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ABSTRACT

Data today is decentralized, generated and stored across devices and institutions
where privacy, ownership, and regulation prevent centralization. This motivates
the need to train generative models directly from distributed data locally with-
out central aggregation. In this paper, we introduce Federated Flow Matching
(FFM), a framework for training flow matching models under privacy constraints.
Specifically, we first examine FFM-vanilla, where each client trains locally with
independent source and target couplings, preserving privacy but yielding curved
flows that slow inference. We then develop FFM-LOT, which employs local opti-
mal transport couplings to improve straightness within each client but lacks global
consistency under heterogeneous data. Finally, we propose FFM-GOT, a federated
strategy based on the semi-dual formulation of optimal transport, where a shared
global potential function coordinates couplings across clients. Experiments on
synthetic and image datasets show that FFM enables privacy-preserving training
while enhancing both the flow straightness and sample quality in federated set-
tings, with performance comparable to the centralized baseline.

1 INTRODUCTION

Generative models (Sohl-Dickstein et al., 2015} [Ho et al.l [2020; [Song et al., 2020) aim to capture
the probability distribution of complex data such as images, audio, or text, enabling the synthesis of
realistic new samples. Flow matching (FM) provides a powerful framework for this task (Lipman
et al.l 2022} |Albergo & Vanden-Eijnden, 2022} Liu et al., [2022). It learns a deterministic vector
field that continuously transports a simple source distribution gq (e.g., Gaussian noise) to a complex
target distribution ¢; (e.g., natural images). Training proceeds by regressing the model velocity to
a prescribed target velocity defined along paths between paired samples (xq, 1) with zo ~ ¢ and
x1 ~ q1. The choice of coupling between gy and ¢; is fundamental, as it dictates the geometry of
probability flows. Independent couplings, formed by pairing 2y and x; at random, are straightfor-
ward but induce curved probability paths. These curved paths require many integration steps during
sampling and thus slow inference. Flow matching based on optimal transport (OT) (Tong et al.,
2020; Onken et al., 2021} [Liul 2022; [Tong et al.l 2023) selects couplings that minimize transport
cost, often by solving mini-batch OT problems in training. The resulting flows are straighter and
allow fewer steps at inference, significantly accelerating generation.

Most existing generative methods assume that all data is centralized. In practice, this is often not the
case. Data are created and stored on personal devices (Yang et al.,[2019)), and across national bound-
aries where privacy, ownership, and regulation preclude direct sharing. The question, then, is how
to train a single generative model across these dispersed sources while keeping raw data local. Fed-
erated learning (FL) (Konecny et al.| 2016b; McMahan et al.| 2017) provides a paradigm in which
each client performs training on its own data and communicates only model updates or gradients
to a coordinating server. The server aggregates these updates into a global model and redistributes
them back to the clients. In this way, raw data never leaves local storage, while knowledge is shared
through the iterative exchange of model parameters. FL is well-established for machine learning
problems, but its extension to flow matching has, to our knowledge, not been explored.

To this end, we introduce Federated Flow Matching (FFM) for training flow matching mod-
els based on decentralized data. FFM follows the standard FL paradigm (see Fig. [I): clients
keep their data on-device and compute local updates to a shared flow model, while a central
server aggregates these updates via federated averaging without ever accessing raw training sam-
ples. The unique challenge in FFM, compared to standard FL, lies in constructing effective



couplings between the source distribution (qg)
and the aggregated target distribution (g1,\ =
> Aigh). Here, g is client i’s data distribution
and )\; is its aggregation weight. Unlike the cen-
tralized setting, which allows for the direct com-
putation of such couplings, the federated setting
prohibits combining isolated client data. The key
difficulty is, therefore, how to construct effec-
tive couplings from decentralized data and learn
a global velocity field that not only preserves pri-
vacy but also yields straight flows necessary for
fast inference.

We start with the baseline method FFM-vanilla,
in which each client treats source and target dis-
tributions independently, yielding the coupling
> Ai(go @ q) '} where gq is the common source
distribution. This baseline guarantees privacy
and allows collaborative training through feder-
ated averaging. While the resulting flows may
be curved, FFM-vanilla establishes a simple and
effective foundation for decentralized generative
modeling.

‘We then introduce FFM-LOT, wherein each client
7 computes the local OT plan 7} between go and
qi. The coupling is constructed as an aggrega-
tion of local OT plans defined as ), A\;w}. This
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Figure 1: Federated Flow Matching (FFM).
Each client holds its own data distribution and
shares a common base distribution. The server
aggregates client updates to learn a shared vec-
tor field that transports the base distribution to-
ward the federated mixture, while raw data re-
main local.
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approach improves flow straightness within each client’s data region (Fig. [2] (c)), thereby enhanc-
ing inference efficiency. However, under heterogeneous data distributions, the aggregated local OT
plans may yield curved trajectories and fail to achieve global straightness.

Next, we propose FFM-GOT that directly ap-
proximates the global OT plan across all clients
to strengthen the flow straightness. By leverag-
ing the semi-dual formulation of OT, FFM-GOT
learns a shared dual potential function that im-
plicitly coordinates couplings across clients with-
out data sharing. Both the dual potential and the
flow model are updated during training via feder-
ated averaging. This approach enables the learn-
ing of globally straight probability flows (Fig. [2]
(c)), significantly improving inference efficiency
while maintaining strict privacy constraints.

Lastly, experiments on synthetic and image
benchmarks show that all these methods en-
able effective training under privacy constraints.
Specifically, FFM-vanilla provides a simple and
stable baseline. = FFM-LOT improves infer-
ence efficiency by leveraging local OT plans
to straighten probability paths, but is sensi-
tive to non-Independent and Identically Dis-
tributed (non-IID) client distributions. FFM-GOT
achieves the highest inference efficiency by learn-
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Figure 2: Visualization on 2D benchmark.

ing globally straight paths, albeit at the cost of more computation. Remarkably, FFM-GOT outper-
forms the centralized method OT-CFM (Tong et al., 2023) at a low number of function evaluations
(NFE). This is because FFM-GOT directly approximates the global OT plan, whereas OT-CFM

relies on mini-batch approximations.

