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ABSTRACT

An extension of Transformers is proposed that enables explicit relational reasoning
through a novel module called the Abstractor. At the core of the Abstractor is a
variant of attention called relational cross-attention. The approach is motivated by
an architectural inductive bias for relational learning that disentangles relational
information from object-level features. This enables explicit relational reasoning,
supporting abstraction and generalization from limited data. The Abstractor is
first evaluated on simple discriminative relational tasks and compared to existing
relational architectures. Next, the Abstractor is evaluated on purely relational
sequence-to-sequence tasks, where dramatic improvements are seen in sample
efficiency compared to standard Transformers. Finally, Abstractors are evaluated
on a collection of tasks based on mathematical problem solving, where consistent
improvements in performance and sample efficiency are observed.

1 INTRODUCTION

The ability to infer and process relations and reason in terms of analogies lies at the heart of human
abilities for abstraction and creative thinking (Snow et al., 1984; Holyoak, 2012). This capability
is largely separate from our ability to acquire semantic and procedural knowledge through sensory
tasks, such as image and audio processing. Modern deep learning systems can often capture this
latter type of intelligence through efficient function approximation. However, deep learning has seen
limited success with relational and abstract reasoning, which requires identifying novel associations
from limited data and generalizing to new domains.

Recognizing the importance of this capability, machine learning research has explored several novel
frameworks for relational learning (Graves et al., 2014; Pritzel et al., 2017; Santoro et al., 2017;
Battaglia et al., 2018; Barrett et al., 2018; Shanahan et al., 2020; Whittington et al., 2020; Webb et al.,
2021; Mondal et al., 2023). In this paper, we propose a framework that casts relational learning in
terms of Transformers. The success of Transformers lies in the use of attentional mechanisms to
support richly context-sensitive processing (Vaswani et al., 2017; Wolf et al., 2020; Kerg et al., 2020).
However, it is clear that Transformers are missing core capabilities required for modeling human
thought (Mahowald et al., 2023), including an ability to support analogy and abstraction. While large
language models show a surprising ability to complete some analogies (Webb et al., 2023), this ability
emerges implicitly only after processing vast amounts of data.

The Transformer architecture has the ability to model relations between objects implicitly through its
attention mechanisms. However, we argue in this paper that standard attention produces entangled
representations encoding a mixture of relational information and object-level features, resulting
in suboptimal sample efficiency for learning relations. In this work, we propose an extension of
Transformers that enables explicit relational reasoning through a novel module called the Abstractor.
At the core of the Abstractor is a variant of attention called relational cross-attention. Our approach is
motivated by an architectural inductive bias for relational learning we call the “relational bottleneck,”
which separates relational information from extraneous object-level features (see Webb et al., 2024,
for a cognitive science perspective on this idea).

A growing body of literature has focused on developing machine learning architectures for relational
representation learning. An early example is the Relation Network (Santoro et al., 2017), which
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proposes modeling pairwise relations by applying an MLP to the concatenation of object represen-
tations. Shanahan et al. (2020) proposed the PrediNet architecture, which learns representations of
relations in a manner inspired by predicate logic. Webb et al. (2021)’s ESBN is a memory-augmented
LSTM network that aims to factor representations into ‘sensory’ and ‘relational’. Another related
architecture is CoRelNet (Kerg et al., 2022), which reduces relational learning to modeling a similarity
matrix. More recently, Altabaa and Lafferty (2023) tackled the problem of learning representations
of hierarchical relations by formalizing a notion of “relational convolution”.

The Transformer is a common baseline against which other approaches are compared in this literature.
These works show that explicitly relational architectures outperform the Transformer on several
synthetic discriminative relational tasks, sometimes by large margins (Shanahan et al., 2020; Webb
et al., 2021; Kerg et al., 2022; Altabaa and Lafferty, 2023). We offer an explanation, arguing that
while the Transformer architecture is versatile enough to learn such relational tasks given enough data,
it does not support relational representation explicitly and thus can suffer in terms of sample-efficiency.
The Abstractor extends the Transformer framework by introducing an inductive bias for learning
representations of relations that are disentangled from extraneous object-level features.

Our experiments first compare the Abstractor to other relational architectures on discriminative
relational tasks, finding that the Abstractor is both more flexible and achieves superior sample
efficiency. We then evaluate whether the Abstractor can augment a Transformer to improve relational
reasoning by evaluating on synthetic sequence-to-sequence relational tasks, which has so far been
unexplored in the literature on explicitly relational architectures. Finally, we evaluate an Abstractor-
supported architecture on a set of mathematical problem-solving tasks to evaluate the potential of
the idea on tasks more representative of real-world applications. We observe consistent, sometimes
dramatic, gains in sample efficiency.

2 RELATIONAL CROSS-ATTENTION AND THE ABSTRACTOR MODULE

At a high level, the primary function of an Abstractor is to compute abstract relational features of
its inputs.1 That is, given a sequence of input objects x1, . . . , xn, the Abstractor learns to model a
relation r(·, ·) and computes a function on the set of pairwise relations between objects {r(xi, xj)}ij .
At the heart of the Abstractor module is an inductive bias we call the relational bottleneck, that
disentangles relational information from the features of individual objects.

2.1 MODELING RELATIONS AS INNER PRODUCTS

A “relation function” maps a pair of objects x1, x2 ∈ X to a vector representing the relation between
the two objects. We model pairwise relations as inner products between appropriately encoded (or
‘filtered’) object representations. In particular, we model the pairwise relation function r(·, ·) ∈ Rdr

in terms of dr learnable ‘query’ encoders ϕ1
q, . . . , ϕ

dr
q and ‘key’ encoders ϕ1

k, . . . , ϕ
dr

k ,

r(x, y) =
(
⟨ϕ1

q(x), ϕ
1
k(y)⟩, ⟨ϕ2

q(x), ϕ
2
k(y)⟩, . . . , ⟨ϕdr

q (x), ϕdr

k (y)⟩
)
∈ Rdr . (1)

Modeling relations as inner products ⟨ϕq(x), ϕk(y)⟩ ensures that the result represents a comparison
between the two objects’ features. More precisely, inner product relations induce a geometry on
the object space X , with notions of distance, angles, and orthogonality. Altabaa and Lafferty (2024)
analyzes the approximation properties of inner products of neural networks for relation functions.

