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ABSTRACT

Data today is decentralized, generated and stored across devices and institutions
where privacy, ownership, and regulation prevent centralization. This motivates
the need to train generative models directly from distributed data locally with-
out central aggregation. In this paper, we introduce Federated Flow Matching
(FFM), a framework for training flow matching models under privacy constraints.
Specifically, we first examine FFM-vanilla, where each client trains locally with
independent source and target couplings, preserving privacy but yielding curved
flows that slow inference. We then develop FFM-LOT, which employs local opti-
mal transport couplings to improve straightness within each client but lacks global
consistency under heterogeneous data. Finally, we propose FFM-GOT, a federated
strategy based on the semi-dual formulation of optimal transport, where a shared
global potential function coordinates couplings across clients. Experiments on
synthetic and image datasets show that FFM enables privacy-preserving training
while enhancing both the flow straightness and sample quality in federated set-
tings, with performance comparable to the centralized baseline.

1 INTRODUCTION

Generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) aim to capture
the probability distribution of complex data such as images, audio, or text, enabling the synthesis of
realistic new samples. Flow matching (FM) provides a powerful framework for this task (Lipman
et al., 2022; Albergo & Vanden-Eijnden, 2022; Liu et al., 2022). It learns a deterministic vector
field that continuously transports a simple source distribution q0 (e.g., Gaussian noise) to a complex
target distribution q1 (e.g., natural images). Training proceeds by regressing the model velocity to
a prescribed target velocity defined along paths between paired samples (x0, x1) with x0 ∼ q0 and
x1 ∼ q1. The choice of coupling between q0 and q1 is fundamental, as it dictates the geometry of
probability flows. Independent couplings, formed by pairing x0 and x1 at random, are straightfor-
ward but induce curved probability paths. These curved paths require many integration steps during
sampling and thus slow inference. Flow matching based on optimal transport (OT) (Tong et al.,
2020; Onken et al., 2021; Liu, 2022; Tong et al., 2023) selects couplings that minimize transport
cost, often by solving mini-batch OT problems in training. The resulting flows are straighter and
allow fewer steps at inference, significantly accelerating generation.

Most existing generative methods assume that all data is centralized. In practice, this is often not the
case. Data are created and stored on personal devices (Yang et al., 2019), and across national bound-
aries where privacy, ownership, and regulation preclude direct sharing. The question, then, is how
to train a single generative model across these dispersed sources while keeping raw data local. Fed-
erated learning (FL) (Konečnỳ et al., 2016b; McMahan et al., 2017) provides a paradigm in which
each client performs training on its own data and communicates only model updates or gradients
to a coordinating server. The server aggregates these updates into a global model and redistributes
them back to the clients. In this way, raw data never leaves local storage, while knowledge is shared
through the iterative exchange of model parameters. FL is well-established for machine learning
problems, but its extension to flow matching has, to our knowledge, not been explored.

To this end, we introduce Federated Flow Matching (FFM) for training flow matching mod-
els based on decentralized data. FFM follows the standard FL paradigm (see Fig. 1): clients
keep their data on-device and compute local updates to a shared flow model, while a central
server aggregates these updates via federated averaging without ever accessing raw training sam-
ples. The unique challenge in FFM, compared to standard FL, lies in constructing effective
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Figure 1: Federated Flow Matching (FFM).
Each client holds its own data distribution and
shares a common base distribution. The server
aggregates client updates to learn a shared vec-
tor field that transports the base distribution to-
ward the federated mixture, while raw data re-
main local.

couplings between the source distribution (q0)
and the aggregated target distribution (q1,λ =∑
i λiq

i
1). Here, qi1 is client i’s data distribution

and λi is its aggregation weight. Unlike the cen-
tralized setting, which allows for the direct com-
putation of such couplings, the federated setting
prohibits combining isolated client data. The key
difficulty is, therefore, how to construct effec-
tive couplings from decentralized data and learn
a global velocity field that not only preserves pri-
vacy but also yields straight flows necessary for
fast inference.

We start with the baseline method FFM-vanilla,
in which each client treats source and target dis-
tributions independently, yielding the coupling∑
i λi(q0⊗ qi1) 1, where q0 is the common source

distribution. This baseline guarantees privacy
and allows collaborative training through feder-
ated averaging. While the resulting flows may
be curved, FFM-vanilla establishes a simple and
effective foundation for decentralized generative
modeling.

We then introduce FFM-LOT, wherein each client
i computes the local OT plan π∗

i between q0 and
qi1. The coupling is constructed as an aggrega-
tion of local OT plans defined as

∑
i λiπ

∗
i . This

approach improves flow straightness within each client’s data region (Fig. 2 (c)), thereby enhanc-
ing inference efficiency. However, under heterogeneous data distributions, the aggregated local OT
plans may yield curved trajectories and fail to achieve global straightness.

x0
x1 from client 1
x1 from client 2

(a) FFM setting

x0
Flow
x1

(b) FFM-vanilla

x0
Flow
x1

(c) FFM-LOT

x0
Flow
x1

(d) FFM-GOT

Figure 2: Visualization on 2D benchmark.

Next, we propose FFM-GOT that directly ap-
proximates the global OT plan across all clients
to strengthen the flow straightness. By leverag-
ing the semi-dual formulation of OT, FFM-GOT
learns a shared dual potential function that im-
plicitly coordinates couplings across clients with-
out data sharing. Both the dual potential and the
flow model are updated during training via feder-
ated averaging. This approach enables the learn-
ing of globally straight probability flows (Fig. 2
(c)), significantly improving inference efficiency
while maintaining strict privacy constraints.

Lastly, experiments on synthetic and image
benchmarks show that all these methods en-
able effective training under privacy constraints.
Specifically, FFM-vanilla provides a simple and
stable baseline. FFM-LOT improves infer-
ence efficiency by leveraging local OT plans
to straighten probability paths, but is sensi-
tive to non-Independent and Identically Dis-
tributed (non-IID) client distributions. FFM-GOT
achieves the highest inference efficiency by learn-
ing globally straight paths, albeit at the cost of more computation. Remarkably, FFM-GOT outper-
forms the centralized method OT-CFM (Tong et al., 2023) at a low number of function evaluations
(NFE). This is because FFM-GOT directly approximates the global OT plan, whereas OT-CFM
relies on mini-batch approximations.

