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ABSTRACT

Latent linear interpolations are a powerful tool for navigating the representation
space of deep generative models. This aspect is particularly relevant in applied
settings, where meaningful latent traversals can be learnt to represent the evolution
of a system’s trajectory and mapped back to the often noisy and high-dimensional
data space. However, when real data lies on a manifold with non-trivial geome-
try, linear interpolations of the representation space do not directly correspond to
geodesic paths along the manifold unless enforced. An example of such a setting is
scRNA-seq, where high-dimensional and discrete cellular data is assumed to lie on
a negative binomial statistical manifold modelled by the decoder of a variational
autoencoder. We introduce FlatVI, a novel training framework enforcing Euclidean
geometry in the latent space of discrete-likelihood variational autoencoders mod-
elling count data. In our modelling setting, straight lines in the latent domain are
regularised to approximate geodesic interpolations in the decoded space, improving
the combination of our model with methods assuming Euclidean latent geometry.
Results on simulated data empirically support our claims, while experiments on
temporally resolved biological datasets show improvements in the reconstruction
of cellular trajectories and the learning of biologically meaningful velocity fields.

1 INTRODUCTION

Generative models for representation learning like Variational Autoencoders (VAEs) have influenced
computational sciences in multiple fields (Zhong & Meidani, 2023; Lopez et al., 2018; Griffiths
& Hernández-Lobato, 2020). One reason is that real-world experimental data often poses significant
modelling challenges as it is inherently noisy, high-dimensional, and complex (Sarker, 2021). As a
solution, learning a low-dimensional and dense latent representation of the data has gained traction in
applied machine learning. One example is reconstructing population dynamics, where the evolution
of individual particles in complex systems is learnt from disjoint samples of observations collected
at subsequent time points. In the presence of high-dimensional systems, modelling interpolations in a
well-behaved low-dimensional data embedding can offer valuable insight into the system’s evolution
through time (Džeroski & Todorovski, 2003; Bunne et al., 2022). Furthermore, with the decoder
parameterising a flexible likelihood model, VAEs present a promising avenue for representing both
continuous and discrete data. The latter setting has demonstrated unprecedented potential in cellular
data, particularly in gene expression, which is measured in counts that reflect the number of RNA
molecules produced by thousands of genes and is collected through single-cell RNA sequencing
(scRNA-seq). (Haque et al., 2017). Such a technique allows the measurement of thousands of genes
in parallel and the resulting discrete count vectors describe the state of a cell across diverse biological
settings (Regev et al., 2017).

The representation learnt by VAEs is tightly connected to Riemanniann geometry, as one can see the
latent space as a parametrisation of a low-dimensional manifold (Arvanitidis et al., 2020). When it
comes to modelling latent population dynamics, popular approaches still rely on assuming Euclidean
geometry in the representation space (Bunne et al., 2022; Tong et al., 2020; 2023). A notable example
is the standard formulation of dynamic Optimal Transport (OT) (Benamou & Brenier, 2000), which
exploits straight-line interpolations between observations for learning a time-dependent map across
population snapshots. However, building latent trajectories upon the Euclidean assumption is sub-
optimal when the data lies on a non-Euclidean manifold, as straight latent lines do not necessarily
reflect geodesic paths on the manifold spanned by the decoder, see Fig. 1.
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To learn effective interpolations on real data manifolds, we establish the following desiderata: (i)
Approximate trajectories on intractable data manifolds via interpolations on a simpler latent manifold
with tractable geometry. (ii) Design a VAE decoding scheme that maps the shortest paths on the latent
manifold to geodesics in the decoded space. (iii) Formalise the geodesic matching framework in a way
that supports a flexible choice of the decoder’s likelihood. To achieve (i) and (ii), existing methods
regularise the latent representation of Gaussian AEs using Euclidean geometry (Chen et al., 2020;
Yonghyeon et al., 2021), but limit their application to continuous data by neglecting the decoder’s
general likelihood model support. Other works explore the connection between stochastic decoders’
geometry and the latent space manifold (Arvanitidis et al., 2021), even for discrete data, but do not
address regularising the latent manifold to a simple, traversable geometry while preserving geodesic
paths on the decoded manifold. To our knowledge, no VAE-based method integrates all desiderata.

In this work, we close this gap and introduce FlatVI, Flat Variational Inference, a theoretically
principled approach pushing straight paths in the latent space of a VAE to approximate geodesic paths
along the manifold of the decoded data. Our focus on statistical manifolds—those manifolds whose
points correspond to probability distributions of a pre-defined family, defined over the corresponding
parameter spaceH—enables us to draw connections to the theory of VAEs and information geometry.
When trained as a likelihood model, a VAE’s decoder image spans the manifold’s parameter spaceH.
This formulation finds direct application in scRNA-seq, where individual gene counts are assumed
to follow a negative binomial distribution, reflecting crucial data properties such as discreteness and
overdispersion (Zhou et al., 2011).

Crucially, FlatVI regularises the latent space through a flattening loss that pushes the pullback metric
from a stochastic VAE decoder towards a spatially-uniform scaled identity matrix, thereby regularising
towards latent Euclidean geometry (Fig. 1). In a controlled simulation setting, we demonstrate that
our regularisation successfully constrains the latent manifold to exhibit an approximate Euclidean
geometry, while enabling likelihood parameter reconstruction on par with standard VAEs. Our
method finds direct applications to single-cell representation learning and trajectory inference, which
we demonstrate across multiple biological settings by providing an improved data representation for
OT-based modelling of latent cellular population dynamics. In summary, we make the following
contributions:

• We introduce a regularisation technique for discrete-likelihood VAEs to enforce straight latent
interpolations to approximate geodesic paths on the statistical manifold spanned by the decoder.

• We provide an explicit formulation of the flattening loss for the negative binomial case, which
directly impacts modelling high-dimensional scRNA-seq data.

• We empirically validate our model on simulated data and latent geodesic interpolations.
• We show that our method offers a better representation space for existing OT-based trajectory

inference tools than existing approaches in real data settings.

2 RELATED WORK

We discuss related work on geometry-aware representation learning via Autoencoders (AE), as well
as OT methods for modelling population dynamics with applications in scRNA-seq.
Geometry and AEs. Prior work by Arvanitidis et al. (2020) introduced optimal latent paths re-
flecting observation space geometry in deterministic and Gaussian stochastic decoders, extended by
Arvanitidis et al. (2021) to VAEs with arbitrary likelihoods. Meanwhile, Chen et al. (2020) explored
representation learning benefits by modelling latent spaces of deterministic AEs as flat manifolds,
while other studies incorporate data geometry via isometric (Yonghyeon et al., 2021) and Jacobian
(Nazari et al., 2023) regularisations.
Geometry in single-cell representations. While latent variable models for scRNA-seq data are
established (Lopez et al., 2018; Eraslan et al., 2019), enforcing geometric structures in single-cell
latent spaces is underexplored. Combining single-cell representations and geometry, diffusion-based
manifold learning (Moon et al., 2019; Huguet et al., 2024; Fasina et al., 2023) offers insights into
geometry-aware low-dimensional representations. Investigating single-cell geometry extends to gene
expression data (Korem et al., 2015; Qiu et al., 2022) and dynamic settings (Rifkin & Kim, 2002).
OT for single-cell RNA-seq. OT methods in single-cell transcriptomics have shown potential in
multiple application contexts, such as trajectory inference (Schiebinger et al., 2019; Lange et al.,
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Figure 1: Visual conceptualisation of the FlatVI approach. The decoder of a VAE spans the parameter
space of a statistical manifold of probability distributions. In standard VAE settings, straight latent
paths are not guaranteed to map to meaningful statistical manifold interpolations through the decoder.
By regularising the pullback metric of the stochastic decoder, FlatVI enforces correspondence
between straight paths in the latent space and geodesic interpolations along the statistical manifold of
the decoded space.

2023), spatial reconstruction (Moriel et al., 2021) and multi-modal alignment (Demetci et al., 2022).
Recent efforts have resorted to predicting the effects of drug perturbations on cells (Hetzel et al.,
2022) using neural OT (Bunne et al., 2023) and cell trajectories in an unbalanced setting (Eyring et al.,
2022). The works from Tong et al. (2020) and Huguet et al. (2022) explore the applicability of OT for
modelling gene expression through time. Specifically, Huguet et al. (2022) model continuous single-
cell trajectories in a latent space of a Geodesic Autoencoder (GAE) where distances are regularised to
approximate the geodesic distances of single-cell data. Recently, Haviv et al. (2024) have introduced
a framework for regularising latent distances in AEs to approximate Wasserstein distances between
point clouds in the data space, with promising applications in representation learning for spatially-
resolved RNA-seq. Finally, our latent interpolations rely on Flow Matching (Lipman et al., 2022),
whose OT-based formulation has proved promising at reconstructing trajectories in low-dimensional
and continuous cellular representations (Tong et al., 2023; Kapusniak et al., 2024).

3 BACKGROUND

3.1 VAES FOR DISCRETE DATA WITH APPLICATIONS IN SCRNA-SEQ

In this work, we deal with discrete count data, formally collected in a high-dimensional matrix
X ∈ NN×G

0 , where N represents the number of observations and G the number of features. We
assume that individual sample features xng are independent realisations of a discrete random variable
Xng ∼ P(·|φng) with observation-specific parameters φng . Let x ∈ X= NG0 be an observation. We
consider a joint latent variable model factorising as pϕ(x, z) = pϕ(x|z)p(z), where z ∈ Z= Rd is a
d-dimensional latent random variable with d < G and z ∼ p(z), with p(z) = N (0, Id). Here, Id is
the squared identity matrix with dimension d.

