figure 4: **White-box agent-to-agent attack.** We evaluate the adversarial algorithm proposed in Algorithm 1 from Section 4 under three objective-gap settings—*orthogonal*, *scaled*, and *opposite*, e.g., opposite is defined as $u^* = -w^*$. Each panel plots the *mean* trajectory across 100 runs with shaded \pm std bands (learning rate $\eta = 0.005$). *Left*: distance of the *victim* (Agent W) to its target w^* over interaction steps. In all conditions, W converges to a *nonzero plateau* whose level depends on the gap geometry, as predicted by Proposition 1 and the angle bounds in Corollary 2. *Right*: distance of the *attacker* (Agent U) to u^* . Consistent with the kernel criterion $(I - \eta S_U)S_W \Delta = 0$, U rapidly drives its error to (near-)zero, yielding one-sided success. **Top**: GPT5-mini agents, early-step variability reflects model decoding the noise but does not alter the outcome. **Bottom**: LSA-trained agents, same protocol; Overall, both agent-base match the theory: anisotropy plus misalignment induces a predictable bias for W , while the adversarial spike in S_U yields fast convergence for U .

4.2 WHITE-BOX AGENT-TO-AGENT ATTACK

In the white-box setting, the adversarial agent has complete knowledge of the target agent’s geometry matrix S_W and objective w^* . Note that this scenario is realistic as one can either perform prompt extraction techniques (Zou et al., 2023; Yang et al., 2024; Li et al., 2025) or simply by guessing the other agent prompt and objective prior to the agent-to-agent interaction.

Given knowledge of (S_W, w^*, u^*) , the attacker’s goal is to construct an optimal attack geometry S_U such that the agent-to-agent conversation converges to the attacker’s objective u^* while preventing the victim from reaching w^* . The key insight from Proposition 2 is to design S_U such the part of the gap that W pushes ($S_W \Delta$) falls exactly in the set of directions that U deletes in one step, while the gap itself (Δ) avoids the directions W can delete in one step. Practically, Corollary 5 provides a way to perform such a *white-box attack*. The steps required are as follows: (i) compute $v = S_W \Delta$ (with $P_v := \frac{vv^\top}{\|v\|^2}$), (ii) set $S_U = \frac{1}{\eta} P_v + \varepsilon(I - P_v)$ with small $\varepsilon > 0$. These steps are further described in Algorithm 1.

In Figure 4 we show the empirical result of the white-box attack algorithm described in Algorithm 1 for both the trained LSA agent and GPT5. The resulting dynamics match our theoretical results: the

486 misalignment drive is canceled by the attacker (agent U), yielding fast convergence to u^* , whereas
 487 the victim (agent W) inherits a persistent bias.
 488

489 We showed that asymmetric convergence is a geometric feature of the coupled updates: it occurs
 490 exactly when the misalignment vector Δ is annihilated by $(I - \eta S_U)S_W$ yet not by $(I - \eta S_W)$. This
 491 yields a constructive recipe, place an eigenvalue spike of S_U on $v = S_W\Delta$ and keep S_U otherwise
 492 near-isotropic, so that agent U converges to u^* while agent W retains a predictable residual.

493 5 EXPERIMENTAL SETTINGS

495 We now provide the details regarding the experimental results provided throughout the paper. Note
 496 that the details for training the LSA model to perform gradient descent update are described in
 497 Appendix 8.1 and the algorithms are described in Appendix 6.2.

498 The inference is based on turn-based interactions between two inference agents $\mathcal{A}_1, \mathcal{A}_2$ that each
 499 produce a gradient-like update toward their own linear-regression objective using only in-context
 500 information (dataset and shared iterate history). The shared iterate is updated after each agent’s
 501 call; the next agent receives the updated history $w_{0:t-1}$. This approach is identical for both our
 502 LSA-trained agents and our GPT5-based agent and is described in Algorithm 2.

503 **LSA-trained agents:** For LSA agents, \mathcal{A}_i are a trained single-layer linear self-attention (LSA)
 504 model (Section 2) that, at each turn, maps the concatenated tokenized (X_i, y_i) and the iterate history
 505 $w_{0:t-1}$ to a gradient-like vector approximating $\nabla L_i(w_t)$, with $L_i(w) = \|X_i^\top w - y_i\|^2$. We evaluate
 506 generalization to unseen (X_i, y_i) in the single-agent setting and then use the same checkpoints into
 507 Algorithm 2.

508 **GPT5-based agent:** For the GPT-based agent, we wrap a GPT5 model (gpt-5-mini) in a typed in-
 509 terface that returns a d -dimensional gradient given (X, y, w_t) and history $w_{0:t-1}$. Concretely, \mathcal{A}_{GPT}
 510 receives a *system prompt* that explains the objective and formula, and a *user message* containing the
 511 exact matrices $X \in \mathbb{R}^{d \times n}$, $y \in \mathbb{R}^n$, the current weight $w_t \in \mathbb{R}^d$, and the history $w_{0:t-1}$. In fact, we
 512 are not directly using the Z input as for the LSA agents, we are using its equivalent prompted ver-
 513 sion defined in Appendix 8.3. Besides, on the output side, the model is constrained to output a float
 514 vector as output, i.e., the predicted gradient update. This is performed using a pydantic formatted
 515 output schema, also described in Appendix 8.3. Now, the same algorithm as the one defined for the
 516 LSA agent is utilized to have the agent-to-agent interactions as defined in Algorithm 2. Additional
 517 details about the GPT5 setup and prompt are described in Appendix 8.3.

