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ABSTRACT

Large language models (LLMs) exhibit a U-shaped positional bias in processing
input information, characterized by heightened attention to tokens at the beginning
and end of the prompt while ignoring information in the middle, also known as the
Lost-in-the-Middle phenomenon. In this paper, we investigate the internal mech-
anisms underlying this phenomenon by analyzing how positional bias influences
attention weights across both horizontal (input-level) and vertical (layer-level) di-
mensions of the model. Based on these findings, we propose U-shaped Placement,
a strategy that leverages inherent positional bias of the model by assigning docu-
ments to positions that align with its attention pattern. By combining this place-
ment strategy with the importance estimations of documents, effectively placing
good documents in good positions, we enhance the model’s ability to utilize doc-
uments within two iterations. Experimental results demonstrate that our method
consistently outperforms existing baselines across multiple models and datasets,
indicating that leveraging positional bias can bring improved document utilization
capability. Our codes are submitted with the paper and will be publicly available.

1 INTRODUCTION

As large language models(LLM) continue to evolve, they have achieved superior performance in
many tasks, especially in Question Answering (QA) tasks (Touvron et al., 2023; Achiam et al.,
2023; DeepSeek-AI, 2025). Furthermore, Retrieval Augmented Generation(RAG) has become a
widely recognized paradigm by supplementing the model with external knowledge in the form of
context, which helps to improve the factual accuracy and reliability of the answers (Gao et al., 2023;
Asai et al., 2023). However, the quality of input documents is variable (Shi et al., 2023; Yoran et al.,
2024; Wu et al., 2024) due to the inadequate performance of the retriever (Yan et al., 2024) or the
alignment gap between the retriever and the generator (Ke et al., 2024; Li & Ramakrishnan, 2025).

How to improve a model’s ability to utilize documents with inputs of varying quality is a challeng-
ing and realistic research topic, and this is also part of the model robustness problem (Shi et al.,
2023; Yoran et al., 2024; Zhou et al., 2025). Previous works improve the robustness of the model
by incorporating irrelevant and interfering documents into the supervised fine-tuning process (Pan
et al., 2024; Yoran et al., 2024; Tu et al., 2025), which is customized and requires additional train-
ing resources. Instead of direct training, we focus on the model’s properties of prompt utilization,
especially the ability to leverage documents in different positions.

The retrieval results convey the relative importance of documents through their ranking and order in
the prompt (Gao et al., 2023). But language models exhibit a U-shaped positional bias in processing
input information, assigning greater weight to content at the beginning and end of the prompt while
often ignoring content in the middle. This phenomenon was initially identified in Liu et al. (2024)
and later corroborated through performance evaluations in RAG tasks by Cuconasu et al. (2024)
and Wu et al. (2024). However, research on the underlying mechanisms of this U-shaped curve, as
revealed through the model’s internal states, remains limited.

In this paper, we first analyze the positional bias towards documents by examining the internal
mechanisms of LLMs. We assess the influence of document position on attention weights from
both horizontal (input-level) and vertical (layer-level) perspectives, using systematically constructed
inputs and probing different layers of the model. The value of attention weight not only captures
document relevance but also encapsulates the influence of positional bias (Peysakhovich & Lerer,
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LLM Prompt
 Instruction: You're a helpful AI assistant.
The assistant answers questions based on ...

Doc[0]:
......

Doc[N-1]:
......

......

Query:Who is Constantine Palaiologos (Son
Of Andronikos Ii)'s maternal grandmother?

Answer:

LLM

ins d0 </s>

Relevance Order:
[N-1, N-3, N-2,...,0,1]

U-shaped Placement
New Order:

[N-3,...,0,1,...N-1]

Answer

dN-1 query Answer:

Sy,L={Sd0,L,...,SdN-1,L}

LLM

For document di in the given order:

Left_Scores= score if di is placed in left
Right_Scores= score if di is placed in rightl r
If Left_Scores > Right_Scores，

Place di in left and update l
Otherwise, Place di in right and update r

... answer

Token-level Attention Weights

Relevance: Aggregation based on Answer tokens

ins d0 </s>dN-1 query Answer:... answer

Document-level Aggregation:

Seperate the positional bias:

Positional Bias

Spbe={Si,{tb,te},L}

Figure 1: The framework of our proposed pipeline.

2023; Chen et al., 2024; Liu et al., 2025). Our analysis isolates the positional effect and confirms
that it consistently follows the U-shaped curve.

Building upon these insights, we propose U-shaped Placement, a strategy that reorganizes docu-
ments to align with the model’s inherent positional bias. This approach is integrated into a two-round
iterative generation process that refines input prompts based on the model’s internal states, as de-
picted in Figure 1. Specifically, during the first round, we compute document importance scores us-
ing attention weights and simultaneously estimate the model’s positional bias. These two signals are
then combined to rearrange documents for the second iteration, ensuring that content deemed most
relevant is placed in positions that receive higher attention. We conduct comprehensive experiments
on several multi-document QA datasets utilizing various commonly used LLMs, demonstrating that
our method consistently outperforms baselines and yields higher response quality, indicating that
leveraging positional bias can bring improved document utilization capability. Our method requires
no additional training and can be readily applied to different models and datasets.

