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Abstract

In visual speech processing, context modeling001
capability is one of the most important require-002
ments due to the ambiguous nature of lip move-003
ments. For example, homophenes, words that004
share identical lip movements but produce dif-005
ferent sounds, can be distinguished by consid-006
ering the context. In this paper, we propose a007
novel framework, namely Visual Speech Pro-008
cessing incorporated with LLMs (VSP-LLM),009
to maximize the context modeling ability by010
bringing the overwhelming power of LLMs.011
Specifically, VSP-LLM is designed to perform012
multi-tasks of visual speech recognition and013
translation, where the given instructions control014
the type of task. The input video is mapped to015
the input latent space of an LLM by employing016
a self-supervised visual speech model. Focused017
on the fact that there is redundant information018
in input frames, we propose a novel dedupli-019
cation method that reduces the embedded vi-020
sual features by employing visual speech units.021
Through the proposed deduplication and Low022
Rank Adaptation (LoRA), VSP-LLM can be023
trained in a computationally efficient manner.024
In the translation dataset, the MuAViC bench-025
mark, we demonstrate that VSP-LLM trained026
on just 30 hours of labeled data can more effec-027
tively translate lip movements compared to the028
recent model trained with 433 hours of data.029

1 Introduction030

Along with audio, visual speech (e.g., lip move-031

ments) plays a critical role in human communica-032

tion. With the increasing acknowledgment of the033

importance of visual speech, a diverse range of034

visual-based speech processing technologies (As-035

sael et al., 2016; Petridis and Pantic, 2016; Chung036

and Zisserman, 2017a; Ma et al., 2021a, 2022b;037

Yemini et al., 2024) is emerging. For instance, Vi-038

sual Speech Recognition (VSR) (Kim et al., 2021;039

Ma et al., 2022a; Yeo et al., 2023a) allows for the040
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identification of spoken words through the observa- 041

tion of lip movements alone, without the need for 042

audio access. Most recently, the exploration has be- 043

gun into Visual Speech Translation (VST) (Cheng 044

et al., 2023), which directly generates translated 045

text in the target language from the input lip move- 046

ments of the source language. 047

One key challenge in visual speech process- 048

ing is to distinguish homophenes (Kim et al., 049

2022). Homophenes refer to the words having 050

different sounds but showing the same lip move- 051

ments. Therefore, a crucial aspect of developing 052

visual speech processing systems is in the mod- 053

eling of context so that the same lip movements 054

can be mapped into correct different pronuncia- 055

tions (that is distinguishing homophenes). Re- 056

cently, Large Language Models (LLMs) (Zhang 057

et al., 2022a; Brown et al., 2020; Workshop et al., 058

2022) are attracting significant attention across var- 059

ious fields (Han et al., 2023; Wu et al., 2023b; 060

Fathullah et al., 2023), thanks to their versatility 061

and strong ability to model context. Motivated by 062

the recent success of LLMs, we try to investigate 063

whether the rich context modeling ability of LLMs 064

can be employed in visual speech processing and 065

can mitigate the ambiguity of homophenes, espe- 066

cially focusing on two tasks, VSR and VST. 067

To this end, in this paper, we propose a new 068

framework named Visual Speech Processing in- 069

corporated with LLM (VSP-LLM) that learns the 070

seamless embedding of visual speech into the 071

learned text space of LLMs. VSP-LLM employs a 072

self-supervised visual speech model to embed the 073

input visual speech into phoneme-level representa- 074

tions, where the derived phonetic information can 075

be effectively associated with text (Zhang et al., 076

2022b). Moreover, to reduce the computational 077

burden in training along with LLMs, we propose 078

a novel deduplication method that reduces the in- 079

put sequence lengths of LLMs. Concretely, we 080

employ visual speech units, the discretized repre- 081
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sentations of the features from a self-supervised082