"Here g0 ® ¢} denotes the product measure



2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 OPTIMAL TRANSPORT PROBLEM: KANTOROVICH AND DYNAMIC FORMULATION

OT provides a principled way to measure the cost of transforming one probability distribution into
another. Given two probability measures gy and ¢; on R? and a measurable cost function ¢ : R? x
R4 — R, the Kantorovich formulation of OT is

OT.(go.q1) = min / (0, 21) dr(z0, 71), 1)
R xR™

m€I(g0,q1)

where TI(qo, g1) is the set of couplings with marginals ¢ and ¢;. Intuitively, 7 specifies how mass
from qq is transported to ¢, and the objective seeks the plan of minimal cost. For the quadratic
cost ¢(zg, 21) = %||wo — 21|, the OT cost equals the squared 2-Wasserstein distance, W3 (qo, q1).
Benamou and Brenier (Benamou & Brenier, 2000) showed that this admits a dynamic reformulation

1 Ovqy + V - =0,
W2(do 1) — min { ] |vt<x>||2qt<x>dxdt\ (e TV - (geve) } @
0 R4

(qt,v¢) gt=0 = 4o, Gt=1 = q1-

which seeks a time-dependent vector field v, that generates a probability flow ¢, transporting ¢ to g1
with minimal kinetic energy. At optimality, p, traces the displacement interpolation between ¢ and
q1, meaning that for (zq, 1) ~ 7, the OT plan, the trajectory is given by x; = (1 —t)xg + tx; with
constant velocity v;(x¢) = x1 — xo. Thus, the solution corresponds to straight-line paths between
optimally coupled points (Villani, [2003)).

2.2 FLOW MATCHING

Flow matching aims to sample from the target distribution ¢; by transforming samples from the
source distribution gg. The particle dynamics follow the ordinary differential equation (ODE) dz; =
u¢(z¢) dt, which induces a probability flow ¢, with densities evolving according to the continuity
equation Oyp: + V - (prur) = 0. Since the exact vector field u; is intractable, it is approximated by
a neural network v?, which can be trained via the conditional flow matching objective

2
Lem(90, 013 0) = Brcufo 1), (wo.er)~or || 0F (1 = t)zo + t21) — (21 —20)|| ", 7 € (g0, 1) (3)

where II(qo, g1) is the set of all joint distributions having marginal distributions go and ¢;. As shown
by|Pooladian et al.{(2023), for any admissible coupling 7 € TI(qo, ¢1 ), perfect training of minimizing
(3) yields a vector field that generates a valid flow between ¢ and ¢;. Different choices of the
coupling distribution 7 lead to different flow matching methods. For instance, independent coupling
flow matching (I-CFM) sets m = go ® q1, where 2o and z; are sampled independently. This simple
construction is effective but typically produces curved trajectories, requiring many integration steps.
Optimal Transport-based flow matching (OT-CFM) refines this approach by setting 7 = 7*, the
optimal transport plan from (T). The resulting training problem becomes

W (1= t)zg + tay) — (21 — 20)|) "

EOT—CFM(Q) = Eteu[o,l],(wo,xl)fvﬂ*

In this case, training aligns v{ with the displacement interpolations of the Benamou-Brenier prob-
lem (2)), producing straight trajectories that reflect the geodesic structure of Wasserstein space and
enabling faster, more stable inference. However, computing 7* has cubic computational complexity
in the number of samples, which is challenging for large datasets. Alternatively, one can approxi-
mate 7* using mini-batch data (Tong et al.|[2023)) or use entropic OT solvers (Pooladian et al., 2023
Klein et al.|[2025)).

2.3 PROBLEM FORMULATION

We consider the problem of training a single flow matching model in a federated learning setting.
Suppose that there are n clients and each client i possesses a local data distribution g%, which cannot
be shared with other clients due to the privacy constraints. The global target distribution is defined
asqiy = Z?:l )\iqi, where J; is the weight for each client ¢ and satisfies 2?21 A; = 1. We assume
that all clients share a common source distribution gg.



The objective of federated flow matching is to learn a global vector field v{ that transports go to the
aggregated target ¢; by minimizing

2
L (0) = Erera(0,1], (w000 )~r ||0F (1 = o + ta1) — (z1 —20)||”, 7 € Mg, q1,0). (4D

The difficulty is that the coupling 7 is defined with respect to the global target distribution ¢ y,
which cannot be formed without centralizing client data. The goal of this work is to overcome this
challenge by developing federated learning algorithms that learn from decentralized data and yield
efficient, straight flows.

3 FEDERATED FLOW MATCHING

3.1 VANILLA FEDERATED FLOW MATCHING (FFM-VANILLA)

The performance of conditional flow matching depends critically on the choice of coupling 7 in
(@). A natural baseline is to take 7 as the independent product measure 7 = g ® ¢1,», which
corresponds to sampling xog ~ qo and x1 ~ g1, independently. This leads to the federated flow
matching objective in its vanilla form, i.e.,
2
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whereby the global objective in (3] is decomposed into a weighted sum of client-specific expecta-
tions. Each term in the sum depends exclusively on the local data distribution, making it directly
implementable with standard FL. This formulation allows each client to compute gradients using
only its local data, which are then aggregated on a central server through weighted averaging.

The fgderated.optimization procedure .is out- 37 gorithm 1 FEM-vanilla
lined in Algorithm|l} In each communication —— -
round, client i samples a mini-batch of data  1: Input: Source distribution go, weight vector A,

pairs (g, 1) with 29 ~ qo and 21 ~ ¢}. For data distribution ¢}, i =1,...,n,

each pair, it draws ¢t ~ U0, 1], forms the inter- ~ 2: for k =0,..., K do

polation z; = (1 — t)zo + tx1, evaluates the 3: foreachclienti=1,...,ndo

local loss L. Then, it computes the stochastic ~ 4: Sample zg ~ qo, 1 ~ ¢j, and ¢ ~
gradient VL' and sends it to the server. The uo, 1]

server aggregates client updates by a weighted 5 Update z¢ = (1—1)xo+tz; and compute
average > . ; A\;VoL" and applies the global loss L « ||vf (x¢) — (z1 — ;1;0)”2
update 0 < 0 —ng > 1| \;VoL" with learn-  ¢; Send gradient VoL to server

ing rate 7. 7:  end for . ,
FFM-vanilla provides privacy guarantees, as 8:  Serverupdate § <~ 0 — 15 35— AiVoL'

9: end for

lient icat 1 del gradient: .
clents commuficate ony MOTEr Sradiens . Output: Global velocity field v¢.

rather than raw samples x; ~ ¢}. It is simple
to implement and provides a natural baseline
for federated flow matching. However, its reliance on independent couplings might lead to highly
curved probability paths. During inference, integrating the ODE defined by the learned vector field
v? requires numerous evaluation steps to maintain accuracy, resulting in computationally expensive
and slow sampling. Thus, although FFM-vanilla succeeds in learning a generative model for the
aggregated distribution ¢ , it does not achieve efficient inference, motivating the more advanced
methods introduced in the rest of this section.

