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Abstract
Mixture-of-Experts (MoE) has demonstrated001
promising potential in scaling LLMs. However,002
it is hindered by two critical challenges: (1)003
substantial GPU memory consumption to load004
all experts; (2) low activated parameters cannot005
be equivalently translated into inference accel-006
eration effects. In this work, we propose EAC-007
MoE, an Expert-Selection Aware Compressor008
for MoE-LLMs, which deeply aligns with the009
characteristics of MoE from the perspectives of010
quantization and pruning, and introduces two011
modules to address these two challenges re-012
spectively: (1) The expert selection bias caused013
by low-bit quantization is a major factor con-014
tributing to the performance degradation in015
MoE-LLMs. Based on this, we propose Quan-016
tization with Expert-Selection Calibration017
(QESC), which mitigates the expert selection018
bias by calibrating the routers within the MoE;019
(2) There are always certain experts that are020
not crucial for the corresponding tasks, yet021
causing inference latency. Therefore, we pro-022
pose Pruning based on Expert-Selection Fre-023
quency (PESF), which significantly improves024
inference speed by pruning less frequently used025
experts for current task. Extensive experiments026
demonstrate that our approach significantly re-027
duces memory usage and improves inference028
speed with minimal performance degradation.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated remarkable capabilities in various natural032

language processing tasks. (Zhou et al., 2024). A033

recent significant breakthrough in this field is the in-034

troduction of the Mixture-of-Experts (MoE) archi-035

tectures (Shazeer et al., 2017; Anonymous, 2024).036

By utilizing a sparse architecture that activates a037

subset of experts via a dynamic routing mechanism038

tailored to each input, MoE enables efficient com-039

putation and scalable network capacity, matching040

or exceeding the performance of dense LLMs with041

several times more activated parameters.042
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Figure 1: Comprehensive performance of EAC-MoE in
reducing memory usage, maintaining model accuracy,
and improving inference speed for Mixtral-8x7B. The
average accuracy is measured across zero-shot tasks
and the inference latency represents the context stage
latency for a batch of 4 sentences of length 512.

Although MoE reduces the number of activated 043

parameters through an expert selection mechanism, 044

it does not decrease the total number of model pa- 045

rameters. During inference, all expert weights must 046

be stored in GPU memory, resulting in substantial 047

memory pressure. As shown in Figure 1 top, while 048

Mixtral-8x7B (Jiang et al., 2024) has a similar acti- 049

vated parameter count to LLaMA2-13B (Touvron 050

et al., 2023), its total parameter count is about four 051

times larger, occupying 94GB of GPU memory. 052

On the other hand, the reduction in activated pa- 053

rameters does not directly result in an equivalent 054

speedup during inference. Although only a sub- 055

set of experts is selected for each token, in typical 056

long-sequence or batch inference scenarios, differ- 057

ent tokens choose different experts. As illustrated 058

in Figure 1 bottom, MoE still requires comput- 059

ing the output of each expert (E1-E8) separately 060

and performing a weighted summation to obtain 061

the final result, experts like E8 are selected less 062

frequently but still cause non-negligible latency. 063

These challenges hinder the practical deploy- 064
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ment of MoE models in resource-constrained, low-065

latency applications. For dense LLMs, quantiza-066

tion and pruning are commonly employed to ad-067

dress these issues. However, directly applying com-068

monly used quantization methods (such as RTN069

and GPTQ (Frantar et al., 2022)) and pruning meth-070

ods designed for dense LLMs to MoE models, with-071

out considering the characteristics of MoE models,072

results in significant performance degradation or073

brings negligible inference speedup. In this work,074

we design a method that combines quantization075

and sparse inference, leveraging the expert selec-076

tion characteristics of MoE models.077

In MoE models, the experts are trained to spe-078

cialize for different types of tasks, and the router079

can select the most suitable experts for each to-080

ken, which is the key for its success (Jordan and081

Jacobs, 1994). However, low-bit quantization of082

MoE model can bias expert selection probability083

and cause the router to choose the wrong experts,084

which we refer to as the expert-shift problem. To085

address this issue in MoE quantization, we pro-086

pose Quantizaion with Expert-Selection Calibra-087

tion (QESC): a layer-by-layer router calibration088

method to mitigate the bias caused by quantization,089

thereby reducing the shift in expert selection. This090

approach effectively preserves the performance of091

the quantized model.092

In contrast, the focus of dynamic pruning lies093

in skipping experts that are relatively unimportant094

for the current input during inference. Specifically,095

certain experts are less frequently selected during096

inference and have minimal impact on overall per-097

formance. Notably, these relatively unimportant098

experts vary across different types of tasks. Based099

on this observation, we propose Pruning based on100

Expert-Selection Frequency (PESF): a dynamic ex-101

pert pruning method that prunes less frequently102

selected experts during inference, significantly im-103

proving the inference speed of MoE models with104

minimal performance loss.105

Combining QESC and PESF, we propose EAC-106

MoE, exploring the compression of MoE models107

from both aspects of pre-inference and during-108

inference. Experiments on four MoE models109

demonstrate that our method significantly reduces110

memory usage and improves inference speed.111

When compressing Mixtral-8x7B, as shown in Fig-112

ure 1 top, we reduce the memory requirements by113

4.92×, enabling deployment on a RTX 3090 GPU.114

Meanwhile, our method achieve 1.68× inference115

speedups with an average accuracy loss of less than116

1% under simultaneous quantization and pruning, 117

making it practical for real-world applications. 118

2 Related Work 119

Quantization for LLMs and MoE-LLMs. Post- 120

Training Quantization (PTQ) is an efficient tech- 121

nique that reduces computational and storage re- 122

quirements by converting pre-trained models from 123

high-precision to lower-precision formats without 124

requiring extensive retraining. Methods like GPTQ 125

(Frantar et al., 2022) and BiLLM (Huang et al., 126

2024b) focus on addressing weight-only quantiza- 127

tion, while approaches such as SmoothQuant (Xiao 128

et al., 2023) and OmniQuant (Shao et al., 2023) aim 129

to tackle the challenges of both weight and activa- 130

tion quantization. In this work, we focus primarily 131

on weight-only quantization because the MoE de- 132

ployment challenges stem mainly from the memory 133

pressure caused by weight parameters. For MoE- 134

LLMs, previous studies have largely focused on 135

mixed-precision quantization strategies based on 136

expert selection frequency (Li et al., 2024a; Huang 137

et al., 2024a). Although these methods have shown 138

certain effectiveness, they may face challenges in 139

generalization and risk overfitting. 140

Pruning of LLMs and MoE-LLMs. Post-training 141

pruning is another key technique to compress 142

LLMs by reducing model size by selectively re- 143

moving less important parameters while preserving 144

performance (Han et al., 2016; Zhu and Gupta, 145

2018; Ashkboos et al., 2024). For MoE-LLMs, 146

prior efforts have focused mainly on two directions: 147

pruning experts with lower selection frequency be- 148

fore inference (Lu et al., 2024; Kim et al., 2021), 149

and pruning less significant weights for each token 150

among the selected experts (Lu et al., 2024; Huang 151

et al., 2024a). However, while these approaches 152

have made notable progress, there remain opportu- 153

nities for further improvement. The first direction, 154

for example, can lead to performance degradation 155

in certain types of tasks. The second direction, on 156

the other hand, achieves a relatively low pruning 157

rate, resulting in limited inference speedup. 158

3 Preliminaries and Motivation 159

3.1 LLM Quantizaiton 160

In this work, quantization techniques are em- 161

ployed to compress the weights. Specifically, 162

floating-point weights distributed in [Wmin,Wmax] 163

are mapped to the integer range [0, 1, · · · , 2B − 1], 164

where B represents the target bit-width. The quan- 165
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Figure 2: The figure illustrates the pairwise cosine similarity of expert selection frequencies for Phi3.5-moe (left)
and Deepseek-moe-16b-base (right) across 19 datasets, which are categorized into four groups distinguished by
different colors. Points with cosine similarity greater than 0.8 are highlighted to emphasize high similarity regions.