model, as indicators for overlapped information be-083

tween sequences. As the visual speech units can be084

regarded as pseudo-text (Lakhotia et al., 2021), the085

visual speech features assigned to the same visual086

speech units are averaged to reduce the processing087

of redundant information and improve computa-088

tional efficiency. Through our analysis, we show089

that the sequence length can be reduced by approxi-090

mately 50% using the proposed deduplication, with091

minimal performance degradation. Finally, the pro-092

posed VSP-LLM is jointly trained to perform VSR093

and VST with a single model which is the first094

explored in this paper. We show that by bringing095

the powerful context modeling ability into visual096

speech processing, we achieve state-of-the-art per-097

formances in both VSR and VST when using the098

LRS3 (Afouras et al., 2018) and MuAViC (Anwar099

et al., 2023) datasets as training data. Additionally,100

our VSP-LLM trained with just 30 hours of data101

outperforms the recent translation model used 433102

hours of training data.103

The key contributions of this paper can be sum-104

marized as follows: 1) To the best of our knowl-105

edge, this is the first work to incorporate visual106

speech modeling with LLMs and achieve state-of-107

the-art performances in VSR and VST. 2) This is108

the first to work to develop a unified visual speech109

processing model that can perform both VSR and110

VST with a single trained model. 3) We propose a111

novel visual speech deduplication that significantly112

improves computational efficiency. 4) We show113

that the proposed VSP-LLM can perform multi-114

tasks with superior performances even in limited115

training resource situations, just with 30 hours of la-116

beled data by outperforming the recent translation117

model.118

2 Related Work119

2.1 Visual Speech Processing120

Visual speech processing technologies are mainly121

comprised of two parts, VSR and VST. VSR is a122

task to recognize the language content by watch-123

ing lip movements, without any sound. The VSR124

technologies have greatly progressed with the de-125

velopment of deep learning. Early works (Chung126

and Zisserman, 2017b; Stafylakis and Tzimiropou-127

los, 2017; Petridis et al., 2017, 2018) utilize the128

CNN (He et al., 2016) and the RNN (Chung et al.,129

2014; Hochreiter and Schmidhuber, 1997) to de-130

vise a word-level VSR system. To expand the VSR131

systems into sentence-level, (Chung et al., 2017; 132

Afouras et al., 2018) have utilized a multi-stage 133

pipeline to automatically collect large-scale VSR 134

data. Based on the large-scale VSR datasets, re- 135

searchers (Serdyuk et al., 2022; Ma et al., 2021b) 136

have developed the VSR systems from the per- 137

spective of architecture, especially the Transformer 138

(Vaswani et al., 2017) have greatly improved the 139

performance of VSR by enabling to capture of the 140

context between any two positions of lip sequences. 141

Moreover, the multimodal learning strategies (Zhao 142

et al., 2020; Afouras et al., 2020; Ren et al., 2021; 143

Ma et al., 2021a; Kim et al., 2021, 2022; Yeo et al., 144

2023b) have attempted to complement the insuf- 145

ficient visual speech representations by utilizing 146

audio information. A recent self-supervised model 147

known as AV-HuBERT (Shi et al., 2022), has signif- 148

icantly improved the visual speech representations 149

by predicting the pseudo-label assigned from clus- 150

tering audio-visual features, with a mask-prediction 151

task like BERT (Devlin et al., 2019). According to 152

the advancement of the VSR system, we can now 153

recognize lip movements quite accurately through 154

state-of-the-art VSR models such as AV-HuBERT. 155

Building upon this, the exploration for VST has 156

begun by introducing a Multilingual Audio-Visual 157

Corpus (MuAViC) (Anwar et al., 2023) dataset and 158

constructing a VST (Cheng et al., 2023). 159

Despite these research efforts, the development 160

of visual speech processing systems enabling multi- 161

task via a unified model, such as VSR and VST, has 162

never been explored in the previous visual speech 163

processing literature. Hence, the objective of this 164

paper is to develop a unified model to perform 165

multi-tasks, including VSR and VST, by utilizing 166

a rich context modeling ability of LLMs. 167

2.2 Integration of speech models and LLMs 168

LLMs have shown remarkable success in various 169

tasks due to their extensive linguistic knowledge 170

and contextual understanding. While leveraging 171

such inherent advantages of LLMs, several studies 172

have tried to seamlessly integrate text-based knowl- 173

edge with other modalities, particularly in the audio 174

speech domain. For example, AudioPaLM (Ruben- 175

stein et al., 2023) has been proposed to build a uni- 176

fied model interacting between text language and 177

audio speech. To naturally bridge the gap between 178

the two modalities, AudioPaLM has developed a 179

multimodal vocabulary composed of discrete to- 180

kens representing both text and speech. Fathullah et 181
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Visual Speech Unit
Based Deduplication

Instruction

Predicted Tokens

For VST Task

Translate this English speech to {TGT LANG}. Input:

For VSR Task

Recognize this speech in English. Input:

LLM(QLoRA )

Input Video

Token Embedding

Visual Encoder

I would love to hear from you

Reduced Visual Features

Visual Features

167 7 7 9 9

Visual Speech Unit Mapping

Averaging

Figure 1: Illustration of our VSP-LLM framework. Visual speech representations encoded from the visual encoder
are mapped to visual speech units. Then the visual speech representations are reduced through averaging based on
the mapped visual speech units. These reduced representations are fed into the LLM along with text instructions.