518 6 CONCLUSION

520 We introduced a theoretical framework that analyzed multi-agent interactions between LSA-based
 521 gradient-descent agents. In the *fixed-objective* regime, where each agent optimizes toward its
 522 prompt-induced objective throughout inference, we showed that alternating updates converge to
 523 biased fixed points. These residuals are jointly determined by objective misalignment and the
 524 anisotropic geometry of agent-specific prompts, yielding explicit, a priori predictions of conver-
 525 gence plateaus and revealing when two agents mutually degrade each other’s performance. Within
 526 this regime, we further identified conditions under which the dynamics become *asymmetric*, allow-
 527 ing one agent to reach its objective exactly while the other is left with a persistent bias. This leads
 528 to constructive mechanisms for adversarial prompt design, where an attacker can suppress or cancel
 529 the corrective directions of another agent while preserving its own progress.

530 We also showed that this behavior is not inherent to multi-agent systems. In an *adaptive-objective*
 531 regime, a helper agent can update a turn-based objective using only observable states and prompt-
 532 induced geometry. Our construction demonstrates that such a helper can implement Newton-like
 533 acceleration for the main agent, transforming the same interaction interface from a source of mu-
 534 tual degradation into a mechanism for cooperative optimization. This highlights a practical design
 535 principle for multi-agent LLM systems: when objectives can adapt, agents can construct turn-local
 536 surrogate goals that stabilize, align, or accelerate each other’s optimization dynamics.

537 Overall, our results connect the dynamics of in-context gradient descent to the emergent behavior
 538 of multi-agent LLM systems, illuminating both the risks of fixed misaligned objectives (plateaus,
 539 asymmetries, adversarial vulnerabilities) and the opportunities for principled cooperative accelera-
 540 tion when agents can reshape objectives during interaction.

540 REFERENCES
541

542 Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear
543 attention is (maybe) all you need (to understand transformer optimization). *arXiv preprint*
544 *arXiv:2310.01082*, 2023.

545 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning al-
546 gorithm is in-context learning? investigations with linear models. In *International Conference on*
547 *Learning Representations (ICLR)*, 2023. URL <https://openreview.net/forum?id=0g0X4H8yN4I>.

548 Philipp Altmann, Julian Schönberger, Steffen Illium, Maximilian Zorn, Fabian Ritz, Tom Haider,
549 Simon Burton, and Thomas Gabor. Emergence in multi-agent systems: A safety perspective. In
550 *International Symposium on Leveraging Applications of Formal Methods*, pp. 104–120. Springer,
551 2024.

552 Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
553 Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
554 systems fail? *arXiv preprint arXiv:2503.13657*, 2025.

555 Juncen C. Y. Chen et al. Reconcile: Round-table conference improves reasoning via multi-llm
556 collaboration. *arXiv preprint arXiv:2309.13007*, 2023. URL <https://arxiv.org/abs/2309.13007>.

557 Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
558 learn in-context? language models implicitly perform gradient descent as meta-optimizers. *arXiv*
559 *preprint arXiv:2212.10559*, 2022.

560 Yilun Du, Shuang Zhou, Jiayuan Li, et al. Improving factuality and reasoning in language models
561 through multi-agent debate. *arXiv preprint arXiv:2305.14325*, 2023. URL <https://arxiv.org/abs/2305.14325>.

562 Sinem Erisken, Timothy Gothard, Martin Leitgab, and Ram Potham. Maebe: Multi-agent emergent
563 behavior framework. *arXiv preprint arXiv:2506.03053*, 2025.

564 Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn in-
565 context? a case study of simple function classes. In *Advances in Neural Information Processing*
566 *Systems (NeurIPS)*, 2022. URL <https://arxiv.org/abs/2208.01066>.

567 Pengfei He, Yupin Lin, Shen Dong, Han Xu, Yue Xing, and Hui Liu. Red-teaming llm multi-agent
568 systems via communication attacks. *arXiv preprint arXiv:2502.14847*, 2025.

569 Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan,
570 Maarten Sap, and Michael Lyu. On the resilience of multi-agent systems with malicious agents.
571 In *International Conference on Learning Representations (ICLR)*, 2025a.

572 Jianhao Huang, Zixuan Wang, and Jason D. Lee. Transformers learn to implement multi-step gra-
573 dient descent with chain of thought. *arXiv:2502.21212*, 2025b.

574 Fanqi Kong, Ruijie Zhang, Huaxiao Yin, Guibin Zhang, Xiaofei Zhang, Ziang Chen, Zhaowei
575 Zhang, Xiaoyuan Zhang, Song-Chun Zhu, and Xue Feng. Aegis: Automated error generation
576 and attribution for multi-agent systems. *arXiv preprint arXiv:2509.14295*, 2025.

577 Donghoon Lee and Mohit Tiwari. Prompt infection: Llm-to-llm prompt injection within multi-agent
578 systems. *arXiv:2410.07283*, 2024.

579 Jialu Li, Yihong Chen, Yuxin Zhou, Jiaming Zhang, Weilin Zhao, and Bill Yuchen Lin.
580 System prompt extraction attacks and defenses in large language models. *arXiv preprint*
581 *arXiv:2505.23817*, 2025.

582 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
583 Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
584 agent debate. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language*
585 *Processing (EMNLP)*, 2024. URL <https://aclanthology.org/2024.emnlp-main.992/>.

594 Mahmoud Mohammadi, Yipeng Li, Jane Lo, and Wendy Yip. Evaluation and benchmarking of llm
 595 agents: A survey. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery*
 596 and Data Mining V. 2, pp. 6129–6139, 2025.