1Here q0 ⊗ qi1 denotes the product measure
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2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 OPTIMAL TRANSPORT PROBLEM: KANTOROVICH AND DYNAMIC FORMULATION

OT provides a principled way to measure the cost of transforming one probability distribution into
another. Given two probability measures q0 and q1 on Rd and a measurable cost function c : Rd ×
Rd → R, the Kantorovich formulation of OT is

OTc(q0, q1) = min
π∈Π(q0,q1)

∫
Rn×Rn

c(x0, x1) dπ(x0, x1), (1)

where Π(q0, q1) is the set of couplings with marginals q0 and q1. Intuitively, π specifies how mass
from q0 is transported to q1, and the objective seeks the plan of minimal cost. For the quadratic
cost c(x0, x1) = 1

2∥x0 − x1∥
2, the OT cost equals the squared 2-Wasserstein distance,W2

2 (q0, q1).
Benamou and Brenier (Benamou & Brenier, 2000) showed that this admits a dynamic reformulation

W2
2 (q0, q1) = min

(qt,vt)

{∫ 1

0

∫
Rd

∥vt(x)∥2 qt(x) dx dt
∣∣∣∣ ∂tqt +∇ · (qtvt) = 0,

qt=0 = q0, qt=1 = q1.

}
, (2)

which seeks a time-dependent vector field vt that generates a probability flow qt transporting q0 to q1
with minimal kinetic energy. At optimality, pt traces the displacement interpolation between q0 and
q1, meaning that for (x0, x1) ∼ π∗, the OT plan, the trajectory is given by xt = (1− t)x0+ tx1 with
constant velocity vt(xt) = x1 − x0. Thus, the solution corresponds to straight-line paths between
optimally coupled points (Villani, 2003).

2.2 FLOW MATCHING

Flow matching aims to sample from the target distribution q1 by transforming samples from the
source distribution q0. The particle dynamics follow the ordinary differential equation (ODE) dxt =
ut(xt) dt, which induces a probability flow qt with densities evolving according to the continuity
equation ∂tpt +∇ · (ptut) = 0. Since the exact vector field ut is intractable, it is approximated by
a neural network vθt , which can be trained via the conditional flow matching objective

LCFM(q0, q1; θ) = Et∈U [0,1],(x0,x1)∼π
∥∥vθt ((1− t)x0 + tx1)− (x1 − x0)

∥∥2 , π ∈ Π(q0, q1) (3)

where Π(q0, q1) is the set of all joint distributions having marginal distributions q0 and q1. As shown
by Pooladian et al. (2023), for any admissible coupling π ∈ Π(q0, q1), perfect training of minimizing
(3) yields a vector field that generates a valid flow between q0 and q1. Different choices of the
coupling distribution π lead to different flow matching methods. For instance, independent coupling
flow matching (I-CFM) sets π = q0 ⊗ q1, where x0 and x1 are sampled independently. This simple
construction is effective but typically produces curved trajectories, requiring many integration steps.
Optimal Transport-based flow matching (OT-CFM) refines this approach by setting π = π⋆, the
optimal transport plan from (1). The resulting training problem becomes

LOT-CFM(θ) = Et∈U [0,1],(x0,x1)∼π∗
∥∥vθt ((1− t)x0 + tx1)− (x1 − x0)

∥∥2 .
In this case, training aligns vθt with the displacement interpolations of the Benamou–Brenier prob-
lem (2), producing straight trajectories that reflect the geodesic structure of Wasserstein space and
enabling faster, more stable inference. However, computing π∗ has cubic computational complexity
in the number of samples, which is challenging for large datasets. Alternatively, one can approxi-
mate π∗ using mini-batch data (Tong et al., 2023) or use entropic OT solvers (Pooladian et al., 2023;
Klein et al., 2025).

2.3 PROBLEM FORMULATION

We consider the problem of training a single flow matching model in a federated learning setting.
Suppose that there are n clients and each client i possesses a local data distribution qi1, which cannot
be shared with other clients due to the privacy constraints. The global target distribution is defined
as q1,λ =

∑n
i=1 λiq

i
1, where λi is the weight for each client i and satisfies

∑n
i=1 λi = 1. We assume

that all clients share a common source distribution q0.
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The objective of federated flow matching is to learn a global vector field vθt that transports q0 to the
aggregated target q1,λ by minimizing

LFFM(θ) = Et∈U [0,1],(x0,x1)∼π
∥∥vθt ((1− t)x0 + tx1)− (x1 − x0)

∥∥2 , π ∈ Π(q0, q1,λ). (4)

The difficulty is that the coupling π is defined with respect to the global target distribution q1,λ,
which cannot be formed without centralizing client data. The goal of this work is to overcome this
challenge by developing federated learning algorithms that learn from decentralized data and yield
efficient, straight flows.

3 FEDERATED FLOW MATCHING

3.1 VANILLA FEDERATED FLOW MATCHING (FFM-VANILLA)

The performance of conditional flow matching depends critically on the choice of coupling π in
(4). A natural baseline is to take π as the independent product measure π = q0 ⊗ q1,λ, which
corresponds to sampling x0 ∼ q0 and x1 ∼ q1,λ independently. This leads to the federated flow
matching objective in its vanilla form, i.e.,

LFFM-vanilla(θ) = Et,x0∼q0,x1∼q1,λ
∥∥vθt ((1− t)x0 + tx1)− (x1 − x0)

∥∥2
=

n∑
i=1

λi Et,x0∼q0,x1∼qi1

∥∥vθt ((1− t)x0 + tx1)− (x1 − x0)
∥∥2 , (5)

whereby the global objective in (5) is decomposed into a weighted sum of client-specific expecta-
tions. Each term in the sum depends exclusively on the local data distribution, making it directly
implementable with standard FL. This formulation allows each client to compute gradients using
only its local data, which are then aggregated on a central server through weighted averaging.

Algorithm 1 FFM-vanilla

1: Input: Source distribution q0, weight vector λ,
data distribution qi1, i = 1, . . . , n,

2: for k = 0, . . . ,K do
3: for each client i = 1, . . . , n do
4: Sample x0 ∼ q0, x1 ∼ qi1, and t ∼

U [0, 1]
5: Update xt = (1−t)x0+tx1 and compute

loss Li ←
∥∥vθt (xt)− (x1 − x0)

∥∥2
6: Send gradient ∇θLi to server
7: end for
8: Server update θ ← θ − ηθ

∑n
i=1 λi∇θLi

9: end for
10: Output: Global velocity field vθt .