al. (Fathullah et al., 2023) have employed LLaMA182

as a speech recognition decoder so that the speech183

sequence features obtained from a conformer en-184

coder were designed to be directly mapped into text185

tokens, the domain of LLaMA. Moreover, Wu et al.186

(Wu et al., 2023a) have tried to address the inherent187

problem of mismatched sequence lengths between188

speech signals and text, while taking LLaMA as189

a speech translation decoder. So, they have com-190

pressed the speech sequence feature and matched191

its sequence length with that of the text.192

However, while the existing studies have primar-193

ily focused on incorporating LLMs with the audio194

speech modality, the exploration of such integra-195

tion for visual speech processing remains unex-196

plored. In this paper, we propose a novel frame-197

work that integrates visual speech processing with198

LLM. Specifically, we attempt to mitigate the ho-199

mophenes problem, one of the key challenges in the200

field of visual speech processing, by leveraging the201

rich context modeling capabilities of LLM. Addi-202

tionally, to address the training load issues arising203

from the integration of the visual speech model204

and LLM, we introduce the concept of a visual205

speech unit. Through the implementation of vi-206

sual speech units, we propose a novel visual speech207

deduplication method that compresses redundant208

representations while preserving contextual infor-209

mation.210

3 Method211

Figure 1 shows the overall framework of the pro-212

posed Visual Speech Processing incorporated with213

LLM (VSP-LLM). It includes a visual encoder that214

embeds the input video into the input space of a pre- 215

trained LLM, a visual speech unit based deduplica- 216

tion module that discards redundant information in 217

contiguous frames, and an instruction embedding 218

component that serves as a task specifier. In the 219

following, we describe each component in detail. 220

3.1 Visual-to-Text Space Mapping 221

Our primary objective is to employ the rich con- 222

text modeling capability of LLM in our visual 223

speech modeling. To accomplish this, we need 224

to represent the input video in a manner that aligns 225

closely with linguistic information, thereby facili- 226

tating the association between visual inputs and the 227

text space of the pre-trained LLM. Motivated by the 228

recent success of the self-supervised speech mod- 229

els (Hsu et al., 2021; Shi et al., 2022) that showed 230

the learned representations are highly correlated 231

with phonetic information (e.g., phoneme) (Pasad 232

et al., 2023), we employ AV-HuBERT (Shi et al., 233

2022) for our base visual encoder. Then, a learn- 234

able visual-to-text embedding layer is introduced to 235

map the visual representations into the input space 236

of LLM. We name this process as visual-to-text 237

space mapping. 238

To investigate how well the visual representa- 239

tion aligns with the text embedding space of the 240

LLM, we compute the cosine similarity between 241

the visual speech representation and the token em- 242

beddings of the LLM, mapping it to the text to- 243

ken with the highest similarity. Figure 2a shows 244

an example of a textualized visual speech repre- 245

sentation. An intriguing observation is that, with 246

well-structured visual-text space mapping, textu- 247
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alized visual speech representations can exhibit248

pronunciation resembling real words. However, we249

observe redundant information when mapping en-250

tire video frames to text due to the similarity of251

adjacent frames. For instance, words like ’is’ and252

’a’ are repeated multiple times, and the word ’so-253

cial’ is mapped as a long stretch. This redundancy254

increases computational load when visual speech255

representations are fed into LLM. To address this,256

we propose a novel method called "Visual Speech257

Unit-based Deduplication" to remove redundancy258

while retaining semantic content.259

3.2 Visual Speech Unit based Deduplication260

Compared to the length of the input video, the261

length of the text is much shorter. This is simi-262

lar to the relationships between speech and text263

in Automatic Speech Recognition (ASR) (Graves264

and Graves, 2012), where the input speech is al-265

most always longer than the output text. There-266

fore, when we map visual speech representations267

into text space through visual-to-text space map-268

ping, the resulting embedded output matches the269

length of the input video frames. If we directly270

provide it to the LLM, a large computational bur-271

den is inevitable. Here, we note that the video is272

smooth in temporal and the contiguous frames con-273

tain overlapped information, and propose to reduce274

the length of the embedded representation before275

feeding it to the LLM.276

To this end, we first extract the pronunciation277

cue from the visual representations through dis-278

cretization. Recent literature (Lakhotia et al., 2021)279

shows that discretized self-supervised speech fea-280

tures, termed speech units, contain phonetic infor-281

mation while suppressing non-linguistic variations.282

Motivated by this, we propose to extract a visual283

version of speech units, namely visual speech units,284

which can be obtained by performing K-means285

clustering on the self-supervised visual speech rep-286

resentations. By doing this, we can access the pro-287

nunciation information for each video frame with-288

out requiring any text input (Lee et al., 2022). Then,289

by employing the visual speech units as pseudo text,290

we investigate the overlapped contiguous frames.291

Finally, the corresponding visual features are aver-292

aged out. For instance, if the obtained visual speech293

units are {7, 7, 7, 16, 9, 9} as illustrated in Figure294

1, then the visual features at positions 1, 2, and 3295

are averaged together, and those at positions 5 and296

6 are averaged, resulting in 3 frames. We find that297

GT: race is a social category that has staggering biological consequences

(a)