tization reconstruction problem for the weights166

W ∈ Rnin×nout can be formulated as:167

argmin
Wq

∥WX −WqX∥22, (1)168

where Wq denotes the quantized weight, and X is169

the input to the layer derived from a small subset of170

calibration data. GPTQ (Frantar et al., 2022) is cur-171

rently a mainstream weight quantization method,172

which can efficiently reduce group-wise quantiza-173

tion error by employing Hessian-based estimation174

(H = 2XX⊤) and error compensation techniques.175

It is utilized in subsequent sections of this paper.176

3.2 Mixture-of-Experts177

Decoder-only MoE models (Gale et al., 2023) are178

based on a transformer architecture (Vaswani et al.,179

2017), but the FeedForward Network (FFN) sub-180

layers of traditional dense models are replaced with181

MoE layers, each containing N experts. For each182

input token x, the router computes routing logits183

r = {r0, · · · , rN−1} and expert selection scores184

s = Softmax(r). The top-K experts are selected185

based on s, and their outputs Eej (x) are combined186

as a weighted sum, with normalized weights:187

z =
K−1∑
j=0

sej∑K−1
i=0 sei

· Eej (x). (2)188

Here, Eej (x) represents the output of the j-th se-189

lected expert for the input token x. Based on190

this structure and mechanism, models such as191

Mixtral-8x7B (Jiang et al., 2024), GPT-4 (OpenAI192

et al., 2024) and DeepSeek-V3 (DeepSeek-AI et al.,193

2024) have achieved superior generative abilities.194

3.3 Expert-Selection (ES) Analysis195

Previous quantization studies for MoE-LLMs have196

primarily focused on the observation that, during197

inference, MoE models exhibit significant differ- 198

ences in the selection frequency of different experts 199

(Li et al., 2024a). Consequently, expert selection 200

frequency has been widely adopted as a metric to 201

evaluate the importance of different experts within 202

an MoE layer. However, prior works have over- 203

looked an important pattern: MoE models often 204

demonstrate entirely different expert preferences 205

across different types of tasks. 206

To investigate this pattern, we examine 207

three common categories of NLP tasks: Math, 208

Code-Generation, and Question-Answering or 209

Commonsense-Reasoning (QA/CR). Additionally, 210

we analyze tasks in specific languages (French in 211

our case) as a separate category. For each dataset, 212

we record the expert selection frequency during 213

inference. Furthermore, we calculate the similar- 214

ity of expert selection frequencies between every 215

pair of datasets to better understand the diversity in 216

expert preferences across tasks. For a certain MoE 217

layer m in a MoE model, the normalized expert 218

selection frequency for dataset d is defined as: 219

P (m, d) =
C(m, d)∑N−1

i=0 C(m, d, i)
(3) 220

where C(m, d) = [C(m, d, 0), · · · , C(m, d,N − 221

1)], with C(m, d, i) representing the count of the 222

i-th expert in layer m is selected for all input to- 223

kens in the dataset d. Then the normalized expert 224

selection frequencies P (m, d) of all MoE layers 225

are flattened into a single vector P (d). Based on 226

this, the similarity of expert preferences between 227

two datasets di and dj is computed as: 228

Sim(di, dj) =
P (di) · P (dj)

∥P (di)∥∥P (dj)∥
(4) 229

As shown in Figure 2, we calculate the expert pref- 230

erence similarities of Phi3.5-moe (Abdin et al., 231
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2024) and DeepSeek-16b-moe-base models across232

19 different datasets. The results indicate that both233

models reach similar conclusions: expert selec-234

tion frequencies within datasets of the same task235

category exhibit high similarity, whereas expert se-236

lection frequencies across datasets of different task237

categories show relatively low similarity.238

This observation suggests that MoE models rely239

primarily on different experts to handle different240

types of tasks and the importance of the same ex-241

pert may vary drastically across different tasks, pro-242

viding us with the following two insights:243

1. For static quantization, we should focus on244

the expert selection process itself—ensuring245

that the model can still select the experts im-246

portant for each task, as we cannot perma-247

nently determine the importance of any expert248

before inference using a calibration set.249

2. For dynamic pruning, we should dynamically250

evaluate the importance of experts based on251

the type of the current task and prune experts252

that are not important for the current task.253

4 Quantization with ES Calibration254

The core idea of our method is to mitigate the per-255

formance degradation of quantized MoE models256

by addressing expert-shift, a critical issue where257

quantization errors in the multi-head self-attention258

(MHSA) and MoE blocks distort expert selection259

probabilities, causing routers to deviate from origi-260

nal expert assignment patterns.261

4.1 Importance of ES Calibration262

We first verify the importance of calibrating expert263

selection by observing performance degradation264

caused by expert-shift and performance improve-265

ment achieved by preserving the expert selection.266

We separately record the expert selection and its267

corresponding scores (s) for all inputs on the Wiki-268

Text2 (Merity et al., 2016) validation set for both269

full-precision model and the 3-bit quantized model.270

Then, we enforce the quantized model to use the271

expert selection scores of the original precision272

model for each input (quantized but without expert-273

shift) and, conversely, enforce the original preci-274

sion model to use the expert selection scores of the275

quantized model (not quantized but with expert-276

shift). Finally, we calculate the perplexity (PPL) of277

the inputs under these four conditions respectively.278

As shown in Table 1, expert-shift causes sig-279

nificant performance degradation for the original280

Table 1: The impact of weight quantization itself and its
induced expert-shift on perplexity (PPL↓) for Mixtral-
8x7B and Deepseek-moe-16b-base models.

Model Quantized Expert-Shift PPL

Mixtral-8x7B

✘ ✘ 3.84
✘ ✔ 4.17
✔ ✘ 4.21
✔ ✔ 4.65

Deepseek-moe
-16b-base

✘ ✘ 6.51
✘ ✔ 6.76
✔ ✘ 6.81
✔ ✔ 7.17

router

expert1

expert2

expert3

expert4

expert5

expert6

expert7

expert8

output

router output

calibrate

Step1:
Quantize MHSA Step3:Quantize Experts

Step2:
Calibrate

Expert
Multi-Head

Self-Attention

Q-Multi-Head
Self-Attention

Router

Calibrated
Router Q-Experts

outputs

outputs

Figure 3: Framework of our proposed Quantization with
Experts-Selection Calibration.

model. Conversely, preserving the expert selection 281

of the original model significantly improves the 282

performance of quantized models, highlighting the 283

importance of calibrating expert selection. 284

4.2 Layer-by-layer Calibration Framework 285

Then we focus on how to mitigate expert-shift prob- 286

lem. At a hight level, our method performs quanti- 287

zation and calibration layer-by-layer. Concretely, 288

as illustrated in Figure 3, using the WikiText2 289

calibration dataset, we sequentially quantize the 290

MHSA components, calibrate the routers of the 291

MoE layers, and quantize all experts layer by layer. 292

This process allows the router in each layer to 293

be calibrated in a way that mitigates the expert- 294

shift caused by the quantization of the adjacent 295

layer’s MHSA and MoE layer, thereby preventing 296

the cumulative accumulation of expert selection 297

shift across layers. 298
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4.3 TopK-MSE Loss299

To calibrate the router, a natural idea is to align the300

router’s outputs before and after input quantization,301

such as by using the mean squared error (MSE)302

loss for optimization. However, this method is not303

effective for MoE models with a large number of304

experts, such as Deepseek-moe-16b-base—which305

selects 6 experts out of 64 (Dai et al., 2024). Com-306

paring expert selection before and after 2-bit quan-307

tization, as shown in Figure 4, we observe that308

among the experts selected in full precision but not309

selected after quantization (shifted experts), 95.9%310

still rank within the top 16 in the probability dis-311

tribution. However, the loss corresponding to the312

top 16 experts accounts for only 29.25% of the313

total MSE loss. This indicates that if we directly314

apply MSE loss to all experts, the loss will be dom-315

inated by the majority of experts with very small316

selection probabilities, which are not selected in317

full precision, thereby introducing noise into the318

optimization process.319

Based on this insight, we adopt the TopK-MSE320

loss, which computes the MSE loss over only the321

top-K classes with the highest probabilities, allow-322

ing the optimization process to focus on aligning323

the experts that are more likely to be selected. The324

TopK-MSE loss is calculated as follows:325

L =
1

K

∑
i∈top-K(Wx)

((Wx)i − (Wx̂)i)
2 , (5)326

W represent the weight matrix of router and x̂ de-327

notes the input obtained from the quantized model.328

5 Pruning based on ES Frequency 329

QESC focuses on ensuring the quantized model 330

can still correctly select the experts important for 331

the current task. A natural consideration is that 332

there are also experts that are not important for 333

the current task. In this section, we introduce a 334

dynamic expert pruning method during inference, 335

which significantly improves inference speed while 336

maintaining almost the same level of accuracy. 337

Prior work (Lu et al., 2024) has already noted the 338

sparsity in expert selection for MoE models, where 339

certain experts are selected with high frequency 340

for a specific task, while others are rarely selected 341

(shown in Appendix A.11). Meanwhile, as con- 342

cluded in Section 3.3, it is crucial to dynamically 343

evaluate the importance of each expert during in- 344

ference for different tasks. Therefore, unlike prior 345

work that performs static expert pruning based on 346

selection frequency before inference, our approach 347

dynamically identifies experts that are less impor- 348

tant for the current task during the inference pro- 349

cess. This allows us to achieve significant inference 350

speedup with minimal performance degradation. 351
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Figure 5: Framework of our proposed Pruning based on
Experts-Selection Frequency.

In our method, the dynamic pruning criterion 352

is set as follows: assume each layer of the MoE 353

model has N experts, each token selects K experts, 354

and the input sequence length is l. The dynamic 355

pruning threshold is defined as α (0 < α ≤ 1). If 356

the number of times an expert is selected, denoted 357

as c, satisfies the condition: 358

c <

(
l ×K

N

)
× α (6) 359

then the expert is pruned. In other words, if an 360

expert is selected less frequently than the average 361

selected count multiplied by the threshold α (like 362

expert5 in Figure 5), it is pruned and excluded 363

from the computation for this sequence. 364
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Table 2: Comparison of the average perplexity (PPL) scores on WikiText2 validation set and the average accuracy
on 8 zero-shot tasks across four different MoE models. We reproduce results of BSP and PMQ on four models using
the official codebases provided in their repositories (the reproduction details are provided in Appendix A.6) and
evaluated all the results under the same settings. Full results are in the Appendix A.7.