Considering all pairwise relations yields a relation tensor, R = [r(xi, xj)]i,j ∈ Rn×n×dr .

2.2 RELATIONAL CROSS-ATTENTION

The core operation in a Transformer is attention. For an input sequence X = (x1, . . . , xn) ∈
Rn×d, self-attention transforms the sequence via, X ′ ← Softmax(ϕq(X)ϕk(X)

⊤
)ϕv(X), where

ϕq, ϕk, ϕv are functions applied independently to each object in the sequence. Note that R :=

1In this paper, we will use the name ‘Abstractor’ to refer to both the module and to model architectures which
contain the Abstractor module as a main component.
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ϕq(X)ϕk(X)
⊤ is a relation matrix in the sense defined above. Self-attention admits an interpretation

as a form of “neural message-passing” (Gilmer et al., 2017) as follows

x′
i ← MessagePassing

(
{(ϕv(xj), Rij)}j∈[n]

)
=

∑
j

R̄ijϕv(xj), (2)

where mj→i = (ϕv(xj), Rij) is the message from object j to object i, encoding the sender’s features
ϕv(xj) and the relation between the two objects Rij = ⟨ϕq(xi), ϕk(xj)⟩. Here, R̄ = Softmax (R)
is the softmax-normalized relation matrix. Hence, the processed representation obtained by self-
attention is an entangled mixture of relational information and object-level features.

Our goal is to learn relational representations that are abstracted away from object-level features in
order to achieve more sample-efficient learning and improved generalization in relational reasoning.
This is not naturally supported by the entangled representations produced by standard self-attention.
We achieve this via a simple modification of attention—we replace the values ϕv(xi) with vectors
that identify objects, but do not encode their features. We call those vectors symbols. Hence, the
message sent from object j to object i is now mj→i = (sj , Rij), the relation between the two objects,
together with the symbol identifying the sender object,

Ai ← MessagePassing
(
{(sj , Rij)}j∈[n]

)
=

∑
j

R̄ijsj . (3)

Symbols act as abstract references to objects, akin to pointers in traditional symbolic architectures.
They do not encode information about the contents or features of the objects, but rather refer to
objects. This results in improved sample efficiency and generalization by restricting the search space
of computations, and allowing abstraction through shared symbols. We call the vectors {si} ‘symbols’
in the same sense that we call ‘x’ a symbol in an equation like y = x2—they reference an object with
an unspecified value. Suppose for now that each object xi is assigned a symbol si in a manner that
satisfies this property. We will discuss symbol-assignment mechanisms in the next subsection.

This modification yields a variant of attention that we call relational cross-attention (RCA), given by

A← σrel

(
ϕq(X)ϕk(X)

⊤
)
S, (4)

where S = (s1, . . . , sn) are the symbols, σrel is the relation activation function, and ϕq, ϕk correspond
to the query and key transformations. When the relation activation function σrel is softmax, this
corresponds to Attention(Q ← X, K ← X, V ← S). In contrast, self-attention corresponds to
Attention(Q← X, K ← X, V ← X), mixing relational information with object-level features.

We observe in our experiments that allowing σrel to be a configurable hyperparameter can lead to
performance benefits in some tasks. Softmax has the effect of normalizing the relation between a pair
of objects (i, j) based on the strength of i’s relations with the other objects in the sequence. In some
tasks this is useful. In other tasks, this may mask relevant information, and element-wise activations
(e.g., tanh, sigmoid, or linear) may be more appropriate.

Relational cross-attention implements a type of information bottleneck, that we call the “relational
bottleneck”, wherein the resultant representation encodes only relational information about the object
sequence (Figure 1) and does not encode information about the features of individual objects. This
enables a branch of the model to focus purely on modeling the relations between objects, yielding
greater sample efficiency in tasks that rely on relational reasoning.

Multi-dimensional relations can be modeled through multi-head relational cross-attention. In our
experiments, ϕi

q, ϕ
i
k are linear maps W i

q ,W
i
k, and multi-head relational cross-attention is given by

RelationalCrossAttention(X,S) = concat
(
A1, . . . , Adr

)
Wo,

where Ai = σrel

(
(XW i

q)(XW i
k)

⊤
)
SW i

o.
(5)

2.3 SYMBOL ASSIGNMENT MECHANISMS

Abstraction relies on the assignment of symbols to individual objects without directly encoding their
features. We propose three different mechanisms for assigning symbols to objects.
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𝑥1 𝑥2 𝑥3  ⋯ 𝑥𝑛

𝐸1 𝐸2 𝐸3  ⋯ 𝐸𝑛

Input sequence

Encoder states

Relation tensor
𝑅𝑖𝑗 = ⟨𝜙𝑞 𝑥𝑖 , 𝜙𝑘(𝑥𝑗)⟩

(a) E ← SelfAttention(X)

Relation tensor
𝑅𝑖𝑗 = ⟨𝜙𝑞 𝑥𝑖 , 𝜙𝑘(𝑥𝑗)⟩

𝑥1 𝑥2 𝑥3  ⋯ 𝑥𝑛

𝐴1 𝐴2 𝐴3  ⋯ 𝐴𝑛

𝑠1 𝑠2 𝑠3  ⋯ 𝑠𝑛

Relational 
Bottleneck

Input sequence Symbols

Abstract states

(b) A← RelationalCrossAttention(X,S)

Figure 1: Comparison of relational cross-attention with self-attention. Red represents object-level
features, blue represents relational features, and purple represents mixed representations. Relational
cross-attention computes relational information disentangled from the features of individual objects.

Positional symbols. The simplest symbol assignment mechanism is to assign symbols to objects
sequentially based on the order they appear in the sequence. That is, we maintain a library of symbols
Slib = (s1, . . . , smax_len) ∈ Rmax_len×dmodel , and assign the symbol si to the i-th object. The symbol
library Slib can be either learned parameters of the model or fixed positional embeddings.

Position-relative symbols. Similar to relative positional embeddings (Shaw et al., 2018; Kazemnejad
et al., 2023), we can compute relational cross-attention with position-relative symbols via Ai ←∑

j Rijsj−i, where the symbol library is Slib = (. . . , s−1, s0, s1, . . .).