è R R Rran rareaitaitsessits is is is is a a a aS S S S SS so so sosoclosedoccialcialual

ALal-Alg CccCAT Manattatter particularacggororryorryy veryringDM를 führteplainbothhalt
Verein that that that tom have have hass S S S S S ST st St KraastastACAGggeryringinging

ら,>'; occas chamМB by by biiarierALLL Laronon COVIDGGICICalALALlessAlgK C C Com 
Com ComCONontransSpCicacququQententnesscesssssssissementittel
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is

is social that has

staggering consequences

a social

that has staggering

consequences

a

Figure 2: Textulaization results of the visual speech rep-
resentations. GT, (a), and (b) indicate the ground truth,
textualization without deduplication, and textualization
with deduplication, respectively.

the proposed visual speech unit based deduplica- 298

tion reduces the sequence lengths by about 46.62% 299

compared to the input video lengths. Most impor- 300

tantly, we observed that the deduplication process 301

does not result in any drop in performance. The 302

reduced visual features, when converted into text 303

(Figure 2b), maintain the meaning of each word 304

while the duplication of each word has been re- 305

moved. For instance, the recurrence of ’is’ and ’a’, 306

which appeared multiple times in the original fea- 307

ture, is reduced, and the length of ’social’, which 308

has a long stretch, is also drastically reduced. 309

3.3 Multi-task Learning with Instruction 310

One advantage of bridging LLMs into visual 311

speech processing is that we can leverage the ver- 312

satility of LLMs as well. To investigate this, we 313

train the proposed VSP-LLM with two tasks, VSR 314

and VST. VSR aims to recognize the input silent 315

speech while VST aims not only to predict the 316

recognized speech but also to translate it into the 317

target language. We design the system so that tasks 318

can be controlled by inputting instructions directly 319

into the LLM. When performing the VSR task the 320

instruction is set to as below, 321

Recognize this speech in English. 322
Input: ${Dedupped_Visual_Feature} 323

where the deduplicated visual features are in- 324

serted after the instruction. Otherwise, to perform 325

VST, the following instruction is employed. 326

Translate this English speech to ${TGT LANG}. 327
Input: ${Dedupped_Visual_Feature} 328

where the target language is used for the position 329

of TGT LANG. The objective function for each task 330

can be written as follows, 331

L = −
L∑
l=1

log p(yl|X, I, y<l), (1) 332
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where X is input video, I is instruction used, yl333