The federated optimization procedure is out-
lined in Algorithm 1. In each communication
round, client i samples a mini-batch of data
pairs (x0, x1) with x0 ∼ q0 and x1 ∼ qi1. For
each pair, it draws t ∼ U [0, 1], forms the inter-
polation xt = (1 − t)x0 + tx1, evaluates the
local loss Li. Then, it computes the stochastic
gradient ∇θLi and sends it to the server. The
server aggregates client updates by a weighted
average

∑n
i=1 λi∇θLi and applies the global

update θ ← θ − ηθ
∑n
i=1 λi∇θLi with learn-

ing rate ηθ.

FFM-vanilla provides privacy guarantees, as
clients communicate only model gradients
rather than raw samples x1 ∼ qi1. It is simple
to implement and provides a natural baseline
for federated flow matching. However, its reliance on independent couplings might lead to highly
curved probability paths. During inference, integrating the ODE defined by the learned vector field
vθt requires numerous evaluation steps to maintain accuracy, resulting in computationally expensive
and slow sampling. Thus, although FFM-vanilla succeeds in learning a generative model for the
aggregated distribution q1,λ, it does not achieve efficient inference, motivating the more advanced
methods introduced in the rest of this section.

3.2 FEDERATED FLOW MATCHING VIA LOCAL OT (FFM-LOT)

It is shown by Tong et al. (2023) that one would greatly benefit from training flow models by using
the optimal coupling (joint distribution) in the Kantorovich optimal transport rationale. Training
with the OT plan yields a vector field that solves the Benamou-Brenier dynamic OT formulation,
producing straight probability paths and enabling fast inference. However, directly computing the
global OT plan between q0 and q1,λ is impossible and incompatible with federated learning, as it

4
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requires access to the entire decentralized dataset. Herein, we explore methods to approximate the
benefits of OT within the federated learning constraints.

A natural initial strategy is to compute an OT plan locally on each client between the shared source
q0 and its local target qi1. The global coupling is then constructed as the mixture of these local
OT plans, π∗

local =
∑n
i=1 λiπ

∗
i , where π∗

i = argminπi∈Π(q0,qi1)

∫
Rn×Rn c(x0, x1) dπi(x0, x1). This

leads to the following federated learning objective

LFFM-LOT(θ) = Et∼U [0,1],(x0,x1)∼π∗
local

∥∥vθt ((1− t)x0 + tx1)− (x1 − x0)
∥∥2

=

n∑
i=1

λi Et∼U [0,1],(x0,x1)∼π∗
i

∥∥vθt ((1− t)x0 + tx1)− (x1 − x0)
∥∥2 .

Algorithm 2 FFM-LOT

1: Input: Source distribution q0,weight vector
λ, data distribution qi=1,...,n

1
2: for k = 0, . . . ,K do
3: for client i = 1, . . . , n do
4: Sample x0 ∼ q0, x1 ∼ qi1, and t ∈

U [0, 1],
5: Resample (x0, x1) ∼ π∗

i = OT(x0, x1)
6: Updated xt = (1− t)x0 + tx1 and com-

pute loss Li ←
∥∥vθt (xt)− (x1 − x0)

∥∥2
7: Send gradient∇θLi to server
8: end for
9: Server updates θ ← θ − ηθ

∑n
i=1 λi∇θLi

and broadcast to clients
10: end for
11: Output: Global velocity field vθt .

The federated algorithm for this approach, de-
tailed in Algorithm 2, proceeds as follows. In
each communication round, each client i sam-
ples a mini-batch of x0 ∼ q0 and x1 ∼ qi1.
Each client i computes the OT plan π̂i from this
pair of mini-batch data, which can be achieved
by exact or approximate (entropic regularized
via Sinkhorn) OT solvers. It then samples
pairs (x0, x1) from this plan, computes the flow
matching loss, and sends the gradient to the
server for aggregation. The server then aggre-
gates client gradients and performs a global up-
date.

Using locally optimal couplings, FFM-LOT en-
courages straighter paths within each client’s
data distribution, which can lead to faster infer-
ence times compared to the vanilla independent
coupling. However, the aggregate of local OT
plans π∗

local is generally not equivalent to the global OT plan π∗. The local approach fails to ac-
count for the geometric relationships between data points across different clients. Consequently,
the resulting vector field is a compromise that averages these local, potentially conflicting, optimal
trajectories rather than finding a truly globally optimal flow. The following theorem quantifies the
sub-optimality gap between the mixture of local plans and the true global plan, highlighting its de-
pendence on the statistical heterogeneity between the client distributions. The proof of Theorem 1
is given in Appendix A.4.
Theorem 1 (Sub-optimality of mixed local OT plans). Let π∗

local =
∑n
i=1 λi π

∗
i , and

π∗
i = argmin

πi∈Π(q0,qi1)

∫
c(x0, x1) dπi(x0, x1), π∗ = argmin

π∈Π(q0,q1,λ)

∫
c(x0, x1) dπ(x0, x1).

Suppose that the Monge setting π∗ = (Id, T ∗)#q0 and π∗
i = (Id, T ∗

i )#q0 for i = 1, . . . , n. Assume
that ∥T ∗(x)∥, ∥T ∗

i (x)∥ ≤ D for q0-a.e. x. Under the standard regularity condition, there exists
C > 0 such thatW2

2

(
π∗, π∗

local

)
≤ C D

∑n
i=1 λiW2

(
q1, q

i
1

)2/15
.

Theorem 1 confirms that the sub-optimality of the local OT approach is directly proportional to the
average Wasserstein distance between the global target distribution and each client’s local distri-
bution. In highly non-IID settings where clients have disparate data, this error can be significant,
limiting the inference efficiency of the learned model. This limitation motivates the need for a
method that can more directly approximate the global OT plan in a federated manner, which we
address in the following section.

