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Abstract. Although fluorescence microscopes theoretically allow imag-
ing with resolutions at the diffraction limit, in practice the resolution is
often drastically limited by several factors: Image quality of fluorescence
microscopes is always limited by the interaction of the light with the
tissue, often resulting in a low image intensity and weak contrast of the
biological structure. Excitation of fluorophores and molecules outside the
imaged area leads to photobleaching or phototoxic effects in the sample.
In addition, diffraction effects and the low intensity of fluorescent light
reduce the quality of the images. In this paper, we present an application
of using deep learning to improve the image quality of a fluorescence mi-
croscope in biological imaging. We trained a predefined architecture of
a deep convolutional neural network provided by the CSBDeep project
with semi-synthetic training data of mitochondria and cardiomyocytes.
The results show good improvement of the image quality.

Keywords: fluorescence microscopy, biological imaging, deep convolu-
tional neural network

1 Introduction

Fluorescence microscopy has become established, especially in biology and the
life sciences, as a technique for observing cellular and subcellular processes. In
general, limitations in microscopy can emerge from the feasible acquisition speed,
exposure time and achievable spatial resolution. For example, a very good image
contrast can be achieved with an intensive exposure, but only at a high acquisi-
tion speed, because the sample is bleached faster. Additionally, the resolution of
fluorescence microscopes is limited by interactions of imaging light source with
the sample, which are leading to a decrease in image quality. The effect of pho-
tobleaching, caused by the finite number of fluorophores in the sample, which
can lose their function under exposure to light, limits the amount of light energy
that can be transferred to the sample. This again limits parameters such as ex-
posure time or exposure intensity. Furthermore, the light is not only absorbed
by fluorophores, but also by the molecules in sample. This can lead to photo-
toxic effects, which might destroy the sample. Hence, fluorescence microscopes
make special demands on the exposure and detection path. The use of special
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light sources is necessary and sensitive cameras are used for the detection of the
low-intensity fluorescent light.

More generally, the resolution of a light microscope is limited by diffraction
effects of light. Thus, a point light source, by diffraction at the imaging lenses, is
represented in the image as a Airy disk. The three-dimensional intensity distribu-
tion of a point light source when imaging with an ideal lens is called point spread
function (PSF). Images recorded with a light microscope are therefore always
distorted. Mathematically, this image distortion corresponds to a convolution of
the PSF with the real intensity distribution. The PSF of a microscope is com-
pletely determined by the numerical aperture of the objectives, the excitation
wavelength and the refractive index of the immersion medium.

Further progress in the field of fluorescence microscopy was achieved with the
development of the confocal microscope and the modern “STED” microscope.
The latter even overcomes physical limitations in resolution [1]. A confocal mi-
croscope solves the above mentioned problems by using point illumination and
inserting a pinhole aperture into the detection path. Fluorescent light that does
not come from the focus or focal plane is blocked by the pinhole. The entire sam-
ple can be imaged by moving it through the focal plane. The individual images
are then digitally concatenated.

In order to be able to evaluate even low quality images, it is possible to dig-
itally restore images afterwards. Low quality images often occur in laboratory
practice, when using standard fluorescent microscopes with comparably low res-
olution or if the imaging parameters cannot be optimized for the best contrast,
to avoid photobleaching and phototoxicity. For the purpose of image restora-
tion, a neural network can be trained on suitable training images to recognize
and restore the underlying structure in image areas of poor quality.

In this article, we analyze the application of a neural network to subcelluar
structures. More precisely, we make the following contributions:

– Because the generation of a large dataset in a biological setting is time
consuming, we decided to set up two semi-synthetic datasets. We describe
a method for the generation of semi-synthetic training data, which gener-
ates several different training data from each high-resolution confocal image.
Therefore we added typical distortions to the high-resolution confocal images
mimicking optical and sample-related resolution limitations.

– To improve image quality in post-processing, we trained two predefined
content-aware image restoration (CARE) networks by the CSBDeep project
[2] based on high resolution fluorescent images of a confocal microscope.

– The trained CARE networks are applied to previously unknown microscope
images to verify training success.