is the l-th text token of the ground truth sentence,334

y<l is the previous predictions, and L is the length335

of ground truth. Please note that this is the first336

work exploring a unified framework of VSR and337

VST. For training, we employ the recently proposed338

QLoRA (Dettmers et al., 2023) to further relieve339

the computational load in training LLM.340

4 Experiment341

4.1 Dataset342

Lip Reading Sentences 3 (LRS3) (Afouras et al.,343

2018) is the most widely-used dataset for VSR,344

which comprises 433 hours of English audio-visual345

speech corpus with transcription data. These cor-346

pora are collected from the TED and TEDx talks.347

We utilize the LRS3 dataset to measure the VSR348

performance of the proposed unified model.349

Multilingual Audio-Visual Corpus (MuAViC)350

(Anwar et al., 2023) is a multilingual audio-visual351

dataset designed for speech recognition and speech-352

to-text translation. It includes 1200 hours of audio-353

visual corpus in 9 languages, providing full tran-354

scriptions and covering 6 English-to-X translations,355

as well as 6 X-to-English translation directions. To356

evaluate the VST performance of our model, we357

utilize English-to-X translation data from MuAViC358

dataset, where X can be among four languages,359

Spanish (Es), French (Fr), Portuguese (Pt), and Ital-360

ian (It). For training our model, we combine the361

LRS3 dataset and English-to-X translation data of362

MuAViC.363

4.2 Implementation Details364

Preprocessing. The video is resampled at 25 fps,365

and facial landmarks are detected using RetinaFace366

(Deng et al., 2020). Mouth regions are cropped367

using bounding boxes of size 96 × 96 and con-368

verted to grayscale. During training, we apply data369

augmentation by randomly cropping the video to370

88× 88 and horizontally flipping it.371

Architecture. We use the AV-HuBERT large (Shi372

et al., 2022) pre-trained on LRS3 (Afouras et al.,373

2018) and VoxCeleb2 English (Chung et al., 2018)374

as our visual encoder. In all experiments, except375

the ablation part, we utilize 200 clustered visual376

speech units. For the LLM, we adopt LLaMA2-7B377

(Touvron et al., 2023) and fine-tune it using QLoRA378

(Dettmers et al., 2023) with the rank value of 16379

and a dropout rate of 5%. To align the dimensions380

of the visual representation from the visual encoder381

to the LLaMA input embedding, we use a single 382

linear layer as our visual-to-text embedding layer. 383

Training and evaluation. We follow AV-HuBERT 384

(Ren et al., 2021) except for the number of updates 385

and learning rate. We conduct training with a learn- 386

ing rate of 5e−4 and the number of updates is 15K 387

updates for LRS3 1h, 5h, 10h, and 30K updates 388

for LRS3 30h and 433h. For VSP-LLM (FT), the 389

visual encoder is frozen for the first 18K steps and 390

then unfrozen afterward. Adam optimizer is em- 391

ployed for training with β1 = 0.9 and β2 = 0.98, 392

utilizing a tri-stage learning rate scheduler. The 393

training process is executed on 8 3090 RTX GPUs. 394

For decoding, we use a beam search with a beam 395

width of 20 and a length penalty of 0. We assess 396

the performance of our model using Word Error 397

Rate (WER) for the VSR task and BLEU score 398

(Papineni et al., 2002) for the VST task. We use 399

total FLOPs per epoch as a metric to measure the 400

model operation count during training. 401

4.3 Experimental Results 402

4.3.1 Comparison with State-of-the-arts 403

In this subsection, we compare the proposed unified 404

model with state-of-the-art VSR and VST methods. 405

Please note that the proposed model can perform 406

multi-tasks VSR and VST with a single trained 407

model while the other models need a single model 408

per specific task. 409

Table 1 presents the performance comparisons 410

of the proposed method with state-of-the-art VSR 411

methods on the LRS3 dataset. The top section 412

of Table 1 outlines the performance of current su- 413

pervised approaches that depend on extensive la- 414

beled training data, while the lower section presents 415

a comparison with other self-supervised methods. 416

Table 1 demonstrates that our approach achieves 417

performance on par with others by employing just 418

30 hours of labeled data, despite the proposed uni- 419

fied model’s ability to handle multiple tasks—VSR 420

and VST—simultaneously. When employing 433 421

hours of training data, our method achieves a WER 422

of 26.7%. By fine-tuning the VSP-LLM(FT) with 423

an unfrozen visual encoder, we further enhance our 424

performance, achieving a WER of 25.4%, surpass- 425

ing other self-supervised approaches. Moreover, 426

Table 1’s upper part shows that the existing su- 427

pervised methods record exceptional performance 428

using (tens of) thousands of labeled data. However, 429

it is important to highlight that the proposed uni- 430

fied model can obtain comparable performances to 431
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Method
Pre-training
Data (hrs)

Labeled
Training Data (hrs)

Recognition
Task

Translation
Task WER(%)

Supervised

Afouras et al. (2018) - 1,519 ✓ 58.9

Shillingford et al. (2019) - 3,886 ✓ 55.1

Makino et al. (2019) - 31,000 ✓ 33.6

Prajwal et al. (2022) - 2,676 ✓ 30.7

Ma et al. (2021b) - 595 ✓ 30.4

Ma et al. (2023) - 3,448 ✓ 19.1

Serdyuk et al. (2022) - 90,000 ✓ 17.0

Chang et al. (2023) - 100,000 ✓ 12.8

Self-supervised

AV-HuBERT (Shi et al., 2022) 1,759 30 ✓ 32.5

VATLM (Zhu et al., 2023) 1,759 30 ✓ 31.6

RAVen (Haliassos et al., 2022) 1,759 30 ✓ 32.5

AKVSR (Yeo et al., 2023a) 1,759 30 ✓ 29.1

VSP-LLM 1,759 30 ✓ ✓ 29.8

AV-HuBERT (Shi et al., 2022) 1,759 433 ✓ 28.6

VATLM (Zhu et al., 2023) 1,759 433 ✓ 28.4

RAVen (Haliassos et al., 2022) 1,759 433 ✓ 27.8

AKVSR (Yeo et al., 2023a) 1,759 433 ✓ 27.6

VSP-LLM 1,759 433 ✓ ✓ 26.7

VSP-LLM(FT) 1,759 433 ✓ ✓ 25.4

Table 1: The performance comparisons with state-of-the-art VSR methods. Compared to the self-supervised
methods, the proposed VSP-LLM, which can perform both VSR and VST, achieves state-of-the-art recognition
performances. We also evaluate the performance of a fine-tuned VSP-LLM(FT) with an unfrozen visual encoder.