3.3 FEDERATED FLOW MATCHING VIA GLOBAL OT (FFM-GOT)

To further improve flow straightness, we propose a method that directly approximates the global
optimal transport plan in a federated manner. Our innovation is based on the semi-dual formulation
of the Kantorovich problem, which is presented in the following lemma.
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Lemma 1 (Kantorovich duality (Villani, 2003; Peyré & Cuturi, 2019)). Let q0, q1,λ be probabil-
ity measures on Rn and let c : Rn×Rn → R be a cost function. The Kantorovich optimal transport
problem admits the dual formulation

OTc(q0, q1,λ) = max
f,g∈L1

{∫
Rn

f(x0) dq0(x0) +

∫
Rn

g(x1) dq1,λ(x1)

}
(6)

subject to f(x0) + g(x1) ≤ c(x0, x1) for all (x0, x1). The c-transform of f is defined as f c(x1) =
minx0∈Rn

{
c(x0, x1)− f(x0)

}
, which yields the semi-dual representation (Choi et al., 2023)

OTc(q0, q1,λ) = max
f∈L1

{∫
Rn

f(x0) dq0(x0) +

∫
Rn

f c(x1) dq1,λ(x1)

}
. (7)

Using Lemma 1 and the definition of q1,λ, we obtain

OTc(q0, q1,λ) = max
f∈L1(q0)

{∫
f(x0) dq0(x0) +

m∑
i=1

λi

∫
f c(x1) dq

i
1(x1)

}

= max
f∈L1(q0)

m∑
i=1

λi

[∫
f(x0) dq0(x0) +

∫
f c(x1) dq

i
1(x1)

]
. (8)

This reformulation reveals that the global OT problem can be expressed as a federated optimization
over the shared dual potential f . Once the optimal potential f∗ is obtained, the optimal coupling
π∗ can be recovered: A pair (x0, x1) is coupled under π∗ if and only if it satisfies the condition
f∗(x0) + f∗c(x1) = c(x0, x1). In practice, we can approximate a sample from π∗ by first sampling
x1 ∼ q1 and then solving x̄0 = argminx0

{c(x0, x1)−f∗(x0)}, after which we use the pair (x̄0, x1).

Algorithm 3 FFM-GOT

1: Input: Source distribution q0, weight vector λ,
data distribution qi1, i = 1, . . . , n

2: for k = 0, . . . ,K do
3: for client i = 1, . . . , n do
4: Sample x0 ∼ q0, x1 ∼ qi1, and t ∈

U [0, 1],
5: Resample (x0, x1) ∼ π̂ϕ via Alg. 5
6: Update xt = (1−t)x0+tx1 and compute

loss Liθ ←
∥∥vθt (xt)− (x1 − x0)

∥∥2
7: Send gradient ∇θLiθ to server
8: end for
9: Server updates θ ← θ −

∑n
i=1 λi∇θLiθ and

broadcast it to clients
10: Call DUALUPDATE(q0, {qi1}, λ; ϕ) via

Alg. 4
11: end for
12: Output: Global velocity field vθt and dual po-

tential function fϕ.

Based on this insight, we propose to learn the
dual potential function in a FL paradigm to co-
ordinate couplings among clients. To this end,
we parameterize the dual potential f with a
neural network fϕ and optimize the semi-dual
objective collaboratively across clients. FFM-
GOT employs a two-stage optimization pro-
cess executed over federated communication
rounds, as detailed in Algorithm 3. The pro-
cedure iteratively updates the vector field and
the dual potential. For the vector field update,
each client samples a mini-batch of x0 ∼ q0
and x1 ∼ qi1. Using the current dual potential
fϕ, each client then resamples coupled pairs
(x0, x1) via Algorithm 5. This resampling step
effectively identifies, for each target point x1,
a corresponding source point that minimizes
c(x0, x1)−fϕ(x0) amongK candidate source
samples. Based on these coupled pairs, each
client computes the gradient∇θLi for the vec-
tor field and transmits it to the server for aggre-
gation. The update of the dual potential, detailed in Algorithm 4, proceeds as follows. Each client i
computes the loss Liϕ = fϕ(x0) + f cϕ(x1) on its local data, evaluates the gradient ∇ϕLiϕ, and sends
this gradient to the server. The server then aggregates these client gradients and updates the global
dual potential network fϕ using federated averaging.

As the dual potential fϕ converges towards the global optimum, the resampling procedure provides
increasingly accurate approximations of pairs from the true global OT plan π∗, which in turn allows
the flow matching model vθt to learn straighter, globally optimal paths.

Note that two approximations cannot be avoided when training flow models using FFM-GOT. The
first arises in Alg. 4 when evaluating the c-transform f cϕ, which requires solving the optimization
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problem: infx0
c(x0, x1) − f(x0). In practice, this infimum can be approximated using a finite

steps of gradient descent or existing solvers. The second approximation occurs in Alg. 5 during the
resampling of pairs (x0, x1) ∼ π̂iϕ, where π̂iϕ is an empirical approximation of the global OT plan
based on the current dual potential fϕ. This resampling is typically performed over a finite set of
candidate source points, which also introduces discretization errors. In practice, these approximation
errors can be systematically reduced by allocating more computational resources, such as using
more gradient steps or larger candidate pools. Crucially, our experiments demonstrate that high-
quality approximations can be achieved without significantly increasing the computational overhead,
allowing FFM-GOT to remain both practical and efficient.
Remark 1. In the dual formulation (6), one could parameterize g(x1) and define its c-transform
function gc(x0). However, this c-transform function requires minimizing over x1, which is gener-
ally more challenging given the multi-modal nature of typical target distributions. In contrast, our
chosen parameterization defines the dual potential on the target space, so its c-transform requires
minimization only over x0. Since x0 is usually from a simple, unimodal reference distribution, this
minimization is computationally more tractable.
Remark 2 (Schrödinger bridge flow matching). The Schrödinger bridge (Shi et al., 2023; Chen
et al., 2021) seeks the most likely coupling relative to a prior Rε(dx, dy) = q0(dx)pε(dy |
x) while enforcing marginals q0 and q1,λ. Its dual reduces to a single-potential semi-dual,

maxψ

{∫
ψ dq1,λ −

∫
log

( ∫
eψ(y)pε(dy | x)

)
q0(dx)

}
, which differs from the OT semi-dual only

by the entropic log-sum-exp. Thus, the Schrödinger version of flow matching can be trained in ex-
actly the same manner, with privacy preserved by the decomposition

∫
ψ dq1,λ =

∑n
i=1 λi

∫
ψ dqi1.

In the zero-noise limit ε→ 0, this formulation converges to the classical Kantorovich semi-dual.