Both trained networks lead to a significant enhancement of the images. By
improving contrast, reducing noise and deconvolution of the image, the biological
structures are displayed in greater detail. With the restoration of the images
by self-learning algorithms, deficits in fluorescence microscopy are compensated
afterwards.
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2 Related Work

Microscopy is fundamental for observing cellular and subcellular processes. The
challenge is to create a good contrast between the structure and the environment.
The most commonly used contrast generation method in biology and life sciences
is based on fluorescence. In this physical effect, a material absorbs light at a fixed
wavelength and emits lower-energy light after a short time. This difference in
energy results in a difference in wavelengths between the excited and emitted
light. By using colour filters, a good contrast can be obtained by filtering out the
excitation wavelength. Different proteins, the so-called fluorophores, are used as
fluorescent materials. One example is the frequently used GFP (green fluorescent
protein). Specific components of the cell can be tagged by the fluorescent protein,
by encoding the gene for the protein into the cells.

The research question we address in this paper is how to improve the image
quality by post-processing; in particular, how deficits in the observation of bi-
ological structures by fluorescence microscopy can be reduced with the help of
artificial intelligence. A detailed summary of the development of neural networks
(NNs) can be found in [3]. The algorithms of the 21st century have become much
more powerful and efficient, although the basic principle of NNs has not changed
much. The learning ability of modern NNs is limited by the performance of cur-
rent hardware, especially GPUs. Open source projects such as Tensorflow and
Keras make this new technology more accessible to people from other fields.
Although deterministic algorithms for denoising and deconvolution of images al-
ready exist, the advantage of self-learning algorithms is a reduction in processing
time and better restoration quality. The one-time effort to obtain a well-trained
neural network is compensated by restoration quality of special structures.

Convolution Neural Networks (CNNs) are a class of neural networks, which
receive a matrix of data as input. These can be, for example, images, which are
constructed from H×W ×C (height × width × color channel) pixels. CNNs use
special operations to reduce the information contained in an image. The goal of
the processing is the recognition of repetitive structures and characteristics in
the image. The recognized characteristics can then be classified so that a CNN
can infer the image content from a combination of certain structures. CNNs are
already widely used in image recognition and image restoration [4, 5]. In par-
ticular, the application of CARE networks for image restoration of fluorescence
microscopy images is now widespread. The approach is suggested in [6] and [7].
An widely used approach for generating datasets is taking high-quality images
with low exposure and subsequently with a long exposure to get a corresponding
low-quality image as done in [8]. A new way by Krull et al. [9] waives on super-
vised learning for noise reduction and shows great results with a self-supervision
network. Within the framework of the CSBDeep project, Weigert et al. devel-
oped an environment for digital image restoration of fluorescence images [2].
The aim of the project is to compensate for limitations in images taken with
a fluorescence microscope by means of Deep Learning. Specifically, the authors
provide, among other things, a Python package in whose environment a CNN
can be trained. The CNN is based on the U-Net structure, which consists of a
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special sequence of convolution levels, pooling levels and upsampling levels [10].
As output the network makes a probability prediction for the value of each pixel
in the image. The architecture of the CNN is designed for biomedical applica-
tions and stands out from other CNNs in that it achieves very good results with
only a few training images. An analysis of the training is done using Tensorflow.
To restore microscopy images with a trained CNN, the CNN can be applied to
the images via a Fiji plugin.

In this paper we want to test the approach on semi-synthetic training data
for noise reduction and restoration of fluorescent images of two specific biological
structures.

3 Methods

In this section we describe our approach for the restoration of fluorescence mi-
croscopy images using a CARE network. In the first part we report how the
dataset was created and the second part the training process is depicted.

3.1 Semi-Synthetic Datasets

One of the main challenges on the way to a well trained CNN for image restora-
tion is the generation of training data. The quality of the image restoration of
a trained network depends largely on the quality and quantity of training data.
The possibility to improve training data by increasing the number of training
images can be very time-consuming, especially in biological applications.

In general, there are three approaches to obtain training images. The first
and simplest approach is to take pictures with a microscope. In order to ob-
tain a wide range of training data, acquisition parameters such as acquisition
time and exposure intensity are varied. The problem with this method is that it
can be very time consuming to acquire a sufficient amount of suitable images.
Furthermore, noise and reduced resolution due to the used optical devices limit
the quality of the training images. The second possibility is the simulation of
the observed biological structures. For this purpose, ground truth images are
calculated with a computer based on structural properties of the sample. These
artificial training data have the advantage of being independent of the above
mentioned limitations. However, if the structures are too complex, it turns out
to be difficult to simulate them accurately. The bridge between these two pos-
sibilities is the third option: semi-synthetic training data. These training data
are images from a high-resolution fluorescence microscope, which are digitally
distorted afterwards. For this purpose, a series of transformations are applied
to the ground truth images. First, the image is folded using the microscope’s
point spread function. This makes the image more blurred. Then, Poisson noise
and Gaussian noise are added to the image. Finally, the intensity of the image
is reduced. The advantage of semi-synthetic training data is that by changing
the transformation parameters, such as the amount of noise and the intensity
reduction factor, many different training images can be generated.
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The generation of semi-synthetic training data by reproducing the image
distortion of the microscope is more efficient than the other two options. Another
aspect is the diversity of the training images: The training data should represent
as wide a range of structures as possible; this can be easily taken in account
while producing the training images by varying the distortion parameters.