597

598 Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, and Tongliang Liu. Flow:
 599 Modularized agentic workflow automation. In *ICLR Poster*, 2025.

600 Lukas Struppek, Minh Hieu Le, Dominik Hintersdorf, and Kristian Kersting. Exploring the adver-
 601 sarial capabilities of large language models. *arXiv preprint arXiv:2402.09132*, 2024.

602

603 Johannes von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
 604 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
 605 descent. *Proceedings of the 40th International Conference on Machine Learning*, 2023.

606 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 607 Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A survey on
 608 large language model based autonomous agents. *arXiv preprint arXiv:2308.11432*, 2023. URL
 609 <https://arxiv.org/abs/2308.11432>.

610

611 Qianlong Wang et al. Rethinking the bounds of llm reasoning: Are multi-agent discussions bet-
 612 ter than single-agent cot? In *Proceedings of the 62nd Annual Meeting of the Association*
 613 *for Computational Linguistics (ACL)*, 2024. URL <https://aclanthology.org/2024.acl-long.331.pdf>.

614

615 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 616 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 617 models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022. URL <https://arxiv.org/abs/2201.11903>.

618

619 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 620 Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger, and
 621 Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversations. In *COLM*
 622 *Conference*, 2024.

623

624 Andrea Wynn, Harsh Satija, and Gillian Hadfield. Talk isn't always cheap: Understanding failure
 625 modes in multi-agent debate. *arXiv preprint arXiv:2509.05396*, 2025.

626

627 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
 628 zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
 629 Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan
 630 Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu,
 631 Xuanjing Huang, and Tao Gui. The rise and potential of large language model based agents:
 632 A survey. *arXiv preprint arXiv:2309.07864*, 2023. doi: 10.48550/arXiv.2309.07864. URL
 633 <https://arxiv.org/abs/2309.07864>.

634

635 Yong Yang, Qi Zhang, Xinyue Shen, Yufan Zhang, Zhiyuan Zhang, Yue Zhang, Kai Chen,
 636 and Lichao Sun. Prompt stealing attacks against large language models. *arXiv preprint*
 637 *arXiv:2402.12959*, 2024.

638

639 Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
 640 Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
 641 llm-based multi-agent systems. In *ICLR Poster*, 2025.

642

643 Andy Zou, Zifan Chen, Alexander Yang, Eric Zhang, Nicholas Carlini, Daphne Ippolito, John Lee,
 644 Xiang Lisa Li, Michael Zhang, Matt Fredrikson, et al. Effective prompt extraction from lan-
 645 guage models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational*
 646 *Linguistics (ACL)*, 2023.

647

648 SUPPLEMENTARY MATERIAL
649650 6.1 LIMITATIONS AND SCOPE
651

652 Our experiments are restricted to synthetic in-context linear regression and LSA agents, and we
653 only probe GPT-5-mini on the *same* linear-regression tasks. As such, our results do not directly
654 explain the behavior of multi-agent LLM collaborations on open-ended reasoning, writing, or code-
655 generation benchmarks. Instead, we view the present work as a mechanistic case study of two inter-
656 acting in-context optimizers, which yields concrete, testable hypotheses (e.g., about how represen-
657 tation geometry and objective misalignment interact) that future empirical work on real multi-agent
658 LLM systems can probe.

659 6.2 ALGORITHMS
660661 **Algorithm 1** White-box Attack - Prompt Design
662

663 **Require:** $S_W \in \mathbb{R}^{d \times d}$, mismatch $\Delta = w^* - u^* \in \mathbb{R}^d$, stability margin $\tau \in (0, 1/2)$ (e.g. 0.1), step
664 size η
665 **Build the line-space and its projector**
666 1: Set $v \leftarrow S_W \Delta$.
667 2: Set $P_v \leftarrow \frac{vv^\top}{\|v\|^2}$ (projector onto span{ v }).
668 **Build the adversarial geometry S_U .**
669 3: Pick any $\varepsilon \in (0, 1/\eta)$ (e.g. $\varepsilon \leftarrow \frac{1-\tau}{\eta}$).
670 4: Set
671
$$S_U \leftarrow \frac{1}{\eta} P_v + \varepsilon (I - P_v).$$

672
673 **Realize S_U as a data covariance.**
674 5: Factor S_U as $S_U = LL^\top$.
675 6: Form $X_\Gamma \in \mathbb{R}^{d \times n}$ with columns spanning $\text{Im}(L)$, e.g. $X_\Gamma \leftarrow \sqrt{n} L$.
676 7: **return** X_U, η .

677
678 **Algorithm 2** Agent-to-Agent Interaction (Model-agnostic Inference)
679

680 1: **Inputs:** agents $\mathcal{A}_1, \mathcal{A}_2$; datasets $(X_1, y_1), (X_2, y_2)$; step size η ; max steps S
681 2: $w^{(0)} \leftarrow 0_d$
682 3: **for** $s = 1$ to S **do**
683 4: $\hat{g}_1^{(s)} \leftarrow \mathcal{A}_1(X_1, y_1, [w^{(0)}, \dots, w^{(2s-2)}])$
684 5: $w^{(2s-1)} \leftarrow w^{(2s-2)} - \eta \hat{g}_1^{(s)}$
685 6: $\hat{g}_2^{(s)} \leftarrow \mathcal{A}_2(X_2, y_2, [w^{(0)}, \dots, w^{(2s-1)}])$
686 7: $w^{(2s)} \leftarrow w^{(2s-1)} - \eta \hat{g}_2^{(s)}$
687 8: **end for**
688 9: **Return** $w^{(0:2S)}$

690
691 7 DISCUSSION AROUND DEFENSE MECHANISM IN MULTI-AGENT SYSTEM
692

693 Beyond the specific white-box construction we provide, our analysis suggests three general principles
694 for robust multi-agent design:

695 (i) *Objective alignment.* Since all plateau errors are quadratic in $\Delta = u^* - w^*$, the most effective
696 way to reduce vulnerability is to enforce a shared global objective across agents (common system-
697 level task and safety prompt), so that $\|\Delta\|$ is small. This directly shrinks the quadratic forms in
698 Proposition 1 for any attacker geometry.