3.2 FEDERATED FLOW MATCHING VIA LOCAL OT (FFM-LOT)

It is shown by [Tong et al.| (2023) that one would greatly benefit from training flow models by using
the optimal coupling (joint distribution) in the Kantorovich optimal transport rationale. Training
with the OT plan yields a vector field that solves the Benamou-Brenier dynamic OT formulation,
producing straight probability paths and enabling fast inference. However, directly computing the
global OT plan between go and ¢, is impossible and incompatible with federated learning, as it



requires access to the entire decentralized dataset. Herein, we explore methods to approximate the
benefits of OT within the federated learning constraints.

A natural initial strategy is to compute an OT plan locally on each client between the shared source
qo and its local target gi. The global coupling is then constructed as the mixture of these local
OT plans, 7}y = >y A}, where 7} = arg il e11(gy,q0) Jgn sgn €(@o, 1) dmi (20, 21). This
leads to the following federated learning objective

2
Leemror(0) = Eonf(o,1], v~y |07 (1= B0 + t21) = (21 — w0
- 2
=Y X Ereta(o.1],(mo.e) s |[0F (1 = D)o + tay) — (21 — 20)|
i=1

The federated algorithm for this approach, de- Algorithm 2 FFM-LOT
tailed in Algorithm 2] proceeds as follows. In

each communication round, each client ¢ sam- \. data distribution ql:l,...,n

ples a mini-batch of zg ~ ¢p and z; ~ ¢i. 9 f(;r k=0 K dol

Each client 7 computes the OT plan 7; from this i for clie’n.t z Z 1. ndo

pair of mini-batch data, which can be achieved Sample N q(; 21 ~ ¢i,and t €
by exact or approximate (entropic regularized ulo, 1] ’ L

via Sinkhorn) OT solvers. It then samples L
pairs (xo, 1) from this plan, computes the flow 6:
matching loss, and sends the gradient to the '

1: Input: Source distribution go,weight vector

s

bd

Resample (zq, z1) ~ 77 = OT(z0,x1)
Updated ¢ = (1 — t)xo + tz1 and com-

i 2
server for aggregation. The server then aggre- pute loss L* < va(xt) — (21 — xO)H
gates client gradients and performs a global up-  7: Send gradient VgL’ to server
date. 8: end for

9:  Server updates 6 < 0 —ng > i \iVoL!
and broadcast to clients

10: end for

11: Output: Global velocity field v?.

Using locally optimal couplings, FFM-LOT en-
courages straighter paths within each client’s
data distribution, which can lead to faster infer-
ence times compared to the vanilla independent
coupling. However, the aggregate of local OT
plans 7}, is generally not equivalent to the global OT plan 7*. The local approach fails to ac-
count for the geometric relationships between data points across different clients. Consequently,
the resulting vector field is a compromise that averages these local, potentially conflicting, optimal
trajectories rather than finding a truly globally optimal flow. The following theorem quantifies the
sub-optimality gap between the mixture of local plans and the true global plan, highlighting its de-
pendence on the statistical heterogeneity between the client distributions. The proof of Theorem I]
is given in Appendix[A.4]

Theorem 1 (Sub-optimality of mixed local OT plans). Let 7} ., = > 1" | A\; 7}, and

w7 = argmin /c(xo,xl)dm(xo,xl), 7 = argmin /c(:co,xl)dﬂ'(xo,xl).
m; €11(qo,q%) m€I1(q0,q1,7)

Suppose that the Monge setting 7 = (Id, T*)4qo and 7} = (Id, T} )wqo fori = 1,...,n. Assume
that | T* ()|, | T (x)|| < D for qo-a.e. x. Under the standard regularity condition, there exists

C > 0 such that W2 (r*, 75, 1) < CDY M Wa(aqr, i)™,

Theorem [I] confirms that the sub-optimality of the local OT approach is directly proportional to the
average Wasserstein distance between the global target distribution and each client’s local distri-
bution. In highly non-IID settings where clients have disparate data, this error can be significant,
limiting the inference efficiency of the learned model. This limitation motivates the need for a
method that can more directly approximate the global OT plan in a federated manner, which we
address in the following section.

3.3 FEDERATED FLOW MATCHING VIA GLOBAL OT (FFM-GOT)

To further improve flow straightness, we propose a method that directly approximates the global
optimal transport plan in a federated manner. Our innovation is based on the semi-dual formulation
of the Kantorovich problem, which is presented in the following lemma.



Lemma 1 (Kantorovich duality (Villani, 2003; Peyré & Cuturi, 2019)). Let qo, q1,5 be probabil-
ity measures on R™ and let ¢ : R™ x R™ — R be a cost function. The Kantorovich optimal transport
problem admits the dual formulation

O (1) = max { [ ftaw)dante) + [ ator)daa(on)} ©
f,geL?! R™ n

subject to f(xo) + g(x1) < c(xo,x1) for all (xg,x1). The c-transform of f is defined as f°(x1) =

ming,egn {c xo,21) — f(z )}, which yields the semi-dual representation (Choi et al., |2023))

OT.(anan) = { [ flandmten) + [ o) dmaten}. )

fert

Using Lemma and the definition of ¢; ), we obtain

OTe(qo, q10) = = dnax {/f o) dgo(wo +Z>\ /f 1) dgj 171)}

= max /\ {/f x0) dgo(zo) /f x1)dg} xl)} (8)

feL(qo)

This reformulation reveals that the global OT problem can be expressed as a federated optimization
over the shared dual potential f. Once the optimal potential f* is obtained, the optimal coupling
7* can be recovered: A pair (xg,z1) is coupled under 7* if and only if it satisfies the condition
f*(zo) + f*(x1) = ¢(xo,x1). In practice, we can approximate a sample from 7* by first sampling
21 ~ ¢ and then solving Ty = arg min,, {c(xo, z1)— f*(zo) }, after which we use the pair (Zg, z1).