In our application, the observed biological structures are the two following
types:

– HeLa cells with fluorescently labeled mitochondria [11] (Fig. 2a).
– Cardiomyocytes (heart muscle cells) that have a sarcomere with a repeating,

rectangular structure of intermediate z-discs (Fig. 3a). These z-discs are
fluorescently labeled.

These two biological samples are chosen because they are used in current ex-
periments on laser nanosurgery in one of our institutes that aim to observe the
effect of the laser on the biological structures. Furthermore, both samples have
a characteristic structure, which we want to resolve in detail.

We proceeded as follows to obtain semi-synthetic data. First, high quality
images are taken with an confocal microscope from Leica. Parameters like expo-
sure time, excitation intensity and recording time are changed to get a diverse
training set. Excitation is realised with a Helium-Neon (HeNe) laser at a wave-
length of 534nm. The images are post-processed with Fiji [12]: The contrast is
adjusted and a minimum function is applied to the image to remove acquisition
noise. This minimum function determines the minimum value in a small area
around each pixel, sets the pixel to this value and the rest of the pixels to the
black level. Special care is taken to not to make structural changes to the data
during post-processing. To this end, we ensured that the change in pixel values
in an area is much smaller than the structural size of the mitochondria or z-
discs. Depending on the magnification, an adjustment to 0.5 pixels to 4 pixels
was made, which corresponds to a length of approximately 1µm to 5µm.

Next, to generate the training data from the post-processed images, typical
distortions of fluorescence microscopes are simulated by a Python script. To
simulate realistic images from a fluorescence microscope, the following sequence
of transformations is applied:

1. Each image is convoluted with the point-spread function of the microscope,
which we calculated from the imaging objectives.

2. A Poisson noise is added to the image.
3. A Gaussian noise is added to the image. The standard deviation and the

intensity of the noise are chosen randomly from an interval.
4. Afterwards the image intensity is randomly modulated by a factor which

is selected from a predefined interval. Simulating over- and underexposure
corresponds to a factor greater than one or between 0 and 1, respectively.

From the original data, three sets with the distorted training data are created.
For each set the interval for the random parameters, which are the Gaussian noise
sigma and intensity as well the intensity modulation factor, are shifted. The
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suitability of the training images is then estimated, based on prior experience
on microscope images.

The microscopic ground truth images of the mitochondria are of size 1024×
1024 px. From 78 of confocal images we create 234 corresponding semi-synthetic
training images. In a similar manner, the cardiomyocyte dataset consists of 31
microscopic ground truth images of size 512 × 512 px from which 93 training
images are generated.

The generated images are now made compatible with the CSBDeep environ-
ment. This requires the use of two functions provided by the CSBDeep package.
The function raw data re-reads the ground truth images and associated training
images and converts them into an internal file format. By the function create
patches, the training images are divided into small areas (patches). As parame-
ters of the function, it is specified how many areas are obtained from an image
and their corresponding size. These areas are fed into the neural network as
input during training. The choice of the patch size affects the training quality
and should be chosen according to the size of the observed structure. For our
datasets we set the patch size to 32× 32 px for the mitochondria and to 16× 16
px for the cardiomyocytes.

4 Training and testing

CNNs are composed of layers. The input and output of each layer are feature
maps, each of which represents a specific property in the image. Each layer is
divided into three operations, which are performed on the maps. Specifically,
each layer consists of a filter bank, a nonlinear activation function and a pooling
operation. A CNN is typically composed of several combinations of these three
operations. The use of several levels enables the network to learn the hierarchies
found in images. For example, an object in an image consists of different im-
age parts, image parts in turn consist of different motifs and the motifs consist
of combinations of edges. When a CNN is applied to an image, the image is
searched for combinations of structures by scanning the image with characteris-
tic matrices. Certain values in the output matrices therefore represent different
structures. These values are classified during training and can be used to draw
conclusions about the objects in the image if training is successful.