Symbolic attention. In this case we learn a library of symbols Slib = (s1, . . . , sns
) ∈ Rns×dmodel

together with associated “binding vectors” Blib = (b1, . . . , bns
), where ns is the number of symbols

in the library. Through an attention mechanism, symbols are bound to objects xi based on their
relations to the symbol binding vectors. A multi-head variant of symbolic attention is naturally
defined by concatenating the symbols retrieved for each head. Formally,

SymbolicAttention(X) = concat
(
S(1), . . . , S(nh)

)
,

Si = Softmax
(
(XW i

q)B
i
lib

⊤
)
Si
lib.

(6)

In terms of representational capacity, this is similar to cross-attending to the symbol parameters Slib.
Note that symbolic attention weakens the relational bottleneck since object-level features are used to
retrieve a symbol for each object. However, the symbols are shared across objects and sequences,
and the dependence is only with respect to a low-dimensional projection of the object-level features,
which we may think of as encoding the object’s “syntactic role.” Encoding such information in the
symbols allows identifying objects by their role, rather than merely their position or relative position.

The choice of symbol assignment mechanism determines the way in which relational information
is encoded in the abstract states. For example, with positional symbols, Ai encodes the relations
between object i and each object j, identifying j by its position (or relative position in the case of
position-relative symbols). In contrast, with symbolic attention, each object j is identified by its
“syntactic role,” as determined by its relation to the binding vectors.

2.4 THE ABSTRACTOR MODULE

We now describe the Abstractor module. Like the Encoder in a Transformer, this is a module
that processes an input sequence of objects X = (x1, . . . , xn) producing a processed sequence
of objects A = (A1, . . . , An) that represents features of the input sequence. In an Encoder, the
output objects represent a mix of object-level features and relational information. In an Abstractor,
the output objects are abstract states that represent relational information, abstracted away from
the features of individual objects. The core operation in an Abstractor module is relational cross-
attention. Mirroring an Encoder, an Abstractor module can comprise several layers, each composed
of relational cross-attention followed by a feedforward network. Optionally, residual connections
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and layer-normalization can be applied as suggested by Vaswani et al. (2017)2. The algorithmic
description is presented in Algorithm 1. In Appendix B, we theoretically study the approximation
properties of the Abstractor module, showing that it is a universal approximator of relation functions.

Algorithm 1: Abstractor module

Input :object sequence: X = (x1, . . . , xn) ∈ Rn×d

A(0) ← SymbolicAttention(X) // or, A(0) ← S1:n, for positional symbols
for l← 1 to L do

A(l) ← RelationalCrossAttention
(
X,A(l−1)

)
A(l) ← A(l) +A(l−1) // residual connection (optional)
A(l) ← LayerNorm(A(l)) // (optional; can also be done pre-RCA)
A(l) ← FeedForward

(
A(l)

)
end
Output: A(L)

The hyperparameters of an Abstractor module include the number of layers L, the relation dimension
dr (i.e., number of heads), the projection dimension dk (i.e., key dimension), the relation activation
function σrel, and the model dimension dmodel. The learnable parameters, at each layer, are the
projection matrices W i

q ,W
i
k ∈ Rdmodel×dk , i ∈ [dr], the symbol library Slib, and the parameters

of the feedforward network. In our experiments, we use a 2-layer feedforward network with a
hidden dimension dff and ReLU activation. The implementation in the publicly available code adds a
few additional hyperparameters, including whether to restrict the learned relations to be symmetric
(via W i

q = W i
k), and whether to apply self-attention after relational cross-attention (which enables

exchange of relational information between abstract states).

3 ABSTRACTOR ARCHITECTURES

Whereas a Transformer Encoder performs “general-purpose” processing, extracting representations of
both object-level and relational information, an Abstractor module is more specialized and produces
more enriched relational representations. An Abstractor module can be integrated into a broader
transformer-based architecture, for enhanced relational processing.

To facilitate the discussion of different architectures, we distinguish between two types of tasks. In a
purely relational prediction task, there exists a sufficient statistic of the input which is purely relational
and encodes all the information that is relevant for predicting the target. The experiments of (Webb
et al., 2021; Kerg et al., 2022) are examples of purely relational discriminative tasks. We consider
discriminative relational tasks in Section 4.1. An example of a purely relational sequence-to-sequence
task is the object-sorting task described in Section 4.2. Many real-world tasks, however, are not
purely relational. In a partially-relational prediction task, the relational information is important but
is not sufficient for predicting the target. The math problem-solving experiments in Section 4.3 are
partially-relational. Natural language understanding is also an example of a partially-relational task.

The way that an Abstractor module is integrated into a broader model architecture should be informed
by the underlying prediction task. Figure 2 depicts several Abstractor architectures each with different
configurations. Architecture (a) depicts a configuration in which the Abstractor processes the
relational features in the input, and the decoder attends to the abstract states A. Architecture (b)
depicts a configuration in which the input objects are first processed by an Encoder, followed by
an Abstractor for relational processing, and the decoder again attends to the abstract states. These
architectures would be appropriate for purely relational tasks since the decoder attends only to the
relational representations in the abstract states. Architectures (c) and (d), in which information can
also pass directly from the encoder to the decoder, would be more appropriate for more general tasks
that are only partially relational. For example, in architecture (c), the model branches into two parallel
processing streams in which an Encoder performs general-purpose processing and an Abstractor

2Layer-normalization can also be applied before relational cross-attention, as in the pre-LN Trans-
former (Xiong et al., 2020).
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AbstractorEncoder Decoder𝑋 ෝ𝒚(d)

AbstractorEncoder Decoder𝑋 ෝ𝒚Abstractor(e)

AbstractorEncoder Decoder𝑋 ෝ𝒚(b)

Abstractor Decoder𝑋 ෝ𝒚(a)

Abstractor

Encoder

Decoder𝑋 ෝ𝒚(c)

Figure 2: Examples of Abstractor-based model architectures.

performs more specialized processing of relational information. The decoder attends to both the
encoder states and the abstract states. These architectures use the “multi-attention decoder” described
in Appendix A. Finally, architecture (e) depicts a composition of Abstractors, wherein the abstract
states produced by one Abstractor module are used as input to another Abstractor. This results in
computing “higher-order” relational information (i.e., relations on relations).