The decoder model is a discrete distribution from a pre-defined family with parameters expressed as
a function of the latent variable z as:

pϕ(x|z) = P(x|hϕ(z)) , (1)

In deep latent variable models, hϕ is a deep neural network termed decoder. VAEs additionally add
an encoder network fψ : X → Z optimised jointly with hϕ through the Evidence Lower Bound
Objective (ELBO), which introduces the following loss:

LELBO = Eqψ(z|x)
[
log pϕ(x|z)

]
− KL

(
qψ(z|x)∥p(z)

)
, (2)

where the first term denotes the likelihood of the data under the decoder model and the second
term is the Kullback-Leibler divergence between a Gaussian variational posterior distribution qψ
parameterised by fψ and a standard multivariate Gaussian prior (Kingma, 2013). In other words, as
long as one can select a parametric family of distributions {P(·|φ)}φ∈H as a reasonable noise model
for the dataset properties, the likelihood of the data can be modelled by the decoder of a VAE.
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In the field of scRNA-seq, biological and technical variability causes sparsity and overdispersion
properties in the expression counts, making the negative binomial likelihood a natural choice for
modelling gene expression. Sparsity arises from technical limitations in detecting gene transcripts
or from unexpressed genes in specific conditions. Overdispersion refers to genes having higher
variance than the mean, deviating from a Poisson model. This is influenced by technical factors and
modelled by the inverse dispersion parameter of a negative binomial distribution (Heumos et al.,
2023). Thus, we assume P(φng) = NB(µng, θg), where µng and θg represent the cell-gene-specific
mean and the gene-specific inverse dispersion parameters, respectively. In the VAE setting, given a
gene-expression vector x, we define the following parameterizations (Lopez et al., 2018):

z = fψ(x), µ = hϕ(z, l) = l softmax(ρϕ(z)) , (3)

where ρϕ : Rd → RG models expression proportions of individual genes and l is the observed
cell-specific size factor directly derived from the data as a cell’s total number of counts l =

∑G
g=1 xg .

The encoder fψ already takes into account the reparametrisation trick (Kingma, 2013). In what
follows, we drop the dependency of h on ϕ for notational simplicity.

3.2 THE GEOMETRY OF (VARIATIONAL) AUTOENCODERS

Deterministic Autoencoders. A common assumption is that continuous data lies near a low-
dimensional Riemannian manifoldMX associated with a latent representation Z and with X = RG.
The decoder h of a deterministic AE model can be seen as an immersion h : Rd → RG of the latent
space Z = Rd into the embedded Riemannian manifoldMX equipped with a metric tensor M.
Definition 3.1. A Riemannian manifold is a smooth manifoldMX endowed with a Riemannian
metric M(x) for x ∈ MX . M(x) is a positive-definite matrix that changes smoothly and defines
a local inner product on the tangent space TxMX as ⟨u,v⟩MX = uTM(x)v, with v,u ∈ TxMX
(Do Carmo & Flaherty Francis, 1992).

From Definition 3.1, it derives that a Riemannian manifold in the decoded space has Euclidean
geometry when M(x) = IG everywhere. In this setting, the geometry of the latent space is directly
linked to the geometry of observation space by the pullback metric M(z) (Arvanitidis et al., 2021):

M(z) = Jh(z)TM(x)Jh(z) , (4)

where x = h(z) and Jh(z) is the Jacobian matrix of h(z). Here, the decoder h is assumed to be
a diffeomorphism between the latent space and its image, such that Jh(z) is full rank for all z.
The existence of a metric M(z) identifies a latent Riemannian manifoldMZ , whose properties are
defined based on the geometry ofMX through Eq. (4). For example, Eq. (4) allows to define the
shortest curve γ(t) connecting pairs of latent codes z1 and z2 as the one minimising the distance
between their images h(z1) and h(z2) onMX . More formally:

dlatent(z1, z2) = inf
γ(t)

∫ 1

0

∥ḣ(γ(t))∥dt = inf
γ(t)

∫ 1

0

√
γ̇(t)TM(γ(t))γ̇(t)dt , (5)

where γ(0) = z1, γ(1) = z2 .

Here, γ(t) : R→ Z is a curve in the latent space with boundary conditions γ(0) = z1 and γ(1) = z2,
and γ̇(t) its derivative along the manifold. Crucial to this work, one notices that combining Eq. (5)
and Definition 3.1, when the the metric tensor M(z) = Id, the curve γ∗(t) minimising Eq. (5) is
the straight line between latent codes.
Variational Autoencoders. While in AEs one deals with deterministic manifolds, in VAEs the
decoder function h maps a latent code z ∈ Z to the parameter configuration ϕ ∈ H of the data
likelihood. If the likelihood has continuous parameters,H = RG represents the parameter space. As
such, the decoder image lies on a statistical manifold, which is a smooth manifold of probability
distributions. Such manifolds have a natural metric tensor called Fisher Information Metric (FIM)
(Nielsen, 2020; Arvanitidis et al., 2021). The FIM defines the local geometry of the statistical
manifold and can be used to build the pullback metric for arbitrary decoders. For a statistical manifold
MH with parameters ϕ ∈ H, the FIM is formulated as

M(ϕ) = Ep(x|ϕ)
[
∇ϕ log p(x|ϕ)∇ϕ log p(x|ϕ)T] , (6)

where ϕ = h(z) and the metric tensor M(ϕ) ∈ RG×G. Analogous to deterministic AEs, one can
combine Eq. (6) and Eq. (4) to formulate the pullback metric for an arbitrary statistical manifold,
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with the difference that the metric tensor is defined based on the parameter spaceH. Thus, the latent
space of a VAE is endowed with the pullback metric for a statistical manifold.

M(z) = Jh(z)TM(ϕ)Jh(z) , (7)

where M(z) ∈ Rd×d. Note that the calculation of the FIM is specific for the chosen likelihood type
and, as such, depends on initial assumptions on the data distribution.

3.3 LEARNING POPULATION DYNAMICS WITH OPTIMAL TRANSPORT

The complexity of learning trajectories in high-dimensional data can be prevented by interpolating
latent representations and decoding intermediate results to the data space for inspection. Here, we deal
with learning population dynamics, which consists of modelling the temporal evolution of a dynamical
system from unpaired samples of observations through time. As such a task is naturally formulated
as a distribution matching problem, dynamic OT has been a popular avenue for population dynamics.

Let the data be defined on a continuous space X = Rd. OT computes the most efficient mapping for
transporting mass from one measure ν, to another η, defined on X . Relevant to dynamical systems,
Benamou & Brenier (2000) introduced a continuous formulation of the OT problem. In this setting,
let pt be a time-varying density over Rd constrained by p0 = ν and p1 = η. Dynamic OT learns a
time-dependent marginal vector field u : [0, 1]× Rd → Rd, where ut(x) = u(t,x). Such a field is
associated with an ordinary differential equation (ODE) dx = ut(x)dt whose solution matches the
source with the target distribution. Therefore, one can use dynamic OT to learn a system’s dynamics
from snapshots of data collected over time.

An efficient simulation-free formulation of dynamic OT comes from the OT Conditional Flow
Matching (OT-CFM) model by Tong et al. (2023), who demonstrated that the time-resolved marginal
vector field ut(x) has the same minimiser as the data-conditioned vector field ut(x|x0,x1), where
(x0,x1) ∼ q(x0,x1) = π(X0,X1) are tuples of points sampled from the static OT coupling π
between source and target batches, X0 and X1. Assuming Gaussian marginals pt and x0 and x1 to
be connected by Gaussian flows, both pt(x|x0,x1) and ut(x |x0,x1) become tractable:

pt(x |x0,x1) = N (tx1 + (1− t)x0, σ
2) (8)

ut(x |x0,x1) = x1 − x0 , (9)

where the value of σ2 is a small pre-defined constant. Accordingly, the OT-CFM loss is

LOT-CFM = Et,q(x0,x1),pt(x|x0,x1)

[
∥vξ(t,x)− ut(x|x0,x1)∥2

]
, with t ∼ U(0, 1). (10)

Given this formulation of dynamic OT, we highlight three aspects: (i) Dynamic OT only applies to
continuous spaces. (ii) OT-CFM benefits from low-dimensional representations since the OT-coupling
is optimised from distances in the state space. (iii) Based on Eq. (8), OT-CFM uses straight lines to
optimise the conditional vector field, thus assuming Euclidean geometry.

In the presence of discrete data like scRNA-seq counts, one can tackle (i) and (ii) by learning dynamics
in a low-dimensional representation of the state space–the latent space of a VAE with a discrete-
likelihood decoder. Note, however, that (iii) is still a shortcoming, since straight lines in the latent
space of a VAE do not reflect geodesic paths on the statistical data manifold unless enforced otherwise,
see Fig. 1. In this work, we tackle the latter problem through a VAE regularisation approach.

4 THE FLATVI MODEL

4.1 LEARNING SINGLE-CELL POPULATION DYNAMICS

We are concerned with learning population dynamics along the statistical manifold spanned by the
decoder of a VAE—for example, a negative binomial manifold in scRNA-seq—, where observations
are collected in T unpaired distributions {νt}Tt=0. Individual time points correspond to separate
snapshot datasets {Xt}Tt=0, each with Nt observations. In latent trajectory modelling, each snapshot
is mapped to a collection {Zt}Tt=0 of latent representations Zt ∈ RNt×d following the setting
described in Sec. 3.1. We wish to use optimal transport with OT-CFM to learn the dynamics of the
system through a parameterised vector field vξ(t, z) in the latent space Z , such that trajectories in Z
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respect the non-Euclidean geometry of the decoded manifold. To achieve such a correspondence, one
can either: (i) act on the OT-CFM algorithm to enforce matching distributions via statistical manifold
interpolations rather than straight paths or (ii) regularise the representation space, such that linear
latent paths correspond to geodesic paths.

(i) The ideal approach would be to replace straight interpolations with geodesic curves in the definition
of the OT-CFM objective, ensuring that trajectories in the latent space reflect the data geometry.
Given a VAE decoder spanning a statistical manifold with metric tensor as in Eq. (7), computing
the optimal coupling π between Zt and Zt+1 to perform OT-CFM requires calculating the geodesic
distance in Eq. (5) between all pairs of observations from the consecutive snapshots. However,
estimating γ(t) for all pairs of observations in consecutive batches is unfeasible in large datasets like
in scRNA-seq, as it requires solving an optimisation problem to find the optimal γ∗(t) connecting all
pairs of observations in source and target batches.

(ii) Alternatively, one could seek to regularise the latent space of a VAE in such a way that the latent
manifoldMZ has Euclidean geometry, while the non-linear stochastic decoder reintroduces the
complex geometry of the statistical manifoldMH of the decoded space, pushed by the minimisation
of the reconstruction loss. In other words, the goal is to set a correspondence between straight
paths in the latent space and geodesic interpolations along the statistical manifold. If this is verified,
decoded trajectories generated using Euclidean OT-CFM in the latent space of the VAE do not violate
the geometry of the data manifold. Motivated by applications to single-cell VAEs, we opt for (ii).