The training data generated above are read in again. During a training epoch,
CNN propagates all training data through the different levels and performs back-
propagation on all training data. Each epoch is divided into smaller steps (it-
erations). In each training step, a subset of the data of a specified batch size
is propagated back and forth through the network. The choice of the number
epochs, the steps per epoch and the batch size is therefore decisive for the train-
ing. The overall goal of the training is to minimize a specified loss function by
varying the weights. The learning rate indicates the adjustment factor of the
weight functions of the neural network. The learning rate is reduced by the net-
work in the course of the training. The aim is to select the parameters in such
a way, that a converging network is obtained. A converging network is charac-
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terised by the fact that a generalisation is made to the general structure (of
mitochondria and Z-discs) on the basis of the given training data.

We obtained optimal settings for training the CARE network on our datasets
by a grid search trying different parameters. We reached an optimal setting at
1000 epochs with 500 steps on both datasets with a batch size of 16. As men-
tioned above, the input are patches of size 32 × 32px for the mitochondria and
patches of size 16 × 16px for the cardiomyocytes. The training is performed us-
ing the Adam optimizer with an initial learning rate of 0.0002 (mitochondria
dataset) and 0.0004 (cardiomyocytes dataset). The datasets are split into 80%
training and 20% validation data. Evaluation of the networks performances is
achieved by a combination of evaluation of the training history with Tensor-
flow, intensity profile comparison and visual review of neural network enhanced
images. Training is performed on a NVIDIA GTX 1080 GPU.

5 Results

In this section, the training performance of both networks is evaluated. The
control of the training for the two different cases is done by an analysis of the
training history. The training history is a graph showing the performance of
the network over the training duration. The analysis is done by comparing the
performance of the network on the training data and the on validation data in
terms of the mean absolute error (MAE) on intensity values. Furthermore, the
development of the loss function can be examined. The loss function differs from
the error function, because we use a probabilistic CARE model. Since the global
minimum of the loss function is searched in the training, a convergence should
be attained here as well.

Looking at the training history of the mitochondria in Figure 1a–1c, the
network converges well with increasing training time. The mean absolute errors
converges to 0.046 on the training and validation set, while omitting over- and
underfitting of the training data. The learning rate is reduced in steps from 0.002
to zero, resembling that the adjustment of the weights is decreased and that the
number of epochs is sufficient.

The training history for the cardiomyoctes dataset shows similar character-
istics (Fig. 1d–1f). Here, the mean absolute error reaches an approximate value
of 0.07. The error function and the loss function are converging on the training
and validation set.

Further evaluation is done by comparing the restored images with training
images. The image sequence in Figure 2 shows the result of the training for
mitochondria and in Figure 3 for the cardiomyocytes. By visual comparison, the
restored images approximate the original image well. A significant reduction in
noise can be observed. Furthermore, the contrast, especially in parts of the image
with lower intensity, has been improved.

This first impression is quantified by comparing the intensity profile (see
Figure 4). The intensity data can be determined with the image processing pro-
gram Fiji by extracting the intensity of the individual pixels along the marked
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horizontal lines in Figures 2 and 3. The differences between the intensity pro-

(a) (b) (c)

(d) (e) (f)

Fig. 1: The averaged absolute error, the value of the loss function and the learning
rate are plotted over the training epoch for the mitochondria dataset (Figure 1a
to 1c) as well for the cardiomyocyte dataset (Figure 1d to 1f). The networks
clearly converge with increasing training time.

files of the ground truth picture and the training picture are clearly visible. Due
to adding of digital distortion, characteristic features of the profile vanish. Es-
pecially structures with low intensities are no longer clearly identifiable. This
corresponds to the real conditions of a fluorescence microscope. The restored
images obtained by the CARE network again show a sharp profile. Hence, we
confirm quantitatively the significant reduction of noise in the restored images.

Especially impressive is the agreement with the profile of the original image.
The position of almost every maximum could be restored. The intensity values
of some maxima is increased, which is represented in the restored picture by a
higher contrast of structures with overall lower intensities. Noticeable is, however,
that the peaks are slightly widened. Visually, this creates the impression of a
slightly blurred picture. The evaluation of further sets of corresponding ground
truth, training and restored pictures led to similar results.