Bits Method
Mixtral-8x7B Phi3.5-moe Deepseek-moe-16b-base Qwen1.5-MoE-A2.7B

PPL ↓ 0-shot8 ↑ PPL ↓ 0-shot8 ↑ PPL ↓ 0-shot8 ↑ PPL ↓ 0-shot8 ↑
16.00 Baseline 3.84 72.64 3.99 69.62 6.51 61.38 7.22 64.72

2.06
GPTQ 5.51 62.56 5.32 64.45 8.27 54.88 9.92 57.76
PMQ 5.41 63.25 5.88 61.35 8.42 54.79 9.89 57.79
QESC 5.09 66.31 5.22 65.03 7.99 57.05 8.30 59.52

2.54

GPTQ 4.74 68.65 4.74 65.81 7.36 56.83 8.41 57.91
BSP 4.98 65.44 4.72 66.15 7.32 58.24 8.11 60.40
PMQ 4.78 67.5 4.73 66.03 7.17 58 8.09 60.47
QESC 4.54 69.61 4.66 66.53 7.08 58.33 7.74 61.47

3.03
GPTQ 4.16 68.92 4.28 68.12 6.82 59.33 7.69 62.21
BSP 4.25 67.22 4.61 67.67 7.05 59.39 7.86 60.88

QESC 4.14 72.21 4.24 68.49 6.71 61.22 7.50 62.89

6 Experiment365

In this section, we first evaluate the experimental366

performance of our proposed methods QESC and367

PESF, respectively. Then we combine quantization368

and pruning (QESC+PESF) to assess their perfor-369

mance in maintaining model accuracy, memory370

usage reduction, and actual inference speedup.371

6.1 Setup372

Models and Dataset. We validate our method373

on four MoE models: Mixtral-8x7B, Phi3.5-374

moe, Deepseek-moe-16b-base and Qwen1.5-MoE-375

A2.7B (Yang et al., 2024). We report perplexity376

(PPL) on the WikiText2 testset and accuracies of377

eight zero-shot tasks tested by EleutherAI LM Har-378

ness (Gao et al., 2024), including Winogrande (ai2,379

2019), PIQA (Bisk et al., 2020), ARC-Easy, ARC-380

Challenge (Clark et al., 2018), BoolQ (Clark et al.,381

2019), MathQA (Amini et al., 2019), HellaSwag382

(Zellers et al., 2019), MMLU (Hendrycks et al.,383

2021b). Additionally, we present the results of our384

method on the challenging tasks GSM8K (Cobbe385

et al., 2021) and HumanEval (Chen et al., 2021).386

Implementation Details. We follow the settings387

of prior work (Li et al., 2024a; Huang et al., 2024a),388

keeping the MHSA components at 4-bit precision,389

while quantizing all experts to 2-bit or 3-bit pre-390

cision, and maintaining the router at its original391

precision. Overall, we evaluate our method under392

three average bit-width settings: 2.06-bit, 2.54-bit,393

and 3.03-bit (detailed bit-width setting is discussed394

in Appendix A.5). The quantization employs395

group-wise (group size 128) asymmetric quanti-396

zation and follows the GPTQ procedure. We use397

128 sequences of length 2048 from the WikiText2398

training set as the calibration set for QESC.399

Reduction

Figure 6: The reduction of expert-shift before and after
calibration measured by expert-selection change rate
across layers in Deepseek-moe-16b-base under 2.06-bit
quantization. Change Rate 1-3 respectively represent
three metrics: all expert selections changed, at least one
selection changed and half or more selections changed.

6.2 Experiment on Quantization 400

Reduction in Expert-Shift. First, we intuitively 401

validate the effectiveness of our calibration method 402

by measuring the expert selection change rate be- 403

fore and after calibration on WikiText2 validation 404

set. We calculate the expert selection change rates 405

of the quantized model with or without router cal- 406

ibration relative to the full-precision model on 407

Deepseek-moe-16b-base, and show the relative re- 408

duction in Figure 6. The results demonstrate that 409

our calibration method significantly reduces the ex- 410

pert selection change rate in quantized MoE models 411

across three metrics. 412

Overall Performance. We further validate the 413

overall performance of our method. We compare 414

our quantization method with three other methods: 415

GPTQ, PMQ (Li et al., 2024a), and BSP (Li et al., 416

2024a). GPTQ serves as the baseline for uniform 417

bit-width quantization, while PMQ (1.57–2.54 bit) 418

and BSP (2.54–3.03 bit) are current SOTA methods 419

for mixed-precision quantization of MoE models. 420
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Table 3: Comparison of the average accuracy on 8 zero-shot tasks and speedup of inference across four different
MoE models. The speedup is calculated based on the total inference time of the model with dynamic pruning
compared to the original model across 8 tasks. We reproduce results of EES and ODP (details are provided in
Appendix A.8) and evaluate all the results under the same settings. Full results can be found in Appendix A.9.

Method
Mixtral-8x7B Phi3.5-moe Deepseek-moe-16b-base Qwen1.5-MoE-A2.7B

0-shot ↑ Speedup ↑ 0-shot ↑ Speedup ↑ 0-shot ↑ Speedup ↑ 0-shot ↑ Speedup ↑
Baseline 72.64 1.00 69.62 1.00 61.38 1.00 64.72 1.00

EES 71.40 1.06 67.96 1.05 61.15 1.08 64.42 1.06
ODP 71.98 1.05 68.92 1.04 61.19 1.08 64.48 1.06

PESF(α = 0.3) 72.19 1.08 69.27 1.12 61.28 1.11 64.64 1.14
PESF(α = 0.7) 58.22 1.13 67.95 1.30 60.41 1.45 63.87 1.47

It is worth noting that QESC is inherently orthog-421

onal to other weight quantization approaches for422

LLMs that focus on minimizing quantization error.423

As shown in Table 2, when only GPTQ is used424

to reduce quantization loss, significant performance425

degradation is still observed. Both BSP and PMQ,426

as mixed-precision quantization methods, demon-427

strate performance improvements over GPTQ at428

certain quantization bit-widths for some models.429

However, in nearly half of the settings, their results430

are inferior to those of GPTQ, indicating a certain431

degree of lack of generalization. In contrast, the432

proposed QESC method significantly outperforms433

GPTQ, BSP, and PMQ across all results. For in-434

stance, at 2.54-bit, QESC limits the performance435

loss to around 3% for all four models. Notably, at436

3.03-bit, QESC reduces the loss to within 0.5% for437

Mixtral-8x7B and Deepseek-moe-16b-base, mak-438

ing it suitable for practical application scenarios.439

Challenging Tasks. Apart from PPL and common-440

sense tasks, we also evaluate our QESC method441

on the challenging tasks GSM8K and HumanEval,442

with the results provided in Appendix A.2.443
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Figure 7: The variations in the model’s average accuracy,
expert pruning rate, and inference acceleration effect
with respect to changes in the pruning threshold α.

6.3 Experiment on Pruning444

Pruning Threshold Analysis. To determine a rel-445

atively appropriate pruning threshold, we aim to446

trade off among model accuracy, expert pruning447

rate, and relative inference latency. As shown in 448

Figure 7, we conduct experiments on Deepseek- 449

16b-moe-base, adjusting the pruning threshold (α) 450

from 0 to 0.9 with an interval of 0.1. For each 451

threshold, we calculate the average accuracy on 452

8 zero-shot tasks, the average expert pruning rate 453

across all layers, and the percentage of relative in- 454

ference latency compared to the original model. 455

The results show that pruning thresholds of 0.3 and 456

0.7 represent two sweet spots. The former achieves 457

approximately 10% speed improvement with al- 458

most no loss to the model (average loss within 459

0.5%), while the latter is more aggressive, achiev- 460

ing over 1.3× average inference speedup while still 461

keeping the average loss within around 1.5%. 462

Overall Performance. We compare our method 463

with the classical MoE expert pruning method, 464

known as Efficient Experts Skipping (EES) (Lu 465

et al., 2024), and a recently proposed MoE prun- 466

ing method, ODP (Huang et al., 2024a). EES per- 467

forms pruning from the perspective of individual 468

tokens, skipping the selected experts with negligi- 469

ble scores for each input token, while ODP incor- 470

porates a key token protection mechanism on top 471

of this. However, both methods can only reduce 472

the input size for a subset of experts, resulting in 473

limited inference speedup. In contrast, our PESF 474

method performs pruning from the perspective of 475

experts, directly skipping experts that are selected 476

less frequently for the current sequence. As shown 477

in Table 3, under the more conservative setting 478

(α = 0.3), our method significantly outperforms 479

EES and ODP on all four models in both average 480

accuracy and relative speedup. Moreover, com- 481

pared to EES and ODP, our pruning method demon- 482

strates greater flexibility. Notably, when we adopt 483

a more aggressive setting with (α = 0.7), except 484

for Mixtral-8x7B (discussed in Appendix A.12), 485

our method achieves an inference speedup of 1.30x 486

or greater on the other three models, while still 487

maintaining model accuracy comparable to ODP. 488
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Table 4: The overall performance of our compression
method which combines QESC (3.03 bit) and PESF
(α = 0.3). ”Params” denotes the parameter size, includ-
ing quantizer parameters for the compressed model.