4.2 FLATTENING LOSS

To ensure that straight latent paths model geodesics along the decoded statistical manifold, we
introduce a regularisation to the standard VAE objective which enforces a constant Euclidean local
geometry in the latent manifold MZ . Recall from Sec. 3.2 that the latent space of a VAE has
local geometry denoted by the metric in Eq. (7) which is a function of the Fisher information of
the decoder’s likelihood given the decoded parameters ϕ ∈ H. From Eq. (5) we also know that if
M(z) = Id, then the geodesic distance between each pair of latent points is given by the straight line
between them. Therefore, regularising the product Jh(z)TM(ϕ)Jh(z) towards Id forces a VAE to
model Euclidean latent geometry. Crucially, the non-linear decoder is still trained to reconstruct the
original data space under the likelihood optimisation task in the ELBO (Eq. (2)), reinstating the local
geometry of the decoded statistical manifold described by M(ϕ).

In summary, we implement a flattening loss Lflat to induce latent Euclidean geometry in VAEs with
the decoder modelling the data likelihood. Our regularisation is defined as follows:

Lflat = Eqψ(z|x)
∥∥M(z)− αId

∥∥ 2

2
. (11)

Here, M(z) is calculated by Eq. (7), hence it depends on the Fisher information M(ϕ) of the
decoder’s likelihood and the Jacobian of the decoder Jh(z). Meanwhile, α is a trainable parameter
offering some flexibility on the scale of the diagonal constraint. In VAEs, the loss of FlatVI is
combined with the ELBO:

LFlatVI = LELBO + λLflat , (12)

where λ controls the strength of the flattening regularisation. On synthetic data, one can show
that such an approach yields better manifold interpolations (more in App. I.2). In our real-world
single-cell experiments on learning population dynamics, we first train a VAE with regularisation
as in Eq. (12), then we use the resulting Euclidean representation space for latent OT-CFM. The
procedure used to train FlatVI is summarised in Algorithm 1, whereas its combination with OT-CFM
is illustrated in Algorithm 2.
Remarks. Both the reconstruction loss in the ELBO and the flattening objective influence the
decoder parameters. This is because both the Fisher information and Jacobian depend on the decoded
likelihood parameters. Thus, training FlatVI involves updating the decoder to both reconstruct the
data and produce a scaled identity as a latent metric. Additionally, note that evaluating the flattening
loss is slower than the usual VAE loss, as it requires differentiating through the decoder to compute
the FIM.
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4.3 APPLICATION: FLATVI ON A NEGATIVE BINOMIAL SINGLE-CELL MANIFOLD

In this work, we are interested in modelling cellular trajectories to study the evolution of biological
processes. As outlined in Sec. 3.1, single-cell counts are modelled with a negative binomial decoder
with the following univariate point mass function for each gene g independently:

pNB(xg|µg, θg) = C
( θg
θg + µg

)θg( µg
θg + µg

)xg
,where C =

Γ(θg + xg)

xg!Γ(θg)
, µ, θ > 0

with xg ∈ N0 and µg = hg(z). Notably, since the decoder h produces cell-specific means, each cell
is deemed as an individual probability distribution. Consequently, we assume that the data lies on
a statistical manifold parameterised by the decoder in the space of negative binomial distributions.
According to Eq. (7), we pull back the FIM of the statistical manifold of the negative binomial
probability distribution to the latent manifoldMZ .
Proposition 4.1. The pullback metric evaluated at the latent point z ∈ Z of a negative binomial
statistical manifold parameterised by the mean decoder h and inverse dispersion θ is

M(z) =
∑
g

θg
hg(z)(hg(z) + θg)

∇zhg(z)⊗∇zhg(z) , (13)

where ⊗ is the outer product of vectors and g indexes individual decoded dimensions.

We provide the proof of Proposition 4.1 in App. A. Note that we only take the gradient of the mean
decoder h since the inverse dispersion parameter is not a function of the latent space. We use the
definition of M(z) in Eq. (13) to apply the flattening loss in Eq. (11) to single-cell data and learn
latent cellular trajectories downstream using Euclidean OT-CFM. In App. D, we also include an
estimate of the complexity for computing the FIM.

5 EXPERIMENTS

We show that FlatVI improves both real and simulated discrete data. Our regularization enhances
the approximation of constant Euclidean geometry in the latent manifold while preserving accurate
likelihood parameter reconstruction on synthetic data. FlatVI also boosts single-cell data represen-
tation and trajectory inference, especially when paired with Euclidean OT. Lastly, we demonstrate
its effectiveness as a model for learning biologically relevant vector fields on the cellular manifold.

5.1 SIMULATED DATA

Table 1: Comparison between FlatVI and the un-
regularised NB-VAE (λ = 0) in terms of likeli-
hood parameter reconstruction (MSE (µ) and (θ))
and geodesic path flattening. The latter metric is
the MSE between latent Euclidean and geodesic
distances computed using Eq. (5) between 1000
couples of simulated observations.

Reg. strength λ MSE (µ) (↓) MSE (θ) (↓) MSE (Geo-Euc) (↓)
λ = 0 15.52±0.94 3.10±0.19 47.75±2.80

λ = 1 16.34±0.46 5.67±0.88 46.34±6.45

λ = 3 16.35±0.53 3.09±0.31 16.74±2.32

λ = 5 14.75±0.12 3.20±0.20 8.65±1.68

λ = 7 15.47±0.20 3.38±0.09 8.02±0.67
λ = 10 15.41±0.07 3.08±0.13 11.80±1.04

Task and datasets. To demonstrate the prop-
erties of our model, we evaluate the effect of
FlatVI on latent representations using a mul-
tivariate negative binomial synthetic dataset.
Our goal is to establish the successful induc-
tion of Euclidean geometry in the latent space
of the VAE while preserving data reconstruc-
tion. We simulate 1000 observations from a
10-dimensional negative binomial distribution
with known mean (µ) and inverse dispersion
(θ). To emulate a real scenario, we generate
cells from three distinct categories, represent-
ing biological cell types (see Fig. 5 for the PCA
representation of the data). A cell-type label is
drawn uniformly from the three available classes, each defined by a different mean distribution. The
means of negative binomial observations across categories are sampled from normal distributions
with centres at -1, 0, and 1, each with a standard deviation of 1. These means are exponentiated to
ensure positivity. Gene-specific inverse dispersion parameters are sampled from a Gamma distribution
(concentration 2, rate 1) and made positive via absolute value. All cells share the same gene-specific
dispersion parameters. More information about the simulation setting is in App. F.2.
Evaluation. For regularisation strengths λ ∈ {0, 1, 3, 5, 7, 10} we evaluate: (i) The Mean Squared
Error (MSE) reconstruction of the mean µ and inverse dispersion θ of the simulated data obtained by
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training the regularised VAE and decoding the latent representations. (ii) The MSE between geodesic
and Euclidean distances between couples of latent codes. The geodesics between pairs of latent
codes are learnt as cubic splines minimising the curve length illustrated in Eq. (5) using Eq. (7) as a
metric tensor. A successful training recovers the true parameters of the data-generating process while
imposing proximity between the Euclidean and pullback-based geodesic distances between latent
codes. Furthermore, we visually evaluate two Riemannian metrics in the absence of regularisation
and when λ = 7 1: The Variance of the Riemannian metric (VoR) and the condition number (CN)
following Chen et al. (2020) and Yonghyeon et al. (2021). Briefly, given a pullback metric tensor
M(z), the VoR quantifies the uniformity of the Riemannian metric across space by computing the
distance between M(z) and M̄ = Ez∼pz [M(z)]. A VoR of 0 indicates constant metric across Z . The
CN is the ratio between the maximum and minimum eigenvalues of the Riemannian metric. It is close
to 1 when the metric tensor is close to the identity metric. A successful flattening of the latent space
involves low VoR and CN close to 1. We provide a more thorough definition of the metrics in App. F.1.

ca b

Figure 2: Comparison between the latent geome-
tries of the NB-VAE (top row) and FlatVI trained
with λ = 7 (bottom row) evaluated in terms of (a)
Variance of the Riemannian metric (VoR), (b) Con-
dition Number (CN) and (c) Straightness of the
geodesic paths connecting pairs of latent points.

Results. In our simulation setting, results
in Tab. 1 show that our regularisation forces
geodesic distances to better approximate Eu-
clidean distances in the latent space compared
to an unregularized NB-VAE, with increasing
λ reducing the MSE between pairwise geodesic
and Euclidean distances. Meanwhile, the capa-
bilities of our model to reconstruct the mean
(µ) and inverse dispersion parameter (σ) do not
degrade when the regularisation strength is in-
creased. The plots in Fig. 2 serve as additional
proof of the flattening mechanism. Inducing Eu-
clidean geometry into the latent space ensures a
more uniform local geometry, as the latent man-
ifold of FlatVI does not exhibit as many regions
of systematically high VoR or CN as in the stan-
dard NB-VAE setting (see Fig. 2a-b). Despite
the flattening, some limited regions with high
CN and VoR remain in the FlatVI embedding.
We compare our results with an Euclidean space
in App. I.1.2 and investigate the cause for high VoR and CN values in App. I.1.4. In Fig. 2c we sample
10 couples of points from regions of high VoR in the NB-VAE latent space and plot geodesic paths
according to Eq. (5) on both FlatVI and its unregularised counterpart. FlatVI achieves straight paths,
while pullback-based geodesic interpolations in the standard NB-VAE bottleneck show a curvature.

5.2 RECONSTRUCTION OF SCRNA-SEQ TRAJECTORIES

Task and dataset. Our basic hypothesis is that FlatVI’s latent space offers a better representation
for Euclidean OT than the standard unregularised VAE, as our flattening loss changes the parameters
of the decoder to approximate local Euclidean geometry in the latent manifold. Here, we show the ad-
vantages of using FlatVI in combination with Euclidean OT-CFM for mapping single-cell trajectories
through time on two real datasets: (i) The Embryoid body (EB) (Moon et al., 2019) dataset profiles
18,203 differentiating human embryoid cells over five time points, generating four lineages. (ii) The
reprogramming dataset (MEF) (Schiebinger et al., 2019) explores the reprogramming of mouse em-
bryonic fibroblasts into induced pluripotent stem cells, comprising 165,892 cells across 39 time points.

Baselines. We compare FlatVI with a standard VAE (NB-VAE) trained with a negative binomial
decoder (Lopez et al., 2018) as representation models for continuous OT. Additionally, we evaluate
latent OT on the embeddings produced by the GAE model described in Huguet et al. (2022) and
introduced in Sec. 2. The latter model is trained on log-normalised gene expression to better
accommodate the lack of a discrete probabilistic decoder. More details on the difference between
FlatVI and GAE are in App. C.2. All three approaches are used to derive embeddings of time-resolved
gene expression datasets. Subsequently, we use the cell representations to train an OT-CFM model
and learn latent trajectories using unpaired batches of observations from consecutive time points.