Our contributions are as follows: (1) We study the influence of document position on attention
weights from both horizontal (input-level) and vertical (layer-level) perspectives, revealing the in-
ternal mechanisms underlying the Lost-in-the-Middle phenomenon. (2) We propose a novel strategy
called U-shaped Placement to take advantage of inherent positional bias in the generation process,
which is the first to our knowledge.(3) Comprehensive experiments show that our method can im-
prove the effectiveness of document utilization in a training-free manner.

2 RELATED WORKS

2.1 RETRIEVAL AUGMENTED GENERATION

Retrieval-augmented generation (RAG) has exhibited significant effectiveness in addressing issues
such as hallucinations by introducing external knowledge into context or training objectives (Gao
et al., 2023; Asai et al., 2023; Tu et al., 2025; Luo et al., 2024; 2025). However, irrelevant and
distracting information can adversely affect the generated results (Shi et al., 2023; Yoran et al., 2024;
Wu et al., 2024). Previous work has explored various improvement strategies, such as improving the
retriever (Shi et al., 2024), designing new rerankers (Kim & Lee, 2024), investigating gaps between
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the retriever and generator (Ke et al., 2024; Li & Ramakrishnan, 2025), and improving the robustness
of the LLM, especially interference resistance (Xiang et al., 2024; Yoran et al., 2024). Rather than
directly adding documents to the training or supervised fine-tuning process (Pan et al., 2024; Yoran
et al., 2024; Tu et al., 2025), we study the internal utilization characteristic of documents at different
positions and dynamically modify inputs based on positional bias to improve robustness.

2.2 DOCUMENT RELEVANCE

In RAG pipeline, the external retriever or reranker will give a relevance score, and the different
importance would be reflected mainly by the positional order in prompt, rather than the value it-
self (Gao et al., 2023; Shi et al., 2024; Kim & Lee, 2024). Including the relevance score into the
prompts may affect the generated results (Pan et al., 2024), but this requires a high level of the
instruction-following ability. In addition to utilizing externally given relevance scores, there are also
some works that let the model itself give a judgment on the relevance of documents through prompt
engineering (Qin et al., 2024; Sun et al., 2023; Niu et al., 2024), adding probing structures (Baek
et al., 2024; Wang et al., 2024), or internal attention weight (Peysakhovich & Lerer, 2023; Chen
et al., 2024; Liu et al., 2025). We also use attention weights as the basis for model importance esti-
mation for documents, but we compute them differently and further combine them with positional
bias to optimize the inputs.

2.3 POSITIONAL BIAS

The LLMs are unable to treat the information in the prompt equally and have a positional bias, which
is part of the model’s prompt-sensitive properties (Xie et al., 2024). It tends to pay more attention to
information at the beginning and the end, and to ignore those in the middle, which is characterized by
a U-shape curve. This ”Lost in the Middle” phenomenon was first identified in Liu et al. (2024). To
date, many RAG and long text-related works (Cuconasu et al., 2024; Wu et al., 2024; Xu et al., 2024)
have investigated this issue by showing the performance difference caused by positional bias. We
study this phenomenon from internal attention weight of the LLM both horizontally and vertically,
offering a new perspective to investigate the U-shaped positional bias, and we propose a method to
take advantage of positional bias during the generation process.

3 INVESTIGATION ON POSITIONAL BIAS

In this section, we investigate the model’s positional bias and relevance assessment toward docu-
ments placed at different prompt locations. Building upon empirical performance variations ob-
served across positions, we further analyze these behaviors through the model’s internal states, with
a particular focus on attention weights.

3.1 NOTATIONS

We formulate the task as generating the answer based on a given question and retrieved documents,
following standard RAG settings. For each sample, we use q to present the question. The retrieval
documents are denoted as D = {d0, d1, ..., dN−1}, where di is a single document, and N is the total
number of documents. x = {x0, x1, ..., xk−1} is the input of large language models, where k is the
number of tokens contained in the input, i.e., the token length. The input x is constructed based on q,
D, and a certain prompt template T . And the output answer is indicated as y = {y0, y1, ..., ym−1},
where m is the token length of y. The language model is presented as θ and generates each token in
y with auto-regressive style.

3.2 PRELIMINARY EXPERIMENTS

To demonstrate the effect of position, we first compare model performance under two standard
configurations: unordered documents and documents ordered by external relevance. These settings
represent common practices in both RAG evaluations and practical scenarios.

Datasets We apply the datasets processed by Pan et al. (2024), which include both random-
ized (denoted as Unordered) and relevance-ordered (denoted as Ordered) versions to minimize
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processing-related randomness. Due to computational constraints, our experiments are conducted
on three widely-used open-domain multi-document QA benchmarks: HotpotQA (Yang et al., 2018),
Musique (Trivedi et al., 2022), and 2WikiMHQA (Ho et al., 2020). The details of datasets can be
found in the original paper or Appendix B.1.

Models and Metrics We test four popular open-source LLMs: Vicuna-7B (Chiang et al., 2023),
Llama-3.1-8B (Dubey et al., 2024), Qwen2.5-7B and Qwen2.5-7B-Instruct (Yang et al., 2024). We
follow Pan et al. (2024) and utilize Exact Match (EM) as the primary evaluation metric, which
checks whether the short answers provided are exact substrings of the generation.