Based on this insight, we propose to learn the Algorithm 3 FEM-GOT
dual potential function in a FL paradigm to co- — -
ordinate couplings among clients. To this end, ~ 1: Input: Source distribution go, weight vector A,

we parameterize the dual potential f with a data distribution ¢1,¢ =1,...,n

neural network f, and optimize the semi-dual ~ 2: for k=0,..., K do

objective collaboratively across clients. FEM-  3:  forclient: =1,...,ndo A

GOT employs a two-stage optimization pro- 4 Sample zo ~ qo, 1 ~ ¢, and t €
cess executed over federated communication ulo, 1],

rounds, as detailed in Algorithm [3] The pro-  5: Resample (zq, 1) ~ 7y via Alg.
cedure iteratively updates the vector field and ~ ©: Update z; = (1—t)xo+tz1 and compute
the dual potential. For the vector field update, loss Lfg « va (1) — (1 — o) ||2

each client samples a mini-batch of g ~ qo 7. Send gradient VL to server

and 21 ~ qi. Using the current dual potential 8 end for
fo, each client then resamples coupled pairs  ¢.  Server updates 6 < 0 — 3" A\;VyLi and

(z0,21) via Algorithm[5] This resampling step broadcast it to clients
effectively identifies, for each target point x1, 1o.  (all DUALUPDATE(qo, {¢} }, \; #)  via
a corresponding source point that minimizes Alg. [

c(zo, 1) — fy(xo) among K candidate source  |1. end for

samples. Based on these coupled pairs, each 1. Qutput: Global velocity field v and dual po-
client computes the gradient Vy L; for the vec- tential function f.

tor field and transmits it to the server for aggre-
gation. The update of the dual potential, detailed in Algorithm[4] proceeds as follows. Each client
computes the loss L, = f,(z0) + f5(x1) onits local data, evaluates the gradient V¢L; and sends
this gradient to the server. The server then aggregates these client gradients and updates the global
dual potential network fy using federated averaging.

As the dual potential f, converges towards the global optimum, the resampling procedure provides
increasingly accurate approximations of pairs from the true global OT plan 7*, which in turn allows
the flow matching model v{ to learn straighter, globally optimal paths.

Note that two approximations cannot be avoided when training flow models using FFM-GOT. The
first arises in Alg. (4| when evaluating the c-transform f§, which requires solving the optimization



problem: inf,, c(xg,x1) — f(zo). In practice, this infimum can be approximated using a finite
steps of gradient descent or existing solvers. The second approximation occurs in Alg. [5during the
resampling of pairs (zq, z1) ~ 7%2), where 7 is an empirical approximation of the global OT plan
based on the current dual potential f,. This resampling is typically performed over a finite set of
candidate source points, which also introduces discretization errors. In practice, these approximation
errors can be systematically reduced by allocating more computational resources, such as using
more gradient steps or larger candidate pools. Crucially, our experiments demonstrate that high-
quality approximations can be achieved without significantly increasing the computational overhead,
allowing FFM-GOT to remain both practical and efficient.

Remark 1. In the dual formulation (6), one could parameterize g(x1) and define its c-transform
Sunction g°(xg). However, this c-transform function requires minimizing over x1, which is gener-
ally more challenging given the multi-modal nature of typical target distributions. In contrast, our
chosen parameterization defines the dual potential on the target space, so its c-transform requires
minimization only over xq. Since xq is usually from a simple, unimodal reference distribution, this
minimization is computationally more tractable.

Remark 2 (Schrodinger bridge flow matching). The Schrodinger bridge (Shi et al., 2025, |Chen
et all 2021) seeks the most likely coupling relative to a prior R.(dx,dy) = qo(dx)p:(dy |
x) while enforcing marginals qo and qi x. Its dual reduces to a single-potential semi-dual,

maxy, {fwqu,\ - flog(few(y)pa(dy \ x))qo(dm)}, which differs from the OT semi-dual only

by the entropic log-sum-exp. Thus, the Schrédinger version of flow matching can be trained in ex-
actly the same manner, with privacy preserved by the decomposition [ dgqi x = > \; [ dg}.
In the zero-noise limit € — 0, this formulation converges to the classical Kantorovich semi-dual.

4 RELATED WORKS

Flow matching: Our work builds upon the recent advances in flow-based generative models,
specifically flow matching (FM) (Lipman et al.| [2022), which provide a simple and stable frame-
work for training continuous normalizing flows. A key design choice in FM is the coupling between
source and target points. The naive independent coupling leads to curved probability paths and slow
inference. Recent breakthroughs have significantly improved this by integrating ideas from optimal
transport. Notably, Tong et al.|(2023)) and |Pooladian et al.|(2023)) demonstrated that using mini-batch
optimal transport couplings results in straighter paths and much faster sampling. Moreover, |Klein
et al.| (2025); |Calvo-Ordonez et al.| (2025) showed that entropic regularization of OT couplings can
enhance numerical stability and computational efficiency. These methods, however, are designed
for centralized data. We generalize this line of work to the FL setting, where data cannot be pooled
for mini-batch or entropic OT computation. To address this constraint, we propose a novel federated
algorithm that approximates global OT plans across clients without sharing raw data.

Federated Learning for Generative Models: Federated Learning (FL) was originally proposed
to enable collaborative learning from data distributed across multiple clients without sharing raw
data (Konecny et al.l|2016a; McMahan et al.,[2017). Its application to generative modeling is more
recent and introduces unique challenges because the goal is to learn the full complex data distri-
bution. Previous research has explored adapting various generative frameworks to the federated
setting. Initial work focused on Federated Generative Adversarial Networks (GANs) (Augenstein
et al.} 2020), which employ an adversarial minmax game to learn a direct mapping from noise to
data samples. This approach stands in contrast to flow-based methods, as GANs do not involve
continuous normalizing flows or ODE integration, thereby avoiding the specific inference efficiency
challenges associated with neural ODE solvers. More recent efforts have investigated federated
diffusion models (Peng et al., 2025} |de Goede et al 2024} [Vora et al.l 2024). While both diffu-
sion models and flow matching can be formalized as methods that learn a probability path between
noise and data distributions, they differ fundamentally in their flexibility. Diffusion models are
constrained to a fixed probability path determined by a predefined forward process, whereas flow
matching methods can have from infinitely many possible paths depending on the coupling between
source and target distributions. This flexibility enables the design of the probability path geometry
for improved inference efficiency, which is not possible in diffusion models. Our work is the first,
to our knowledge, to address federated learning of flow matching models, with a specific focus on
leveraging optimal transport to achieve fast sampling.



Optimal Transport: Its application in machine learning is vast, including generative modeling
(Arjovsky et al.l [2017; |Salimans et al., 2018), domain adaptation (Courty et al., [2017)), distribution
comparison (Wang et al.,|2023), and more recently, as a core component in training flow matching
models (Tong et al., 2023} Kornilov et al.| 2024} Rohbeck et al., 2025} Wang et al.,[2025; |Corso et al.,
2025; [Klein et al., 2024). The semi-dual formulation of OT has been explored for scalable compu-
tation (Genevay et al., 2016) and recently for generative modeling in the centralized setting (Choi
et al.} [2023)). Our federated OT method is inspired by these works but addresses the fundamentally
different challenge of optimizing the semi-dual objective without sharing data across clients, using
a federated averaging procedure on the parameters of a dual potential network. To the best of our
knowledge, this is the first work to propose and analyze a federated algorithm for learning OT maps
via the semi-dual formulation.