699 (ii) *Geometry control.* The strongest instabilities arise when an agent can engineer highly anisotropic
700 prompt geometries (S_W, S_U) with eigenvalues near $1/\eta$ along misalignment directions. Constraining
701 prompt templates to avoid extreme concentration on a single feature direction, and regularizing

estimated geometries toward more isotropic or bounded-spectral forms, keeps $(I - \eta S_U) S_W \Delta$ away from zero and thus prevents large asymmetric plateaus.

(iii) *Interaction protocol.* Our dynamics make explicit how alternating updates propagate misalignment. In practice, one can reduce this channel by limiting how much an untrusted agent can directly overwrite the shared state (e.g., mixing updates with a trusted baseline, or routing critical decisions through oversight agents whose prompts are deliberately aligned). In all cases, the quantities appearing in our theory, Δ , S_W , S_U , and the residual $r = (I - \eta S_U) S_W \Delta$, can be estimated (e.g., via probing) and used as diagnostics: if they predict large plateau errors, the configuration is structurally fragile and should be revised.

8 ADDITIONAL EXPERIMENTAL DETAILS

8.1 LSA AGENT TRAINING

For the CoT LSA training, we follow the guidance defined in Huang et al. (2025b). The hyperparameters used for training are defined in Appendix 8.2 Table 8.2.

Each dataset is an i.i.d. linear regression problem of dimension d as defined in Section 2.

$$X \in \mathbb{R}^{d \times n} \sim \mathcal{N}(0, \frac{1}{d} I), \quad w^* \sim \mathcal{N}(0, \frac{1}{d} I), \quad y = X^\top w^* \in \mathbb{R}^{n \times 1}.$$

From (X, y) we generate a ground truth gradient-descent trajectory on the quadratic loss with learning rate η . $L(w) = \frac{1}{2} \|X^\top w - y\|_2^2$:

$$g_t = \nabla L(w_t) = X(X^\top w_t - y), \quad w_{t+1} = w_t - \eta g_t, \quad w_0 = 0.$$

The trajectory is truncated whenever $\|g_t - g_{t-1}\|_2 \leq 10^{-3}$ and we retain $\{(w_t, g_t)\}_{t=0}^{\text{max_iter}}$.

The LSA model is trained to predict the *next gradient descent vector* given all tokens up to the current step. We organize the inputs as a token matrix as defined in Section 2 where the bottom block contains the running weight tokens w_0, \dots, w_t and a bias row of ones.

Given a dataset and a step index $t \in \{1, \dots, \text{max_iter}\}$, we present tokens up to $t - 1$ and regress the next ground truth gradient g_t :

$$\mathcal{L}_{\text{step}} = \|\text{LSA}(Z_{w_{0:t-1}}) - g_t\|_2.$$

We train the LSA with Adam optimizer with learning rate η and apply a cosine annealing scheduler.

8.2 HYPERPARAMETERS

Parameter	Default	Description
d	10	data dimension
n	20	number of in-context examples
num_datasets	100	independent training datasets
batch_size	512	(dataset, step) pairs per optimizer step
epochs	100	passes over the shuffled pair list
η	0.005	step size used to generate GD trajectories
scheduler	cosine	$\eta_{\text{min}} = 0.005$
eval datasets	10	sampled and averaged per evaluation call

8.3 GPT5 EXPERIMENTAL SETUP

Model and decoding. We use gpt-5-mini with JSON-parsed outputs. Unless otherwise noted: temperature = 0.0, top_p = 1.0, frequency/presence penalties = 0, reasoning effort low, and a strict response schema (below). Each call is retried up to 3 times on parse/shape failure.

8.4 TYPED SCHEMA AND PROMPTS

Response schema (Pydantic-style)

```

756
757     class GradientResponse(BaseModel):
758         thinking: str          # scratchpad text (ignored)
759         gradient_next: List[float] # length d, the gradient \Delta L
760
761 System prompt The system message provide the objective and dimensionalities for the current
762 dataset ( $X \in \mathbb{R}^{d \times n}$ ,  $y \in \mathbb{R}^n$ ):
763
764     You are an expert optimization agent working on linear regression
765     ↳ gradient descent.
766
767     PROBLEM SETUP:
768     - Input features  $X$ : {d}x{n} matrix (values provided in each
769       ↳ request)
770     - Target values  $y$ : {n}-dimensional vector (values provided in
771       ↳ each request)
772     - Current weight  $w$ : {d}-dimensional vector (what you'll
773       ↳ receive)
774
775     TASK: Calculate the gradient \Delta L with respect to  $w$ , where
776     ↳  $L = \|X^T w - y\|^2$ 
777
778     FORMULA: \Delta L =  $X(X^T w - y)$ 
779     -  $X^T w$  produces an {n}-dimensional vector (predictions)
780     -  $X^T w - y$  produces an {n}-dimensional vector (residuals)
781     -  $X @$  (residuals) produces a {d}-dimensional vector (gradient)
782
783     CRITICAL:
784     1. Use the EXACT  $X$  and  $y$  matrices provided in each request
785     2. Your output gradient must be exactly {d}-dimensional
786     3. Do NOT make up dummy data - use the actual matrices given
787     4. Perform the calculation step by step
788
789     The user will provide  $w_{\text{current}}$  and the matrices  $X$ ,  $y$ . Calculate and
790     ↳ return the {d}-dimensional gradient vector, do not ask the user to
791     ↳ validate what is to be done. The user will not be able to interact
792     ↳ with you. Be highly precise and accurate on your computations, you
793     ↳ will be evaluated on the distance with the ground truth
794     ↳ gradient."""