4 EXPERIMENTS

4.1 DISCRIMINATIVE RELATIONAL TASKS

Order relations: modeling asymmetric relations. We generate N = 64 “random objects” rep-
resented by iid Gaussian vectors, oi ∼ N (0, I) ∈ R32, and associate an order relation to them
o1 ≺ o2 ≺ · · · ≺ oN . Note that ≺ is anti-symmetric. Of the N2 = 4096 possible pairs (oi, oj), 15%
are held out as a validation set (for early stopping) and 35% as a test set. We evaluate learning curves
by training on the remaining 50% and computing accuracy on the test set (10 trials for each training
set size). Note that the models are evaluated on pairs they have never seen. Thus, the models will
need to generalize based on the transitivity of the ≺ relation.

We compare five models: an Abstractor, standard (symmetric) CoRelNet, an asymmetric variant of
CoRelNet, PrediNet, and an MLP. The MLP, which is a non-relational architecture, is completely
unable to learn the task. Among the relational architectures, we observe that standard CoRelNet is
also completely unable to learn the task, whereas the Abstractor and asymmetric CoRelNet learn
the transitive ≺ relation (Figure 4a). PrediNet has limited success in learning the task. This can be
explained by the observation that symmetric inner products (e.g., in standard CoRelNet) don’t have
the representational capacity to model asymmetric relations, whereas the asymmetric inner products
with different learned left and right encoders do.

Figure 3: The SET game

SET: modeling multi-dimensional relations. SET is a cognitive task
in which players are presented with a sequence of cards, each of which
contains figures that vary along four dimensions (color, number, pattern,
and shape) and they must find triplets of cards that obey a deceptively
simple rule: along each dimension, cards in a “set” must either have the
same value or three unique values (Figure 3). In this experiment, the task
is to classify triplets of card images as “set” or not.

Again, we compare an Abstractor, CoRelNet, PrediNet, and an MLP. The
shared architecture is CNN → {·} → Flatten → Dense, where {·}
is one of the aforementioned modules. The CNN embedder is obtained
through a pre-training task. We report learning curves in Figure 4b (10
trials per training set size). We find that the Abstractor model significantly outperforms the other
baselines. We attribute this to its relational inductive biases and its ability to model multi-dimensional
relations. In this task, there exist four different relations (one for each attribute) that are needed to

6



Published as a conference paper at ICLR 2024

0 500 1000 1500 2000

Training Set Size

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Learning Asymmetric ≺ Relation

Abstractor

CoRelNet

CoRelNet (Asymmetric)

PrediNet

MLP

(a) The≺ relation can be learned
with asymmetric but not sym-
metric inner products.

1000 2000 3000 4000 5000

Training Set Size

0.6

0.8

1.0

A
cc

u
ra

cy

SET Classification

Abstractor

CoRelNet

CoRelNet (No Softmax)

PrediNet

MLP

(b) The Abstractor’s ability to
model multi-dimensional rela-
tions enables it to solve SET.

0 200 400 600 800 1000

Training Set Size

60

80

100

S
E

T
C

la
ss

ifi
ca

ti
o

n
A

cc
u

ra
cy

Comparison to symbolic baseline for SET task

MLP with purely symbolic input

Abstractor on images, pre-learned relations

(c) Comparison of Abstractor
trained on card images and MLP
with hand-encoded relations.

Figure 4: Experiments on discriminative relational tasks and comparison to CoRelNet.

determine whether a triple of cards forms a set. We hypothesize that the ability to model relations as
multi-dimensional is also part of the reason that the Abstractor is more sample efficient in learning the
order relation in the previous experiment—even though the underlying relation is “one-dimensional”,
having a multi-dimensional representation enables greater robustness and multiple avenues towards a
good solution during optimization.

SET (continued): comparison to “neuro-symbolic” model. In Figure 4c, to evaluate the quality
of the representations produced by Abstractors, we compare an Abstractor-based model to a “neuro-
symbolic” model which receives as input a binary representation of the four relevant relations. We
train 1-head Abstractors separately for each of the four attributes to learn “same/different” relations,
where the task is to decide if an input pair of cards is the same or different for that attribute. We then
use the Wq and Wk parameters learned for these relations to initialize the relations in a multi-head
Abstractor. The Abstractor is then trained on a dataset of triples of cards, half of which form a “set”.

This is compared to a baseline neuro-symbolic model where, instead of images, the input is a vector
with 12 bits, explicitly encoding the relations. A two-layer MLP is then trained to decide if the
triple forms a “set”. The MLP using the symbolic representation represents an upper bound on the
performance achievable by any neural network model. This comparison shows that the relational
representations learned by an Abstractor result in sample efficiency that is not far from that obtained
with pre-specified symbolic encodings of the relevant relations.

4.2 OBJECT-SORTING: PURELY RELATIONAL SEQUENCE-TO-SEQUENCE TASKS

In the following set of experiments, we consider sequence-to-sequence tasks which are purely
relational, and compare an Abstractor-supported model to a standard Transformer. We consider
the task of sorting sequences of random objects. This task is “purely relational” in the sense that
there exists a relation (order) which is a sufficient statistic for solving the task—the features of
individual objects beyond this relation are extraneous. This is a more controlled setting that tests
the hypothesis that the inductive biases of the Abstractor confer benefits in modeling relations. The
experiments in the present section demonstrate that the Abstractor enables a dramatic improvement
in sample-efficiency on sequence-to-sequence relational tasks.
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Figure 5: Experiments on object-sorting, a purely relational sequence-to-sequence task.
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Task: polynomials__expand
Question: Expand (2*x + 3)*(x - 1).
Answer: 2*x**2 + x - 3

Task: algebra__linear_1d
Question: Solve for z: 5*z + 2 = 9.
Answer: 7/5

Figure 6: Examples of input/target sequences from the math problem-solving dataset.