1Chosen based on the flattening results in Tab. 1.
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Table 2: Comparison of cellular trajectory reconstruction on held-out time points using different
representation models. Latent trajectories are learnt with OT-CFM leaving out intermediate time
points and using them as ground truth for evaluating the interpolation of the cellular dynamics.
Distribution matching metrics are evaluated to compare real held-out points and reconstructions
thereof in both the decoded and latent space across three seeds.

EB MEF
Latent Decoded Latent Decoded

WD (↓) L2 (↓) D (↑) C (↑) MMD (↓) WD (↓) WD (↓) L2 (↓) D (↑) C (↑) MMD (↓) WD (↓)
GAE 2.16±0.14 0.40±0.06 0.05±0.00 0.02±0.00 0.14±0.04 70.29±0.00 2.49±0.22 0.57±0.07 0.00±0.00 0.00±0.00 0.38±0.01 106.83±0.01

NB-VAE 2.07±0.07 0.30±0.02 0.22±0.03 0.38±0.03 0.09±0.01 43.36±0.19 2.07±0.12 0.40±0.05 0.13±0.02 0.10±0.01 0.19±0.01 103.29±0.01

FlatVI 1.54±0.09 0.27±0.03 0.31±0.05 0.49±0.02 0.07±0.01 41.99±0.04 1.64±0.13 0.36±0.05 0.16±0.04 0.13±0.01 0.16±0.01 97.12±0.01

Evaluation. In our quantitative evaluation, we assess the quality of the transport map in the latent
space of different representation models using the 2-Wasserstein and mean L2 distances between
real and reconstructed latent cells per time point. Additionally, we evaluate the mixing of real and
predicted cells in the decoded gene expression space using the nearest-neighbour-based Density and
Coverage (D & C) metrics (Naeem et al., 2020), linear-kernel Mean Maximum Discrepancy (MMD)
Borgwardt et al. (2006) and 2-Wasserstein distance. Notably, for our evaluation, we adopt a similar
strategy as Tong et al. (2020). For each dataset, we leave out intermediate time points and train
OT-CFM on the remaining cells. The capacity of OT to reconstruct unseen time point t from t− 1
during inference is an indication of the interpolation abilities of the model along the data manifold.
Here, we use such an evaluation paradigm to compare different representation spaces. A value of
λ = 1 is chosen for the EB dataset, while for the MEF reprogramming setting, we set λ = 0.1.
The hyperparameter is tuned based on the value that leads to the best representation for trajectory
reconstruction on training data (see App. E for more details).
Results. In Tab. 2, we report the reconstruction metrics between true and interpolated latent cells. On
all datasets and metrics, trajectories in FlatVI’s Euclidean latent space yield better overall latent time
point reconstruction results compared to the baseline representation models, valuing the contribution
of our regularisation choices. Furthermore, the experiments show that our approach yields an overall
improvement in the inferred decoded trajectories in the count space, which can be seen by higher Den-
sity and Coverage metrics and lower MMD and 2-Wasserstein distances across all evaluated datasets.

5.3 LATENT VECTOR FIELD AND LINEAGE MAPPING

Task and dataset. We evaluate the capacity of continuous OT to identify a biologically meaningful
cell velocity field using the representation spaces computed by FlatVI, the unregularised NB-VAE and
the GAE model. We hypothesise that dynamic OT with Euclidean cost benefits from being applied to
a flat representation space. As a dataset for the analysis, we employ the Pancreatic endocrinogenesis
(Pancreas) by Bastidas-Ponce et al. (2019), which measures 16,206 cells and spans embryonic days
14.5 to 15.5, revealing multipotent cell differentiation into endocrine and non-endocrine lineages.
More specifically, we train the compared representation learning frameworks on the dataset and learn
separate vector fields for all models’ embeddings matching days 14.5 to 15.5 with OT-CFM. The learnt
vector field represents the directionality of the observations on the cellular development manifold.
Evaluation. Using the CellRank model (Lange et al., 2022; Weiler et al., 2023), we build random
walks on a cell graph based on the directionality of latent velocities learnt by OT-CFM in the different
representation spaces. Walks converge to macrostates representing the endpoints of the biological
process if the learnt velocity field points to biologically meaningful directions. We quantify the quality
of vector fields learnt by OT in different latent spaces based on (i) the number of macrostates identified
by random walks, (ii) the velocity consistency, measured as the correlation of the latent velocity
field of single datapoints with that of the neighbouring cells. Higher consistency indicates smoother
transitions in the vector field, suggesting that the representation space facilitates more coherent and
biologically meaningful dynamics, making it a suitable space for learning trajectories (see App. F.1).

Results. Figure 3a summarises the number of terminal cell states identified by following the velocity
graph. From prior biological knowledge, it is known that the dataset contains six terminal states,
which are all identified on the representation computed by our FlatVI (λ = 1). In contrast, on the GAE
and NB-VAE’s representations, CellRank only captures four and five terminal states, respectively. In
Figure 3b, we further evaluate the velocity consistency within neighbourhoods of cells as a function
of latent dimensionality. In line with previous results, OT on the Euclidean latent space yields a more
consistent velocity field across latent dimensionalities.
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Figure 3: Learning terminal states from OT-CFM’s cell velocities in the Pancreas dataset. (a)
Comparison of terminal states found by CellRank using 10-dimensional latent spaces. (b) Consistency
computed for the latent velocities of cells across different latent space dimensions.

5.3.1 SINGLE-CELL DATA REPRESENTATIONS

Figure 4: 2D PCA plots of the latent spaces com-
puted by GAE, NB-VAE and FlatVI. Marked are
initial, intermediate and terminal cell states along the
biological trajectory.

Finally, we visualise single-cell latent rep-
resentations on the previously introduced
datasets computed using the FlatVI, NB-VAE,
and GAE models. For FlatVI, the value of λ
was set to 1 for EB and Pancreas and 0.1 for
the MEF dataset, in line with previous settings.
In Figure 4, we compare the PCA embeddings
of FlatVI’s latent space with competing mod-
els, highlighting initial and terminal cellular
states. Despite the regularisation, FlatVI ef-
fectively represents the biological structure in
the latent space as illustrated by the separation
between initial and terminal states. This is
particularly evident in the MEF dataset, where
FlatVI provides clearer separation between ini-
tial and terminal states, suggesting improved
identification of cellular dynamics. In Tab. 7
we show that such a separation is more pro-
nounced than competing models also on the
Pancreatic dataset based on quantitative clustering metrics. Moreover, the higher variance explained
by individual PCs in FlatVI’s latent space suggests that our model captures the main sources of varia-
tion (the biological trajectories) more efficiently, reducing latent space dimensionality and enhancing
information compression while preserving or even improving biological fidelity. Consequently,
FlatVI is well-suited for smaller latent spaces, making it a promising input for OT-based methods.

6 CONCLUSION

We addressed modelling temporal trajectories from unpaired cell distributions by using walks on flat
NB manifolds. To achieve this, we introduced FlatVI, a VAE training strategy where the pullback
metric of the stochastic decoder is regularised to approximate the identity matrix and regularise
towards local Euclidean geometry in the latent space. Consequently, straight latent paths correspond
to geodesic interpolations in the decoded space. Results on real and synthetic data demonstrate that
our flattening procedure holds and enhances the biological structure in the latent space. By combining
this approach with dynamic OT, we observed better prediction outcomes and more consistent vector
fields on cellular manifolds. These improvements benefit key tasks in cellular development, such as
fate mapping and trajectory analysis.
Limitations and future work. A limitation of applying FlatVI to real data is that excessive regulari-
sation may cause a trade-off between flattening and reconstruction likelihood. We aim to enhance
the model’s robustness to reconstruction loss and extend it to a wider range of statistical manifolds
and single-cell tasks, such as modelling Poisson-distributed chromatin accessibility, batch correction
evaluation, and OT-mediated perturbation modelling.
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7 ETHICS STATEMENT

The presented work deals with fundamental characteristics of scRNA-seq data and studies how
efficient representations of complex high-dimensional cellular data can help to address key biological
questions. We envision the release of FlatVI as a user-friendly, open-source tool to enable its
widespread use as an option for single-cell analysis. Dealing with biological data, FlatVI could be
used in sensitive settings involving clinical information and patient data.

8 REPRODUCIBILITY STATEMENT

The details for the reproduction of our work are contained in the Appendix and the main text. The
proof for the derivation of the pullback metric of a negative binomial VAE is provided in App. A. A
procedural description of the FlatVI model training and its combination with OT-CFM can be found
in App. H, more specifically in Algorithm 1 and Algorithm 2. Baselines are detailed in App. B.1. The
range of explored hyperparameters is provided in Tab. 3 and details on the model training choices are
reported in App. E. All metrics are explained in App. F.1 and experiments are described in detail in
App. F.2. All datasets are public and reported with the relative reference publications in App. G.1 and
in the main. Pre-processing is outlined in App. G.2. Computational resources are listed in App. G.3.
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A DERIVATION OF THE FISHER INFORMATION METRIC FOR THE NEGATIVE
BINOMIAL DISTRIBUTION

We first show that the Fisher Information of a univariate Negative Binomial (NB) distribution
parameterised by mean µ and inverse dispersion θ with respect to µ is

M(µ) =
θ

µ(µ+ θ)
. (14)

We then move on with the derivation of the pullback metric in Proposition 4.1.

Fisher information of the NB distribution. The univariate NB probability distribution parame-
terised by mean µ and inverse dispersion θ is

pNB(x | µ, θ) =
Γ(θ + x)

x!Γ(θ)

( θ

θ + µ

)θ( µ

θ + µ

)x
. (15)

The Fisher information of the distribution can be computed with respect to µ as:

M(µ) = −Ep(x|µ,θ)
[
∂2

∂µ2
log pNB(x | µ, θ)

]
. (16)

where

log pNB(x | µ, θ) = C + θ [log(θ)− log(θ + µ)] + x [log(µ)− log(θ + µ)] , (17)

with C = log(Γ(θ + x))− log(x!)− log(Γ(θ)). Then, it can be shown that

∂2

∂µ2
log pNB(x | µ, θ) =

θ + x

(θ + µ)2
− x

µ2
. (18)

Using the fact that the parameterisation involving the mean µ and inverse dispersion θ implies that

Ep(x|µ,θ) [x] = µ , (19)

we can expand Eq. (16) as follows

M(µ) = −Ep(x|µ,θ)
[

θ + x

(θ + µ)2
− x

µ2

]
= − 1

(θ + µ)2
Ep(x|µ,θ) [θ + x] +

1

µ2
Ep(x|µ,θ) [x] (20)

=
θ

µ(µ+ θ)
.