Method Labeled
data(hrs)

BLEU ↑

En-It En-Fr En-Pt En-Es Avg

Anwar et al. (2023) 433 15.1 16.8 15.1 19.2 16.6

AV-HuBERT 433 16.6 19.4 17.4 21.7 18.8

Cascaded (AV-HuBERT + MT) 433 17.6 19.5 17.4 22.4 19.2

VSP-LLM 30 16.1 19.3 16.6 20.7 18.2

VSP-LLM 433 17.9 22.3 18.7 22.7 20.4

VSP-LLM(FT) 433 17.7 22.2 19.4 22.4 20.4

Table 2: Experimental results for English to target lan-
guage (En-X) translation on the MuAViC benchmark.

several supervised methods.432

Table 2 presents the comparison results of VST433

performance. We construct two baseline models434

for comparison. The first, AV-HuBERT, is trained435

similarly to our approach, utilizing both VSR and436

VST datasets. The second model is a cascaded sys-437

tem that incorporates a pre-trained AV-HuBERT438

for VSR with a neural machine translation model439

(Fan et al., 2021). Through this comparison, our440

proposed VSP-LLM demonstrates superior VST441

performance across four English-to-X translation442

tasks, achieving BLEU scores of 17.9, 22.3, 18.7,443

and 22.7 for English to Italian, French, Portuguese,444

and Spanish, respectively. The VSP-LLM(FT)445

shows a better performance 19.4 BLUE score on446

translation from English to Portuguese and com- 447

parable performances in other languages. More- 448

over, it is worth noting that the proposed method 449

achieves an 18.2 BLEU score on average with only 450

30 hours of labeled data, outperforming the bilin- 451

gual speech translation model (Anwar et al., 2023) 452

trained with 433 hours of labeled data. 453

4.3.2 Effectiveness of Rich Context Modeling 454

We have developed a unified model incorporating 455

LLMs to leverage their advanced context modeling 456

capabilities. Therefore, in this section, we conduct 457

a qualitative experiment to demonstrate the effec- 458

tiveness of the proposed VSP-LLM in handling ho- 459

mophenes, a challenging problem that requires sub- 460

stantial context understanding to accurately iden- 461

tify homophenes. Figure 3 shows several transcrip- 462

tion examples obtained from AV-HuBERT and our 463

model, illustrating how our proposed method ac- 464

curately generates words by considering the en- 465

tire context of a sentence. For instance, in a ho- 466

mophene case, AV-HuBERT incorrectly transcribes 467

"i", a word which visually resembles "eye" on the 468

lips, but differs in meaning. On the other hand, 469

our method correctly generates "eye", successfully 470

completing the idiom "eye to eye" to describe mu- 471
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Homophene Cases Other Cases

Ground Truth : i am fascinated by those times when people do not see eye to eye Ground Truth : it's a composite view that's constantly changing and being updated

AV-HuBERT : i am fascinated by their times when people who do not see i and i AV-HuBERT : it's a compositive view that's constantly changing and being updated

VSP-LLM : i am fascinated by those times when people you do not see eye to eye VSP-LLM : it's a composite view that's constantly changing and being updated

Ground Truth : it's not like teaching them how to ride a bike Ground Truth : and when i talk to judges around the united states which i do all the 
time now they all say the same

AV-HuBERT : it's not like teaching them how to write a bike AV-HuBERT : and when i talk to just around the united states which i do all the time 
now they all say the same

VSP-LLM : it's not like teaching them how to ride a bike VSP-LLM : and when i talk to judges around the united states which i do all the 
time now they all say the same

Ground Truth : it's like a piece of junk mail to be thrown away Ground Truth : if you want this experience to live on as something historic then at the 
reception

AV-HuBERT : it's like a piece of chunk bear is being thrown away AV-HuBERT : if you want this experience to live on and something is a story that has 
a reception

VSP-LLM : it's like a piece of junk mail being thrown away VSP-LLM : if you want this experience to live on as something historic that's what 
happened to

Ground Truth : but it's not about fire and brimstone either Ground Truth : so when you're born you can make feelings like calmness and

AV-HuBERT : but it's not about fire and brip stone either AV-HuBERT : so when you're born you can make feelings like copness and

VSP-LLM : but it's not about fire and brimstone VSP-LLM : so when you're born you can make feelings like calmness and