We evaluated the performance of the network on images, which were not
included in the dataset. Images for testing the trained neural networks are ac-
quired with the Zeiss Axio Observer D1, extended by a multi-photon excitation
laser. Exemplary image pairs for each network are shown in Figure 5 and Fig-
ure 6. The output of the network can be improved by reapplying it a second
time. For this purpose, an image already processed by the network is entered
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(a) Original image (b) Training image (c) Restored image

Fig. 2: The image sequence shows an exemplary application of the NN for
mitchondria of a HeLa cell. The first image (2a) shows the original ground truth
image. Digital addition of noise and blurring results in the corresponding train-
ing image (2b). Via a Fiji plugin, the NN can be applied and calculates the
restored image (2c). The scale bar is set to 10 µm.

(a) Original image (b) Training image (c) Restored image

Fig. 3: The image sequence shows training pair as well as the restored image
of cardiomyocytes. A significant reduction in intensity is applied to the original
image, which means that the characteristic structure of the muscle cells is poorly
resolved (3b). The image (3c) is obtained by applying the trained CARE network
to the training image. The scale bar is set to 20 µm.
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(a) Intensity profiles along lines in Fig. 2.

(b) Intensity profiles along lines in Fig. 3.

Fig. 4: Comparison of intensities in original, training and restored image along
the respective marked line in the image. In Figure 4a, images from the mitochon-
dria dataset are used. For Figure 4b we use restored images of cardiomyocytes
in Figure 3.
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as input. A second application leads to another substantial improvement. This
is shown in the image sequence in Figure 5. Application of the network to an
already improved image (Fig. 5b), further enhances the image contrast (Fig. 5c).
We also observe an increase in structural detail in the image of cardiomyocytes,
when applying the network (Fig. 6a–6b). The effect of a second application is
considerably smaller (Fig. 6c) than for the image of mitochondria.

(a) Input (b) first application (c) second application

Fig. 5: The trained network is applied twice to the input image in Figure 5a. The
image was not included in the training set of the network. The output shows a
clear increase in image quality. The scale bar is set to 4 µm.

(a) Input (b) first application (c) second application

Fig. 6: The trained network is applied twice to the input image in Figure 6a. The
image was not included in the training set of the network. The output shows
a clear increase in image quality. Unfortunately the noisy regions are causing
artifacts. This problem might be resolved by increasing the dataset size.
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6 Limitations

Despite an improvement of the image quality was reached, several limitations
can be identified. Especially on the smaller dataset of cardiomyocyt images, the
CARE restorations show artefacts. Structures with comparable low intensity are
sometimes omitted in restoration. For example, after applying the network to the
cardiomyocyte image in Figure 6, the structures are now displayed continuously.
However, small structures in the order of 1µm have not been restored and are
difficult to detect. Furthermore, image noise (in particular in the background)
is not fully removed. These problems are not that apparent on the larger mito-
chondria dataset. This suggest, that image restoration can be further improved
by increasing the dataset or adding different distortions to the training data.
This may be a topic of future work.

7 Conclusion

The application of the open source project CSBDeep on our own multi-photon
and confocal microscopic recordings has led to promising results. With the pro-
vided Python package, the pre-constructed CNN architecture can be trained and
tested on own pictures. The generation of training images has turned out to be
the main challenge. An efficient solution is the generation of semi-synthetic train-
ing data to reach a sufficient number of training images from a small amount of
original data. For this purpose, high-resolution images of a confocal microscope
were digitally distorted. The approach allows the variation of intensity, noise and
blur of the training images. By choosing appropriate parameters, the limitations
of a fluorescence microscope can be simulated digitally.
The performance of the network is analyzed based on the training history, the
intensity analysis of training, ground truth images and the restoration quality of
unknown images. Despite the comparable low quantity of training images, the
networks are converging in training. The application to known and unknown
images results in restored images, which show an appealing increase in image
quality. This is supported by the quantitative evaluation of the intensity profiles
of selected images and the training graphs.
It is true that deterministic algorithms for denoising and deconvolution of images
already exist. Based on our prior experimentation with such algorithms, by using
the self-learning neural networks we experienced a reduction in processing time
and better restoration quality for the specific structure, the network was trained
on. Additionally, the network can be used to remove fixed image distortions like
a pattern of repeating fibre cores in fibre-based imaging methods ,making its
application far more flexible than deterministic algorithms. Therefore, CARE is
a great, easy-to-use restoration tool, which can cope with small datasets and
still provide reasonable improvement of image quality.
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