5 EXPERIMENTS

5.1 ILLUSTRATIVE 2D EXAMPLE

We begin the evaluation on low-dimensional synthetic datasets. We train the vector fields for two
pairs of two-dimensional datasets (source distribution — target distribution): 8Gaussian — moon,
and uniform — 8Gaussian. In the federated setting, we simulate n = 2 clients. The target distri-
bution is partitioned such that each client holds a disjoint subset of the target samples. The source
distribution qg is shared across both clients. Further details on the data splitting are provided in
Appendix [C.I] We measure sample quality using the Wasserstein distance between the true tar-
get distribution and the generated distribution. We also report inference time as a function of NFE
during ODE integration.

As shown in Fig. 3] FFM-GOT consistently outperforms both FFM-vanilla and FFM-LOT across
all NFEs, achieving lower Wasserstein distances with fewer integration steps. Visualized results
are shown in Figs. 2] and [d] FFM-GOT produces nearly straight trajectories between source and
target samples, while FFM-vanilla exhibits curved and inefficient paths. FFM-LOT improves over
the vanilla method but still falls short of global optimality due to client heterogeneity. This confirms
that FFM-GOT learns straighter probability paths, enabling faster and more accurate sampling.

2 —e— FFM-vanilla g 2.75+ —e— FFM-vanilla
2251 FFM-LOT wi FEM-LOT
— C 4
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Figure 3: Generation performance of different federated flow matching models on different NFEs.

5.2 IMAGE GENERATION

To evaluate the performance of the proposed methods, we conduct unconditional image generation
on CIFAR and Imagenet.

We start with CIFAR and simulate n = 3 clients. Table [I] shows the Frechet Inception Distance
(FID) scores achieved by three methods under different NFEs and data heterogeneity levels. FFM-
vanilla provides a simple but effective baseline. However, it performs poorly at small NFEs due
to curved probability paths. FFM-LOT improves straightness of the learned flows, as evidenced by
better generation performance at small NFEs. However, it shows sensitivity to data heterogeneity, as
its performance advantage over FFM-vanilla diminishes under the more non-IID setting (o« = 0.1).
This aligns with Theorem [T} confirming that the suboptimality of aggregated local OT plans in-
creases with client distribution divergence. FFM-GOT achieves superior performance at low NFEs,
demonstrating its ability to learn globally straight path that enables efficient generation. However,
its performance degrades at high NFEs due to approximation errors from the dual potential function.
Specifically, two sources of approximation accumulate during long integration: (1) the c-transform



is optimized with only a limited number of gradient steps, and (2) the argmin over x is restricted
to a finite candidate pool. These biases are small for a small value of NFE, but would accumulate
with many discretization steps. These results highlight the context-dependent strengths of each ap-
proach: FFM-GOT for few-step generation, FFM-LOT for high-quality convergence in moderate
non-IID settings, and FFM-vanilla for simplicity and stability.

Remarkably, FFM-GOT demonstrates superior performance at low NFEs compared to the central-
ized baseline OT-CFM (Tong et al.l 2023). As shown in Fig. E} FFM-GOT surpasses this centralized
baseline (FID 28.6 at NFE=3) after 160K training steps. This advantage can be attributed to our di-
rect approximation of the global OT plan. In contrast, centralized OT-CFM relies on mini-batch OT
approximations, which may not fully capture the global data geometry, especially with limited batch
sizes. Furthermore, FFM-LOT performs competitively with centralized OT-CFM using either Euler
(Table[I)) or dopri5 (Table [5) integration solvers. This is notable because FFM-LOT computes OT
plans locally on each client’s data, and and the aggregated local plans serve as a proxy for the global
coupling. The overall effective sample size used across all clients is larger than the single batch used
in centralized OT-CFM, which may contribute to its strong and sometimes superior performance.
These performance gains come with increased computational overhead, as detailed in Table[3] More
experimental results, including the ablation study and the visualization of generated samples, are
provided in the Appendix [C]

Table 1: FID across NFE values of CIFAR dataset using Euler integration.

Federated: Dirichlet oo = 0.3 Federated: Dirichlet o = 0.1 Centralized
NFE FFM-vanilla FFM-LOT FFM-GOT FFM-vanilla FEM-LOT FFM-GOT OT-CFM
3 57.46 29.58 18.15 50.57 30.16 24.97 28.60
10 16.23 11.84 8.37 13.28 12.14 8.75 12.07
20 9.37 7.76 7.41 7.82 8.05 7.52 8.09
50 6.36 5.38 7.65 5.26 5.53 7.68 5.57
100 5.26 4.42 8.04 4.34 4.50 8.07 4.55

We further evaluate generative performance on ImageNet64-500, a more challenging benchmark
constructed from 500 ImageNet classes, each containing 500 samples, yielding a total of 250,000 im-
ages. We simulate n = 4 clients. The details of federated data setup is provided in Appendix [C.3.1]
We train models with three methods for 180K steps. The FID scores are presented in Table [2| The
results show that FFM-GOT achieves the best performance at NFE=4 and FFM-LOT performs best
across other NFE values. The advantage of FFM-GOT at low NFE is less pronounced here, likely
because the high-dimensional data space makes learning the corresponding dual potential function
more challenging.

Table 2: FID scores across NFE values of Imagenet64-500 dataset using Euler integration.

Method NFE=4 NFE=10 NFE=20 NFE=30
FFM-vanilla 64.3 29.2 24.8 224
FFM-LOT 43.7 18.6 16.3 15.9
FFM-GOT 394 28.4 232 22.9

6 CONCLUSION

In this work, we introduced Federated Flow Matching (FFM), a novel framework for training flow-
based generative models on decentralized data without compromising privacy. We identified the
challenge of constructing effective couplings under federated constraints and proposed three algo-
rithms with distinct advantages: FFM-vanilla provides a simple, stable baseline; FFM-LOT im-
proves inference efficiency by leveraging local OT plans, but is sensitive to data heterogeneity;
FFM-GOT enables faster sampling but can be sensitive to approximation errors. Limitations and
opportunities include reducing semi-dual approximation error and improving communication effi-
ciency and personalization for larger client pools.



REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint:2209.15571, 2022.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214-223. PMLR, 2017.

Sean Augenstein, H Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz,
Mingqing Chen, Rajiv Mathews, and Blaise Aguera y Arcas. Generative models for effective
ML on private, decentralized datasets. In International Conference on Learning Representations,
2020.