Implementation Hyperparameters including temperature and instruction format remain consis-
tent with their setup. Unlike their work, however, we conduct experiments under a zero-shot setting
to better isolate and examine the model’s intrinsic positional bias and relevance assessment mecha-
nisms. The placement of documents in the prompt adheres to Pan et al. (2024), positioning the most
relevant documents closest to the question when documents are ordered. Previous researches (Cu-
conasu et al., 2024; Liu et al., 2025) have also confirmed that this placement is a widely applied
paradigm and strong baseline. Additional details regarding prompt templates and implementation
are provided in Appendix B.2.

Table 1: Original zero-shot model performance in HotpotQA(H), Musique(M) and
2WikiMHQA(W) datasets of CAGB benchmark (Pan et al., 2024).

Prompt Vicuna-7b Llama-3.1-8b Qwen2.5-7b Qwen2.5-7b-ins
H M W H M W H M W H M W

Unordered 0.392 0.238 0.452 0.292 0.192 0.35 0.376 0.298 0.39 0.468 0.458 0.48
Ordered 0.4 0.312 0.482 0.302 0.238 0.358 0.408 0.342 0.41 0.472 0.5 0.526

The results of the EM values are presented in Table 1. The observed inconsistency with the results
reported in Pan et al. (2024) can be primarily attributed to our use of a zero-shot evaluation setting,
along with potential discrepancies in huggingface versions and hardware configurations. The re-
sults indicate that, although performance varies across models and datasets, all models are affected
by document position and unable to utilize information from each position equally, confirming the
prevalence of positional bias. As the number of documents increases, the effect of position be-
comes more pronounced. This is clearly demonstrated by the Musique dataset, which contains 20
documents and exhibits substantially greater sensitivity to ordering changes.

To conduct a more fine-grained study of the varying effects at different positions, we explore the
dependency of the generated answer token on the context documents using the metric developed by
Qi et al. (2024), called MIRAGE. Since this metric also analyzes the generated results and is not the
focus of this paper, we provide the corresponding experimental details and results in the Appendix
C. These results similarly indicate the existence of positional bias, showing that the model relies
more on documents placed at the beginning and end of the input.

3.3 ATTENTION WEIGHT

Both downstream performance and the MIRAGE metric reflect the presence of positional bias. In
this section, we investigate the underlying mechanisms and internal states of the model. Attention
weights capture, at the token level, the influence of context tokens on answer tokens during genera-
tion. To assess this influence at the document level, we aggregate attention weights as follows:

si,y,Ls
=

1

m

1

H

1

|Ls|
∑
l∈Ls

H∑
h=1

∑
j∈y

al,hi,j (1)

Sd,y,Ls
=

1

|d|t

∑
i∈d

si,y,Ls
(2)

where al,hi,j denotes the attention weight from the token i (from the document d whose token length
is |d|t) to the token j (from the answer y whose token length is m) by the attention head h at layer
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l, H is the total number of attention heads, and Ls is the set of selected layers. After obtaining
the influence score of each token in the document on the answer at token level (si,y,Ls

), we then
aggregate and normalize by removing the influence of length to obtain attention weight value at
document level for the answer (Sd,y,Ls

). Sy,Ls
= {Sd0,y,Ls

, ..., SdN−1,y,Ls
} is the overall set of

document scores.

 U-shaped trend. For a model (same color)
,Unordered (dashed lines) and ordered input
(solid lines) show a significant difference in

the beginning section.

(a) Horizontal analysis: document scores Sy,Lall

under unordered and ordered input.

Differences in positions are more
pronounced at lower layers (solid

lines) than at higher layers
(dashed lines).

(b) Vertical analysis: document scores Sy,Ls with
different selected layers under unordered input.

Figure 2: The document scores of all models on 2wikiMultiHopQA datasets. The results of the
same model are shown in the same color.

We then analyze the effect of position on document-level scores from both horizontal and vertical
perspectives. Horizontally, we compare document scores across different positions under varying
input conditions. We first set Ls to all layers and calculate Sy,Lall

. To ensure robustness, we ran-
domly sample 50 instances from the 2WikiMultiHopQA dataset and average the results for clearer
visualization, as shown in Figure 2a. Complete results across all models and datasets are provided
in Appendix D.1. The results indicate that document scores Sy,Lall

exhibit a U-shaped distribution
across positions under both ordered and unordered input conditions. However, under ordered input,
the U-shaped curve is more skewed toward the end of the input (closer to the question), displaying a
steeper profile. In contrast, the U-shape under unordered input is gentler, with less pronounced dis-
parities between the beginning and the end portion. These findings suggest that the model’s internal
estimation of document importance is influenced by positional bias in a U-shaped manner, and the
extent of this bias varies with the ordering of input documents.

From a vertical perspective, we further examine the effect of different layer selections under the same
prompt.We partition all layers into lower and higher halves and compare the document scores derived
from each group. To clearly illustrate the U-shaped positional bias with minimal interference from
document relevance, we present results using unordered inputs on the 2WikiMultihopQA dataset in
Figure 2b, as unordered inputs make positional bias more evident and standard than ordered inputs.
Complete results are available in Appendix D.2. The results indicate that although the absolute
values of document scores differ between the lower and higher layers, both exhibit a similar U-
shaped trend across positions. Notably, positional distinctions are more pronounced in the lower
layers. This observation aligns with the widely accepted view that lower layers are more sensitive
to positional information, while higher layers focus on processing semantic content.