Derivation of the Fisher information metric. We here consider the NB-VAE case, where the
likelihood is parameterised by µg = hg(z) and θg independently for each gene g.

When h is a continuously differentiable function of z, the pullback metric Mg(z) of the output g w.r.t
z by the reparameterisation property (Lehmann & Casella, 2006) is

Mg(z) = ∇zhg(z)M(hg(z))∇zhg(z)
T

=
θg

hg(z)(hg(z) + θg)
∇zhg(z)⊗∇zhg(z) , (21)

where ⊗ is the outer product of vectors, and the gradients are column vectors.

By the chain rule, the joint Fisher information of independent random variables equals the sum of the
Fisher information values of each variable (Zamir, 1998). As all xg are independent given z in the
NB-VAE, the resulting Fisher Information Metric (FIM) is

M(z) =
∑
g

Mg(z)

=
∑
g

θg
hg(z)(hg(z) + θg)

∇zhg(z)⊗∇zhg(z) . (22)
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B THE GEOMETRY OF AES

We deal with the assumption that the observed data lies near a Riemannian manifoldMX embedded
in the ambient space X = RG. The manifoldMX is defined as follows:

Definition B.1. A Riemannian manifold is a smooth manifoldMX endowed with a Riemannian
metric M(x) for x ∈ MX . M(x) changes smoothly and identifies an inner product on the tangent
space TxMX at a point x ∈MX as ⟨u,v⟩MX = uTM(x)v, with v,u ∈ TxMX .

For an embedded manifold MX with intrinsic dimension d, we can assume the existence of an
invertible global chart map ξ :MX → Rd mapping the manifoldMX to its intrinsic coordinates. A
vector vx ∈ TxMX on the tangent space ofMX can be expressed as a pushforward vx = Jξ−1(z)vz

of a tangent vector vz ∈ Rd at z = ξ(x), where J indicates the Jacobian. Therefore, Jξ−1 maps
vectors v ∈ Rd into the tangent space of the embedded manifoldMX . Following Arvanitidis et al.
(2020), the ambient metric M(x) can be related to the metric M(z) defined in terms of intrinsic
coordinates via:

M(z) = Jξ−1(z)TM(ξ−1(z))Jξ−1(z) . (23)

In other words, we can use the metric M(z) to compute quantities on the manifold, such as geodesic
paths. However, for an embedded manifoldMX , the chart map ξ is usually not known. A workaround
is to define the geometry ofMX on another Riemannian manifoldMZ with a trivial chart map
ξ(z) = z for z ∈MZ , which can be mapped toMX via a smooth immersion h. In the next section,
we elaborate on the connection between manifold learning and autoencoders following Arvanitidis
et al. (2020; 2021).

B.1 DETERMINISTIC AES

We assume the decoder h : Z = Rd → X = RG of a deterministic autoencoder is an immersion of
the latent space into a Riemannian manifoldMX embedded in X and with metric M. This is valid
if one also assumes that d is the intrinsic dimension ofMX . As explained before, the Jacobian of
the decoder maps tangent vectors vz ∈ TzMZ to tangent vectors vx=h(z) ∈ TxMX . The decoder
induces a metric into the latent space following Eq. (23) as

M(z) = Jh(z)TM(h(z))Jh(z) , (24)

called pullback metric. The pullback metric defines the geometry of the latent manifold MZ
compared to that of the manifoldMX . The metric tensor M(z) regulates the inner product of vectors
u and v on the tangent space TzMZ :

⟨u,v⟩MZ = uTM(z)v . (25)

To enhance latent representation learning, distances in the latent space Z can be optimised according
to quantities of interest in the observation space X , following the geometry ofMX . For instance,
we can define the length of a curve γ : [0, 1]→ Z in the latent space by measuring its length on the
manifoldMX :

L(γ) =

∫ 1

0

∥∥∥ḣ(γ(t))∥∥∥ dt

=

∫ 1

0

√
γ̇(t)TM(γ(t))γ̇(t)dt , (26)

where the equality is derived by applying the chain rule of differentiation.

B.2 PULLING BACK THE INFORMATION GEOMETRY

In machine learning, exploring latent spaces is crucial, especially in generative models like VAEs.
One challenge is defining meaningful distances in the latent space Z , which often depends on
the properties of stochastic decoders and their alignment with the observation space. Injecting
the geometry of the decoded space of a VAE into the latent space requires a different theoretical
framework, where the data is assumed to lie near a statistical manifold.
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VAEs can model different kinds of data types by using the decoder function as a non-linear likelihood
parameter estimation model. We consider the decoder’s output space as a parameter spaceH for a
probability density function. Depending on the data type, we express a likelihood function p(x | ϕ)
with parameters ϕ ∈ H, reformulated as p(x | z) through a mapping h : Z → H. We aim to define a
natural distance measure in Z for infinitesimally close points z1 and z2 = z1 + δz when seen from
H. Arvanitidis et al. (2021) justify that such a distance corresponds to the Kullback-Leibler (KL)
divergence:

dist2(z1, z2) = KL(p(x | z1), p(x | z2)) . (27)
To define the geometry of the statistical manifold, one can resort to information geometry, which
studies probabilistic densities represented by parameters ϕ ∈ H. In this framework,H becomes a
statistical manifold equipped with a FIM:

M(ϕ) =

∫
X
[∇ϕ log p(x | ϕ)][∇ϕ log p(x | ϕ)]T p(x | ϕ) dx . (28)

The FIM locally approximates the KL divergence. For a univariate density p, parameterised by ξ, it is
known that

KL(p(x | ϕ), p(x | ϕ+ δϕ)) ≈ 1

2
δϕ⊤M(ϕ)δϕ+ o(δϕ2) . (29)

In the VAE setting, we view the decoder not as a mapping to the observation space X but as a
transformation to the parameter spaceH. This perspective allows us to naturally incorporate the FIM
into the latent space Z . Consequently, the VAE’s decoder can be seen as spanning a manifoldMH in
H, withMZ inheriting the metric in Eq. (28) via the Riemannian pullback. Based on this, we define
a statistical manifold.
Definition B.2. A statistical manifold is represented by a parameter spaceH of a distribution p(x | ξ)
and is endowed with the FIM as the Riemannian metric.

The Riemannian pullback metric is derived as in Eq. (24). Having defined the Riemannian pullback
metric for VAEs with arbitrary likelihoods, one can extend the measurement of curve lengths in Z
when mapped toH through h as displayed by Eq. (26). This approach allows flexibility in the choice
of the decoder, as long as the FIM of the chosen distribution type is tractable.

C BASELINE DESCRIPTION

C.1 GAE

Here, we describe the Geodesic Autoencoder (GAE) from Huguet et al. (2022). For more details on the
theoretical framework, we refer to the original publication. The GAE works by matching Euclidean
distances between latent codes with the diffusion geodesic distance, which is an approximation of the
diffusion ground distance in the observation space.

Briefly, the authors compute a graph with affinity matrix based on distances between observations i
and j using a Gaussian kernel as:

(Kϵ)ij = kϵ(xi,xj) , (30)
with scale parameter ϵ, where xi,xj ∈ X and X is the observation space. The affinity is then density-
normalised by Mϵ = Q−1KϵQ

−1, where Q is a diagonal matrix such that Qii =
∑
j(Kϵ)ij . To

compute the diffusion geodesic distance, the authors additionally calculate the diffusion matrix
Pϵ = D−1Mϵ, with Dii =

∑n
j=1(Mϵ)ij and stationary distribution πi = Dii/

∑
jDjj . The

diffusion geodesic distance between observations xi and xj is

Gα(xi,xj) =

K∑
k=0

2−(K−k)α∥(Pϵ)
2k

i: − (Pϵ)
2k

j: ∥1 + 2−(K+1)/2∥πi − πj∥1 , (31)

with α ∈ (0, 1/2). The running value of k in Eq. (31) defines the scales at which similarity between
the random walks starting at xi and xj are computed.

Given the diffusion geodesic distance Gα defined in Eq. (31), the GAE model is trained such that the
pairwise Euclidean distances between latent codes approximate the diffusion geodesic distances in
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the observation space X , in a batch of size B. Given an encoder f : RG → Rd, the reconstruction
loss is optimised alongside a geodesic loss

Lgeodesic =
2

B

N∑
i=1

∑
j>i

(∥f(xi)− f(xj)∥2 −Gα(xi,xj))
2 . (32)

C.2 ADDITIONAL COMPARISON BETWEEN FLATVI AND GAE

Although related in scope, FlatVI significantly differs from the Geodesic Autoencoder (GAE) pro-
posed by Huguet et al. (2022). Firstly, GAE is a deterministic autoencoder optimised for reconstruc-
tion based on a Mean Squared Error (MSE) loss. As such, the model is not tailored to simulate gene
counts. On the contrary, FlatVI optimises the decoder as an NB model, such that sampling from
it produces discrete counts. This aspect has two advantages. By focusing on learning continuous
parameters of a discrete likelihood, FlatVI explicitly models distributional properties of single-cell
transcriptomics data, such as overdispersion, sparsity and discreteness. On the contrary, a fully con-
nected Gaussian decoder produces dense and continuous cells, failing to preserve the characteristics of
the data. Moreover, the GAE’s regularisation relies on the construction of a k-nearest-neighbourhood
to approximate the geodesic distance between data points. This method requires the computation
of pairwise Euclidean distances in the observation space. As suggested previously, gene expression
is high dimensional and, therefore, deceiving due to the Curse of Dimensionality. On the contrary,
leveraging only the Jacobian and the output of the decoder to enforce latent space Euclideanicity,
FlatVI is more suitable for larger datasets and eludes computing distances in high dimensions.

D COMPUTATIONAL COMPLEXITY OF THE FIM COMPUTATION

Here is a breakdown of the complexity of Eq. (22):

• First, it is easier to reflect on the complexity of the computation from Eq. (7), M(z) =
Jh(z)TM(ϕ)Jh(z), which is the generalisation of Eq. (22).

• We call G the number of genes and d the dimensionality of the latent space. We also
assume that G >> d. Since one mean parameter is decoded per gene dimension, ϕ is also
G-dimensional.