Models Method Params(GB) 0-shot8 ↑ Speedup ↑

Mixtral-8x7B
Baseline 93.41 72.64 1.00
QESC 18.98 72.21 1.54

QESC+PESF 18.98 71.68 1.68

Phi3.5-moe
Baseline 83.75 69.62 1.00
QESC 17.08 68.49 1.55

QESC+PESF 17.08 68.31 1.75

Deepseek-moe
-16b-base

Baseline 32.75 61.38 1.00
QESC 7.19 61.22 1.39

QESC+PESF 7.19 61.09 1.55

Qwen1.5-MoE
-A2.7B

Baseline 28.63 64.72 1.00
QESC 6.69 62.89 1.36

QESC+PESF 6.69 62.73 1.58

6.4 Experiment on Quantization + Pruning489

Finally, we apply our QESC and PESF methods490

together to comprehensively compress MoE-LLMs.491

To achieve a reasonable trade-off between reducing492

memory usage, inference speed, and maintaining493

model performance, we apply a relatively mild dy-494

namic pruning strategy (α = 0.3) on top of 3.03-495

bit static quantization. We report the memory us-496

age, average accuracy on zero-shot tasks, and infer-497

ence speedup measured by the context latency for498

a batch of 4 sentences of length 512 in Table 4.499

Maintain Accuracy. With the aid of effective ex-500

pert selection calibration, our method limits the501

average accuracy loss across four models to within502

1.25%, effectively maintaining the accuracy of the503

compressed MoE models.504

Memory Saving and Inference Efficiency. By505

leveraging the BitBLAS tool (Wang et al., 2024)506

to store quantized weights and efficiently han-507

dle mixed-precision BLAS operations on GPUs,508

we limit the memory usage of Mixtral-8x7B and509

Phi3.5-moe to within 19GB, and that of Deepseek-510

moe-16b-base and Qwen1.5-MoE-A2.7B to within511

7.2GB. This optimization enables deployment on512

a single RTX 3090 GPU while achieving an aver-513

age speedup of 1.49× under 3.03-bit quantization.514

Furthermore, by integrating efficient dynamic ex-515

pert pruning, we attain an average actual inference516

speedup of 1.64× across all four models.517

Comparion with MC-MoE. To the best of our518

knowledge, MC-MoE (Huang et al., 2024a) is cur-519

rently the only method that leverages both static520

quantization and dynamic pruning for MoE-LLMs,521

providing specific implementations for 2.06-bit and522

2.56-bit quantization and pruning on Mixtral-8x7B.523

Therefore, we compare our method with MC-MoE524

at the corresponding quantization bit-widths on the525

same model and adopt a more conservative pruning526

Table 5: Comprehensive comparison of average accu-
racy on 8 zero-shot tasks and inference speedup of four
models under quantization and pruning.

Bits Method
Mixtral-8x7B

PPL ↓ 0-shot8 ↑ Speedup ↑
16.00 Baseline 3.84 72.64 1.00

2.06
MC-MoE 5.51 62.56 1.80

EAC-MoE (ours) 5.09 66.31 1.82

2.56
MC-MoE 4.74 68.65 1.71

EAC-MoE (ours) 4.54 69.61 1.74

strategy in PESF (α = 0.3). As shown in Ta- 527

ble 5, our method outperforms MC-MOE in terms 528

of PPL, average accuracy on zero-shot tasks, and 529

actual inference speedup under both quantization 530

settings. 531

More Results of EAC-MoE. Additionally, we 532

perform more detailed experiments by combining 533

other quantization bit-widths and more aggressive 534

pruning strategies across all four models. Detailed 535

results can be found in Appendix A.10. 536

6.5 Ablation Study of Loss Type 537

We compare the average accuracy on 0-shot tasks 538

after calibration using TopK-MSE and MSE loss 539

on three MoE models with a larger number of ex- 540

perts (the search for the optimal k-values in shown 541

in Appendix A.4). As shown in Table 6, the cali- 542

brated models optimized with TopK-MSE demon- 543

strate significantly better performance, proving the 544

effectiveness of our optimization method. 545

Table 6: The impact of different loss types on the av-
erage accuracy of the calibrated model on 0-shot tasks
(under 2.06-bit quantization).

Models Loss Type PPL ↓ 0-shot8 ↑

Phi3.5-moe
MSE 5.33 64.52

TopK-MSE 5.22 65.03
Deepseek-moe

-16b-base
MSE 8.16 55.91

TopK-MSE 7.99 57.05
Qwen1.5-MoE

-A2.7B
MSE 9.02 58.44

TopK-MSE 8.30 59.52

7 Conclusion 546

In this work, we aim to address the challenges faced 547

by MoE-LLMs and the limitations of existing com- 548

pression methods. Focusing on expert selection, 549

a key characteristic of MoE-LLMs, we propose 550

a compression method specifically designed for 551

MoE-LLMs that combines static quantization and 552

dynamic pruning to enhance their deployment effi- 553

ciency. Our methods significantly reduce memory 554

usage and improve inference speed while maintain- 555

ing high model performance. 556

8



Limitations557

Our method can significantly reduce memory con-558

sumption and improve inference speed while main-559

taining the performance of MoE models. However,560

there are still certain limitations to our approach:561

(1) The proposed dynamic pruning method (PESF)562

calculates expert selection frequencies based on the563

current input sequence and determines the experts564

to prune accordingly. This method is only appli-565

cable during the prefill stage of model inference566

but is not suitable for the generate stage, where567

only a single token is input at a time. Therefore,568

it cannot bring inference speedup during the gen-569

erate stage. In the future, we aim to explore an570

MoE model pruning method that considers both571

inference phases, enabling inference acceleration572

benefits for both the prefill phase and the genera-573

tion phase.574

(2) We validated the effectiveness of our method575

on two MoE models with approximately 50B pa-576

rameters and two MoE models with approximately577

15B parameters. However, due to limited computa-578

tional resources, we have not yet tested our method579

on larger-scale MoE models. For example, a re-580

cent significant breakthrough in the MoE field is581

the open release of DeepSeek-V3 (DeepSeek-AI582

et al., 2024) and DeepSeek-R1 (DeepSeek-AI et al.,583

2025) (based on DeepSeek-V3), which have a to-584

tal of 671B parameters and 37B active parameters.585

Both models demonstrate comprehensive perfor-586

mance that even match or surpass some leading587

closed-source models(OpenAI et al., 2024). How-588

ever, their enormous parameter count poses signif-589

icant challenges for practical deployment. There-590

fore, in the future, we will continue to explore quan-591

tization and pruning techniques for larger-scale592

MoE models, aiming to contribute to the advance-593

ment of MoE.594

Ethics Statement595

In this work, we analyze the expert selection596

preferences of Mixture-of-Experts (MoE) mod-597

els not only across three common types of NLP598

tasks—QA/CR, Math, and Code—but also by599

recording expert selection frequencies on datasets600

in specific languages, with French being the se-601

lected language for the latter category.602

We explicitly emphasize that the use of French603

in this study does not imply any bias, preference,604

or discriminatory intent towards or against any spe-605

cific language, culture, or group of people. The606

selection is made solely to illustrate that MoE mod- 607

els exhibit different expert selection preferences 608

across datasets in different languages. 609
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A Appendix884

A.1 Time Consumption Analysis885

QESC. The quantization process of QESC primar-886

ily consists of two parts: GPTQ and the calibrating887

router, and can be executed on a single A100 40G888

GPU. We record the time spent on the GPTQ pro-889

cess and the calibration of routers separately, and890

calculate their respective proportions of the total891

time. As shown in Table 7, GPTQ accounts for the892

vast majority of the total quantization time, while893

the calibration of routers takes an average of only894

1.94% of the overall process. This demonstrates895

that our method introduces only a minimal addi-896

tional time overhead to the quantization process,897

making it well-suited for practical applications.898

PESF. Our PESF method introduces only a single-899

step online computation, as shown in Equation (6),900

resulting in virtually no additional delay.901

Table 7: Time consumption analysis for GPTQ and
router calibration in our QESC method.

Models Step of QESC Time(h) Proportion(%)

Mixtral-8x7B
GPTQ 1.30 98.48

Calibrating Router 0.02 1.52

Phi3.5-moe
GPTQ 1.39 97.89

Calibrating Router 0.03 2.11
Deepseek-moe

-16b-base
GPTQ 1.75 97.22

Calibrating Router 0.05 2.78
Qwen1.5-MoE

-A2.7B
GPTQ 1.48 98.67

Calibrating Router 0.02 1.33

A.2 Performance on Challenging Tasks902

In addition to validating the performance of903

our QESC method in maintaining model perfor-904

mance through Perplexity (PPL) and accuracies905

on common-sense intelligence tasks, we further906

evaluate our approach on more challenging mathe-907

matical task GSM8K (Cobbe et al., 2021) and code908

generation task HumanEval (Chen et al., 2021).909

We compare our method with three other meth-910

ods—GPTQ, BSP, and PMQ. These two evalua-911

tions are conducted within the Bigcode-Evaluation-912

Harness (Ben Allal et al., 2022) testing framework.913

As shown in Table 8, under three different av-914

erage quantization bit widths, our QESC method915

significantly outperforms the other three meth-916

ods in preserving the performance of the post-917

quantization model on two challenging tasks. No-918

tably, despite prior studies (Li et al., 2024b) in-919

dicating that post-quantization models are often920

highly sensitive to complex mathematical and cod-921

ing tasks, we manage to limit the performance922

degradation of Mixtral-8x7B on GSM8K to within923

Table 8: Comparison of the performance on challenging
tasks GSM8K and HumanEval on Mixtral-8x7B. In the
HumanEval evaluation, the hyperparameters are set as
follows: temperature = 0.2, and nsamples = 10.