4 SEPARATE AND UTILIZE POSITIONAL BIAS

The attention weight reflects the overall influence of context tokens on answer tokens, including
semantic relevance and positional influence. How to directly obtain the positional influence in the
generation process is a problem worth studying.

While prior work has employed meaningless queries to study attention patterns (Chen et al., 2024),
this approach necessitates an additional LLM call and focuses on query tokens rather than answer
tokens. In our method, we aggregate attention weights corresponding to the token immediately
preceding the answer and the terminating token (highlighted in orange in Figure 1). This choice
is motivated by the observation that the token preceding the answer (e.g., “is” or “:”) typically
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carries little semantic information. By integrating attention scores from both the beginning and the
end of the answer, we construct a composite representation of the overall positional characteristics
associated with the answer tokens. This strategy aligns with the intuitive notion that combining start
and end positional cues can effectively approximate the holistic positional information.

Same U-shaped trend under
unordered and ordered inputs

Figure 3: The positional scores S{tb,te},Ll
on

2wikiMultiHopQA datasets.

As lower layers have been shown to capture
positional signals more explicitly, we perform
this aggregation over a selected set of lower
layers, denoted as Ll. We visualize the re-
sulting scores S{tb,te},Ll

for the 2WikiMulti-
hopQA dataset in Figure 3. Results for other
datasets are provided in Appendix D.3. In con-
trast to the document-level scores shown in Fig-
ure 2a, these positional scores exhibit no signif-
icant variation between unordered and ordered
inputs. This suggests that our aggregated repre-
sentation effectively captures general positional
characteristics of the answer, largely indepen-
dent of document ordering.

After separating the positional bias, we hope to
use it to improve the model’s ability to utilize documents. A straightforward strategy would be to
rank documents directly according to the aggregated score S{tb,te},Ll

, from most to least preferred.
However, this approach encounters a practical issue related to length variability. Since S{tb,te},Ll

is
length-normalized, the actual token capacity associated with each score may vary significantly. For
example, the position with the highest score may only contain 100 token positions, and placing a
document with more than 100 tokens will use the positions corresponding to other scores. To address
this issue, we operate directly on token-level scores si,{tb,te},Ll

rather than document-level aggre-
gates. The underlying intuition remains consistent: to place high-quality documents in positions that
receive higher attention. Concretely, we propose an allocation algorithm that considers documents
in descending order of relevance and uses the U-shaped attention profile to place each document to
either the beginning or the end of the available prompt space. At each step, the algorithm evaluates
whether placing the document on the left (beginning) or right (end) of the remaining context yields
a higher token-level score, and assigns it accordingly. This process continues until all documents
are placed, resulting in a U-shaped arrangement that aligns with the model’s inherent attention bias.
The complete procedure, termed U-shaped Placement, is formalized in pseudocode in Algorithm 1.

Algorithm 1 U-shaped Placement

Input Relevance ranking R, attention weight Aθ, preceding token tb and terminating token te of
answer, the collection of token lengths for all documents Tl = {T0, ..., TN−1|Ti = |di|t}.

1: Ensure that the relevant ones in R come first;
2: Get Spbe = {si,{tb,te},Ll

} based on Aθ; ▷ equation 1
3: Initialization: l = 0, r =

∑N−1
i=0 Ti, lidx = 0, ridx = N − 1, Ru = [0] ∗N ;

4: for i ∈ R do
5: Ti = Tl[i];
6: Left Scores = Spbe[l : l + Ti].sum();
7: Right Scores = Spbe[r − Ti : r].sum();
8: if Right Scores ≥ Left Scores then
9: Ru[ridx] = i, ridx = ridx − 1,r = r − Ti;

10: else
11: Ru[lidx] = i, lidx = lidx + 1,l = l + Ti;
12: end if
13: end for
Output: The new ranking Ru

The U-shaped Placement approach can be combined with all kinds of document ranking methods.
We combine it with the previously obtained document scores that are aggregated based on the answer
tokens, and modify the inputs for the next round, thus improving the overall ability of the model to
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utilize documents. The complete pipeline is summarized in pseudocode in Algorithm 2, where Ll

and Lh denote the lower and higher halves of the model layers, respectively.

Algorithm 2 Place Good Documents in Good Positions

Input Prompt Template T , LLM θ, Question q, Documents D = {d0, ..., dN−1}.
1: Construct input: x = T (q,D);
2: Get the output from LLM: y,Aθ = θ(x);
3: Calculate Sy,Lh

; ▷ equation 2
4: Rank the documents based on Sy,Lh

as Ra;
5: Get token lengths of each document from x to construct Tl, and locate tb and te from x;
6: Ru= U-shaped Placement(Ra, Aθ, tb, te, Tl);
7: Reconstruct the input based on Ru: xu = T (q,Ru(D));
8: Get the final answer: y = θ(xu)

Output: The output answer y

The algorithm is essentially two rounds of iterations of the LLM, using the attention weight from the
first round to obtain the model’s ranking of the documents and positional bias, and then placing good
documents in good positions according to the U-shape, and reconstructing the inputs to generate the
final answer in the second round.