• By the definition of decoder’s Jacobian, Jh(z) is a G× d matrix. The Fisher information
matrix (M(ϕ)) is a G × G since it represents the second derivative of the likelihood of a
data point given the parameters. For a formal definition of the Fisher information metric,
please refer to Eq. (16) and Eq. (22).

• Given this formulation, the complexity of Jh(z)TM(ϕ) is O(dG2), yielding a d×G matrix.
Such matrix is multiplied by a G×d matrix (Jh(z)). This operation has complexity O(d2G).

• Since G >> d, the complexity is bounded by the first product, thus it is O(dG2).

Note that the same result is obtained by evaluating the sum of matrices derived by outer products in
Eq. (22) since the operation is equivalent. Finally, we only provided the computational complexity of
the product evaluation. Bear in mind that in practice one must factor in the complexity of evaluating
the decoder h at the latent point z.

E MODEL SETUP

Experimental details for Autoencoder models. The Geodesic AE, NB-VAE and FlatVI models
are trained via shallow 2-layer neural networks with hidden dimensions [256, 10]. Between
consecutive layers, we include batch normalisation, as we found that it improves the reconstruction
loss. Non-linearities are introduced by the ELU activation function. Models are trained for 1000
epochs monitoring the VAE loss for early stopping with a 20-epoch patience. The learning rate is
set by default to 1e-3. Additionally, we increase the KL divergence from 0 to 1 linearly across
epochs in VAE models. The NB-VAE and FlatVI models are trained with a batch size of 32. We
employed a batch size of 256 for the geodesic AE model after sweeping all values in {64, 100, 256}
and comparing the validation loss of different configurations. Importantly, the geodesic autoencoder
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was trained to reconstruct log-normalised counts, unlike the NB-VAE and FlatVI, since it does not
assume an NB decoder. Finally, for training stability, all encoders are fed with log(1 + x) given an
input x. The list of hyperparameters explored for FlatVI together with the selected values based on
the validation loss is provided in Tab. 3.

Table 3: Hyperparameter sweeps for training FlatVI. The hidden dimension column excludes the
latent space layer, which is set to 10 unless specified otherwise. In bold, is the selected value used to
present the results in the main.

batch size hidden dims λ

EB 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10
Pancreas 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10

MEF 32, 256, 512 [1024, 512, 256], [512, 256], [256] 0.001, 0.01, 0.1, 1, 10

Experimental details for OT-CFM. For OT-CFM we use a 3-layer MLP with 64 hidden units per
layer, a SELU activation function and a learning rate of 1e-3. The velocity network is fed with a latent
state concatenated with a scalar representing the time used for interpolation. Following suggestions
from the OT-CFM repository 2, in each epoch we collect batches of cells from all time points to
compute the objective for backpropagation. The variance hyperparameter σ is set to 0.1 by default.

The choice of the hyperparameter λ. The hyperparameter λ is crucial to control the degree of
latent space flatness achieved by FlatVI (Tab. 1) but it can also lead to a decrease in the model
likelihood if flattening is over-prioritised. A higher value of λ corresponds to a more uniform
(lower VoR) and flatter (lower CN) latent geometry. It is therefore important to choose a value
of such a hyperparameter to ensure that flatness is enforced and reconstruction is good enough to
predict realistic gene trajectories. In our experiments, we tested FlatVI followed by OT-CFM for
different values of λ. Specifically, we increase the value of λ as far as it produces an improved latent
reconstruction by OT-CFM. For most real datasets, increasing λ from 0.1 to 1 produces performance
increases in trajectory reconstruction, whereas moving from 1 to 10 does not. For the more complex
MEF dataset, moving from 0.1 to 1 did not improve OT-CFM-based trajectory reconstruction, so we
decided to set λ to 0.1.

F EVALUATION METRICS

F.1 METRIC DESCRIPTION

Condition number. Given a metric tensor M(z), let Smin and Smax be its lowest and highest
eigenvalues, respectively. The condition number (CN) is defined as the ratio

CN(M(z)) =
Smax

Smin
. (33)

Notably, an identity matrix has a CN equal to 1. The CN is an indicator of the stability of the metric
tensor. A well-conditioned metric with a CN close to 1 suggests that the lengths and angles induced
by the metric are stable. A large condition number means that the distances are more stretched in
some directions than others. On an Euclidean manifold with a scaled diagonal metric tensor, distances
are preserved in all directions.

Variance of the Riemannian metric. In assessing the Riemannian metric, we introduce a key
evaluation called the Variance of the Riemannian Metric (VoR) (Pennec et al., 2006). VoR is defined as
the mean square distance between the Riemannian metric M(z) and its mean M̄ = Ez∼pz [M(z)]. As
suggested in Yonghyeon et al. (2021), we compute the VoR employing an affine-invariant Riemannian
distance metric d, expressed as:

d2(A,B) =

m∑
i=1

(
log λi(B

−1A)
)2

, (34)

2https://github.com/atong01/conditional-flow-matching
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where λi(B
−1A) indicates the ith eigenvalue of the matrix B−1A. VoR provides insights into

how much the Riemannian metric varies spatially across different z values. When VoR is close to
zero, it indicates that the metric remains constant throughout the support of Pz. This evaluation
procedure focuses solely on the spatial variability of the Riemannian metric and is an essential aspect
of assessing the learned manifolds. Note that the expected value in Eq. (34) is estimated using batches
of latent observations with size 256.

Density. (Naeem et al., 2020) Let Y and X be sets of generated and real data points with M and
N observations, respectively. The neighbourhood sphere B(xi,NNDk(xi)) is the spherical region
around a real datapoint xi with, as radius, the distance between xi and the furthest of its k-nearest
neighbours. For a generated sample yi, Density evaluates the number of real neighbourhood spheres
that encompass yj . Mathematically, the metric is defined as:

Density(X,Y) =
1

kM

M∑
j=1

N∑
i=1

1yj∈B(xi,NNDk(xi)) . (35)

The Density metric rewards generated samples situated in regions where real samples are densely
clustered. Importantly, Density can be higher than 1.

Coverage. (Naeem et al., 2020) Similar to Density, Coverage builds a k-nearest-neighbourhood
around the real samples as the sphere B(xi,NNDk(xi)). Given real and generated samples X and Y
with N and M observations, Coverage is defined as:

Coverage(X,Y) =
1

N

N∑
i=1

(
1∃j s.t.yj∈B(xi,NNDk(xi))

)
. (36)

Thus, Coverage measures the fraction of real samples whose neighbourhoods contain at least one
generated sample. The score is bound between 0 and 1.

Velocity Consistency. (Gayoso et al., 2024) This metric quantifies the average Pearson correlation
between the velocity v(xj) of a reference cell xj and the velocities of its neighbouring cells within
the k-nearest-neighbour graph. It is mathematically expressed as:

cj =
1

k

∑
x∈Nk(xj)

corr(v(xj), v(x)) . (37)

Here cj represents the Velocity Consistency, k denotes the number of nearest neighbours considered
in the k-nearest-neighbour graph, xj is the reference cell, Nk(xj) represents the set of neighbouring
cells. The value corr(v(xj), v(x)) is the Pearson correlation between the velocity of the reference
cell v(xj) and the velocity of each neighbouring cell v(x). Higher values of cj indicate greater local
consistency in velocity across the cell manifold.

F.2 EXPERIMENT DESCRIPTION

Simulation details. We simulate 10-dimensional negative binomial data from three distinct categories
parameterised by means following distinct distributions and the same inverse dispersion. The negative
binomial means µ are drawn from 10-dimensional Gaussian distributions with category-specific
means -1,0 and 1. The inverse dispersion parameters θ are again random and drawn from the same
distribution across the different classes, namely a Gamma distribution with concentration equal to 2
and rate equal to 1. We exponentiate the means and take the absolute value of inverse dispersions
to make them strictly positive. Note, that we do not use size factors in the simulation experiment.
Overall, we simulate 1000 observations drawn uniformly from different categories.

Parameter reconstruction and Euclidean distance approximation (Tab. 1). We train FlatVI with
different levels of regularisation strength for the flattening loss controlled via the λ parameter. As
evaluation metrics for the data reconstruction, we consider how well FlatVI reconstructs the mean
µ and inverse dispersion θ parameters used to simulate individual cells. The last evaluation metric
(indicated as MSE(Geo− Euc)) quantifies the MSE between geodesic and Euclidean distances
evaluated across 1000 pairs of randomly sampled points. In short, 1000 couples of simulated cells are
first sampled and encoded using FlatVI with different levels of regularisation. Between the elements
z1 and z2 of each couple, we calculate:
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• The Euclidean distance between the latent representations z1 and z2.
• The geodesic distance on the latent manifold MZ between z1 and z2. To compute the

geodesic distance, we use the StochMan software 3 Given a metric tensor, the geodesic
distance between two points on a manifold can be computed as the length of the shortest
curve connecting such two points along the manifold, following Eq. (5). We approximate
the shortest connecting curve with a cubic spline learnt to solve the minimisation task in
Eq. (5), hence the curve that leads to the shortest walk on the manifold between the two
points. Thanks to the relationship between the Fisher information (Eq. (16)) and the KL
divergence between infinitesimal displacements on the latent manifold (see Eq. (29)), we
reformulate the task as follows:

dlatent(z1, z2) = inf
γ(t)

∫ 1

0

KL(p(x|h(γ(t))), p(x|h(γ(t+ dt))))dt , (38)

where γ(0) = z1, γ(1) = z2 .

Here, p(x|h(γ(t))) is a negative binomial distribution conditioned on the parameters derived
as the decoded latent interpolation point. Note that t here refers to the interpolation. In
practice, we optimise the curve in Eq. (38) as a spline γ̂(t) defined over 100 discretised
interpolation steps.

Both Euclidean and geodesic distances result in two vectors of 1000 values (one per couple), which
we compare to each other via MSE. A lower MSE signifies that geodesic distances better approximate
Euclidean distances. All these results were computed over three training repetitions of models with
distinct regularisation strengths.

Spearman correlation between Euclidean and geodesic distances and neighbourhood overlap
metrics (Tab. 4). We additionally assess to what extent the Euclidean distances and the pullback
geodesics induce a comparable neighbourhood structure as well as to what extent these distances are
correlated. Across 5 repetitions, we sample 50 simulated points, encode them with VAEs trained with
different regularisation strengths and compute:

• The geodesic distance between all pairs of sampled observations using Eq. (38).
• The Euclidean distance between all pairs of sampled observations.