Models Method GSM8K HumanEval (pass@10)
16.00 Full Precision 58.30 59.15

2.06
GPTQ 33.97 21.13
PMQ 20.17 11.91

QESC 37.15 26.83

2.54

GPTQ 38.97 27.24
BSP 40.00 31.62
PMQ 36.94 29.77

QESC 43.14 33.54

3.03
GPTQ 52.29 40.83
BSP 53.72 42.07

QESC 55.34 46.34

3% under 3.03-bit quantization, highlighting the 924

effectiveness of our expert-selection calibration 925

method. 926

A.3 Overfitting Analysis of Mixed-Precision 927

Quantization Methods for MoE Models 928

In Section 3.3, we observe that the importance of 929

the same expert may vary drastically across differ- 930

ent tasks. Based on this insight, we deduce that 931

using any calibration set to determine the impor- 932

tance of an expert before inference may be biased 933

and lack generalization. Here, we further substan- 934

tiate this point through comparative experiments. 935

Specifically, we first utilize QA/CR datasets, Math 936

datasets, Code datasets, datasets in French version, 937

and the C4 dataset (Raffel et al., 2020) as cali- 938

bration sets, obtaining five distinct expert selec- 939

tion frequencies from these calibration sets. Sub- 940

sequently, we automatically allocate the quanti- 941

zation bit-width for each expert based on the ex- 942

pert selection frequencies, following the algorithm 943

mentioned in the state-of-the-art mixed-precision 944

quantization method for MoE, PMQ (Huang et al., 945

2024a) (details is shown in Appendix A.6). We 946

then quantize the model to an average bit-width 947

of 2.06 bits using the five quantization bit-width 948

settings derived (the calibration set used in the pa- 949

per is the C4 dataset). Finally, we evaluate the 950

performance of these five quantized models on 951

four datasets: Hellswag (QA/CR), MathQA (Math), 952

Lambada_fr (French), and Conala (Code), each rep- 953

resenting a different task category. Additionally, 954

we compare the performance of our QESC method 955

at the same average quantization bit-width. 956

As shown in Table 9, the mixed-precision quan- 957

tization method based on expert usage frequency 958

exhibits significant overfitting on both models. As 959

highlighted by the red-marked values in the table, 960
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Table 9: A comparison of the performance of quantized Mixtral-8x7B and Deepseek-moe-16b-base, based on
the mixed-precision quantization method PMQ, using five different calibration sets under an average quantization
bit-width of 2.06 bits, across four types of task datasets.

Models Bits Method Calibration Dataset
Hellaswag
(QA/CR)

MathQA
(Math)

Lambada_fr
(French)

Conala
(Code)

Mixtral-8x7B

16.00 Baseline None 84.03 41.64 65.96 73.86

2.06
Mixed-

Precision

QA/CR 75.49 31.06 49.17 7.25
Math 69.25 32.26 47.06 7.64

French 65.55 24.39 51.87 3.80
Code 67.67 31.66 44.50 37.42
C4 74.95 31.79 49.12 16.22

2.06 QESC None 77.27 36.08 60.37 66.68

Deepseek-moe
-16b-base

16.00 Baseline None 77.43 31.66 58.08 58.76

2.06
Mixed-

Precision

QA/CR 72.09 24.25 45.76 7.57
Math 62.15 30.25 41.74 8.69

French 65.49 23.15 48.86 1.80
Code 54.87 29.61 35.88 26.34
C4 68.70 26.26 42.13 16.22

2.06 QESC None 68.85 28.91 52.38 42.36

using a specific task dataset as the calibration set961

results in a post-quantization model that achieves962

relatively optimal performance on that specific task963

but shows severe performance degradation on other964

tasks. This overfitting phenomenon is most pro-965

nounced in Code-related tasks. When calibration is966

performed using datasets from other task types, the967

quantized models experience a drastic performance968

collapse on Code tasks. Only the models calibrated969

with Code-specific task datasets manage to achieve970

relatively good results on the Conala dataset.971

When the C4 dataset is used as the calibra-972

tion set, due to its inherently balanced nature, the973

quantized models achieve relatively average perfor-974

mance across all four task types. However, even975

in this case, there is still severe performance degra-976

dation on Code-related tasks. In contrast, our pro-977

posed QESC method focuses on the calibration978

of expert-selection. It significantly outperforms979

mixed-precision method across all four datasets,980

demonstrating superior generalization capabilities.981

A.4 Search of Optimal Value of K in982

TopK-MSE Loss983

In this subsection, we explore the optimal k-984

value settings for TopK-MSE in three MoE mod-985

els with relatively larger numbers of total ex-986

perts: Phi3.5-moe, Deepseek-moe-16b-base, and987

Qwen1.5-moe-A2.7B, under three average quan-988

tization bit widths—2.06 bits, 2.56 bits, and 3.03989

bits. For Phi3.5-moe (selecting 2 experts out of 16),990

we set the k-values to 4, 6, 8, 10, 12, and 16 (equiv- 991

alent to MSE loss). For Deepseek-moe-16b-base 992

(selecting 6 experts out of 64) and Qwen1.5-moe- 993

A2.7B (selecting 4 experts out of 64), the k-values 994

are set to 8, 12, 16, 20, 24, 32, 48, and 64 (equiva- 995

lent to MSE loss). For each k-value, we quantize 996

the MoE models to the three average bit widths 997

while keeping other configurations constant and 998

compare their performance on the MMLU dataset 999

(Hendrycks et al., 2021b), which serves as a com- 1000

prehensive benchmark to effectively evaluate the 1001

models’ capabilities across diverse tasks. 1002

As shown in Figure 8, when the k-value is too 1003

small and approaches the number of experts se- 1004

lected per token in the model, significant perfor- 1005

mance degradation occurs. Referring to Figure 4, 1006

this may be attributed to a certain degree of over- 1007

fitting. For Phi3.5-moe, the optimization results 1008

with k-values of 8–10 under all three average quan- 1009

tization bit widths are noticeably better than those 1010

with a k-value of 16. For Deepseek-moe-16b-base 1011

and Qwen1.5-moe-A2.7B, the optimal results are 1012

observed at k-values of 16–24 under 2.06-bit and 1013

2.56-bit quantization. This aligns with our obser- 1014

vations in Figure 4, where our optimization ef- 1015

fectively covers over 95% of the incorrectly unse- 1016

lected experts while avoiding the noise introduced 1017

by experts with low selection probabilities. Under 1018

the 3.03-bit quantization, however, the optimiza- 1019

tion results show minimal variation with changes 1020

in k-value, as the higher quantization bit width in- 1021
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Figure 8: The accuracy of Phi3.5-moe (left), Deepseek-moe-16b-base (middle), and Qwen1.5-MoE-A2.7B (right) on
the MMLU dataset varies under different TopK-MSE optimization under 2.06bit, 2.56bit and 3.03bit quantization.
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Figure 9: The changes in Experts-Selection rates and WikiText2 perplexity (PPL) with varying MHSA quantization
bit-widths on Mixtral-8x7B. "Change Rate 1" corresponds to cases where both selected experts are changed, while
"Change Rate 2" corresponds to cases where one or more expert selections are altered.

herently results in a lower rate of expert selection1022

changes.1023

Based on the above observations, as shown in1024

Table 10, we set the k-values to 8, 20, and 20 for1025

expert selection calibration for the three models,1026

respectively. All quantization-related experimental1027

results in this work are based on this configuration.1028

Table 10: K Values for expert-selection in MoE models
using TopK-MSE calibration

Model Total Experts Experts per Token K

Phi3.5-moe 16 2 8
Deepseek-moe-16b-base 64 6 20
Qwen1.5-MoE-A2.7B 64 4 20

Table 11: Proportion of non-embedding parameters in
MoE models

Model MHSA (%) Experts (%) Router (%)

Mixtral-8x7B 2.894% 97.104% 0.002%
Phi3.5-moe 3.226% 96.774% 0.005%
Deepseek-moe-16b-base 2.852% 97.122% 0.022%
Qwen1.5-MoE-A2.7B 2.945% 97.039% 0.022%