4 RELATED WORKS

Flow matching: Our work builds upon the recent advances in flow-based generative models,
specifically flow matching (FM) (Lipman et al., 2022), which provide a simple and stable frame-
work for training continuous normalizing flows. A key design choice in FM is the coupling between
source and target points. The naive independent coupling leads to curved probability paths and slow
inference. Recent breakthroughs have significantly improved this by integrating ideas from optimal
transport. Notably, Tong et al. (2023) and Pooladian et al. (2023) demonstrated that using mini-batch
optimal transport couplings results in straighter paths and much faster sampling. Moreover, Klein
et al. (2025); Calvo-Ordonez et al. (2025) showed that entropic regularization of OT couplings can
enhance numerical stability and computational efficiency. These methods, however, are designed
for centralized data. We generalize this line of work to the FL setting, where data cannot be pooled
for mini-batch or entropic OT computation. To address this constraint, we propose a novel federated
algorithm that approximates global OT plans across clients without sharing raw data.

Federated Learning for Generative Models: Federated Learning (FL) was originally proposed
to enable collaborative learning from data distributed across multiple clients without sharing raw
data (Konečnỳ et al., 2016a; McMahan et al., 2017). Its application to generative modeling is more
recent and introduces unique challenges because the goal is to learn the full complex data distri-
bution. Previous research has explored adapting various generative frameworks to the federated
setting. Initial work focused on Federated Generative Adversarial Networks (GANs) (Augenstein
et al., 2020), which employ an adversarial minmax game to learn a direct mapping from noise to
data samples. This approach stands in contrast to flow-based methods, as GANs do not involve
continuous normalizing flows or ODE integration, thereby avoiding the specific inference efficiency
challenges associated with neural ODE solvers. More recent efforts have investigated federated
diffusion models (Peng et al., 2025; de Goede et al., 2024; Vora et al., 2024). While both diffu-
sion models and flow matching can be formalized as methods that learn a probability path between
noise and data distributions, they differ fundamentally in their flexibility. Diffusion models are
constrained to a fixed probability path determined by a predefined forward process, whereas flow
matching methods can have from infinitely many possible paths depending on the coupling between
source and target distributions. This flexibility enables the design of the probability path geometry
for improved inference efficiency, which is not possible in diffusion models. Our work is the first,
to our knowledge, to address federated learning of flow matching models, with a specific focus on
leveraging optimal transport to achieve fast sampling.
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Optimal Transport: Its application in machine learning is vast, including generative modeling
(Arjovsky et al., 2017; Salimans et al., 2018), domain adaptation (Courty et al., 2017), distribution
comparison (Wang et al., 2023), and more recently, as a core component in training flow matching
models (Tong et al., 2023; Kornilov et al., 2024; Rohbeck et al., 2025; Wang et al., 2025; Corso et al.,
2025; Klein et al., 2024). The semi-dual formulation of OT has been explored for scalable compu-
tation (Genevay et al., 2016) and recently for generative modeling in the centralized setting (Choi
et al., 2023). Our federated OT method is inspired by these works but addresses the fundamentally
different challenge of optimizing the semi-dual objective without sharing data across clients, using
a federated averaging procedure on the parameters of a dual potential network. To the best of our
knowledge, this is the first work to propose and analyze a federated algorithm for learning OT maps
via the semi-dual formulation.

5 EXPERIMENTS

5.1 ILLUSTRATIVE 2D EXAMPLE

We begin the evaluation on low-dimensional synthetic datasets. We train the vector fields for two
pairs of two-dimensional datasets (source distribution→ target distribution): 8Gaussian→ moon,
and uniform → 8Gaussian. In the federated setting, we simulate n = 2 clients. The target distri-
bution is partitioned such that each client holds a disjoint subset of the target samples. The source
distribution q0 is shared across both clients. Further details on the data splitting are provided in
Appendix C.1. We measure sample quality using the Wasserstein distance between the true tar-
get distribution and the generated distribution. We also report inference time as a function of NFE
during ODE integration.

As shown in Fig. 3, FFM-GOT consistently outperforms both FFM-vanilla and FFM-LOT across
all NFEs, achieving lower Wasserstein distances with fewer integration steps. Visualized results
are shown in Figs. 2 and 4. FFM-GOT produces nearly straight trajectories between source and
target samples, while FFM-vanilla exhibits curved and inefficient paths. FFM-LOT improves over
the vanilla method but still falls short of global optimality due to client heterogeneity. This confirms
that FFM-GOT learns straighter probability paths, enabling faster and more accurate sampling.
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Figure 3: Generation performance of different federated flow matching models on different NFEs.

5.2 IMAGE GENERATION

To evaluate the performance of the proposed methods, we conduct unconditional image generation
on CIFAR and Imagenet.

We start with CIFAR and simulate n = 3 clients. Table 1 shows the Frechet Inception Distance
(FID) scores achieved by three methods under different NFEs and data heterogeneity levels. FFM-
vanilla provides a simple but effective baseline. However, it performs poorly at small NFEs due
to curved probability paths. FFM-LOT improves straightness of the learned flows, as evidenced by
better generation performance at small NFEs. However, it shows sensitivity to data heterogeneity, as
its performance advantage over FFM-vanilla diminishes under the more non-IID setting (α = 0.1).
This aligns with Theorem 1, confirming that the suboptimality of aggregated local OT plans in-
creases with client distribution divergence. FFM-GOT achieves superior performance at low NFEs,
demonstrating its ability to learn globally straight path that enables efficient generation. However,
its performance degrades at high NFEs due to approximation errors from the dual potential function.
Specifically, two sources of approximation accumulate during long integration: (1) the c-transform

8
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is optimized with only a limited number of gradient steps, and (2) the argmin over x0 is restricted
to a finite candidate pool. These biases are small for a small value of NFE, but would accumulate
with many discretization steps. These results highlight the context-dependent strengths of each ap-
proach: FFM-GOT for few-step generation, FFM-LOT for high-quality convergence in moderate
non-IID settings, and FFM-vanilla for simplicity and stability.

Remarkably, FFM-GOT demonstrates superior performance at low NFEs compared to the central-
ized baseline OT-CFM (Tong et al., 2023). As shown in Fig. 5, FFM-GOT surpasses this centralized
baseline (FID 28.6 at NFE=3) after 160K training steps. This advantage can be attributed to our di-
rect approximation of the global OT plan. In contrast, centralized OT-CFM relies on mini-batch OT
approximations, which may not fully capture the global data geometry, especially with limited batch
sizes. Furthermore, FFM-LOT performs competitively with centralized OT-CFM using either Euler
(Table 1) or dopri5 (Table 5) integration solvers. This is notable because FFM-LOT computes OT
plans locally on each client’s data, and and the aggregated local plans serve as a proxy for the global
coupling. The overall effective sample size used across all clients is larger than the single batch used
in centralized OT-CFM, which may contribute to its strong and sometimes superior performance.
These performance gains come with increased computational overhead, as detailed in Table 3. More
experimental results, including the ablation study and the visualization of generated samples, are
provided in the Appendix C.