Superior sample-efficiency on relational seq2seq tasks. We generate random objects in the
following way. First, we generate two sets of random attributesA = {a1, a2, a3, a4}, ai ∼ N (0, I) ∈
R4 and B = {b1, . . . , b12}, bi ∼ N (0, I) ∈ R8. To each set of attributes, we associate the strict
ordering relation a1 ≺ a2 ≺ a3 ≺ a4 and b1 ≺ b2 ≺ · · · ≺ b12, respectively. Our random objects are
formed by the Cartesian product of these two attributes O = A× B, yielding N = 48 objects. We
associate with O the following strict ordering relation: (ai, bj) ≺ (ak, bl) if ai ≺ ak or if ai = ak
and bj ≺ bl. Given a set of objects in O, the task is to sort it according to ≺. The input sequences
are randomly permuted sequences of 10 objects in O and the target sequences are the indices of the
object sequences in sorted order (i.e., ‘argsort’). The training data are sampled uniformly from the set
of length-10 sequences in O. We also generate non-overlapping validation and testing datasets.

We evaluate learning curves on an Abstractor, a standard Transformer, and an “Ablation” model
(10 trials for each training set size). The Abstractor uses architecture (b) in Figure 2 with learned
positional symbols. The Encoder-to-Abstractor interface uses relational cross-attention and the
Abstractor-to-Decoder interface uses standard cross-attention. The Ablation Model tests the effects
of relational cross-attention in the Abstractor model—it is architecturally identical to the Abstractor
model with the crucial exception that the Encoder-to-Abstractor interface instead uses standard
cross-attention. The hyperparameters of the models are chosen so that the parameter counts are
similar (details in Appendix C). We find that the Abstractor is dramatically more sample-efficient
than both the standard Transformer and the Ablation model (Figure 5a).

Ability to generalize to similar tasks. We also used the object-sorting task and the dataset
generated as described above to test the Abstractor’s ability to generalize from similar relational tasks
through pre-training. The main task uses the same dataset described above. The pre-training task
involves the same object set O but with a modified order relation. The ordering in attribute A is
randomly permuted, while the ordering in attribute B is kept the same. We pre-train an Abstractor
and a Transformer on the pre-training task and then, using those learned weights for initialization,
evaluate learning curves on the original task. Since the Transformer requires more training samples
to learn the object-sorting task, we use a pre-training set size of 3 000, chosen to be large enough for
the Transformer to learn the pre-training task.

This experiment assesses the models’ ability to generalize relations learned on one task to a new
task. Figure 5b shows the learning curves for each model with and without pre-training. We observe
that when the Abstractor is pre-trained, its learning curve on the object-sorting task is significantly
accelerated, whereas the Transformer does not benefit from pre-training. We attribute this to the fact
that the Transformer’s learned representations are entangled with extraneous object-level features,
which prevents generalization; by contrast, the Abstractor’s disentangled relational representations
can be more easily mapped to the new task.

4.3 MATH PROBLEM-SOLVING: PARTIALLY-RELATIONAL SEQUENCE-TO-SEQUENCE TASKS

The object-sorting experiments in the previous section are “purely relational” in the sense that the set
of pairwise ≺ order relations is a sufficient statistic for solving the task. In a general sequence-to-
sequence task, however, there may not be a relation that is a sufficient statistic. Nonetheless, relational
reasoning may still be crucial for solving the task, and the enhanced relational reasoning capabilities
of the Abstractor may enable performance improvements. The “partially-relational” architectures
described in Section 3 enable a branch of the model to focus on relational reasoning while another
branch performs general processing involving object-level attributes. In this section, we evaluate such
an Abstractor model (using architecture (d) of Figure 2) on a set of math problem-solving tasks based
on the dataset proposed by Saxton et al. (2019).

The dataset consists of several math problem-solving tasks, with each task having a set of question-
answer pairs. The tasks include solving equations, expanding products of polynomials, differentiating
functions, predicting the next term in a sequence, etc. A sample of question-answer pairs is displayed
in Figure 6. The overall dataset contains 2 × 106 training examples and 104 validation examples
per task. Questions have a maximum length of 160 characters and answers have a maximum length
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Figure 7: Training curves comparing an Abstractor-based architecture to a standard Transformer on
mathematics problem-solving tasks.

of 30 characters. We use character-level encoding with a common alphabet of size 95 (including
upper/lower case characters, digits, punctuation, and special start/end/pad tokens).

We compare an Abstractor model using architecture (d) in Figure 2 to a standard Transformer.
We evaluate an Abstractor with positional symbols and an Abstractor with symbolic attention
(see Section 2.3). Since the Abstractor-based models with architecture (d) have an Abstractor module
in addition to an Encoder and Decoder, we compare against two versions of the Transformer in order
to control for parameter count. In the first, the Encoder and Decoder have identical hyperparameters
to the Abstractor model. In the second, we increase the model dimension and hidden layer size of
the feedforward network such that the overall parameter count is approximately the same as for the
Abstractor model. We refer to the first model as “Transformer” and the second as “Transformer+” in
the figures. The precise architectural details and hyperparameters are described in Appendix C.

We evaluate the three models on five subtasks: differentiating functions (calculus); predicting the
next term in a sequence (algebra); solving a linear equation (algebra); expanding polynomials; and
adding polynomials. For each, we train on the training split and track the teacher-forcing accuracy
(excluding null characters) on the validation split. For each combination of model and task, we repeat
the experiment five times and report error bars as twice the standard error of the mean.

Figure 7 shows the validation teacher-forcing accuracy during the course of training, which we
use as a proxy for sample efficiency. We observe an improvement in accuracy compared to both
‘Transformer’ and ‘Transformer+’ across all tasks. The larger Transformer tends to perform better
than the smaller Transformer, but the Abstractor-based model consistently outperforms both, with the
symbolic attention mechanism showing the greatest improvement. This indicates that the performance
improvement stems from the architectural modification and inductive bias. We conjecture that
a “partially-relational” Abstractor architecture (e.g., architecture (d)) implements two branches
of information processing. The Encoder performs more general-purpose processing of the input
sequence, while the Abstractor performs more specialized relational processing. The Decoder then
has access to both representations, enabling it to perform the task more effectively.