A.5 Quantization Bit-Width Settings 1029

In MoE-LLMs, the vast majority of non-embedding 1030

parameters come from the experts within the MoE 1031

layers, while the router in the MoE layer and 1032

MHSA account for only about 3% of the total pa- 1033

rameters. For the four MoE models used in the ex- 1034

periments of this paper—Mixtral-8x7B, Deepseek- 1035

moe-16b-base, Phi3.5-moe, and Qwen1.5-MoE- 1036

A2.7B—we first conduct a detailed analysis of 1037

the parameter proportions in each component, as 1038

shown in Table 11. Considering that the router 1039

accounts for less than 0.03% of the total parame- 1040

ters, yet plays a crucial role in expert selection, this 1041

work retains the router at its original precision. 1042

Unlike the experts in the MoE layer, the MHSA 1043

component affects all tokens in the input sequence. 1044

Previous studies (Li et al., 2024a) have compared 1045

the impact of increasing the quantization bit-width 1046

of MHSA and the MoE layer on overall model 1047

performance, concluding that MHSA is more bit- 1048

efficient. In this work, we investigate the effect 1049

of MHSA quantization bit-width on overall model 1050

performance from the perspective of expert selec- 1051
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tion change rate. Using Mixtral-8x7B, we conduct1052

the following experiments: keeping the rest of the1053

model at its original precision, the MHSA compo-1054

nent is quantized to bit-widths ranging from 2-bit1055

to 8-bit. We then calculate the average expert selec-1056

tion change rate relative to the original model and1057

the perplexity (PPL) of the quantized model on the1058

WikiText2 (Merity et al., 2016).1059

As shown in Figure 9, within the 2-4 bit range,1060

both the expert selection change rate and PPL are1061

highly sensitive to the quantization bit-width. As1062

the bit-width increases, the expert selection change1063

rate and PPL decrease significantly. This demon-1064

strates that maintaining MHSA at a relatively high1065

quantization bit-width is indeed important for en-1066

suring the quantized model can still select the cor-1067

rect experts and maintain overall model perfor-1068

mance. Considering that in the 4-8 bit range, both1069

metrics change more gradually with increasing bit-1070

width, and from a hardware perspective, current1071

systems are unable to achieve efficient acceleration1072

for bit-widths like 5-bit or 6-bit, we choose to set1073

the MHSA quantization bit-width to 4-bit. This1074

choice strikes a balance between maintaining the1075

performance of the quantized model and minimiz-1076

ing overall memory usage.1077

By comprehensively analyzing the above dis-1078

cussion, we quantize the MHSA section to 4-bit,1079

retaine the router at its original precision, and quan-1080

tize the experts to 2-bit, 2.5-bit, and 3-bit. Under1081

the 2.5-bit setting, we align with previous research1082

(Li et al., 2024a), which finds that the earlier layers1083

in MoE benefit from higher quantization bit-widths.1084

Therefore, we simply quantize the experts in the1085

first half of the layers to 3-bit and those in the sec-1086

ond half to 2-bit. Based on this configuration, we1087

calculate the average bit-width of the experts for1088

the four models under the 2-bit, 2.5-bit, and 3-bit1089

conditions, as shown in Table 12. Since the pa-1090

rameter proportions of different components vary1091

slightly across the four models, the final average1092

Table 12: The average quantization bit-width of the four
models when the experts’ quantization bit-width is set
to 2-bit, 2.5-bit, and 3-bit.

Model 2-bit 2.5-bit 3-bit

Mixtral-8x7B 2.058 2.544 3.029
Phi3.5-moe 2.065 2.549 3.033
Deepseek-moe-16b-base 2.060 2.546 3.031
Qwen1.5-MoE-A2.7B 2.062 2.547 3.032

bit-width also exhibits minor differences. However, 1093

as these differences are negligible, for simplicity, 1094

we represent the average quantization bit-widths of 1095

the four models in this paper as 2.06-bit, 2.54-bit, 1096

and 3.03-bit for the three respective settings. 1097

A.6 Reproduction Details of Quantization 1098

BSP (Li et al., 2024a) and PMQ (Huang et al., 1099

2024a) are two methods built upon GPTQ that fo- 1100

cus on mixed-precision quantization. BSP reports 1101

its results on Mixtral-8x7B and Deepseek-moe-16b- 1102

base in its paper, while PMQ only reports results 1103

on Mixtral-8x7B. To ensure a fair comparison, we 1104

refer to both the papers and official repositories of 1105

these methods, and apply their respective quanti- 1106

zation bit-width allocation strategies to the models 1107

used in this study. We then perform GPTQ quanti- 1108

zation and evaluate the final results using the same 1109

framework as this paper. 1110

Specifically, for BSP, we first use the same cali- 1111

bration datasets mentioned in its paper (WikiText2 1112

dataset) to obtain the expert usage frequencies for 1113

Phi3.5-moe and Qwen1.5-MoE-A2.7B. In Phi3.5- 1114

moe, each MoE layer selects 2 experts out of 16. 1115

Following BSP’s settings for Mixtral-8x7B, at the 1116

3.03-bit bit-width configuration, we allocate 4-bit 1117

to the top-8 most frequently used experts and 2-bit 1118

to the remaining 8 experts. At the 2.54-bit con- 1119

figuration, we allocate 3-bit to the top-8 experts 1120

and 2-bit to the remaining 8 experts. For Qwen1.5- 1121

MoE-A2.7B, each MoE layer selects 4 experts out 1122

of 60, with an additional 4 shared experts. Follow- 1123

ing BSP’s settings for Deepseek-moe-16b-base, all 1124

shared experts are allocated 8-bit. At the 3.03-bit 1125

configuration, we allocate 4-bit to the top-20 most 1126

frequently used experts and 2-bit to the remaining 1127

40 experts. At the 2.54-bit configuration, we al- 1128

locate 4-bit to the top-6 experts and 2-bit to the 1129

remaining 54 experts. 1130

For PMQ, we also use the same calibration 1131

datasets mentioned in its paper (C4 dataset (Raffel 1132

et al., 2020)) to obtain expert usage frequencies 1133

for all four models. For Mixtral-8x7B and Phi3.5- 1134

moe, we directly apply the Integer Programming 1135

(IP) optimization algorithm used in PMQ’s paper to 1136

derive the corresponding mixed-precision bit-width 1137

configurations. For Deepseek-moe-16b-base and 1138

Qwen1.5-MoE-A2.7B, as PMQ’s paper did not dis- 1139

cuss MoE models with shared experts, we use the 1140

same IP optimization algorithm to determine the 1141

mixed-precision bit-width configurations for non- 1142

shared experts under the average bit-width settings 1143
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Table 13: Comprehensive comparison of average accuracy of Mixtral-8x7B on 8 zero-shot tasks under quantization.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 83.57 83.67 59.3 85.35 84.03 76.24 41.64 67.29 72.64

2.06
GPTQ 76.16 75.47 47.91 77.40 71.57 71.98 31.84 48.14 62.56
PMQ 79.16 73.06 48.38 80.58 74.95 71.27 31.79 46.80 63.25

EAC-MoE 79.16 76.30 51.02 76.79 77.27 74.82 36.08 59.01 66.31

2.54

GPTQ 80.56 79.04 56.06 85.84 78.20 73.01 37.62 58.89 68.65
BSP 80.96 77.86 53.24 72.53 77.95 73.56 35.34 52.04 65.44
PMQ 80.52 77.10 51.28 82.54 79.03 73.95 39.18 56.37 67.50

EAC-MoE 81.45 80.77 55.03 84.85 79.44 75.3 37.86 61.37 69.51

3.03
GPTQ 80.63 79.21 55.55 84.59 79.63 74.43 37.49 59.82 68.92
BSP 81.56 79.71 54.59 75.75 80.06 74.74 36.68 54.69 67.22

EAC-MoE 82.97 83.25 58.87 85.47 82.77 76.40 41.81 66.10 72.21

Table 14: Comprehensive comparison of average accuracy of Phi3.5-moe on 8 zero-shot tasks under quantization.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 77.69 65.70 53.58 88.35 79.87 76.80 38.32 76.62 69.62

2.06
GPTQ 75.57 57.87 48.46 86.88 73.01 71.72 32.80 69.29 64.45
PMQ 75.68 50.59 41.55 86.18 78.45 73.86 22.31 62.14 61.35

EAC-MoE 76.17 59.47 49.06 86.80 73.34 71.35 34.64 69.43 65.03

2.54

GPTQ 77.37 61.49 48.98 86.67 75.32 72.61 32.86 71.19 65.81
BSP 76.99 61.41 50.71 87.22 76.09 73.51 32.23 71.05 66.15
PMQ 77.04 57.32 48.21 87.68 77.42 74.27 33.67 72.66 66.03

EAC-MoE 77.09 61.78 51.19 86.57 75.56 73.32 35.08 71.67 66.53

3.03
GPTQ 78.10 63.17 51.96 87.70 78.81 74.59 35.64 75.01 68.12
BSP 77.20 64.60 51.71 87.49 78.73 76.01 33.23 72.40 67.67

EAC-MoE 78.24 62.21 52.56 87.83 78.59 76.16 36.85 75.49 68.49

of 2.06-bit and 2.54-bit. For shared experts, we1144

allocate 2-bit at the 2.06-bit configuration and 3-bit1145

at the 2.54-bit configuration to ensure fairness in1146

comparative experiments with PMQ.1147

A.7 Completed Results of Quantization1148

In Tables 13 to 16, we present the full results of1149

Table 2, including detailed accuracies on eight zero-1150

shot tasks, and compare our approach with GPTQ1151

(Frantar et al., 2022), BSP (Li et al., 2024a) and1152

PMQ (Huang et al., 2024a).1153

A.8 Reproduction Details of Pruning1154

EES (Lu et al., 2024) and ODP (Huang et al.,1155

2024a) are two popular dynamic pruning meth-1156

ods for MoE models, both focusing on ignoring1157

the least-contributing experts for each input token.1158

ODP extends EES by incorporating a significance-1159

aware token protection mechanism.1160

For EES, we use the same calibration dataset as1161

in its paper to compute the ratio between the weight1162

of the least-contributing expert and the weight of1163

the most-contributing expert for each token. The1164

median of all these ratios is selected as the prun-1165

ing threshold. During inference, if the ratio of1166

the least-contributing expert’s weight to the most- 1167

contributing expert’s weight for a given token is 1168

less than this threshold, the weight of the least- 1169

contributing expert is set to zero. 1170

For ODP, we follow the same procedure as EES 1171

to determine the pruning threshold. On top of this, 1172

we incorporate the Significance-Aware Token Pro- 1173

tection mechanism mentioned in the paper. This 1174

mechanism dynamically identifies critical tokens 1175

and prevents the pruning of the least-contributing 1176

experts for these critical tokens, even if they meet 1177

the original pruning condition. 1178

A.9 Completed Results of Pruning 1179

In Table 17, we present the full results of Table 3. 1180

We compare our approach with several other meth- 1181

ods, including EES (Lu et al., 2024) and ODP 1182

(Huang et al., 2024a). 1183

A.10 Completed Results of QESC+PESF 1184

In this subsection, leveraging the three quantization 1185

bit-width settings from QESC and the two pruning 1186

threshold strategies from PESF, we provide a de- 1187

tailed evaluation of different combinations on four 1188

models. The results include the average zero-shot 1189
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Table 15: Comprehensive comparison of average accuracy of Deepseek-moe-16b-base on 8 zero-shot tasks under
quantization.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 80.52 73.19 47.53 72.57 77.43 69.93 31.66 38.18 61.38