5 EXPERIMENTS

5.1 BASELINES

The basic setting of the experiment is the same as preliminary experiments in section 3.2, including
the datasets, models, metrics, and so on.

Our work is essentially a two-round iteration of the LLM, so we mainly consider similarly set-
up baselines for fair comparison, and the following is a brief description of the baselines we
consider: (1)Vanilla: The most basic baseline, generating answers directly based on inputs.
(2)RankGPT (Sun et al., 2023): Two rounds of iteration, the first round uses the model to sort
the documents in listwise style and the second round generates the answer. The prompt template
used in the first round is shown in the Appendix F. (3)Attention Sorting (Peysakhovich & Lerer,
2023): Two rounds of iteration, average per-document attention is computed for the first generated
token in the first round, and then documents are sorted based on the attention scores for the second
round. (4)ICR (Chen et al., 2024):Two rounds of iteration, the first round aggregates the contextual
attention weight corresponding to all query tokens and calibrates it with the meaningless query to
get the document order, and the second round generates the answers based on the reordered docu-
ment. (5)SELFELICIT (Liu et al., 2025): Two rounds of iteration, average per-sentence attention
is computed for the first generated token in the first round and then important sentences are selected
to be emphasized with special token in the input for the second round.

5.2 MAIN RESULTS

The results are shown in Table 2. The results show that: (1) Our method outperforms previous
baselines on most datasets and models, under both unordered and ordered input settings. (2) Im-
provements are more substantial under unordered inputs than under ordered inputs. This can be
partly attributed to the greater potential for enhancement in unordered settings. Notably, our ap-
proach applied to unordered inputs can surpass the performance of the vanilla ordered baseline that
relies on external retrieval rankings, demonstrating its ability to infer an effective document order
even without prior ranking. The gains under ordered inputs further confirm that our method enhances
the model’s capacity to utilize documents effectively. (3) Improvements are more pronounced on
datasets with more documents, such as Musique. And our method can be applied to experiments
involving any number of documents, which is proved in section 6.3. In terms of models, greater
gains are observed on the Qwen series compared to Vicuna-7b, which may be related to the base
capability of the model: stronger models provide more reliable internal state signals. Nevertheless,
our method delivers consistent performance improvements across diverse models and datasets.

7
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Table 2: Zero-shot model performance in HotpotQA(H), Musique(M) and 2WikiMHQA(W)
datasets of CAGB benchmark (Pan et al., 2024). See section 5.1 for more details on baselines.

Prompt Methods Vicuna-7b Llama-3.1-8b Qwen2.5-7b Qwen2.5-7b-ins
H M W H M W H M W H M W

Unordered

Vanilla 0.392 0.238 0.452 0.292 0.192 0.35 0.376 0.298 0.39 0.468 0.458 0.48
RankGPT 0.401 0.22 0.46 0.278 0.196 0.334 0.372 0.343 0.402 0.466 0.51 0.526
AttentionSort 0.386 0.291 0.484 0.296 0.216 0.336 0.398 0.375 0.4 0.462 0.495 0.484
ICR 0.421 0.305 0.498 0.298 0.237 0.368 0.379 0.385 0.384 0.469 0.511 0.522
SELFELICIT 0.378 0.257 0.462 0.308 0.229 0.359 0.393 0.298 0.43 0.417 0.311 0.382
Our 0.414 0.31 0.506 0.302 0.245 0.372 0.402 0.393 0.434 0.482 0.513 0.536

Ordered

Vanilla 0.4 0.312 0.482 0.302 0.238 0.358 0.408 0.342 0.41 0.472 0.5 0.526
RankGPT 0.403 0.28 0.502 0.284 0.21 0.342 0.391 0.358 0.416 0.493 0.516 0.53
AttentionSort 0.404 0.3 0.474 0.294 0.218 0.342 0.408 0.385 0.432 0.492 0.485 0.518
ICR 0.413 0.307 0.512 0.301 0.254 0.353 0.406 0.378 0.4 0.487 0.537 0.504
SELFELICIT 0.393 0.314 0.482 0.314 0.261 0.372 0.411 0.342 0.432 0.417 0.447 0.372
Our 0.426 0.315 0.51 0.304 0.267 0.378 0.412 0.401 0.436 0.495 0.555 0.542

6 ANALYSIS

The pipeline comprises two key components: deriving document order and positional bias from the
model’s internal states. While the combined effect of these components has been validated in the
main experiments, this section examines their individual contributions. Some additional attempts
are presented in Appendix G.

6.1 THE INFLUENCE OF POSITIONS

We introduce the U-shaped Placement strategy to organize document positions in accordance with
the model’s positional bias. This method is compatible with any document relevance ordering,
regardless of the ranking method employed. In this section, we utilize an external relevance ranking
and focus on assessing the effect of document placement.

We evaluate four placement strategies: placing relevant documents near the question, U-shaped
Placement, and the reverse variants of both. In the original versions, higher-relevance documents are
assigned to positions that inherently receive more attention, while the reverse versions deliberately
assign lower-relevance documents to these favored positions. All four configurations use identical
prompt templates, varying only in document order, thereby isolating the effect of placement on
model performance. We’ve included an example in the Appendix E for better explanation.

Table 3: Results of different placements with relevance ranking based on external retrieval. Default
means placing the relevant ones close to question, while U-shaped is our method in accordance with
positional bias. Different settings indicate whether a good position is preferentially occupied by a
good (original) or bad (reverse) document.