Table 1: FID across NFE values of CIFAR dataset using Euler integration.

Federated: Dirichlet α = 0.3 Federated: Dirichlet α = 0.1 Centralized

NFE FFM-vanilla FFM-LOT FFM-GOT FFM-vanilla FFM-LOT FFM-GOT OT-CFM

3 57.46 29.58 18.15 50.57 30.16 24.97 28.60
10 16.23 11.84 8.37 13.28 12.14 8.75 12.07
20 9.37 7.76 7.41 7.82 8.05 7.52 8.09
50 6.36 5.38 7.65 5.26 5.53 7.68 5.57
100 5.26 4.42 8.04 4.34 4.50 8.07 4.55

We further evaluate generative performance on ImageNet64-500, a more challenging benchmark
constructed from 500 ImageNet classes, each containing 500 samples, yielding a total of 250,000 im-
ages. We simulate n = 4 clients. The details of federated data setup is provided in Appendix C.3.1.
We train models with three methods for 180K steps. The FID scores are presented in Table 2. The
results show that FFM-GOT achieves the best performance at NFE=4 and FFM-LOT performs best
across other NFE values. The advantage of FFM-GOT at low NFE is less pronounced here, likely
because the high-dimensional data space makes learning the corresponding dual potential function
more challenging.

Table 2: FID scores across NFE values of Imagenet64-500 dataset using Euler integration.

Method NFE=4 NFE=10 NFE=20 NFE=30

FFM-vanilla 64.3 29.2 24.8 22.4
FFM-LOT 43.7 18.6 16.3 15.9
FFM-GOT 39.4 28.4 23.2 22.9

6 CONCLUSION

In this work, we introduced Federated Flow Matching (FFM), a novel framework for training flow-
based generative models on decentralized data without compromising privacy. We identified the
challenge of constructing effective couplings under federated constraints and proposed three algo-
rithms with distinct advantages: FFM-vanilla provides a simple, stable baseline; FFM-LOT im-
proves inference efficiency by leveraging local OT plans, but is sensitive to data heterogeneity;
FFM-GOT enables faster sampling but can be sensitive to approximation errors. Limitations and
opportunities include reducing semi-dual approximation error and improving communication effi-
ciency and personalization for larger client pools.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint:2209.15571, 2022.
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A ADDITIONAL THEORY AND PROOFS

A.1 SEMI-DUAL OF THE SCHRÖDINGER BRIDGE PROBLEM

The Schrödinger bridge may be viewed as an entropic variant of optimal transport. Given a prior

Rε(dx, dy) = q0(dx)pε(dy | x),

the bridge is to seek the KL divergence between an estimation (posterior), i.e.,

min
π

DKL(π∥Rε) subject to Πx#π = q0, Πy#π = q1,λ.

Duality introduces potentials f on the source and g on the target, yielding

max
f,g

∫
f dq0 +

∫
g dq1,λ − log

∫∫
ef(x)+g(y)Rε(dx, dy).

Eliminating f leads to a one-potential semi-dual:

max
g

{∫
g dq1,λ −

∫
log

(∫
eg(y)pε(dy | x)

)
q0(dx)

}
. (9)

This has the same structure as the OT semi-dual, but with the hard inequality replaced by a log-sum-
exp smoothing from the prior kernel. The first term separates across clients,∫

g dq1,λ =

n∑
i=1

λi

∫
g dqi1,

so the formulation is naturally implementable in a federated setting, and as ε → 0, the smoothing
disappears and the dual potentials converge to those of the classical Kantorovich problem

A.2 A USEFUL LEMMA

Lemma 2 (Convexity under mixing). For cost c(x, y) = ∥x − y∥p with p ≥ 1 and measures
µ, ν1, . . . , νn ∈ Pp(Rm) with weights λ ∈ ∆n−1,

Wp
p

(
µ,

n∑
i=1

λiνi

)
≤

n∑
i=1

λiWp
p (µ, νi). (10)

Equality holds if and only if a convex combination of optimal couplings from µ to νi is itself optimal
for

(
µ,

∑n
i=1 λiνi

)
.

A.3 PROOF OF LEMMA 2

Choose optimal γi ∈ Π(µ, νi) and set γ̄ =
∑n
i=1 λiγi, ν̄ =

∑n
i=1 λiνi. Linearity of push-forwards

gives projx#γ̄ = µ and projy#γ̄ = ν̄, hence γ̄ ∈ Π(µ, ν̄). Therefore, we have

Wp
p (µ, ν̄) = inf

γ∈Π(µ,ν̄)

∫∫
Rm×Rm

∥x− y∥p dγ ≤
∫
∥x− y∥p dγ̄

=

n∑
i=1

λi

∫∫
Rm×Rm

∥x− y∥p dγi

=

n∑
i=1

λiWp
p (µ, νi),

which proves (10). The inequality becomes an equality exactly when γ̄ attains the infimum, i.e.,
when γ̄ is optimal for (µ, ν̄).
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A.4 PROOF OF THEOREM 1

By convexity ofW2
2 under mixing (Lemma 2),

W2
2

(
π∗,

n∑
i=1

λiπ
∗
i

)
≤

n∑
i=1

λiW2
2 (π

∗, π∗
i ). (11)

Fix i. Regard π∗, π∗
i as measures on R2d with the product quadratic cost

cprod
(
(x, y), (x′, y′)

)
= ∥x− x′∥2 + ∥y − y′∥2.

Couple them via the common source by pushing forward q0 through the operator

H : x 7→
(
(x, T ∗(x)), (x, T ∗

i (x))
)
.