Here, we only use 50 observations per repetition due to the computational burden of Eq. (38). After
we collect the Euclidean and geodesic distances we calculate their average Spearman correlation per
data point. Moreover, using the two pairwise distance matrices, we obtain two distinct neighbourhood
structures (we evaluate the 3 and 5 nearest neighbours to account for local structure). Given the
neighbourhoods from the Euclidean and pullback geodesic distances, we calculate the neighbourhood
overlap metric as the average proportion of nearest neighbours assigned to a data point both according
to geodesics and Euclidean distances. A high value of such a metric signifies that, on average, the
neighbourhood structure according to the pullback geodesic distance corresponds to the Euclidean
one.

Riemannian metrics and path visualisation. Riemannian metrics only take the metric tensor at
individual latent codes as input (see App. F.1). The metric tensor for individual observations is
calculated following Eq. (13). The geodesic paths in Fig. 2c are again approximated by cubic splines
optimising the task in Eq. (38). We compute such paths for 10 randomly drawn pairs in the region
exhibiting high VoR in the unregularised VAE model for demonstration purposes.

Trajectory reconstruction experiments. In Table 2, we explore the performance of OT on different
embeddings based on the reconstruction of held-out time points. For the EB dataset, we evaluate
the leaveout performance on all intermediate time points. Conversely, on the MEF reprogramming
dataset (Schiebinger et al., 2019) we conduct our evaluation holding out time points 2, 5, 10, 15, 20,
25 and 30 to limit the computational burden of the experiment. Note that the Pancreas dataset used for
Fig. 3 could not be used for this analysis, since it only has two time points: an initial and a terminal
one. After training OT-CFM excluding the hold-out time point t, we collect the latent representations
of cells at t− 1 and simulate their trajectory until time t, where we compare the generated cells with

3https://github.com/MachineLearningLifeScience/stochman/tree/
black-box-random-geometry.
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the ground truth via distribution matching metrics both in the latent and in the decoded space (L2 and
2-Wasserstein distance in the latent space, Density, Coverage, 2- Wasserstein distance and MMD
in the decoded space). Density and Coverage in the gene expression space are used to evaluate the
mixing between the real and generated cells. Their values are computed in the PCA space of 50
dimensions of the log-transformed real and generated gene counts, considering 10 neighbours. For
the latent reconstruction quantification, generated latent cell distributions at time t are standardised
with the mean and standard deviation of the latent codes of real cells at time t to make the results
comparable across embedding models. Results in Tab. 2 are averaged across three seeds.

Fate mapping with CellRank. We first train representation learning models on the Pancreas
dataset. Then, following the setting proposed by Eyring et al. (2022), we learn a velocity
field over the latent representations of cells by matching time points 14.5 to 15.5 with OT-
CFM and input the velocities to CellRank (Lange et al., 2022; Weiler et al., 2023). Using
the function g.compute macrostates(n states, cluster key) of the GPPCA esti-
mator for macrostate identification Reuter et al. (2019), we look for 10 to 20 macrostates.
If OT-CFM cannot find one of the 6 terminal states within 20 macrostates for a certain rep-
resentation, we mark the terminal state as missed (see Figure 3). Terminal states are com-
puted with the function compute terminal states(method, n states). Velocity con-
sistency is estimated using the scVelo package (Bergen et al., 2020) through the function
scv.tl.velocity confidence(adata latent flat). The value is then averaged across
cells.

G DATA

G.1 DATA DESCRIPTION

Embryoid Body (EB). Moon et al. (2019) measured the expression of 18,203 differentiating human
embryoid single cells across 5 time points. From an initial population of stem cells, approximately
four lineages emerged, including Neural Crest, Mesoderm, Neuroectoderm and Endoderm cells. Here,
we resort to a reduced feature space of 1241 highly variable genes. OT has been readily applied to the
embryoid body datasets in multiple scenarios (Tong et al., 2020; 2023), making it a solid benchmark
for time-resolved single-cell trajectory inference. The data is split into 80% training and 20% test sets.

Pancreatic Endocrinogeneris (Pancreas). We consider 16,206 cells from Bastidas-Ponce et al.
(2019) measured across 2 time points corresponding to embryonic days 14.5 and 15.5. In the dataset,
multipotent cells differentiate branching into endocrine and non-endocrine lineages until reaching 6
terminal states. Challenges concerning such dataset include bifurcation and unbalancedness of cell
state distributions across time points (Eyring et al., 2022). The data is split into 80% training and
20% test sets.

Reprogramming Dataset (MEF). We consider the dataset introduced in Schiebinger et al. (2019),
which studies the reprogramming of Mouse Embryonic Fibroblasts (MEF) into induced Pluripotent
Stem Cells (iPSC). The dataset consists of 165,892 cells profiled across 39 time points and 7 cell
states. For this dataset, we keep 1479 highly variable genes. Due to its number of cells, such a dataset
is the most complicated to model among the considered. The data was split into 80% training and
20% test sets.

G.2 DATA PREPROCESSING

We use the Scanpy (Wolf et al., 2018) package for single-cell data preprocessing. The general pipeline
involves normalisation via sc.pp.normalize total, log-transformation via sc.pp.log1p
and highly-variable gene selection using sc.pp.highly variable genes. 50-dimensional
embeddings are then computed via PCA through sc.pp.pca. We then use the PCA represen-
tation to compute the 30-nearest-neighbour graphs around single observations and use them for
learning 2D UMAP embeddings of the data. For the latter steps, we employ the Scanpy func-
tions sc.pp.neighbours(adata) and sc.tl.umap(adata). Raw counts are preserved in
adata.layers["X counts"] to train FlatVI.
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G.3 DETAILS ABOUT COMPUTATIONAL RESOURCES

Our model is implemented in Python 3.10, and for deep learning models, we used PyTorch 2.0. For
the implementation of NeuralODE-based simulations, we use the torchdyn package. Our experiments
ran on different GPU servers with varying specifications: GPU: 16x Tesla V100 GPUs (32GB RAM
per card) / GPU: 2x Tesla V100 GPUs (16GB RAM per card) / GPU: 8x A100-SXM4 GPUs (40GB
RAM per card)

H ALGORITHM

Problem setting. For time-resolved scRNA-seq data, cells are collected in T unpaired distributions
{νt}Tt=0. Individual time points correspond to separate snapshot datasets {Xt}Tt=0, each with Nt

observations. Every snapshot is mapped to tuples {(Zt, lt)}Tt=0 of latent representations Zt ∈ RNt×d
and size factors lt ∈ NNt0 following the setting described in Sec. 3.1. We wish to learn the dynamics
of the system through a parameterised function in the latent space Z of a VAE, taking advantage of
its continuity and lower dimensionality properties.

Size factor treatment. Since the size factors lt required for decoding are observed variables
derived from single-cell counts in the dataset, their values are not available when simulating novel
cell trajectories from t = 0, hindering the use of the decoder to recover individual gene evolution.
Assuming that the size factor is a real number and related to the cell state, we include log lt in the
latent dynamics and infer its trajectory together with the latent state representation zt. The log is
taken for training stability. Therefore, we learn a velocity field vξ : [0, 1] × Rd+1 → Rd+1 on
the concatenated state st = [zt, log lt]. The time-resolved vector field vξ is modelled by matching
subsequent pairs of cell distributions.

Gene expression trajectories. If the latent space Z can be injectively mapped to the parameter
manifold H, trajectories in Z correspond to walks across the continuous parameter space via the
stochastic decoder h. The temporal trajectory of the likelihood parameter vector µt is given by

µt = h

(
s0 +

∫ t

0

vξ(t
′, st′) dt′

)
, (39)

where µ0 = h(s0) and we express the decoder function h(zt, lt) from Eq. (3) as h(st) for simplicity.
Then, assuming a gene-wise constant inverse dispersion θg , discrete trajectories of gene counts follow
the noise model xt ∼ NB(µt,θ).

Algorithm 1 Train FlatVI

Require: Data matrix X ∈ NN×G
0 , batch size B, maximum iterations nmax, encoder fψ, decoder

hϕ, flatness loss scale λ
Ensure: Trained encoder fψ , decoder hϕ, and inverse dispersion parameter θ

Randomly initialize gene-wise inverse dispersion θ
Randomly initialize the identity matrix scale α as a trainable parameter
for i = 1 to nmax do

Sample batch Xb ← {x1, ...,xB} from X
lb ← compute size factor(Xb)
Zb ← fψ(1 + logXb)
µ← hϕ(Z

b, lb)
LKL ← compute kl loss(Zb)
Lrecon ← compute nb likelihood(Xb,µ,θ)
M(Zb)← Eq. (22)
Lflat ← MSE(M(Zb), αId)
L = Lrecon + LKL + λLflat
Update parameters via gradient descent

end for
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Algorithm 2 Train latent OT-CFM with FlatVI
Require: Datasets {Xt}Tt=0, variance σ, batch size B, initial velocity function vξ, maximum itera-

tions nmax, trained encoder fψ
Ensure: Trained velocity function vξ
{Zt}Tt=0 ← fψ({1 + logXt}Tt=0)
{lt}Tt=0 ← compute size factor({Xt}Tt=0)
{St}Tt=0 ← timewise concatenate({Zt}Tt=0, {lt}Tt=0)
for i = 1 to nmax do

Initialize empty array of velocity predictions V
Initialize empty array of velocity ground truth U
for ttraj = 0 to T − 1 do

Randomly sample batches with B observations Sbttraj , S
b
ttraj+1

π ← OT(Sbttraj , S
b
ttraj+1)

(Sbttraj , S
b
ttraj+1) ∼ π

t ∼ U(0, 1)
Sb ← N (tSbttraj + (1− t)Sbttraj+1, σ

2Id)
Append vξ(t+ ttraj,S

b) to V
Append (Sbttraj+1 − Sbttraj) to U

end for
LOT−CFM ← ∥V −U∥2
Update parameters via gradient descent

end for

I ADDITIONAL RESULTS

I.1 SIMULATED NEGATIVE BINOMIAL DATA

I.1.1 SIMULATED DATA VISUALISATION

Figure 5: The PCA dimensionality reduction plot of the simulated data from three categories.