Placement Setting Vicuna-7b Llama-3.1-8b Qwen2.5-7b Qwen2.5-7b-ins
H M W H M W H M W H M W

Default Original 0.4 0.312 0.482 0.302 0.238 0.358 0.408 0.342 0.41 0.472 0.5 0.526
Reverse 0.378 0.24 0.464 0.28 0.2 0.348 0.37 0.323 0.39 0.456 0.477 0.5

U-shaped (Our) Original 0.397 0.314 0.524 0.31 0.252 0.376 0.416 0.369 0.414 0.486 0.509 0.522
Reverse 0.367 0.216 0.446 0.268 0.186 0.338 0.368 0.3 0.39 0.454 0.435 0.476

The results in Table 3 demonstrate that: (1) The proposed U-shaped Placement, which aligns with
the model’s positional bias, represents a more effective placement strategy that enhances the model’s
ability to utilize documents. When compared with the results in Table 2, the performance of Vicuna-
7b and Llama-3.1-8b models approaches or even exceeds that in the main experiments, whereas
the Qwen series still lags behind. This observation aligns with earlier findings regarding model
capabilities, suggesting that relevance rankings produced by the Qwen series are comparatively
more reliable. (2) Among the reverse placement configurations, the reversed U-shaped Placement
leads to the most significant performance degradation, underscoring the importance of leveraging
positional bias.
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6.2 DOCUMENT RELEVANCE

In prior analyses, we aggregated attention weights from context tokens to answer tokens to estimate
document importance. In this section, we investigate the effect of different document relevance sort-
ing methods and aggregation strategies, mainly considering aggregation based on the first generated
token or query tokens involved in the previous works.

Table 4: Results of the different document relevance sorting methods of vicuna-7b model.

Level Source H M W

Document-Level Retrieval 0.4 0.312 0.482
RankGPT 0.403 0.28 0.502

Token-level

First Token 0.404 0.291 0.48
Query 0.398 0.301 0.49
Answer 0.406 0.305 0.494
Answer(qwen) 0.412 0.329 0.512

To exclude positional effect, we adopt the default ranking strategy, which places the most relevant
documents closest to the question. Results of vicuna-7b in Table 4 show that: (1) Aggregation based
on answer tokens outperforms document-level, query-based and first-token-based approaches, as
it more directly captures influence on the generated answer. (2) As mentioned before, document
relevance rankings derived from Qwen models are more reliable. Providing such rankings to Vicuna
improves its performance, suggesting a promising direction for hybrid approaches that leverage
multiple models during generation.

6.3 THE NUMBER OF DOCUMENTS

While the main experiments validate the effectiveness of our method on datasets containing 10 and
20 documents, we also conducted additional experiments with fewer input documents to assess its
versatility and efficacy. We take the original ten-document 2wikiMultiHopQA dataset and only
intercepted the first three and five documents for the experiment. Experimental results in the Table
5 demonstrate that our proposed ranking method and U-shaped Placement remain high efficiency
across varying numbers of documents.

Table 5: Results of varying number of input documents.

Prompt Methods Vicuna-7b Qwen2.5-7b-ins
3doc 5doc 10doc 3doc 5doc 10doc

Unordered

Vanilla + Default 0.286 0.296 0.452 0.316 0.334 0.48
Vanilla + U-shaped 0.334 0.35 0.48 0.34 0.358 0.501
Our Ranking + Default 0.344 0.358 0.474 0.342 0.35 0.51
Our Ranking + U-shaped 0.356 0.374 0.506 0.35 0.36 0.536

Ordered

Vanilla + Default 0.38 0.424 0.482 0.366 0.428 0.526
Vanilla + U-shaped 0.398 0.47 0.524 0.37 0.464 0.522
Our Ranking + Default 0.39 0.456 0.494 0.376 0.444 0.53
Our Ranking + U-shaped 0.401 0.463 0.51 0.394 0.466 0.542

7 CONCLUSION

In this paper, we investigate the positional bias based on model’s attention weight, both horizontally
and vertically. We find that the model’s estimation of document importance is also internally affected
by positional bias in a U-shape, with the magnitude of the U-shape varying with the order of input
documents. In addition, the lower layers reflect the position information more significantly.

And we propose U-shaped Placement to separate and utilize positional bias. Combining it with the
importance estimation of documents within the model, placing good documents in good positions,
can improve the model’s ability to utilize documents within two iterations. Our approach requires
no training, and can work on any open-source model and dataset.
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Gómez-Adorno, and Steven Bethard (eds.), Findings of the Association for Computational Lin-
guistics: NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 1504–1518. Association
for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-NAACL.97. URL
https://doi.org/10.18653/v1/2024.findings-naacl.97.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Huai hsin Chi,
Nathanael Scharli, and Denny Zhou. Large language models can be easily distracted by ir-
relevant context. In International Conference on Machine Learning, 2023. URL https:
//api.semanticscholar.org/CorpusID:256459776.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. REPLUG: retrieval-augmented black-box language models.