```

790
791 **User message (per turn).** At turn t , we pass the exact numerics for X, y, w_t and the prior history $w_{0:t-1}$. Note that history is included for parity with LSA and to allow in-context, multi-turn conditioning as well as to give the model the capability to perform filtering and negate the attack.

795 9 PROOFS

797 9.1 FIXED POINT ASSUMPTION

799 **Lemma 1.** If $S_W, S_U \succ 0$ and

$$800 \quad 0 < \eta < \min \left\{ \frac{2}{\lambda_{\max}(S_W)}, \frac{2}{\lambda_{\max}(S_U)} \right\},$$

802 then the fixed point exists and is unique. (Proof in Appendix 9.1)

803
804 *Proof.* For any SPD S , the eigenvalues of $M := I - \eta S$ are $\mu_i = 1 - \eta \lambda_i(S)$, so $\|M\|_2 =$
805 $\max_i |1 - \eta \lambda_i(S)| < 1$ whenever $0 < \eta < 2/\lambda_{\max}(S)$. Thus

$$806 \quad \rho(M_U M_W) \leq \|M_U M_W\|_2 \leq \|M_U\|_2 \|M_W\|_2 < 1.$$

807 At a fixed point (w_∞, u_∞) we have

$$808 \quad w_\infty = M_W u_\infty + \eta S_W w^*,$$

$$809 \quad u_\infty = M_U w_\infty + \eta S_U u^*.$$

810 Eliminating w_∞ from the second equation gives
 811

$$812 \quad u_\infty = M_U(M_W u_\infty + \eta S_W w^*) + \eta S_U u^* = (M_U M_W) u_\infty + \eta(M_U S_W w^* + S_U u^*).$$

813 Equivalently,

$$814 \quad (I - M_U M_W) u_\infty = \eta(M_U S_W w^* + S_U u^*) =: b. \quad (9)$$

815 By the step-size assumption we already showed $\|M_U\|_2 < 1$ and $\|M_W\|_2 < 1$, hence
 816

$$817 \quad \|M_U M_W\|_2 \leq \|M_U\|_2 \|M_W\|_2 < 1,$$

818 so in particular $\rho(M_U M_W) \leq \|M_U M_W\|_2 < 1$. Therefore $I - M_U M_W$ is invertible and, by the
 819 Neumann series,

$$820 \quad (I - M_U M_W)^{-1} = \sum_{k=0}^{\infty} (M_U M_W)^k.$$

823 Applying this inverse to equation 9 yields the unique solution

$$824 \quad u_\infty = (I - M_U M_W)^{-1} b = \sum_{k=0}^{\infty} (M_U M_W)^k \eta(M_U S_W w^* + S_U u^*).$$

827 Finally,

$$828 \quad w_\infty = M_W u_\infty + \eta S_W w^*.$$

829 Uniqueness follows because $I - M_U M_W$ is nonsingular: if two fixed points give $u_\infty, \tilde{u}_\infty$, then $(I -$
 830 $M_U M_W)(u_\infty - \tilde{u}_\infty) = 0 \Rightarrow u_\infty = \tilde{u}_\infty$, and the corresponding w_∞ is then uniquely determined
 831 by the first line. \square

833 9.2 PROOF OF PROPOSITION 1

835 *Proof.*

837 At convergence (omitting ∞ for simplicity), insert equation 2 into equation 3:

$$838 \quad u = [u - \eta S_W(u - w^*)] - \eta S_U([u - \eta S_W(u - w^*)] - u^*) \\ 839 \quad = u - \eta S_W(u - w^*) - \eta S_U(u - u^* - \eta S_W(u - w^*)).$$

841 Subtract u from both sides and factor the terms in $(u - w^*)$:

$$843 \quad 0 = -\eta S_W(u - w^*) - \eta S_U(u - u^*) + \eta^2 S_U S_W(u - w^*) \\ 844 \quad = -\eta \underbrace{[S_W + S_U - \eta S_U S_W]}_{\text{matrix}} (u - w^*) + \eta S_U(u^* - w^*).$$

847 Using $\Delta = u^* - w^*$ and canceling $\eta > 0$ gives the linear system

$$849 \quad (S - \eta S_U S_W)(u - w^*) = S_U \Delta. \quad (10)$$

850 Thus, equation 10 yields

$$851 \quad u - w^* = \underbrace{(S - \eta S_U S_W)^{-1} S_U}_{=:H} \Delta.$$

854 By definition,

$$856 \quad r_U := u - u^* = (u - w^*) - (u^* - w^*) = H\Delta - \Delta = -(I - H)\Delta.$$

857 From equation 2, $w - w^* = (u - w^*) - \eta S_W(u - w^*) = (I - \eta S_W)(u - w^*) = M_W(u - w^*)$.

859 Thus,

$$860 \quad r_W := w - w^* = M_W H \Delta, \quad \text{and} \quad r_U = -(I - H)\Delta$$

861 with $H = (S - \eta S_U S_W)^{-1} S_U$ and $M_W = I - \eta S_W$.