I.1.2 COMPARISON WITH EUCLIDEAN SPACE METRICS

In Fig. 6 we provide an extension to Fig. 2 where we add how the VoR, CN and geodesic paths
should appear in the Euclidean space. Notably, both CN and VoR are uniform, equating to 1 and
0, respectively. Furthermore, while some points in the simulated data exhibit high values for VoR
and CN, the representation from FlatVI is more compatible with the expected one under Euclidean
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ca b

Figure 6: Comparison between the latent geometries of the NB-VAE (top row), FlatVI trained with
λ = 7 (middle row) and an example Euclidean space of 1000 points evaluated in terms of (a) Variance
of the Riemannian metric (VoR), (b) Condition Number (CN) and (c) Straightness of the geodesic
paths connecting pairs of latent points. The Euclidean panels are simulated as uniformly sampled
points on a regular grid.

geometry than a normal NB-VAE. Additionally, path straightness is better preserved in FlatVI’s latent
geodesics compared to the counterpart, validating the purpose of our model.

I.1.3 ADDITIONAL METRICS

In addition to the metrics reported in Tab. 1, in Tab. 4 we provide further results that justify the
usage of our flattening loss in the simulated data setting. The new metrics (Spearman correlation
coefficient and Neighbourhood overlap) are described in App. F.2. Such values represent how much
the latent pullback geodesic and Euclidean distances and the neighbourhood structures deriving from
them correspond. As can be inferred from the table, adding the regularisation promotes an overall
improvement of the metrics. While Spearman correlation does not drastically separate results, adding
the flattening regularisation marks an improvement in neighbourhood preservation metrics of up to
18% when considering 3 neighbours and 14% when using 5-point neighbourhoods. In other words,
the pullback geodesics is better reflected by the Euclidean distance when applying our regularisation,
which provides evidence of the working principles of our flattening loss.

I.1.4 ANALYSIS OF SUB-OPTIMALLY FLATTENED REGIONS

In Fig. 2, we show that introducing our flattening loss component in the VAE model training ensures
a lower and more uniform Riemannian metric throughout the space, as well as lower CN. However,
some points of our simulation dataset still display high decoding distortion and variance in the
Riemannian metric as signals of insufficient flattening. In Fig. 7, we show that latent paths between
points of high VoR and their neighbours do display some curvature, indicating regions of the manifold
with sub-optimal Euclidanisation. We investigated what causes points to exhibit a high VoR in both
FlatVI (λ=7) and the regular NB-VAE. First, we found that regions of high VoR and CN in FlatVI
tend to overlap, while in NB-VAE they are less correlated (see Fig. 8a). Hence, while for most of
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Table 4: Comparison between FlatVI and the unregularised NB-VAE (λ = 0). Spearman (Geo-Euc)
represents the Spearman correlation between latent Euclidean distances, where the latter are computed
using Eq. (5). The Neighborhood metrics (respectively accounting for 5 and 3 neighbours) measure
the proportion of neighbours per data point that correspond between the Euclidean and Geodesic
distance matrices. The error bars are derived from 5 repetitions of the experiment. Every repetition
consists of drawing 50 generated data points, computing the pairwise geodesic and Euclidean latent
distances and deriving the above metrics.

λ Spearman (Geo-Euc) (↑) Neighbourhood overlap (5nn) (↑) Neighbourhood overlap (3nn) (↑)
λ = 0 0.94±0.00 0.50±0.01 0.66±0.00

λ = 1 0.95±0.00 0.57±0.01 0.63±0.00

λ = 3 0.96±0.01 0.68±0.03 0.77±0.00

λ = 5 0.97±0.01 0.58±0.01 0.67±0.01

λ = 7 0.97±0.01 0.60±0.01 0.72±0.01

λ = 10 0.97±0.00 0.68±0.02 0.80±0.03

VoR = 51.96

VoR = 40.76

VoR = 51.63

VoR = 48.10

VoR = 40.03

VoR = 41.23

Figure 7: Geodesic paths between regions with high VoR and CN in the FlatVI embeddings with
λ = 7. Every row represents a point with high VoR and CN. The columns are five randomly sampled
neighbours in the dataset. Every plot represents the geodesic path between the point with high VoR
and CN and the associated neighbour. As a representation of high VoR and CN, we select points with
the VoR value larger than 30.

the observations, flattening applies, the pullback metric from the decoder violates uniformity and
preservation of angles and distances in some portion of the space.

We check the label annotation of the insufficiently flattened regions by overlying their VoR and CN
values onto the UMAP plot of the real data (see Fig. 8b-c). By this analysis, we note that the high VoR
and CN data points are concentrated at the inter-class boundaries in FlatVI’s latent space (see Fig. 9).
In other words, observations in regions of the manifold enriched by different classes representing
state transitions are more likely to fail to flatten. The fact that high VoR and CN are concentrated in
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a

b

c
r = 0.58r = 0.21

c

Figure 8: (a) The scatter plot and correlation values between VoR and CN in the embeddings
computed by NB-VAE and FlatVI. (b-c) The UMAP plots of the real data coloured by class and CN
and VoR values from the NB-VAE and FlatVI embeddings.

Figure 9: The UMAP plots computed on the actual simulated count data coloured by the CN from
the FlatVI embeddings. Highlighted are regions with high VoR and CN. External boxes represent the
label compositions of the highlighted regions (for a label-specific colour legend, see Fig. 8)b.

regions of class heterogeneity may suggest that FlatVI fails to unfold some fast-changing manifold
regions at the intersection between classes and the decoder needs to violate the isometry between the
Euclidean latent space and the statistical manifold to ensure a proper reconstruction.

I.2 CIRCULAR MANIFOLD SIMULATION

Inspired by a toy example involving noisy circular data (Arvanitidis et al., 2021), we designed an
experiment where data points are sampled from a 2D circular manifold embedded within a 3D
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Gaussian statistical manifold with constant variance (σ2 = 0.1). The 3D manifold is endowed with
the Fisher Information metric for the Gaussian distribution, as described in Arvanitidis et al. (2021).

In this experiment, we train a 3D Variational Autoencoder (VAE) with flattening regularisation
strengths λ ∈ {0, 0.5, 1} and a 2D latent space. After training, linear interpolations between random
pairs of points in the latent space are computed, and the resulting geodesic paths are plotted on the
2D manifold. The results, shown in Fig. 10, display red paths between point pairs, representing the
decoded means of the Gaussian likelihood.

2D manifold 2D manifold embedded in 3D

Decoded linear paths visualised on the 2D manifold 

Figure 10: Top. A 2D circular manifold embedded in a 3D Gaussian statistical manifold. b. Manifold
interpolations (red lines) between pairs of points computed by training a Gaussian VAE with varying
levels of flattening regularisation. Paths are obtained by performing linear interpolations between the
latent codes of the source and target points. These linear interpolations are decoded, and the mean of
the resulting decoded Gaussian distributions is visualised on the 2D manifold.
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I.3 VELOCITY ESTIMATION

We compared our whole pipeline involving the combination of FlatVI and OT-CFM with the scVelo
(Bergen et al., 2020) and veloVI (Gayoso et al., 2024) models for RNA velocity analysis. Fig. 11 and
Tab. 5 show examples of how our approach favourably compares with velocity estimation methods,
namely inferring a proper velocity field in Acinar cells and detecting all terminal states with high
velocity consistency in the Pancreas dataset.

Pancreas - Velocity field Acinar branch

scVelo veloVI FlatVI+OT-CFM

UMAP1

 U
M

AP
2

Figure 11: Comparison between the vector field learnt on the Acinar branch of the Pancreas dataset
by using OT-CFM in combination with FlatVI and standard RNA velocity algorithms.

Table 5: Number of terminal states computed by CellRank and velocity consistency using the
representations and velocities learnt by FlatVI+OT-CFM and standard RNA velocity algorithms.

Method Terminal states Consistency

FlatVI + OT-CFM 6 0.94
veloVI 5 0.92
scVelo 4 0.80

I.4 TRAJECTORY VISUALISATION OF REAL DATA

Figure 12: Prediction of scRNA-seq in time. (a) Overlap between real and simulated latent samples
in the EB dataset. WD indicates the 2-Wasserstein distance between real and generated latent cell
representations. (b) 2D UMAP plots of real and predicted cell counts from the cardiac and neural
crest lineages of the EB dataset, comparing FlatVI and GAE as representations for OT-CFM. Colours
indicate the predicted log gene expression of the reported lineage drivers GYPC and HAND1. Under
each UMAP plot, we calculate the percentage of unexpressed marker instances along the trajectory.
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I.5 ADDITIONAL TABLES

Table 6: Runtime, in seconds, evaluated over a single forward pass considering different batch sizes
for each compared model. The runtime is tested over 10 repetitions using random inputs with 2k
dimensions.

Runtime (s)
Batch size GAE NB-VAE FlatVI

8 0.119±0.012 0.000±0.000 0.009±0.004

16 0.095±0.012 0.001±0.000 0.007±0.002

32 0.115±0.012 0.001±0.000 0.004±0.003

64 0.099±0.002 0.001±0.000 0.005±0.000

128 0.116±0.007 0.002±0.000 0.009±0.004

256 0.218±0.017 0.002±0.000 0.009±0.002

512 0.513±0.021 0.002±0.000 0.015±0.004

1024 1.522±0.013 0.003±0.000 0.015±0.001

Table 7: Separation between initial and terminal lineage states evaluated in terms of clustering metrics
in the latent spaces of the distinct models. Different representation spaces are compared on how well
they unroll developmental trajectories.

Silhouette Score (↑) Calinski-Harabasz (↑) Davies-Bouldin (↓)
EB Pancreas MEF EB Pancreas MEF EB Pancreas MEF

GAE 0.28 0.15 0.09 1608.56 1723.13 11232.84 1.03 1.50 2.99
NB-VAE 0.19 0.26 0.21 940.87 2191.48 19440.38 1.28 1.56 2.35

FlatVI 0.21 0.50 0.31 983.41 6986.31 45372.75 1.18 0.73 1.50

Table 8: Univariate Wasserstein-2 distance between simulated and real marker gene expression for
different lineage branches of the EB dataset across models. A lower value indicates that the model
better approximates marker gene trajectories along the branch.

Wasserstein-2 real-simulated markers (↓)
Cardiac Neural Crest Endoderm Neuronal

GATA6 HAND1 TNN2 NGFR GYPC PDGFRB SOX17 GATA3 CDX2 LMX1A ISL1 CXCR4
GAE 0.17 0.28 0.23 0.05 0.24 0.07 0.24 0.14 0.11 0.04 0.04 0.18

NB-VAE 0.03 0.24 0.07 0.07 0.09 0.04 0.08 0.07 0.02 0.02 0.06 0.07
FlatVI 0.02 0.09 0.03 0.02 0.05 0.03 0.08 0.02 0.02 0.01 0.02 0.03
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