Define the measure Γ := H#q0. Then (pr1)#Γ = (Id, T ∗)#q0 = π∗ and (pr2)#Γ =
(Id, T ∗

i )#q0 = π∗
i , so Γ ∈ Π(π∗, π∗

i ). Hence, we have

W2
2 (π

∗, π∗
i ) ≤

∫∫
cprod dΓ =

∫
∥T ∗(x)− T ∗

i (x)∥2 dq0(x). (12)

Using ∥T ∗(x)∥ ≤ D and ∥T ∗
i (x)∥ ≤ D, we have pointwise

∥T ∗(x)− T ∗
i (x)∥ ≤ ∥T ∗(x)∥+ ∥T ∗

i (x)∥ ≤ 2D,

so ∥T ∗(x)−T ∗
i (x)∥2 ≤ (2D) ∥T ∗(x)−T ∗

i (x)∥. Integrating and applying Cauchy–Schwarz on the
probability space (Rd, q0) gives∫
∥T ∗(x)− T ∗

i (x)∥2 dq0(x) ≤ 2D

∫
∥T ∗(x)− T ∗

i (x)∥ dq0(x) ≤ 2D ∥T ∗ − T ∗
i ∥L2(q0). (13)

By the quantitative L2 stability of Monge maps (Mérigot et al., 2020, Thm. 3.1),

∥T ∗ − T ∗
i ∥L2(q0) ≤ C0W1

(
q1, q

i
1

) 2/15 ≤ C0W2

(
q1, q

i
1

) 2/15
. (14)

Combining (12)–(14) yields

W2
2 (π

∗, π∗
i ) ≤ 2C0DW2

(
q1, q

i
1

) 2/15
.

Insert this bound into (11) and absorb constants to obtain the desired result.

B ADDITIONAL ALGORITHMS

Algorithm 4 DUALUPDATE

1: for client i = 1, . . . , n do
2: Sample x0 ∼ q0, x1 ∼ qi1
3: Evaluate f cϕ(x1) ≈ c(x̄0, x1)− f(x̄0), where x̄0 is approximate solution of infx0

c(x0, x1)−
f(x0)

4: Form local loss Liϕ ← fϕ(x0) + f cϕ(x1)

5: Send gradient ∇ϕLiϕ to server
6: end for
7: Server update ϕ← ϕ−

∑n
i=1 λi∇ϕLiϕ and broadcast to clients

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Algorithm 5 Resample (x0, x1) ∼ π̂iϕ
1: Input: Candidate source samples x0,k=1,...,K , target samples x1,j=1,...,B , dual potential fϕ.
2: for j = 1 to B do
3: Evaluate Aj,k = c(x0,k, x1,j)− fϕ(x0,k) for k = 1, . . . ,K
4: k⋆(j)← argmink∈{1,...,K}Aj,k
5: x̃0,j ← x0,k⋆(j)
6: end for
7: Output: {(x̃0,j , x1,j)}Bj=1

C EXPERIMENTAL DETAILS

C.1 2D EXAMPLE

We present more details on the 2D example, including implementation details and additional exper-
imental results. Most of the experiments were run on clusters using NVIDIA A100s.

C.1.1 IMPLEMENTATION DETAILS

Flow matching model: The vector field is approximated using a time-varying multilayer percep-
tron (MLP) adopted from Tong et al. (2023). For each method, the model is trained for 40,000
epochs with a batch size of 256, employing the Adam optimizer.

Dual potential function: The dual potential function fϕ is parameterized using a 3-layer MLP
with 128 hidden units and ReLU activation functions. The c-transform f cϕ is approximated by sam-
pling 256 candidate source points from the prior distribution and selecting the point that minimizes
c(x0, x1)− fϕ(x0) for each target point x1.

Federated data setup: We split the target distribution such that two clients hold disjoint subsets
of the target samples. For the moon target distribution, client 1 contains the upper moon while client
2 contains the lower moon, as shown in Fig. 2 (a). For the 8Gaussian target distribution, we assign
the four left-lower Gaussians to client 1 and the four right-upper Gaussians to client 2, ensuring a
clear non-IID partition.

Training details: For FFM with local OT, we compute the optimal transport plan between mini-
batches of 256 source and 256 target samples using the exact solver. We then sample from the
resulting coupling to generate training pairs. For FFM with global OT, the dual potential fϕ is
parameterized by a 3-layer MLP with 128 hidden units and ReLU activation functions. The c(x0, x1)
function is selected as 1

2 ∥x0 − x1∥
2. We optimize the dual potential using the Adam optimizer with

a learning rate of 0.0001, updating it every 5 training steps of the main flow matching model. The
c-transform function f cϕ, which is defined as the minimization over source points, is approximated
using the minimum among 256 candidate source points sampled from the prior distribution.

Evaluation metrics: We evaluate performance using the 2-Wasserstein distance between gener-
ated samples and the true target distribution. The true distribution is approximated by the empirical
distribution with 10000 samples.
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C.1.2 ADDITIONAL RESULTS

x0
x1 from client 1
x1 from client 2

(a) FFM setting

x0
Flow
x1

(b) FFM-vanilla

x0
Flow
x1

(c) FFM-LOT

x0
Flow
x1

(d) FFM-GOT

Figure 4: Visualized trajectories learned by different FFM methods with uniform source distribution
and 8Gaussian target distribution. FFM-vanilla yields curved trajectories. FFM-LOT improves
straightness locally and FFM-GOT produces gloablly straight trajectories.

C.2 CIFAR IMAGE GENERATION

We present more details on the CIFAR image generation, including implementation details and
additional experimental results.

C.2.1 IMPLEMENTATION DETAILS

Flow matching models: The vector field model used in our experiments is trained using a U-Net
architecture with a total of 35.75 million parameters adopted from Tong et al. (2023). The model
uses a base channel dimension of 128, with channel multipliers [1, 2, 2, 2] across four resolutions.
It employs 2 residual blocks per resolution, attention mechanisms at the 16 × 16 resolution with 4
attention heads.

Dual potential function: The global dual potential fϕ is parameterized by a convolutional neural
network with a total of 1.15 million parameters. The network consists of six convolutional layers
with spectral normalization and SiLU activations, progressively downsampling the input to a 4 × 4
resolution. A global average pooling layer is applied, followed by a linear layer to produce a scalar
output.
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Federated data setup: We simulate a federated learning environment with 3 clients. The CIFAR-
10 training set is partitioned in a non-IID manner using a Dirichlet distribution with a concentration
parameter α. Client weights λi are set proportional to their respective dataset sizes. In each training
step, all 3 clients participate.

Training details: The U-Net parameters are optimized using Adam with a learning rate of 2×10−4

and a linear warmup schedule for the first 5000 steps. The dual potential network is optimized us-
ing Adam with a learning rate of 10−4. Training runs for 400000 steps with a per-client batch size
of 128. The training time of three methods is provided in Table 3. An exponential moving aver-
age of the U-Net parameters is maintained with a decay rate of 0.9999. The semi-dual objective
is optimized using a quadratic cost function c(x0, x1) = 1

2 ∥x0 − x1∥
2. The function value of f cϕ

is approximated through 5-step gradient descent with learning rate 0.5. The pairing of (x0, x1) is
performed through a memory-efficient resampling procedure: for each target sample x1, the cor-
responding source point x0 is selected from 128 candidate source samples by minimizing the cost
c(x0, x1)− fϕ(x0).