5 CONCLUSION

In this work, we propose a variant of attention that produces representations of relational information
disentangled from object-level attributes. This leads to the development of the Abstractor module,
which fits naturally into the powerful framework of Transformers. Through a series of experiments,
we demonstrate the potential of this new framework to achieve gains in sample efficiency in both
purely relational tasks and more general sequence modeling tasks. This work opens up several
avenues for future research, including a better understanding of the strengths and weaknesses of
different architectural variants, work towards a more streamlined scalable architecture, and exploring
the framework’s use in increasingly complex real-world problems.
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CODE AND REPRODUCIBILITY

Code, detailed experimental logs, and instructions for reproducing our experimental results are
available at: https://github.com/Awni00/Abstractor.
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A MULTI-ATTENTION DECODER

Algorithm 2: Multi-Attention Decoder
Input : Target sequence: y = (y0, . . . , yly−1),

Context sequences: X(i) = (x
(i)
1 , . . . , x

(i)
li
), i = 1, . . . ,K

D(0) ← y
for l← 1 to L do

D(l) ← CausalSelfAttention
(
D(l−1)

)
residual connection and layer-normalization
for i← 1 to K do

D(l) ← CrossAttention
(
D(l), X(i)

)
residual connection and layer-normalization

end
D(l) ← FeedForward

(
D(l)

)
end
Output: D(L)

B UNIVERSAL APPROXIMATION OF RELATION FUNCTIONS

In this section, we characterize the function class of the Abstractor and relational cross-attention. We
will show that, in an appropriate sense, a single Abstractor layer can compute a sequence of abstract
states A = (A1, . . . , An) such that Ai approximates an arbitrary function of object i’s relations with
the other objects in the input. Recall that relational cross-attention takes the form

A← σrel

(
ϕq(X)ϕk(X)

⊤
)
S,

where ϕq, ϕk : X → Rdproj are multi-layer perceptrons, and S is the matrix of symbols. In this
analysis, we consider σrel : x 7→ x to be the linear activation function. Further, we consider positional
symbols. For simplicity, we will assume the single-head variant of relational cross-attention. The
function class results derived here would of course carry over to the multi-head case, where each
‘head’ can approximate a function in the function class.

Recall that an Abstractor module comprises several layers, each composed of relational cross-attention
and a feedforward layer. Hence, the overall operation in one layer of an Abstractor module is

AbstractorLayer(X) = FeedForward
(
ϕq(X)ϕk(X)

⊤
S
)
. (7)

We will characterize the function class AbstractorLayer : Xn → Rn×d induced by varying the
parameters of ϕq, ϕk, FeedForward and S.
Remark 1. In Equation (4), we formulate relational cross-attention with the maps ϕq, ϕk as linear
projections, whereas ϕq, ϕk are multi-layer perceptrons in Equation (7). However, recall that the
input to each Abstractor layer is the output of the preceding layer which ends with a multi-layer
perceptron. The function class of a multi-layer perceptron followed by two different linear projections
is the same as the function class of two different multi-layer perceptrons. We focus on Equation (7)
for ease of presentation.

The following result shows that a single-layer abstractor returns a sequence of abstract states which
can approximate an arbitrary function of each object’s relations with the other object in the input.
The result is based on the analysis in (Altabaa and Lafferty, 2024) which characterizes the function
class of inner products of neural networks.
Theorem 1. Suppose X is a compact Euclidean space. Let r : X × X → R be any continuous
relation function, and f : Rn → Rd any continuous function. Consider the function g : Xn → Rn×d

defined by
(x1, . . . , xn) 7→ (f(R1), . . . , f(Rn)) ,
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where Ri = (r(xi, xj))j∈[n] is the vector of xi’s relations with the other objects in the input,
according to r. Then, for any ε > 0, there exists MLPs ϕq, ϕk,FeedForward and a choice of symbols
S such that the Abstractor layer approximates g in the sup-norm

∥g(x1, . . . , xn)−AbstractorLayer(x1, . . . , xn)∥∞ ≤ ε, Lebesgue almost-everywhere.

Proof. Let (A1, . . . , An) = AbstractorLayer(x1, . . . , xn) be the abstract states returned by the
abstractor layer. For each i ∈ [n], the abstract state Ai takes the form,

Ai = FeedForward

 n∑
j=1

⟨ϕq(xi), ϕk(xj)⟩ sj

 .

where S = (s1, . . . , sn) are the symbols assigned to each object. Let the symbol dimension be
n and let si = ei, the canonical basis vectors. Then, Ai = FeedForward(Ri), where Ri =
(⟨ϕq(xi), ϕk(xj)⟩)j∈[n] ∈ Rn. By (Altabaa and Lafferty, 2024, Theorem 3.1), there exists MLPs
ϕq, ϕk such that their inner product approximates any continuous relation function. In particular, for
any ε1 > 0, there exists ϕq, ϕk such that

|r(x, y)− ⟨ϕq(x), ϕk(y)⟩| ≤ ε1, Lebesgue almost-every x, y ∈ X (8)

Let ϕq, ϕk be such MLPs where ε1 is to be determined later. Note that (Altabaa and Lafferty, 2024)
gives a bound on the number of neurons needed in terms of the continuity of r and the dimension of
X . Similarly, by the universal approximation property of MLPs (e.g., Cybenko, 1989), f : Rn → Rd

can be approximated by FeedForward uniformly in the sup-norm. That is, for any ε2 there exists
FeedForward such that

sup
z∈Rn

∥f(z)− FeedForward(z)∥∞ ≤ ε2. (9)

Let [R]ij = r(xi, xj) and [R̂]ij = ⟨ϕq(xi), ϕk(xj)⟩. Then, the difference g(x1, . . . , xn) −
AbstractorLayer(x1, . . . , xn) is given by[

f(R1·), . . . , f(R1·)
]
−
[
FeedForward(R̂1·), . . . ,FeedForward(R̂n·)

]
(10)

Note that R̂i· is close to Ri· by Equation (8)∥∥∥R̂i· −Ri·

∥∥∥
∞

= max
j∈[n]

|⟨ϕq(xi), ϕk(xj)⟩ − r(xi, xj)|

≤ ε1 Lebesgue almost-everywhere.
(11)

Now consider the (i, j)-th element of the difference in Equation (10)∣∣∣FeedForwardi(R̂j·)− fi(Rj·)
∣∣∣ ≤ ∣∣∣FeedForwardi(R̂j·)− fi(R̂j·)

∣∣∣+ ∣∣∣fi(R̂j·)− fi(Rj·)
∣∣∣

The first term is bounded by ε2 due to Equation (9). Let ε2 = ε/2. Recall that f : Rn → Rd is
continuous, and hence for all ϵ > 0 there exists δf (ε) > 0 such that ∥z1 − z2∥∞ ≤ δ(ε) =⇒
∥f(z1)− f(z2)∥∞ ≤ ε. Letting ε1 = δ(ε/2), implies that the second term is bounded by ε/2
Lebesgue almost-everywhere due to Equation (11).