12

https://doi.org/10.48550/arXiv.2502.13019
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.48550/arXiv.2502.08767
https://doi.org/10.48550/arXiv.2502.08767
https://doi.org/10.48550/arXiv.2406.07070
https://doi.org/10.48550/arXiv.2406.07070
https://doi.org/10.48550/arXiv.2503.08057
https://doi.org/10.48550/arXiv.2503.08057
https://doi.org/10.48550/arXiv.2411.00142
https://doi.org/10.48550/arXiv.2411.00142
https://aclanthology.org/2024.emnlp-main.1109/
https://doi.org/10.48550/arXiv.2310.01427
https://aclanthology.org/2024.emnlp-main.347
https://aclanthology.org/2024.emnlp-main.347
https://doi.org/10.18653/v1/2024.findings-naacl.97
https://api.semanticscholar.org/CorpusID:256459776
https://api.semanticscholar.org/CorpusID:256459776


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026
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A LLM USAGE

Large Language Models (LLMs) are increasingly utilized in scientific research and provide substan-
tial support in academic writing. Their applications range from enhancing grammar and wording to
assisting in the drafting of complete manuscript sections. In this paper, we employed an LLM solely
for language refinement aimed at improving clarity and explanatory quality. All content has been
thoroughly verified for factual accuracy, and the authors take full responsibility for the entirety of
the work. The central ideas, experimental design, and methodological framework were developed
independently by the authors without the use of LLMs.

B DETAILS ABOUT PRELIMINARY EXPERIMENTS

B.1 DATASETS

We applied the datasets processed by Pan et al. (2024) in our paper. Due to resource limitations, we
mainly focus on several open-domain variants of the datasets.

HotpotQA (Yang et al., 2018) and 2WikiMHQA (Ho et al., 2020) both require reasoning across
multiple documents, and feature a high proportion of distracting documents. Importantly, the data
from HotpotQA is extracted from the dev subset, whereas our training dataset is derived from the
train subset. Musique (Trivedi et al., 2022) questions are of higher complexity, with up to 90% of
distracting passages.

See original paper (Pan et al., 2024) for more details.
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B.2 IMPLEMENTATION DETAILS

We will list the details of hyperparameters we used in the experiments. The seed is set to 42. The
temperate is set to 0.01 and the number of max new tokens is 300. The same prompt template is
used for all datasets and all models in the experiments to exclude template interference, which is
presented as follows:

You’re a helpful AI assistant. The assistant answers questions based on given passages.

Docs:{{d0.title}}:{{d0.text}}
{{d1.title}}:{{d1.text}}
{{d2.title}}:{{d2.text}}

(more passages) ...

Question: {{question}}

Answer:

C MIRAGE RESULTS

Figure 4: The document scores S of all mod-
els with different selected layers on 2wikiMulti-
HopQA datasets under ordered input.

An ordered placement approach such as plac-
ing relevant documents close to the questions is
a powerful baseline, but we want to make bet-
ter use of the model’s positional bias. There-
fore, we first explore the dependency of the
generated answer token on the context docu-
ments using the library developed by Qi et al.
(2024). MIRAGE identifies context-sensitive
answer tokens and aligns them with retrieved
documents based on internal model states. We
further analyze the positional distribution of
context documents that answer tokens attend to
most.

The results of vicuna-7b, llama3-8b, qwen-7b,
and qwen-7b-instruct are presented in Figure
5a, 5b, 5c, and 5d, respectively.

The different rows represent the results on different datasets: HotpotQA, Musique, 2wikiMulti-
HopQA. The different columns represent the different ways of composing the prompt: unordered
(concat) or ordered (rerank). In each figure, the horizontal axis represents document positions within
the prompt, ranging from position 0 (beginning) to position N −1(end, closest to the question). The
vertical bar indicates the number of answer tokens that depend on the document located at each
corresponding position.

The results show that under ordered input, it is common sense to depend on the documents near the
question. In contrast, it shows a clear positional bias towards the beginning and the end under un-
ordered input, which matches the Lost-in-the-middle (Liu et al., 2024) phenomenon in performance.
And this is more evident on the Musique which has a larger number of documents.

D ATTENTION WEIGHT RESULTS

The complete Attention Weight Results are presented here.
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(a) The MIRAGE results of vicuna-7b model. (b) The MIRAGE results of llama3-8b model.

(c) The MIRAGE results of qwen-7b model.
(d) The MIRAGE results of qwen-7b-instruct
model.

Figure 5: The MIRAGE results of all models. For each model, the different lines represent different
datasets: HotpotQA, Musique, 2wikiMultiHopQA. The first and second columns represent the un-
ordered and ordered inputs.
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D.1 HORIZONTAL RESULTS

We present the complete results of the difference between the score of different documents in differ-
ent order of documents in this section. The results on HotpotQA dataset is presented in Figure 6a,
and the results on Musique dataset is presented in Figure 6b.

(a) The document scores S of all models on Hot-
potQA datasets.

(b) The document scores S of all models on
Musique datasets.

Figure 6: The document scores S of all models on HotpotQA datasets. The solid line - corresponds
to the ordered input, the dashed -. line corresponds to the unordered input, and the results of the
same model are shown in the same color.

D.2 VERTICAL RESULTS

We present the complete results of different selected layers in this section. See Figure 4,7a, 7b,7c,7d
for more information.

D.3 POSITIONAL SCORES

We present the complete results of postional scores on all datasets in this section. See Figure 8a,8b
for more information.