Evaluation metric: We evaluate sample quality using Fréchet Inception Distance (FID) calculated
between 50000 generated samples and the CIFAR-10 test set. Measurements are taken at different
numbers of function evaluations (NFE: 4, 10, 20, 50, 100) to assess inference efficiency. The infer-
ence time is reported in Table 4. We observe that the inference time is approximately proportional
to the value of NFE.

Table 3: Training time for 400k steps on CIFAR using a single NVIDIA A100 GPU.

Method FFM-vanilla FFM-LOT FFM-GOT Centralized OT-CFM

Training time (×103 s) 138 141 189 55

Table 4: Inference time to generate 50000 CIFAR samples across varying NFE values on a single
A100 GPU.

NFE 3 10 20 50 100

Inference time (s) 79 164 305 730 1437

C.2.2 ADDITIONAL RESULTS

Table 5: FID of different methods on CIFAR dataset using dopri5 integration solver. FFM-LOT
achieves superior performance, exceeding all other federated methods and even the centralized OT-
CFM. This is attributed to its larger effective batch size: OT-CFM uses a batch size of 128, while
FFM-LOT leverages a collective batch size of 384 (3 clients × 128).

Method FFM-vanilla FFM-LOT FFM-GOT Centralized OT-CFM

FID 4.37 3.57 8.35 3.85
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Figure 5: Comparison between our federated method FFM-GOT with the centralized method OT-
CFM in Tong et al. (2023) at NFE=3. FFM-GOT surpasses the performance of OT-CFM after 160K
training steps, and this performance gap widens significantly with further training.

Figure 6: FID vs NFE of different methods on the CIFAR dataset at different training steps. FFM-
GOT performs best when NFE is less than 20 after 200K training steps. When NFE is large, FFM-
LOT achieves the best generation performance.
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Figure 7: Generation performance of FFM-GOT with different gradient descent steps to solve
infx0

c(x0, x1) − ϕ(x0). GDk denotes FFM-GOT with k gradient descent steps for k = 5, 10, 20.
We observe that FFM-GOT is not sensitive to the number of gradient descent steps.

Figure 8: Generation performance of FFM-GOT with different batch sizes at NFE=3. Large batches
yield better generation performance.

C.2.3 GENERATED CIFAR SAMPLES

Figure 9: Generated samples from FFM-vanilla trained on CIFAR.
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Figure 10: Generated samples from FFM-LOT trained on CIFAR.

Figure 11: Generated samples from FFM-GOT trained on CIFAR.
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C.3 IMANGENET IMAGE GENERATION

C.3.1 IMPLEMENTATION DETAILS

Flow matching model: We use a U-Net architecture with a base channel dimension of 128. The
model consists of 4 resolution levels with channel multipliers [1,2,2,2], 2 residual blocks per reso-
lution, and multi-head attention at the 16 × 16 resolution. The total number of parameters is 46.97
million.

Dual potential function: The global dual potential is parameterized by a convolutional neural
network with 6 layers, spectral normalization, and SiLU activations. The total number of parameters
is 1.15 million.

Federated data setup: The training dataset is derived from a 500-class subset of ImageNet, with
500 samples per class, resulting in a total of 250,000 images. Each image undergoes standardized
preprocessing: it is resized to a resolution of 64 × 64 pixels, with random resized crops applied
for data augmentation during training, followed by normalization to the range [−1, 1]. To emulate
a realistic federated learning scenario with non-IID client distributions, the dataset is partitioned
among 4 clients according to a Dirichlet distribution with concentration parameter α = 0.3. Client
weights λi are assigned proportionally to their respective local dataset sizes.

Training details: The U-Net is optimized using Adam with a learning rate of 2 × 10−4 while
the dual potential network is optimized with Adam with a learning rate of 10−4. Training runs
for 180,000 steps with a per-client batch size of 32. The training time is provided in Table 6. An
exponential moving average of the U-Net parameters is maintained with a decay rate of 0.999. The
semi-dual objective uses the quadratic cost c(x0, x1) = 1

2 ∥x0 − x1∥
2. The function value of f cϕ is

approximated through 5-step gradient descent. For each x1, the corresponding source sample x0 is
selected by finding the point among 32 candidate samples drawn from q0 that minimizes the cost
c(x0, x1) − fϕ(x0). This procedure yields a pair (x0, x1) that is approximately sampled from the
global optimal transport plan π̂ϕ.

Evaluation metric: We evaluate sample quality using FID calculated between 50000 generated
samples and the Imagenet64-500 training dataset. Measurements are taken at different numbers of
function evaluations to assess inference efficiency. The inference time is reported in Table 7.

Table 6: Training time for 200k steps on Imagenet64-500 using a single NVIDIA A100 GPU.

Method FFM-vanilla FFM-LOT FFM-GOT

Training time (×103 s) 81 82 104

Table 7: Inference time to generate 50000 Imagenet64-500 samples across varying NFE values on a
single A100 GPU.

NFE 4 10 20 30

Inference time (s) 82 159 290 676

C.3.2 ADDITIONAL RESULTS ON IMAGENET64-10

We further evaluate the generation performance on Imagenet64-10, with only 10 classes of images
from Imagenet. This is a more challenging task due to its limited size of only 9,346 training samples.
The FID scores are presented in Table 8. The results show that FFM-LOT achieves the best perfor-
mance across all NFE values, outperforming both FFM-vanilla and FFM-GOT. The overall higher
FID scores across methods reflect the difficulty of learning a high-quality generative model from
such a small and decentralized dataset. The particularly challenging conditions appear to magnify
the approximation errors inherent in FFM-GOT’s global OT approach, which requires sufficient data
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to estimate the dual potential and optimal couplings accurately. In contrast, FFM-LOT proves more
robust to limited data availability.

Table 8: FID scores across NFE values of Imagenet64-10 dataset using Euler integration.

Method NFE=3 NFE=10 NFE=20 NFE=50 NFE=100

FFM-vanilla 130.5 46.7 31.3 25.4 23.4
FFM-LOT 93.5 39.1 29.1 25.0 22.8
FFM-GOT 112.2 46.3 34.5 30.9 27.8
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