Figure 3: The qualitative results showing that the contextual modeling ability of LLM, which is adopted in our
method, can improve the homophene problem and other confusing cases. The red and blue words indicate the wrong
predictions from AV-HuBERT. However, as shown in the examples, the proposed method can generate correct
words by considering the entire context (e.g., ‘i’ to ‘eye’).
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Figure 4: VSR performance analysis on LRS3 with vary-
ing video length of test samples. Due to the strength of
contextual understanding ability of LLM, the proposed
method shows superior performance with longer videos.

tual understanding between individuals. Similarly,472

AV-HuBERT’s transcription of "write" is contextu-473

ally inappropriate for a sentence discussing teach-474

ing the physical skill of riding a bike. Our method,475

however, accurately outputs "ride" resulting in the476

correct phrase "ride a bike". Also, we can ob-477

serve similar results in the other cases, not the ho-478

mophene problem only. For example, the proposed479

method can generate the word “composite” accord-480

ing to standard English usage, unlike AV-HuBERT,481

which erroneously outputs "compositive". These482

results corroborate that our approach can more ef-483

fectively comprehend contextual clues and gener-484

ate more precise and natural answers, due to the485

integration of LLM.486

Additionally, we evaluate the VSR performance487

Number of
Clusters

BLEU ↑ Length of
sequence FLOPs (P)

En-It En-Fr En-Pt En-Es Avg

- 12.3 15.8 13.7 16.7 14.6 1.00 62.4

2000 11.2 15.9 13.8 16.5 14.4 0.70 53.8 (13.8%)

200 12.1 15.4 13.6 16.8 14.5 0.53 45.6 (26.9%)

50 12.1 14.9 13.3 16.9 14.3 0.45 41.0 (34.3%)

Table 3: Analysis on computational efficiency with vary-
ing number of visual speech unit clusters. When the
deduplication strategy is adopted, the proposed method
obtains comparable performances with greatly reduced
sequence length and training FLOPs.

across various video length segments to explore 488

the effectiveness of LLM in handling long speech. 489

Figure 4 shows that WER decreases as video length 490

increases. Notably, our proposed method exhibits 491

outstanding recognition performance, with a WER 492

of 12.9% on videos longer than 6 seconds. Fur- 493

thermore, our method demonstrates consistent per- 494

formance improvements as the length of the video 495

increases, compared to other methods. It indicates 496

the effectiveness of LLM’s context modeling in 497

longer video utterances, which demand a more 498

comprehensive understanding of context. 499

4.3.3 Effectiveness of Deduplication 500

We conduct experiments to assess the effectiveness 501

of our deduplication strategy. For the deduplication 502

process, the number of clusters for visual speech 503

units is required to be determined, and we show 504

the effectiveness according to the number of clus- 505
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“What do you”

(a)

43 79 89 124 164

(b)

“So we did”

141 186 138 103

(c)

“I don’t know”

46 171 0 96 181 112

Figure 5: Visualization results showing how video frame
features are deduplicated and mapped into visual speech
units. By doing so, the redundant frame features can be
reduced efficiently.

ters. Table 3 presents these results, and the first506

row shows the performance of the baseline which507

does not utilize the deduplication. The baseline508

obtains an average BLEU score of 14.6 with 62.4509

peta FLOPs per training epoch. By applying the510

proposed deduplication, our method acquires com-511

parable performance, while significantly reducing512

the sequence length and computational resources513

(FLOPs). Specifically, with 200 clusters for vi-514

sual speech units, our method not only maintains515

a similar performance level with a 14.5 average516

BLEU score but also cuts the sequence length by517

53%. Consequently, the FLOPs are greatly reduced518

to 45.6, marking a 26.9% decrease. These experi-519

ments confirm that deduplication, applied to visual520

speech units, effectively eliminates redundant in-521

formation.522

Moreover, we delve into the deduplication pro-523

cess by examining it at the video frame level to524

check whether consecutive visual features, char-525

acterized by similar lip movements, are grouped526

into the same visual speech unit. Figure 5 provides527

several visual examples alongside their correspond-528

ing phrases and video frames. In Figure 5 (a), as a529

speaker articulates “What do you”, it’s noted that 11530

video frames can be expressed by 5 visual speech531

units. For instance, the visual sequences for the532

sound “wha” belong to the same 43rd unit. Sim-533

ilarly, Figure 5 (c) illustrates that the four frames534

corresponding to “I” can be efficiently represented535

by the 46th and 171st visual speech units. Through536

this analysis, we confirm that visual features with537

similar lip shapes can be effectively deduplicated,538

significantly reducing the visual sequence’s length.539

4.3.4 VSP-LLM in Data-limited Situation540

Leveraging the contextual understanding capabil-541

ities of LLM, which are pre-trained on vast text542

Method Labeled
Data(hrs)