2.06
GPTQ 76.77 65.78 40.02 67.34 69.41 65.43 27.50 26.76 54.88
PMQ 77.64 64.73 39.85 67.75 68.7 66.22 26.26 27.16 54.79

EAC-MoE 77.48 70.24 42.66 70.20 68.85 67.01 28.91 31.04 57.05

2.54

GPTQ 78.29 68.48 41.72 69.88 70.97 67.48 28.17 29.65 56.83
BSP 78.89 70.24 42.32 74.34 72.96 68.59 27.87 30.68 58.24
PMQ 78.78 69.70 41.89 74.29 71.27 67.96 29.25 32.89 58.00

EAC-MoE 78.51 69.11 42.32 74.59 73.97 69.14 28.98 33.02 58.71

3.03
GPTQ 78.89 72.22 44.37 72.42 75.15 67.01 29.88 34.72 59.33
BSP 79.68 72.39 44.37 73.98 74.61 68.90 28.14 33.10 59.40

EAC-MoE 80.03 73.15 45.90 75.29 75.68 70.48 31.42 37.83 61.22

Table 16: Comprehensive comparison of average accuracy of Qwen1.5-MoE-A2.7B on 8 zero-shot tasks under
quantization.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 80.79 69.44 44.37 79.57 77.17 69.77 35.57 61.08 64.72

2.06
GPTQ 75.79 65.53 40.02 72.14 67.06 64.48 30.02 47.07 57.76
PMQ 76.14 65.69 40.11 69.88 68.71 64.52 29.01 48.23 57.79

EAC-MoE 78.40 65.28 40.78 70.37 71.50 65.98 29.28 54.56 59.52

2.54

GPTQ 77.48 63.17 39.16 68.69 70.42 64.17 29.28 50.88 57.91
BSP 79.54 65.03 39.59 68.99 73.77 68.51 31.89 55.91 60.40
PMQ 78.16 65.75 41.21 71.34 72.34 68.01 31.66 55.31 60.47

EAC-MoE 78.73 66.50 43.17 73.09 73.53 68.19 32.43 56.12 61.47

3.03
GPTQ 79.27 66.16 41.55 77.89 75.49 67.8 31.66 57.87 62.21
BSP 79.68 65.11 42.32 70.73 75.36 66.38 30.79 56.65 60.88

EAC-MoE 80.47 67.30 41.89 77.99 75.79 69.22 31.46 58.97 62.89

Table 17: Comprehensive comparison of average accuracy of four models on 8 Zero-Shot tasks under pruning.

Model Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg

Mixtral-8x7B

bf16 83.57 83.67 59.30 85.35 84.03 76.24 41.64 67.29 72.64
EES 82.70 81.40 58.45 87.74 83.00 75.24 41.14 64.50 71.40
ODP 82.87 83.21 59.01 84.98 83.69 75.97 40.93 65.17 71.98

PESF(α = 0.3) 83.19 83.29 59.90 85.08 83.40 76.40 40.90 65.36 72.19
PESF(α = 0.7) 68.23 65.15 45.99 78.10 69.39 64.80 29.25 44.86 58.22

Phi3.5-moe

bf16 77.69 65.70 53.58 88.35 79.87 76.80 38.32 76.62 69.62
EES 76.50 63.85 51.37 86.94 78.60 75.14 36.25 75.02 67.96
ODP 77.23 64.94 53.55 88.10 79.21 74.93 38.27 75.11 68.92

PESF(α = 0.3) 77.04 65.53 54.01 88.20 79.82 75.30 37.99 76.30 69.27
PESF(α = 0.7) 75.52 64.94 51.54 86.91 79.51 73.16 37.76 74.24 67.95

Deepseek-moe-16b-base.

bf16 80.52 73.19 47.53 72.57 77.43 69.93 31.66 38.18 61.38
EES 79.98 72.85 48.21 72.51 77.33 70.11 29.88 38.33 61.15
ODP 80.01 72.94 47.41 73.39 77.25 70.14 30.23 38.14 61.19

PESF(α = 0.3) 80.52 73.02 46.93 72.72 77.13 70.32 31.52 38.07 61.28
PESF(α = 0.7) 78.45 73.15 45.90 75.29 75.68 68.51 31.49 34.83 60.41

Qwen1.5-MoE-A2.7B.

bf16 80.79 69.44 44.37 79.57 77.17 69.77 35.57 61.08 64.72
EES 80.52 69.11 44.01 79.45 76.87 69.32 35.11 60.97 64.42
ODP 80.61 69.24 44.12 79.51 77.01 69.32 35.05 60.95 64.48

PESF(α = 0.3) 80.74 69.28 44.28 79.36 77.24 69.77 35.68 60.80 64.64
PESF(α = 0.7) 80.25 69.11 43.94 77.06 76.44 70.09 35.38 58.72 63.87

accuracy and inference speedup ratio, along with1190

specific accuracy on each dataset.1191

Detailed results. Here, we provide detailed results1192

of our method under three quantization bit-widths1193

and two pruning thresholds, as shown in Table 18. 1194

Furthermore, as shown in Tables 19 to 22, we 1195

report the specific results for various configurations 1196

of the four models on each dataset. "EAC-MoE" 1197
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Table 18: Comparison of the average accuracy on 8 zero-shot tasks and speedup of inference across four MoE
models under quantization (QESC) and pruning (PESF). "EAC-MoE" represents the use of conservative PESF
pruning strategy (α = 0.3) based on QESC, "EAC-MoE∗" represents the use of PESF (α = 0.7) based on QESC.

Bits Method
Mixtral-8x7B Phi3.5-moe Deepseek-moe-16b-base Qwen1.5-MoE-A2.7B

0-shot8 ↑ Speedup ↑ 0-shot8 ↑ Speedup ↑ 0-shot8 ↑ Speedup ↑ 0-shot8 ↑ Speedup ↑
16.00 Baseline 72.64 1.00 69.62 1.00 61.38 1.00 64.72 1.00

2.06
EAC-MoE 65.90 1.82 65.26 1.84 56.75 1.59 61.18 1.64
EAC-MoE∗ 49.09 1.93 62.16 2.03 54.81 2.01 60.02 2.08

2.54
EAC-MoE 68.60 1.74 65.98 1.80 58.17 1.56 61.41 1.60
EAC-MoE∗ 53.01 1.81 63.80 2.02 56.83 1.98 60.57 2.03

3.03
EAC-MoE 71.68 1.68 68.31 1.75 61.09 1.55 62.73 1.58
EAC-MoE∗ 57.55 1.76 66.66 1.98 58.82 1.96 61.77 2.01

Table 19: Detailed results of average accuracy of Mixtral-8x7B on 8 Zero-Shot tasks under quantization and pruning.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 83.57 83.67 59.3 85.35 84.03 76.24 41.64 67.29 72.64

2.06
EAC-MoE 79.76 77.78 50.85 77.28 75.80 73.24 35.88 56.60 65.90
EAC-MoE∗ 61.04 54.42 38.23 69.54 48.15 61.09 24.69 35.58 49.09

2.54
EAC-MoE 81.28 80.13 54.44 83.85 78.66 74.27 37.39 58.78 68.60
EAC-MoE∗ 65.29 58.63 39.25 75.05 58.27 61.56 27.10 38.92 53.01

3.03
EAC-MoE 83.03 82.91 58.28 85.35 82.17 76.87 41.47 63.35 71.68
EAC-MoE∗ 69.98 64.01 42.04 81.92 67.24 63.22 29.98 42.01 57.55

Table 20: Detailed results of average accuracy of Phi3.5-moe on 8 Zero-Shot tasks under quantization and pruning.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 77.69 65.70 53.58 88.35 79.87 76.80 38.32 76.62 69.62

2.06
EAC-MoE 74.16 61.28 48.55 86.64 75.41 73.56 33.10 69.35 65.26
EAC-MoE∗ 72.80 59.01 49.40 83.27 72.74 69.30 32.09 58.68 62.16

2.54
EAC-MoE 75.73 60.61 48.72 86.64 76.84 72.69 35.44 71.18 65.98
EAC-MoE∗ 73.01 58.59 48.38 84.37 74.10 68.67 34.44 68.82 63.80