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numerische Mathematik, 84(3):375-393, 2000.

Sergio Calvo-Ordonez, Matthieu Meunier, Alvaro Cartea, Christoph Reisinger, Yarin Gal, and
Jose Miguel Hernandez-Lobato. = Weighted conditional flow matching.  arXiv preprint
arXiv:2507.22270, 2025.

Yongxin Chen, Tryphon T. Georgiou, and Michele Pavon. Stochastic control liaisons: Richard
Sinkhorn meets Gaspard Monge on a Schrodinger Bridge. Siam Review, 63(2):249-313, 2021.

Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Generative modeling through the semi-dual
formulation of unbalanced optimal transport. Advances in Neural Information Processing Sys-
tems, 36:42433-42455, 2023.

Gabriele Corso, Vignesh Ram Somnath, Noah Getz, Regina Barzilay, Tommi Jaakkola, and Andreas
Krause. Composing unbalanced flows for flexible docking and relaxation. In The Thirteenth
International Conference on Learning Representations, 2025.

Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution
optimal transportation for domain adaptation. Advances in neural information processing systems,
30, 2017.

Matthijs de Goede, Bart Cox, and Jérémie Decouchant. Training diffusion models with federated
learning. arXiv preprint:2406.12575, 2024.

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-
scale optimal transport. Advances in neural information processing systems, 29, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Dominik Klein, Théo Uscidda, Fabian Theis, and Marco Cuturi. GENOT: Entropic (gromov)
Wasserstein flow matching with applications to single-cell genomics. Advances in Neural In-
formation Processing Systems, 37:103897-103944, 2024.

Michal Klein, Alireza Mousavi-Hosseini, Stephen Zhang, and Marco Cuturi. On fitting flow models
with large sinkhorn couplings. arXiv preprint arXiv:2506.05526, 2025.

Jakub Kone¢ny, H Brendan McMahan, Felix X. Yu, Peter Richtérik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016a.

Jakub Kone¢ny, H. Brendan McMahan, Felix X. Yu, Peter Richtdrik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint:1610.05492, 2016b.

Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Aleksandr Korotin. Optimal flow match-

ing: Learning straight trajectories in just one step. Advances in Neural Information Processing
Systems, 37:104180-104204, 2024.

Yaron Lipman, Ricky T.Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint:2210.02747, 2022.

10



Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv
preprint:2209.14577, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint:2209.03003, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

Quentin Mérigot, Alex Delalande, and Frederic Chazal. Quantitative stability of optimal transport
maps and linearization of the 2-Wasserstein space. In International Conference on Artificial
Intelligence and Statistics, pp. 3186-3196. PMLR, 2020.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continu-
ous normalizing flows via optimal transport. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9223-9232, 2021.

Zihao Peng, Xijun Wang, Shengbo Chen, Hong Rao, Cong Shen, and Jinpeng Jiang. Federated
Learning for Diffusion Models. IEEE Transactions on Cognitive Communications and Network-
ing, 2025.

Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data sci-
ence. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky T.Q. Chen. Multisample flow matching: Straightening flows with minibatch
couplings. arXiv preprint:2304.14772, 2023.

Martin Rohbeck, Edward De Brouwer, Charlotte Bunne, Jan-Christian Huetter, Anne Biton,
Kelvin Y Chen, Aviv Regev, and Romain Lopez. Modeling complex system dynamics with flow
matching across time and conditions. In The Thirteenth International Conference on Learning
Representations, 2025.

Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving GANs using optimal
transport. arXiv preprint:1803.05573, 2018.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion Schrédinger
bridge matching. Advances in Neural Information Processing Systems, 36:62183-62223, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256-2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint:2011.13456, 2020.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
A dynamic optimal transport network for modeling cellular dynamics. In International conference
on machine learning, pp. 9526-9536. PMLR, 2020.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint:2302.00482, 2023.

Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2003.

Jayneel Vora, Nader Bouacida, Aditya Krishnan, and Prasant Mohapatra. FedDM: enhancing com-
munication efficiency and handling data heterogeneity in federated diffusion models. arXiv
preprint:2407.14730, 2024.

Dongyi Wang, Yuanwei Jiang, Zhenyi Zhang, Xiang Gu, Peijie Zhou, and Jian Sun. Joint Velocity-
Growth Flow Matching for Single-Cell Dynamics Modeling. arXiv preprint:2505.13413, 2025.

11



Xiangfeng Wang, Hongteng Xu, and Moyi Yang. Decentralized Entropic Optimal Transport for
Distributed Distribution Comparison. arXiv preprint:2301.12065, 2023.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1-19,
2019.

12



A ADDITIONAL THEORY AND PROOFS

A.1 SEMI-DUAL OF THE SCHRODINGER BRIDGE PROBLEM

The Schrodinger bridge may be viewed as an entropic variant of optimal transport. Given a prior

Re(dx, dy) = qo(dx)p:(dy | x),
the bridge is to seek the KL divergence between an estimation (posterior), i.e.,

min Dy, (7||R:) subjectto IL#m = qo, II,#m=qix.

Duality introduces potentials f on the source and g on the target, yielding
max / fdao + /g dgi,x — log // STV R_(dx, dy).
g

Eliminating f leads to a one-potential semi-dual:

mgax {/gqu,\ — /log(/eg(y)pg(dy | x))qo(dx)}. 9)

This has the same structure as the OT semi-dual, but with the hard inequality replaced by a log-sum-
exp smoothing from the prior kernel. The first term separates across clients,

/gdqm :Z/\z'/gdqli,
1=1

so the formulation is naturally implementable in a federated setting, and as ¢ — 0, the smoothing
disappears and the dual potentials converge to those of the classical Kantorovich problem

A.2 A USEFUL LEMMA

Lemma 2 (Convexity under mixing). For cost ¢(z,y) = ||z — y||P with p > 1 and measures
Wy V1o ey Un € Pp(R™) with weights X € A"~ 1,

We(in 3o Aw) < S0 AW, i), (10)
=1 =1

Equality holds if and only if a convex combination of optimal couplings from i to v; is itself optimal
for (1, >0, Aivi).