E EXAMPLES OF DIFFERENT ORDERING

The goal of original ranking and U-shaped Placement is to place good documents in good positions,
but the default good positions are different. As an example, if the dataset has 10 documents, the order
of documents under the ordered input is [0,1,.... ,9], the question is placed at the end, document
9 has the best relevance, and document 0 has the worst relevance. After placing the documents
according to the positional bias under the U-shaped Placement, the order of documents may become
[6,5,4,2,0,1,3,7,8,9], and the question is placed at the end as well. While the reverse version of
ordered has the input document order as [9,8,... ,0], and the reverse version of U-shaped Placement
has the document order [3,4,5,7,9,8,6,2,1,0], with bad documents prioritized to occupy the default
good placements in each reverse order.

F RANKGPT

The prompt template used during the first round of RankGPT generation is as follows, based on
which the prompts are constructed to allow LLM to perform listwise document sorting.
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(a) The document scores S of all models with dif-
ferent selected layers on Hotpot datasets under un-
ordered input.

(b) The document scores S of all models with dif-
ferent selected layers on Hotpot datasets under or-
dered input.

(c) The document scores S of all models with dif-
ferent selected layers on Musique datasets under
unordered input.

(d) The document scores S of all models with dif-
ferent selected layers on Musique datasets under
ordered input.

Figure 7: The document scores S of all models with different selected layers. The solid - and dotted
– lines are used to distinguish the first and the last half of layers. And the results of the same model
are shown in the same color.

(a) The positional scores S of all models on Hot-
potQA datasets.

(b) The positional scores S of all models on
Musique datasets

Figure 8: The positional scores S of all models, which are calculated by aggregating the document
scores of the previous token and the terminating token of the answer tokens.
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Table 6: Results of the different document relevance sorting methods of vicuna-7b model under
ordered input. Calibration means subtracting positional influence from attention scores.

Ranking Aggregation H M W

Retrieval - 0.4 0.312 0.482

Attention Weight answer 0.406 0.305 0.494
calibration 0.398 0.279 0.496

This is RankGPT, an intelligent assistant that can rank passages based on their relevancy to
the query.

The following are {{num}} passages, each indicated by number identifier []. I can rank
them based on their relevance to query: {{query}}

[1] {{passage 1}}

[2] {{passage 2}}

(more passages) ...

The search query is: {{query}}

I will rank the {{num}} passages above based on their relevance to the search query. The
passages will be listed in descending order using identifiers, and the most relevant passages
should be listed first, and the output format should be [] ¿ [] ¿ etc, e.g., [1] ¿ [2] ¿ etc.

The ranking results of the {{num}} passages (only identifiers) is:

G SOMETHING WE TRIED

The complete pipeline of our proposed algorithm is embodied in Algorithm 2, while in this section
we briefly describe some additional attempts at details.

First, we address the estimation of document relevance. In previous experiments, we directly utilized
document scores as the basis for estimation. The calibration method introduced by Chen et al.
(2024) offers a valuable inspiration. Accordingly, we also attempt to remove positional effects from
the attention scores. Specifically, we subtract the positional scores from the document relevance
scores. However, this approach yields no significant improvement, likely because the answer-based
aggregation scores and the positional representations (derived from start and end tokens) are not
strictly commensurable. The corresponding results are provided in G.1.

We place the documents according to the U-shape in our proposed method, however, the positional
bias does not exactly fit the U-shape and there may be zigzag in the middle, as shown in previous
analysis. Aggregating the token-level position scores by document and then placing the document
directly according to the result of document-level has no zigzag problem, but it has length problem
as said in section 4. Is the length issue more important or the zigzag issue? The results in G.2
show that placement according to the U-shape is more in line with the positional bias, and the length
mismatch has a greater impact on performance compared to the zigzag problem.

G.1 CALIBRATION

As in section 6.2, the vicuna model was also used in the experiments under the ordered input and
the results are presented in Table 6.
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Table 7: Results of different placements after sorting them for relevance based on external search
scores. Default means directly placing the relevant ones close to the questions, while U-shaped
is our proposed method in accordance with positional bias. Direct-U means aggregating token-
level position scores by document and then placing the document directly according to the result of
document-level.

Placement Vicuna-7b Llama-3.1-8b Qwen2.5-7b Qwen2.5-7b-ins
H M W H M W H M W H M W

Default 0.4 0.312 0.482 0.302 0.238 0.358 0.408 0.342 0.41 0.472 0.5 0.526
U-shaped (Our) 0.397 0.314 0.524 0.31 0.252 0.376 0.416 0.369 0.414 0.486 0.509 0.522
Direct-U 0.39 0.291 0.49 0.31 0.232 0.356 0.406 0.361 0.406 0.472 0.495 0.516

Figure 9: The results from five repeated experiments.The shaded area indicates the range of score
variations across these five random experiments.

G.2 ZIGZAG

The results are presented in Table 7.

H RANDOM VARIATION

To eliminate the impact of random variation while enhancing the credibility of our conclusions, we
conduct repeated experiments using different random number seeds for experiments in Figure 3. We
plotted the range of variation in the results from five repeated experiments as shaded areas in the
figure 9 .

The results demonstrate that even with multiple randomizations of document order, the calculated
outcomes exhibit a certain degree of stability.
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