863 Now,

$$(S - \eta S_U S_W)^{-1} = S^{-1} + \eta S^{-1} S_U S_W S^{-1} + O(\eta^2),$$

thus, $H = S^{-1}S_U + O(\eta)$.

Therefore,

$$r_U = -(I - H)\Delta = -(I - S^{-1}S_U)\Delta + O(\eta) = -S^{-1}S_W\Delta + O(\eta),$$

and

$$r_W = (I - \eta S_W)(S^{-1}S_U + O(\eta))\Delta = S^{-1}S_U\Delta + O(\eta),$$

Finally, since $S_W^\top = S_W$, $S^{-T} = S^{-1}$, we have

$$\|r_U\|_2^2 = \Delta^\top S_W S^{-2} S_W \Delta + O(\eta), \quad \|r_W\|_2^2 = \Delta^\top S_U S^{-2} S_U \Delta + O(\eta).$$

□

9.3 PROOF OF COROLLARY 1

Proof. By Proposition 1,

$$\|u_\infty - u^*\|_2^2 = \Delta^\top (S_W S^{-2} S_W) \Delta + O(\eta), \quad \|w_\infty - w^*\|_2^2 = \Delta^\top (S_U S^{-2} S_U) \Delta + O(\eta),$$

with $S := S_W + S_U$. Assume S_W and S_U commute. Then there exists an orthonormal Q such that

$$S_W = Q \operatorname{diag}(\lambda_w) Q^\top, \quad S_U = Q \operatorname{diag}(\lambda_u) Q^\top, \quad S = Q \operatorname{diag}(\lambda_w + \lambda_u) Q^\top,$$

where $\lambda_{w,i}, \lambda_{u,i} \geq 0$ and $\lambda_{w,i} + \lambda_{u,i} > 0$ for all i since S is invertible. Hence

$$S^{-2} = Q \operatorname{diag}((\lambda_w + \lambda_u)^{-2}) Q^\top,$$

and a direct multiplication yields

$$S_W S^{-2} S_W = Q \operatorname{diag}\left(\frac{\lambda_w^2}{(\lambda_w + \lambda_u)^2}\right) Q^\top, \quad S_U S^{-2} S_U = Q \operatorname{diag}\left(\frac{\lambda_u^2}{(\lambda_w + \lambda_u)^2}\right) Q^\top.$$

Let $\tilde{\Delta} := Q^\top \Delta$. Substituting into the quadratic forms gives

$$\|u_\infty - u^*\|_2^2 = \sum_{i=1}^d \left(\frac{\lambda_{w,i}}{\lambda_{w,i} + \lambda_{u,i}}\right)^2 \tilde{\Delta}_i^2 + O(\eta), \quad \|w_\infty - w^*\|_2^2 = \sum_{i=1}^d \left(\frac{\lambda_{u,i}}{\lambda_{w,i} + \lambda_{u,i}}\right)^2 \tilde{\Delta}_i^2 + O(\eta),$$

□

9.4 PROOF OF COROLLARY 2

Proof. From the fixed-point identities (see Proposition 1 and its proof), a Neumann expansion gives

$$r_U := u_\infty - u^* = -(S^{-1}S_W)\Delta + O(\eta), \quad r_W := w_\infty - w^* = (S^{-1}S_U)\Delta + O(\eta),$$

where $S := S_W + S_U$ and $\Delta := u^* - w^*$.

$$\|r_U\|_2^2 = \Delta^\top \underbrace{(S_W S^{-2} S_W)}_{=:C_U} \Delta + O(\eta), \quad \|r_W\|_2^2 = \Delta^\top \underbrace{(S_U S^{-2} S_U)}_{=:C_W} \Delta + O(\eta).$$

For any PSD K and x , $\lambda_{\min}(K)\|x\|^2 \leq x^\top K x \leq \lambda_{\max}(K)\|x\|^2$. Apply with $x = \Delta$, $K \in \{C_U, C_W\}$, then take square roots:

$$\sqrt{\lambda_{\min}(C_U)} \|\Delta\| \leq \|r_U\| \leq \sqrt{\lambda_{\max}(C_U)} \|\Delta\| + O(\eta),$$

and similarly for W . Define $\alpha_U := \sqrt{\lambda_{\min}(C_U)}$, $\beta_U := \sqrt{\lambda_{\max}(C_U)}$ (and analogously α_W, β_W), and divide by $\sqrt{\|w^*\|^2 + \|u^*\|^2}$.