A.3 PROOF OF LEMMA 2]

n

Choose optimal y; € II(p, v;) and set 7 = Y | X, ¥ = » ., \i;. Linearity of push-forwards
gives proj,#7 = p and proj,#7 = v, hence y € II(, 7). Therefore, we have

inf // ||x—y||pdvs/|\x—ynpdw
"/EH(;L,V) R™ xR™
§:Ai// o — ylI? dus
i=1 R™ xR™

= Z /\7« Wg(ﬂ» l/i)a
=1

WP (i, )

which proves (I0). The inequality becomes an equality exactly when ¥ attains the infimum, i.e.,
when 7 is optimal for (u, 7).
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A.4 PROOF OF THEOREM[I]

By convexity of W3 under mixing (Lemma 2)),

n n
WS(?T*,Z&ﬁ) < Z)\iwg(w*,ﬂ';‘). (11)
i=1 i=1
Fix i. Regard 7*, 7} as measures on R?? with the product quadratic cost
Cprod((xv y)7 ((E/, yl)) = HLC - $/||2 + ”y - y/||2'
Couple them via the common source by pushing forward qq through the operator
Hize ((0.7°(), (@ T (@)).

Define the measure I' := Hygo. Then (pr)xI' = (Id,T7%)pq0 = 7* and (pry)xI' =
(Id, TF)xqo = 7}, so ' € II(n*, 7). Hence, we have

D [[ moadr = [17°@) - 1@ dao(o). (12)

Using || T*(z)|| < D and || T} (x)|| < D, we have pointwise
177 () = T3 ()| < [T (@) || + 177" (2) || < 2D,
so |T*(x) — T7(z)||* < (2D) | T*(x) — T (x)|. Integrating and applying Cauchy—Schwarz on the
probability space (R, qg) gives
J17°@) - T @) P danti) < 2D [ 17°(@) = T @) dao(o) € 2D T =T g2 (13)

By the quantitative L? stability of Monge maps (Mérigot et al., 2020, Thm. 3.1),

; 2/15 2/15.
1T — T} || r2(g0) < CoWrla1,47) / < CoWs(q1,4}) /

Combining (12)—(T4) yields

(14)

W2(r*,7%) < 2CoD Walqr, qi) /™.

Insert this bound into (1)) and absorb constants to obtain the desired result.

B ADDITIONAL ALGORITHMS

Algorithm 4 DUALUPDATE

1: forclienti =1,...,ndo

Sample xg ~ qo, 1 ~ q}

Evaluate f;(xl) ~ ¢(Zo, x1) — f(Zo), where T is approximate solution of inf, ¢(xg, z1) —
f(xo) .

4: Form local loss Lj, + fy(z0) + f5(x1)

5: Send gradient V4L, to server

6: end for .

7: Server update ¢ < ¢ — > AiV Ly, and broadcast to clients

14



Algorithm 5 Resample (z0, z1) ~ 7,

: Input: Candidate source samples xg —1,... x, target samples xq j—1
: for j =1to Bdo
Evaluate A; j, = c(xo,k,xl,j) — f¢($0,k) fork=1,...,.K
k*(j) < argminge(1,. xy Ajk
L0,j € Lo,k (j)
end for
: Output: {(io,j,xlﬁj)}le

B, dual potential fg.

.....

A A Sl e

C EXPERIMENTAL DETAILS

C.1 2D EXAMPLE

We present more details on the 2D example, including implementation details and additional exper-
imental results. Most of the experiments were run on clusters using NVIDIA A100s.

C.1.1 IMPLEMENTATION DETAILS

Flow matching model: The vector field is approximated using a time-varying multilayer percep-
tron (MLP) adopted from [Tong et al.[(2023). For each method, the model is trained for 40,000
epochs with a batch size of 256, employing the Adam optimizer.

Dual potential function: The dual potential function f, is parameterized using a 3-layer MLP
with 128 hidden units and ReLLU activation functions. The c-transform f;; is approximated by sam-
pling 256 candidate source points from the prior distribution and selecting the point that minimizes
c(xo, x1) — fo(zo) for each target point ;.

Federated data setup: We split the target distribution such that two clients hold disjoint subsets
of the target samples. For the moon target distribution, client 1 contains the upper moon while client
2 contains the lower moon, as shown in Fig. [2] (a). For the 8Gaussian target distribution, we assign
the four left-lower Gaussians to client 1 and the four right-upper Gaussians to client 2, ensuring a
clear non-IID partition.

Training details: For FFM with local OT, we compute the optimal transport plan between mini-
batches of 256 source and 256 target samples using the exact solver. We then sample from the
resulting coupling to generate training pairs. For FFM with global OT, the dual potential fy is
parameterized by a 3-layer MLP with 128 hidden units and ReLU activation functions. The ¢(z¢, z1)
function is selected as 3 ||z — z1 ||%. We optimize the dual potential using the Adam optimizer with
a learning rate of 0.0001, updating it every 5 training steps of the main flow matching model. The
c-transform function f;, which is defined as the minimization over source points, is approximated
using the minimum among 256 candidate source points sampled from the prior distribution.

Evaluation metrics: We evaluate performance using the 2-Wasserstein distance between gener-
ated samples and the true target distribution. The true distribution is approximated by the empirical
distribution with 10000 samples.
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C.1.2 ADDITIONAL RESULTS

RS
x1 from client 1 ™
x1 from client 2

(a) FFM setting

(c) FFM-LOT (d) FFM-GOT

Figure 4: Visualized trajectories learned by different FFM methods with uniform source distribution
and 8Gaussian target distribution. FFM-vanilla yields curved trajectories. FFM-LOT improves
straightness locally and FFM-GOT produces gloablly straight trajectories.

C.2 CIFAR IMAGE GENERATION

We present more details on the CIFAR image generation, including implementation details and
additional experimental results.

C.2.1 IMPLEMENTATION DETAILS

Flow matching models: The vector field model used in our experiments is trained using a U-Net
architecture with a total of 35.75 million parameters adopted from (2023). The model
uses a base channel dimension of 128, with channel multipliers [1, 2, 2, 2] across four resolutions.
It employs 2 residual blocks per resolution, attention mechanisms at the 16 x 16 resolution with 4
attention heads.

Dual potential function: The global dual potential fy4 is parameterized by a convolutional neural
network with a total of 1.15 million parameters. The network consists of six convolutional layers
with spectral normalization and SiLU activations, progressively downsampling the input to a 4 x 4
resolution. A global average pooling layer is applied, followed by a linear layer to produce a scalar
output.
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Federated data setup: We simulate a federated learning environment with 3 clients. The CIFAR-
10 training set is partitioned in a non-IID manner using a Dirichlet distribution with a concentration
parameter «. Client weights \; are set proportional to their respective dataset sizes. In each training
step, all 3 clients participate.