This holds for all i, j, which completes the proof.

C EXPERIMENTAL DETAILS

In this section, we give further experimental details including architectures, hyperparameters, and
implementation details. All models and experiments are implemented in Tensorflow. The code is
publicly available on the project repo along with detailed experimental logs and instructions for
reproducing our results.

13



Published as a conference paper at ICLR 2024

C.1 DISCRIMINATIVE TASKS (SECTION 4.1)

C.1.1 PAIRWISE ORDER

Each model in this experiment has the following form input→ {·} → flatten→ MLP, where
{·} is one of the modules below and MLP is an MLP composed of one hidden layer with 32 neurons
and ReLU activation.

Abstractor architecture. The Abstractor module used the following hyperparameters: number of
layers L = 1, relation dimension dr = 4, symbol dimension ds = 64, projection (key) dimension
dk = 16, feedforward hidden dimension dff = 64, relation activation function σrel = sigmoid. No
layer normalization or residual connection. We use positional symbols as the symbol assignment
mechanism, which are learned parameters of the model. The output of the Abstractor module is
flattened and passed to the MLP.

CoRelNet architecture. CoRelNet has no hyperparameters. Given a sequence of objects, X =
(x1, . . . , xn), standard CoRelNet (Kerg et al., 2022) simply computes the inner product and takes
the Softmax. We also add a learnable linear map, W ∈ Rd×d. Hence, R̄ = Softmax(R), R =
[⟨Wxi,Wxj⟩]ij . The CoRelNet architecture flattens R̄ and passes it to an MLP to produce the output.
The asymmetric variant of CoRelNet is given by R̄ = Softmax(R), R = [⟨W1 xi,W2 xj⟩]ij , where
W1,W2 ∈ Rd×d are learnable matrices.

PrediNet architecture. We based our implementation of PrediNet (Shanahan et al., 2020) on the
authors’ publicly available code. We used the following hyperparameters: using 4 heads, and 16
relations, a key dimension of 4 (see the original paper for the meaning of these hyperparameters).
The output of the PrediNet module is flattened and passed to the MLP.

MLP. The embeddings of the objects are concatenated and passed directly to an MLP. The MLP has
two hidden layers each with 32 neurons and a ReLU activation.

Training/Evaluation. We use the crossentropy loss and the Adam optimizer with a learning rate
of 10−2, β1 = 0.9, β2 = 0.999, ε = 10−7. We use a batch size of 64. We train for 100 epochs and
restore the best model according to validation loss. We evaluate on the test set.

C.1.2 SET

The card images are RGB images of dimension 70 × 50 × 3. A CNN embedder processes the
images separately and produces embeddings of dimension d = 64 for each card. The CNN is trained
to predict the four attributes of each card and then an embedding for each card is obtained from
an intermediate layer (i.e., the parameters of the CNN are then frozen). Recall that the common
architecture is CNN Embedder → {·} → Flatten → Dense(2), where {·} is an Abstractor,
CoRelNet, PrediNet, or an MLP. We tested against the standard version of CoRelNet, but found
that it did not learn anything. We iterated over the hyperparameters and architecture to improve its
performance. We found that removing the softmax activation in CoRelNet improved performance a
bit. We describe hyperparameters below.

Common embedder’s architecture The architecture is given by Conv2D → MaxPool2D →
Conv2D→ MaxPool2D→ Flatten→ Dense(64, ’relu’)→ Dense(64, ’relu’)
→ Dense(2). The embedding is extracted from the penultimate layer. The CNN is trained to
predict the four attributes of each card until it reaches perfect accuracy and near-zero loss.

Abstractor architecture The Abstractor module has hyperparameters: number of layers L = 1,
relation dimension dr = 4, symmetric relations (i.e., W i

q = W i
k, i ∈ [dr]), linear relation activation

(i.e., σrel : x 7→ x), symbol dimension ds = 64, projection (key) dimension dk = 16, feedforward
hidden dimension dff = 128, and no layer normalization or residual connection. We use positional
symbols as the symbol assignment mechanism, which are learned parameters of the model.

CoRelNet architecture Standard CoRelNet is described above. It simply computes, R =
Softmax(A), A = [⟨Wxi,Wxj⟩]ij . This variant was stuck at 50% accuracy regardless of train-
ing set size. We found that removing the Softmax helped. Figure 4b compares against both variants
of CoRelNet.
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This finding suggests that allowing σrel to be a configurable hyperparameter is a useful feature of the
Abstractor. Softmax performs contextual normalization of relations, such that the relation between i
and j is normalized in terms of i’s relations with all other objects. This may be useful at times, but
may also cripple a relational model when it is more useful to represent an absolute relation between a
pair of objects, independently of the relations with other objects.

PrediNet architecture. We used the following hyperparameters: using 4 heads, and 16 relations, a
key dimension of 4 (see the original paper for the meaning of these hyperparameters). The output of
the PrediNet module is flattened and passed to the MLP.

MLP. The embeddings of the objects are concatenated and passed directly to an MLP. The MLP has
two hidden layers each with 32 neurons and a ReLU activation.

Data generation The data is generated by randomly sampling a “set” with probability 1/2 and a
non-“set” with probability 1/2. The triplet of cards is then randomly shuffled.

Training/Evaluation We use the crossentropy loss and the Adam optimizer with a learning rate of
10−3, β1 = 0.9, β2 = 0.999, ε = 10−7. We use a batch size of 64. We train for 200 epochs and
restore the best model according to validation loss. We evaluate on the test set.