Let $m := \|w^*\|_2$, $g := \|u^*\|_2$, and $\theta \in [0, \pi]$ be the angle between w^* and u^* . Now,

$$\|\Delta\|_2^2 = m^2 + g^2 - 2mg \cos \theta.$$

918 Normalize and set the scale ratio $\rho := g/m$
 919

$$920 \quad \frac{\|\Delta\|_2}{\sqrt{m^2 + g^2}} = \sqrt{\frac{m^2 + g^2 - 2mg \cos \theta}{m^2 + g^2}} = \sqrt{\frac{1 + \rho^2 - 2\rho \cos \theta}{1 + \rho^2}} =: R_\theta(\rho).$$

$$921$$

$$922$$

923 To bound this uniformly over $\rho \geq 0$, consider $F(\rho) := R_\theta(\rho)^2 = 1 - \frac{2\rho \cos \theta}{1 + \rho^2}$. Then
 924

$$925 \quad F'(\rho) = -2 \cos \theta \frac{1 - \rho^2}{(1 + \rho^2)^2}.$$

$$926$$

$$927$$

928 Now we have

$$929 \quad \begin{cases} \cos \theta > 0 : F'(\rho) < 0 \text{ for } \rho \in [0, 1), F'(\rho) > 0 \text{ for } \rho > 1 \Rightarrow \rho = 1 \text{ is a global minimum;} \\ 930 \quad \cos \theta < 0 : F'(\rho) > 0 \text{ for } \rho \in [0, 1), F'(\rho) < 0 \text{ for } \rho > 1 \Rightarrow \rho = 1 \text{ is a global maximum;} \\ 931 \quad \cos \theta = 0 : F'(\rho) \equiv 0 \Rightarrow F(\rho) \equiv 1 \text{ and } R_\theta(\rho) \equiv 1. \end{cases}$$

$$932$$

933 Evaluate the endpoint limits:
 934

$$935 \quad \lim_{\rho \rightarrow 0} R_\theta(\rho) = \lim_{\rho \rightarrow \infty} R_\theta(\rho) = 1, \quad R_\theta(1) = \sqrt{1 - \cos \theta}.$$

$$936$$

937 Therefore

$$938 \quad \min_{\rho \geq 0} R_\theta(\rho) = \min\{1, \sqrt{1 - \cos \theta}\} =: r_{\min}(\theta), \quad \max_{\rho \geq 0} R_\theta(\rho) = \max\{1, \sqrt{1 - \cos \theta}\} =: r_{\max}(\theta).$$

$$939$$

940 From (iii) and the bounds in (iv),
 941

$$942 \quad \alpha_U r_{\min}(\theta) \leq \frac{\|u_\infty - u^*\|_2}{\sqrt{m^2 + g^2}} \leq \beta_U r_{\max}(\theta) + O(\eta),$$

$$943$$

944 and analogously for W with α_W, β_W . Since r_{\min}, r_{\max} are nondecreasing on $[0, \pi]$ and strictly
 945 increasing on $(0, \pi)$, the normalized plateaus grow monotonically with θ (up to the constants α, β).
 946 \square

$$947$$

948 9.5 PROOF OF COROLLARY 3

$$949$$

950 *Proof.* We recall the cooperative dynamics from Eq. 7:

$$951 \quad w_{t+1} = u_t - \eta S_W(u_t - w^*), \quad u_{t+1} = w_{t+1} - \eta S_U(w_{t+1} - u_t^*). \quad (11)$$

$$952$$

953 Define the error of the W -agent after its update as
 954

$$955 \quad e_{t+1} := w_{t+1} - w^*.$$

$$956$$

957 From equation 11 we have,
 958

$$958 \quad S_W w^* = \frac{1}{\eta} (w_{t+1} - (I - \eta S_W) u_t) = \frac{1}{\eta} (w_{t+1} - u_t) + S_W u_t. \quad (12)$$

$$959$$

960 Subtracting $S_W w^*$ from $S_W w_{t+1}$ gives
 961

$$961 \quad \begin{aligned} S_W e_{t+1} &= S_W (w_{t+1} - w^*) \\ 962 &= S_W w_{t+1} - \left[\frac{1}{\eta} (w_{t+1} - u_t) + S_W u_t \right] \quad (\text{by equation 12}) \\ 963 &= \left(S_W - \frac{1}{\eta} I \right) (w_{t+1} - u_t). \end{aligned} \quad (13)$$

$$964$$

$$965$$

966 Thus the error e_{t+1} satisfies the linear system
 967

$$968 \quad S_W e_{t+1} = \left(S_W - \frac{1}{\eta} I \right) (w_{t+1} - u_t).$$

$$969$$

970 In Corollary 3 we defined z_{t+1} as the unique solution of the same system,
 971

$$971 \quad S_W z_{t+1} = \left(S_W - \frac{1}{\eta} I \right) (w_{t+1} - u_t).$$

972 Since $S_W \succ 0$, this solution is unique, and comparing with equation 13 we obtain
 973

$$974 \quad z_{t+1} = e_{t+1} = w_{t+1} - w^*. \quad (14)$$

975
 976 We now show that the choice of u_t^* in Corollary 3 forces the realized helper state to be $u_{t+1} =$
 977 $w_{t+1} - z_{t+1}$ (and hence $u_{t+1} = w^*$).
 978

Let $M_U := I - \eta S_U$ for, the helper target is chosen as
 979

$$980 \quad u_t^* = w_{t+1} - [I + (\eta S_U)^{-1} M_U] z_{t+1}. \quad (15)$$

981 Plugging this into the helper update in equation 11 gives
 982

$$983 \quad u_{t+1} = w_{t+1} - \eta S_U (w_{t+1} - u_t^*) \\ 984 = w_{t+1} - \eta S_U (w_{t+1} - w_{t+1} + [I + (\eta S_U)^{-1} M_U] z_{t+1}) \\ 985 = w_{t+1} - \eta S_U [I + (\eta S_U)^{-1} M_U] z_{t+1}. \\ 986$$

987 Using $M_U = I - \eta S_U$, we have
 988

$$989 \quad \eta S_U [I + (\eta S_U)^{-1} M_U] = \eta S_U + M_U = \eta S_U + (I - \eta S_U) = I.$$