Training details: The U-Net parameters are optimized using Adam with a learning rate of 2x 104
and a linear warmup schedule for the first 5000 steps. The dual potential network is optimized us-
ing Adam with a learning rate of 10~%. Training runs for 400000 steps with a per-client batch size
of 128. The training time of three methods is provided in Table [3] An exponential moving aver-
age of the U-Net parameters is maintained with a decay rate of 0.9999. The semi-dual objective
is optimized using a quadratic cost function ¢(zo,z1) = % ||lzo — 21 |*. The function value of 15
is approximated through 5-step gradient descent with learning rate 0.5. The pairing of (zg, 1) is
performed through a memory-efficient resampling procedure: for each target sample z;, the cor-
responding source point xg is selected from 128 candidate source samples by minimizing the cost
c(wo, 1) = fo(xo).

Evaluation metric: We evaluate sample quality using Fréchet Inception Distance (FID) calculated
between 50000 generated samples and the CIFAR-10 test set. Measurements are taken at different
numbers of function evaluations (NFE: 4, 10, 20, 50, 100) to assess inference efficiency. The infer-
ence time is reported in Table @] We observe that the inference time is approximately proportional
to the value of NFE.

Table 3: Training time for 400k steps on CIFAR using a single NVIDIA A100 GPU.

Method FFM-vanilla FFM-LOT FFM-GOT Centralized OT-CFM
Training time (x 102 s) 138 141 189 55

Table 4: Inference time to generate 50000 CIFAR samples across varying NFE values on a single
A100 GPU.

NFE 3 10 20 50 100
Inference time (s) 79 164 305 730 1437

C.2.2 ADDITIONAL RESULTS

Table 5: FID of different methods on CIFAR dataset using dopri5 integration solver. FFM-LOT
achieves superior performance, exceeding all other federated methods and even the centralized OT-
CFM. This is attributed to its larger effective batch size: OT-CFM uses a batch size of 128, while
FFM-LOT leverages a collective batch size of 384 (3 clients x 128).

Method FFM-vanilla FFM-LOT FFM-GOT Centralized OT-CFM
FID 4.37 3.57 8.35 3.85
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Figure 5: Comparison between our federated method FFM-GOT with the centralized method OT-
CFM in|Tong et al|(2023) at NFE=3. FFM-GOT surpasses the performance of OT-CFM after 160K
training steps, and this performance gap widens significantly with further training.
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Figure 6: FID vs NFE of different methods on the CIFAR dataset at different training steps. FFM-
GOT performs best when NFE is less than 20 after 200K training steps. When NFE is large, FFM-
LOT achieves the best generation performance.
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Figure 7: Generation performance of FFM-GOT with different gradient descent steps to solve
inf,, ¢(xo,z1) — ¢(x0). GDk denotes FFM-GOT with k gradient descent steps for k = 5, 10, 20.
We observe that FFM-GOT is not sensitive to the number of gradient descent steps.

60 —— FFM-GOT, batch=128
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Figure 8: Generation performance of FFM-GOT with different batch sizes at NFE=3. Large batches
yield better generation performance.

C.2.3 GENERATED CIFAR SAMPLES

Figure 9: Generated samples from FFM-vanilla trained on CIFAR.
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Figure 11: Generated samples from FFM-GOT trained on CIFAR.
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C.3 IMANGENET IMAGE GENERATION

C.3.1 IMPLEMENTATION DETAILS

Flow matching model: We use a U-Net architecture with a base channel dimension of 128. The
model consists of 4 resolution levels with channel multipliers [1,2,2,2], 2 residual blocks per reso-
lution, and multi-head attention at the 16 x 16 resolution. The total number of parameters is 46.97
million.

Dual potential function: = The global dual potential is parameterized by a convolutional neural
network with 6 layers, spectral normalization, and SiLU activations. The total number of parameters
is 1.15 million.

Federated data setup: The training dataset is derived from a 500-class subset of ImageNet, with
500 samples per class, resulting in a total of 250,000 images. Each image undergoes standardized
preprocessing: it is resized to a resolution of 64 x 64 pixels, with random resized crops applied
for data augmentation during training, followed by normalization to the range [—1, 1]. To emulate
a realistic federated learning scenario with non-1ID client distributions, the dataset is partitioned
among 4 clients according to a Dirichlet distribution with concentration parameter o = 0.3. Client
weights \; are assigned proportionally to their respective local dataset sizes.

Training details: The U-Net is optimized using Adam with a learning rate of 2 x 10~* while
the dual potential network is optimized with Adam with a learning rate of 10~%. Training runs
for 180,000 steps with a per-client batch size of 32. The training time is provided in Table[6] An
exponential moving average of the U-Net parameters is maintained with a decay rate of 0.999. The
semi-dual objective uses the quadratic cost ¢(zo,z1) = 3 [lzo — 21 |%. The function value of fgis
approximated through 5-step gradient descent. For each z;, the corresponding source sample x is
selected by finding the point among 32 candidate samples drawn from gy that minimizes the cost
c(xo, 1) — f¢(xo). This procedure yields a pair (x¢, 1) that is approximately sampled from the
global optimal transport plan 7.

Evaluation metric: We evaluate sample quality using FID calculated between 50000 generated
samples and the Imagenet64-500 training dataset. Measurements are taken at different numbers of
function evaluations to assess inference efficiency. The inference time is reported in Table[7]

Table 6: Training time for 200k steps on Imagenet64-500 using a single NVIDIA A100 GPU.

Method FFM-vanilla FFM-LOT FFM-GOT
Training time (x 103 s) 81 82 104

Table 7: Inference time to generate 50000 Imagenet64-500 samples across varying NFE values on a
single A100 GPU.

NFE 4 10 20 30
Inference time (s) 82 159 290 676

C.3.2 ADDITIONAL RESULTS ON IMAGENET64-10

We further evaluate the generation performance on Imagenet64-10, with only 10 classes of images
from Imagenet. This is a more challenging task due to its limited size of only 9,346 training samples.
The FID scores are presented in Table 8] The results show that FFM-LOT achieves the best perfor-
mance across all NFE values, outperforming both FFM-vanilla and FFM-GOT. The overall higher
FID scores across methods reflect the difficulty of learning a high-quality generative model from
such a small and decentralized dataset. The particularly challenging conditions appear to magnify
the approximation errors inherent in FFM-GOT’s global OT approach, which requires sufficient data
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to estimate the dual potential and optimal couplings accurately. In contrast, FFM-LOT proves more
robust to limited data availability.

Table 8: FID scores across NFE values of Imagenet64-10 dataset using Euler integration.

Method NFE=3 NFE=10 NFE=20 NFE=50 NFE=100
FFM-vanilla  130.5 46.7 31.3 25.4 23.4
FFM-LOT 93.5 39.1 29.1 25.0 22.8
FFM-GOT 112.2 46.3 34.5 30.9 27.8
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