C.2 RELATIONAL SEQUENCE-TO-SEQUENCE TASKS (SECTION 4.2)

C.2.1 SAMPLE-EFFICIENCY IN RELATIONAL SEQ2SEQ TASKS

Abstractor architecture The Abstractor model uses architecture (b) of Figure 2. For each of
the Encoder, Abstractor, and Decoder modules, we use L = 2 layers, 2 attention heads/relation
dimensions, a feedforward network with dff = 64 hidden units and a model/symbol dimension of
dmodel = 64. The relation activation function is σrel = Softmax. We use positional symbols as the
symbol assignment mechanism, which are learned parameters of the model. The number of trainable
parameters is 386, 954.

Transformer architecture We implement the standard Transformer of (Vaswani et al., 2017). For
both the Encoder and Decoder modules, use matching hyperparameters per-layer but increase the
number of layers. We use 4 layers, 2 attention heads, a feedforward network with 64 hidden units and
a model dimension of 64. The number of trainable parameters is 469, 898. We increased the number
of layers compared to the Abstractor in order to make it a comparable size in terms of parameter
count.

Ablation model architecture The Ablation model uses an identical architecture to the Abstractor,
except that the relational cross-attention is replaced with standard cross-attention at the Encoder-
Abstractor interface (with Q← A,K ← E, V ← E). It has the same number of parameters as the
Abstractor-based model.

Training/Evaluation We use the crossentropy loss and the Adam optimizer with a learning rate
of 10−3, β1 = 0.9, β2 = 0.999, ε = 10−7. We use a batch size of 512. We train for 100 epochs
and restore the best model according to validation loss. We evaluate learning curves by varying the
training set size and sampling a random subset of the data at that size. Learning curves are evaluated
starting at 100 samples up to 3000 samples in increments of 100 samples. Each ‘sample’ is a pair
of input-output sequences. For each model and training set size, we evaluate 10 runs with different
random seeds and report the mean and standard error of the mean.

C.2.2 GENERALIZATION TO NEW OBJECT-SORTING TASKS

Abstractor architecture The Abstractor model uses architecture (a) of Figure 2. The Abstractor
module uses learned positional symbols, has L = 1 layer, a model dimension of dmodel = 64, a
relation dimension of dr = 4, a softmax relation activation σrel = Softmax, and a feedforward
network with dff = 64. The decoder also has 1 layer with 4-head MHA and a 64-unit feedforward
network.

Transformer architecture The Transformer is identical to the previous section.

Training/Evaluation The loss, optimizer, batch size, and learning curve evaluation steps are identical
to the previous sections. Two object-sorting datasets are created based on an “attribute-product
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structure”—a primary dataset and a pre-training dataset. As described in Section 4.2, the pre-training
dataset uses the same random objects as the primary dataset but with the order relation of the primary
attribute reshuffled. The models are trained on 3,000 labeled sequences of the pre-training task and
the weights are used to initialize training on the primary task. Learning curves are evaluated with and
without pre-training for each model.

C.3 MATH PROBLEM-SOLVING (SECTION 4.3)

Abstractor architectures. The Abstractor models use architecture (d) of Figure 2. The Encoder,
Abstractor, and Decoder modules share the same hyperparameters: number of layers L = 1, relation
dimension/number of heads dr = nh = 4, symbol dimension/model dimension ds = dmodel = 128,
projection (key) dimension dk = 32, feedforward hidden dimension dff = 256. In the Abstractor,
the relation activation function is σrel = softmax. In one model, positional symbols are used, with
sinusoidal embeddings. In the other model, symbolic attention is used with a symbol library of
ns = 256 learned symbols, and 4-head symbolic attention.

Transformer architecture. The Transformer Encoder and Decoder have identical hyperparameters
to the Encoder and Decoder of the Abstractor architecture.

Transformer+ architecture. In ‘Transformer+’, the model dimension is increased to dmodel = 200
and the feedforward hidden dimension is increased to dff = 400. The remaining hyperparameters are
the same.

Training/Evaluation We train each model for 50 epochs with the categorical cross-entropy loss and
the Adam optimizer using a learning rate of 6× 10−4, β1 = 0.9, β2 = 0.995, ε = 10−9. We use a
batch size of 128.

C.4 ADDITIONAL EXPERIMENT: ROBUSTNESS AND OUT-OF-DISTRIBUTION
GENERALIZATION IN THE OBJECT-SORTING EXPERIMENTS

This experiment explores the Abstractor’s robustness to noise and out-of-distribution generalization
as compared to a standard Transformer. We consider the models in Section 4.2 and the corresponding
object-sorting task. We train each model on this task using 3,000 labeled sequences. We chose the
fixed training set size of 3,000 because is large enough that both the Abstractor and Transformer are
able to learn the task. Then, we corrupt the objects with noise and evaluate performance on sequences
in the hold-out test set where objects are replaced by their corrupted versions. We evaluate robustness
to a random linear map as well as to additive noise, while varying the noise level. We evaluate over
several trials, averaging over the realizations of the random noise.

On the hold out test set, we corrupt the object representations by applying a random linear transfor-
mation. In particular, we randomly sample a random matrix the entries of which are iid zero-mean
Gaussian with variance σ2, Φ ∈ Rd×d,Φij ∼ N (0, σ2). Each object in O is then corrupted by this
random linear transformation, ôi = Φoi, for each i ∈ [48]. We also test robustness to additive noise
via ôi = oi + εi, εi ∼ N (0, σ2Id).
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(a) The Abstractor is more robust to corruption by
additive noise.
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Figure 8: Experiments on robustness.
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The models are evaluated on the hold-out test set with objects replaced by their corrupted version.
We evaluate the sorting accuracy of each model while varying the noise level σ (5 trials at each noise
level). The results are shown in figures 8a and 8b. We emphasize that the models are trained only on
the original objects in O, and are not trained on objects corrupted by any kind of noise.

This experiment can be interpreted in two lights: the first is robustness to noise. The second is a
form of out-of-distribution generalization. Note that the objects seen by the models post-corruption
lie in a different space than those seen during training. Hence the models need to learn relations
that are in some sense independent of the value representation. As a theoretical justification for this
behavior, Zhou et al., 2009 shows that ⟨Φx,Φy⟩ ≈ ⟨x, y⟩ in high dimensions, for a random matrix Φ
with iid Gaussian entries. This indicates that models whose primary computations are performed via
inner products, like Abstractors, may be more robust to this kind of corruption.
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