990 Therefore
 991

$$992 \quad u_{t+1} = w_{t+1} - z_{t+1}. \quad (16)$$

993 Combining equation 14 and equation 16 yields
 994

$$995 \quad u_{t+1} = w_{t+1} - e_{t+1} = w_{t+1} - (w_{t+1} - w^*) = w^*,$$

996 \square
 997

998 9.6 PROOF OF PROPOSITION 2

1000 *Proof.* Recall the agent-to-agent fixed-point system

$$1001 \quad w_\infty = M_W u_\infty + \eta S_W w^*, \quad u_\infty = M_U w_\infty + \eta S_U u^*, \quad (17)$$

1003 with $M_W := I - \eta S_W$ and $M_U := I - \eta S_U$. Now, assume $u^* = u_\infty$, from the first fixed-point
 1004 equation,

$$1005 \quad w_\infty = M_W u^* + \eta S_W w^* = (I - \eta S_W) u^* + \eta S_W (u^* + \Delta) = u^* + \eta S_W \Delta.$$

1006 Substitute w_∞ and $u_\infty = u^*$ into the second equation of equation 17:

$$1007 \quad u^* = M_U (u^* + \eta S_W \Delta) + \eta S_U u^* = u^* + \eta (I - \eta S_U) S_W \Delta,$$

1008 which is equivalent to $(I - \eta S_U) S_W \Delta = 0$, establishing the first condition.
 1009

1010 The residual for agent W is

$$1011 \quad w_\infty - w^* = (u^* + \eta S_W \Delta) - (u^* + \Delta) = (\eta S_W - I) \Delta,$$

1012 so $w_\infty \neq w^*$ iff $(\eta S_W - I) \Delta \neq 0$, the second condition.
 1013

1014 By contraction, the fixed point is unique, hence the iterates converge to (w_∞, u_∞) with $u_\infty = u^*$
 1015 and $w_\infty \neq w^*$. \square

1016 9.7 PROOF OF COROLLARY 4

1017 *Proof.*

$$1018 \quad u_{t+1} = (I - \eta S_U) w_{t+1} + \eta S_U u^*, \quad w_{t+1} = u_t - \eta S_W (u_t - w^*).$$

1019 Expand u_{t+1} :

$$1020 \quad u_{t+1} = \eta S_U u^* + (I - \eta S_U) [u_t - \eta S_W (u_t - w^*)] \\ 1021 = \eta S_U u^* + (I - \eta S_U) u_t - \eta (I - \eta S_U) S_W (u_t - u^*) - \eta (I - \eta S_U) S_W (u^* - w^*).$$

1026 Let $e_t := u_t - u^*$ and $r := (I - \eta S_U)S_W\Delta$ with $\Delta := u^* - w^*$. Then

$$1027 \quad 1028 \quad e_{t+1} = [I - \eta(S_U + (I - \eta S_U)S_W)]e_t - \eta r =: Ae_t - \eta r.$$

1029 At a fixed point e_∞ of the affine recursion we have

$$1030 \quad 1031 \quad e_\infty = Ae_\infty - \eta r \iff (I - A)e_\infty = -\eta r.$$

1032 Since $I - A = \eta(S_U + (I - \eta S_U)S_W)$, we obtain

$$1033 \quad 1034 \quad e_\infty = -(S_U + (I - \eta S_U)S_W)^{-1}r,$$

1035 and hence

$$1036 \quad 1037 \quad \|u_\infty - u^*\| = \|e_\infty\| \leq \|(S_U + (I - \eta S_U)S_W)^{-1}\| \|r\|.$$

1038 For W , we have

$$1039 \quad 1040 \quad w_{t+1} - w^* = (I - \eta S_W)(u_t - w^*) = (I - \eta S_W)e_t + (I - \eta S_W)\Delta.$$

1041 Taking $t \rightarrow \infty$ gives

$$1042 \quad 1043 \quad w_\infty - w^* = (I - \eta S_W)\Delta + (I - \eta S_W)e_\infty = (I - \eta S_W)\Delta - (I - \eta S_W)(S_U + (I - \eta S_U)S_W)^{-1}r.$$

1044 \square

1045

1046 9.8 PROOF OF COROLLARY 5

1047 *Proof.* Let $S_U = \frac{1}{\eta}P_v + \varepsilon(I - P_v)$ where $v = S_W\Delta$. Now,

$$1048 \quad 1049 \quad S_Uv = \frac{1}{\eta}v \implies (\eta S_U - I)v = 0.$$

1050 thus, $(I - \eta S_U)S_W\Delta = 0$. For $z \in \text{span}(I - P_v)$, $P_vz = 0$ and $(I - P_v)z = z$, hence

$$1051 \quad 1052 \quad S_Uz = \varepsilon z \implies (\eta S_U - I)z = (\eta\varepsilon - 1)z \neq 0$$

1053 because $\eta\varepsilon - 1 < 0$, thus S_U is full rank.

1054 Now, by assumption $(\frac{1}{\eta}, \Delta) \notin \text{spec}(S_W)$ hence

$$1055 \quad 1056 \quad \Delta \notin \ker(I - \eta S_W).$$

1057 Since, $\lambda_{\max}(S_U) = \max\{1/\eta, \varepsilon\} = 1/\eta$, so the condition $\eta < 2/\lambda_{\max}(S_U)$ gives $\eta < 2\eta$, trivially
1058 verified for $\eta > 0$. \square

1059

1060 10 AI TOOLING USAGE

1061

1062 For this paper, AI tools were used for specific purpose: (i) polish writing & code, (ii) search for
1063 references, (iii) sounding board for some theoretical results.

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079