3.03
EAC-MoE 76.93 62.38 52.39 88.13 78.38 76.01 36.65 75.57 68.31
EAC-MoE∗ 74.65 61.28 50.68 86.24 77.77 72.77 36.75 73.17 66.66

represents the use of conservative PESF pruning1198

strategy (α = 0.3) based on QESC, while "EAC-1199

MoE∗" represents the use of a more aggressive1200

PESF pruning strategy (α = 0.7) based on QESC.1201

A.11 Task-Preference and Sparsity in1202

Experts-Selection1203

In Section 3.3, we calculate the expert selection1204

frequency and pairwise cosine similarity of MoE1205

models across different datasets for four types of1206

reasoning tasks, providing a macroscopic view of1207

the task preferences in expert selection. In this1208

section, we delve deeper into the microscopic de-1209

tails, specifically discussing the expert selection1210

preferences of the Phi3.5-moe and Deepseek-moe-1211

16b-base models across 8 datasets spanning 4 task1212

types. This analysis also aligns with previous work1213

(Li et al., 2024a), further demonstrating their spar-1214

sity. As shown in Figure 10, the four rows, from1215

top to bottom, correspond to four different task1216

types ((QA/CR), Math, Code, Specific Language). 1217

For each row, the left and right plots respectively 1218

show the expert selection frequencies of Phi3.5- 1219

moe on two different datasets of the same task type. 1220

From this, a clear pattern can be observed, indi- 1221

cating that the MoE model exhibits remarkably 1222

similar expert selection preferences across datasets 1223

within the same task category. For example, in the 1224

first row, as illustrated in the left and right subfig- 1225

ures, certain experts such as Expert13 in Layer2, 1226

Expert9 in Layer8, and Expert12 in Layer11 are 1227

frequently selected for the openbookqa and arc- 1228

challenge datasets, with average selection frequen- 1229

cies exceeding 30% (note that each layer has 16 1230

experts, and a completely balanced selection would 1231

result in a frequency of 6.25% per expert). Con- 1232

versely, some experts, such as Expert1 in Layer5, 1233

Expert7 in Layer14, and Expert8 in Layer27, are 1234

rarely selected, with frequencies below 1%. 1235

Similarly, in the second row, for the Math 1236
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Table 21: Detailed results of average accuracy of Deepseek-moe-16b-base on 8 Zero-Shot tasks under quantization
and pruning.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 80.52 73.19 47.53 72.57 77.43 69.93 31.66 38.18 61.37

2.06
EAC-MoE 77.04 69.11 41.30 72.55 69.85 67.48 28.61 28.07 56.75
EAC-MoE∗ 75.19 67.93 39.93 70.45 66.55 63.85 27.77 26.81 54.81

2.54
EAC-MoE 78.29 69.15 42.32 74.50 66.55 63.85 27.77 26.81 54.81
EAC-MoE∗ 76.17 71.74 41.13 71.74 68.31 66.85 28.11 30.57 56.83

3.03
EAC-MoE 79.54 73.15 46.16 75.02 75.55 70.24 31.59 37.45 61.09
EAC-MoE∗ 77.20 71.55 45.05 72.51 72.86 66.46 31.56 33.33 58.82

Table 22: Detailed results of average accuracy of Qwen1.5-MoE-A2.7B on 8 Zero-Shot tasks under quantization
and pruning.

Bits Method PIQA ARC-E ARC-C BOOLQ HS WG MATHQA MMLU Avg
16.00 Full Precision 80.79 69.44 44.37 79.57 77.17 69.77 35.57 61.08 64.72

2.06
EAC-MoE 79.16 65.07 42.83 75.01 72.44 68.19 32.63 54.12 61.18
EAC-MoE∗ 77.91 64.52 42.15 74.86 70.94 67.09 32.26 50.46 60.02

2.54
EAC-MoE 78.78 66.75 43.17 72.57 73.53 68.19 32.29 56.01 61.41
EAC-MoE∗ 77.53 65.24 40.44 74.89 72.49 68.27 32.16 53.52 60.57

3.03
EAC-MoE 80.41 66.92 42.15 76.88 75.81 69.22 31.72 58.72 62.73
EAC-MoE∗ 79.16 66.71 41.30 75.35 74.97 68.75 31.99 55.96 61.77

task across two datasets, experts such as Expert71237

in Layer5, Expert9 in Layer8, and Expert11 in1238

Layer15 are selected with an average frequency1239

exceeding 40%, while others, such as Expert0 in1240

Layer0 and Expert8 in Layer2, are seldom chosen.1241

These results provide detailed evidence that Phi3.5-1242

moe demonstrates a high degree of similarity in1243

expert selection frequencies within task categories1244

while also exhibiting significant sparsity. From1245

another perspective, Phi3.5-moe demonstrates en-1246

tirely distinct expert selection preferences across1247

different reasoning tasks. For instance, Expert13 in1248

Layer2 is frequently selected for (QA/CR) tasks but1249

is neither prominent nor frequently chosen in the1250

other three tasks. Similarly, Expert7 in Layer14 is1251

heavily utilized in Code tasks but is rarely selected1252

in the other three task categories.1253

A similar pattern is observed in Deepseek-moe-1254

16b-base, which has 64 experts per layer, as shown1255

in Figure 11. While displaying clear intra-category1256

similarities and inter-category differences in expert1257

selection, the larger number of experts results in an1258

even greater degree of sparsity in expert selection1259

for Deepseek-moe-16b-base.1260

A.12 Pruning on Mixtral-8x7B1261

In Section 6.3, when employing a more aggres-1262

sive pruning strategy, unlike the other three models1263

which maintain relatively stable average accuracy1264

under significant inference speedup, Mixtral-8x7B1265

exhibits notable performance degradation. This 1266

section delves into this phenomenon and analyzes 1267

its underlying causes. 1268

Similar to Figure 12, we plot the changes in 1269

Mixtral-8x7B’s average accuracy, expert pruning 1270

rate, and inference speedup as the pruning thresh- 1271

old varied. As shown in the figure, unlike Phi3.5- 1272

moe and Deepseek-moe-16b-base, where a signifi- 1273

cant drop in accuracy only occurs when the pruning 1274

threshold exceeded 0.7 and the expert pruning rate 1275

approached 40%, Mixtral-8x7B begins to show a 1276

noticeable decline in accuracy once the pruning 1277

threshold surpassed 0.3. 1278

We further analyze the expert selection fre- 1279

quency of Mixtral-8x7B across two different 1280

datasets. As illustrated in Figure 13, compared to 1281

Phi3.5-moe and Deepseek-moe-16b-base, Mixtral- 1282

8x7B exhibits weaker sparsity in expert selection. 1283

Apart from a few experts, such as Expert6 in 1284

Layer3 (top) and Expert2 in Layer25 (bottom), 1285

whose average selection frequencies exceed the 1286

mean (0.125), the selection frequencies of the 1287

remaining experts are relatively balanced. This 1288

phenomenon has also been noted in (Jiang et al., 1289

2024; Li et al., 2024a). Consequently, Mixtral- 1290

8x7B is more sensitive to dynamic expert prun- 1291

ing compared to the other three models, mak- 1292

ing it less suitable for the aggressive pruning set- 1293

tings (α = 0.7) proposed in our PESF method. 1294

Nevertheless, our approach achieved commend- 1295
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Figure 10: The frequency of expert selection across 8 datasets spanning 4 task types for Phi3.5-moe.

able inference speedup and accuracy retention on1296

Mixtral-8x7B under conservative pruning settings1297

(α = 0.3) . In the future, we aim to explore meth-1298

ods to achieve higher pruning rates and speedup1299

while maintaining accuracy on Mixtral-8x7B.1300

A.13 Datasets used in Expert-Selection1301

Analysis1302

In Section 3.3, we record Expert-Selection fre-1303

quency on 15 datasets of three common cate-1304

gories of NLP tasks——Math, Code-Generation,1305

Question-Answering or Commonsense-Reasoning1306

(QA/CR) and 4 datasets in French language.1307

GSM8K (Cobbe et al., 2021), MathQA (Amini1308

et al., 2019), Minerva_Math (Lewkowycz et al., 1309

2022) and Hendrycks_Math (Hendrycks et al., 1310

2021c) are in Math task; Winogrande (ai2, 2019), 1311

PIQA (Bisk et al., 2020), ARC-Challenge (Clark 1312

et al., 2018), BoolQ (Clark et al., 2019), MathQA 1313

(Amini et al., 2019), HellaSwag (Zellers et al., 1314

2019), and Social_iqa (Sap et al., 2019) are in 1315

QA/CR task; Humaneval (Chen et al., 2021), Mbpp 1316

(Austin et al., 2021), Apps (Hendrycks et al., 1317

2021a) and Conala (Yin et al., 2018) are in code 1318

task; Lambada_fr (Paperno et al., 2016), Xnli_fr 1319

(Conneau et al., 2018), Paws_fr (Zhang et al., 2019) 1320

and Arc_fr (Clark et al., 2018) are datasets in 1321

French language. 1322
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Figure 11: The frequency of expert selection across 8 datasets spanning 4 task types for Deepseek-moe-16b-base
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Figure 12: The variations in the model’s average ac-
curacy, expert pruning rate, and inference acceleration
effect with respect to changes in the pruning threshold
for Mixtral-8x7B.
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Figure 13: The frequency of expert selection on open-
bookqa and humaneval for Mixtral-8x7B.
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