BLEU ↑
WER(%) ↓

En-It En-Fr En-Pt En-Es Avg

AV-HuBERT 1 0.0 0.0 0.1 0.1 0.5 100.2

VSP-LLM 1 1.0 2.8 2.0 1.7 1.8 84.84

AV-HuBERT 5 1.4 3.8 2.0 1.7 2.2 71.9

VSP-LLM 5 10.6 14.0 11.5 15.1 12.8 36.2

AV-HuBERT 10 3.0 5.1 3.9 4.5 4.1 56.7

VSP-LLM 10 12.1 15.4 13.6 16 8 12.8 34.3

AV-HuBERT 15 3.4 7.1 5.5 8.7 6.2 52.4

VSP-LLM 15 13.5 16.9 14.2 17.0 15.4 32.8

Table 4: Impact of the amount of labeled data. It shows
that a small amount of labeled data is sufficient to con-
struct a unified VSR and VST model by leveraging
contextual understanding capabilities of LLM.

corpora, we suppose that a small amount of labeled 543

data is sufficient for constructing a unified VSR 544

and VST model. This is because the proposed VSP- 545

LLM endeavors to establish visual-to-text mapping 546

while entrusting the task of language modeling 547

to the LLM. To validate it, we train VSP-LLM 548

on the MuAViC dataset with different amounts 549

of labeled data; 1 hour, 5 hours, 10 hours, and 550

15 hours. For comparison, we also develop AV- 551

HuBERT on the same data. Table 4 displays the 552

VSR and VST performances. In all experimental 553

conditions, regardless of the amount of data used, 554

our proposed method significantly outperforms AV- 555

HuBERT. Moreover, when using only 15 hours of 556

labeled data, our unified method achieves a WER of 557

32.8%. This is a noteworthy achievement, particu- 558

larly when compared to the previous VSR (Makino 559

et al., 2019) model achieving a WER of 33.6%, by 560

using 31k hours of labeled data for training. 561

5 Conclusion 562

In this paper, we proposed a novel framework, Vi- 563

sual Speech Processing with LLMs (VSP-LLM), 564

designed to leverage the context modeling ability 565

of LLMs. Through this framework, we built a uni- 566

fied model that can perform multi-tasks, VSR, and 567

VST, with a single model. Moreover, the proposed 568

deduplication strategy reduces the redundant in- 569

formation of visual speech representations based 570

on pronunciation information modeled from visual 571

speech units. Through extensive experiments, we 572

verified that the proposed deduplication method 573

can reduce the visual sequence length by about 574

50% with minimal performance degradation. In 575

addition, we validated the effectiveness of the VSP- 576

LLM by achieving a superior performance in the 577

MuAViC benchmark with only 30 hours of labeled 578

data. 579
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6 Limitations580

We have proposed a powerful visual speech pro-581

cessing method that incorporates LLMs to recog-582

nize and translate lip movements into other lan-583

guages, leveraging the rich context modeling abil-584

ity of LLMs. Despite the impressive improvement585

in the performance of this proposed method, the586

utilization of LLMs has been limited to VSR and587

VST tasks. We expect that the proposed VSP-588

LLM framework can be expanded to in real-world589

communication scenarios by utilizing additional590

non-verbal cues such as facial expressions and ges-591

tures. Especially, the VSP-LLM combined with592

non-verbal cues is expected to perform various593

tasks such as emotional recognition and dialog gen-594

eration, starting with this paper as a foundation.595

7 Broader impact and ethics596

The integration of Large Language Models (LLMs)597

within our framework plays a pivotal role in its598

ability to handle the complexities of visual speech599

across different languages. LLM brings a deep600

understanding of contextual and linguistic informa-601

tion, which is critical for accurately interpreting602

and translating visual speech cues. This capac-603

ity for nuanced language processing underpins our604

confidence in the framework’s potential for broader605

linguistic applicability. Moreover, our experiments606

have demonstrated exceptional data efficiency and607

significant performance gains with relatively small608

amounts of labeled data for each language. This ef-609

ficiency is crucial for scalability to other languages610

and dialects, particularly those for which extensive611

labeled datasets may not be readily available. The612

ability to achieve robust performance with limited613

data is indicative of the framework’s adaptability614

and its potential for expansion to a wider linguistic615

range.616
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Figure 6: Visualization of video frames corresponding
to visual speech units. Each number indicates an index
of visual speech unit.

Number of Clusters FLOPs (P)
w/o deduplication 19.2

2000 16.2 (15.6%)
200 14.0 (27.1%)
50 12.6 (34.4%)

Table 5: Analysis on computational efficiency with vary-
ing number of visual speech unit clusters in inference
time.

A Visualization of Visual Speech Units917

The visualization results of the visual speech units918

are shown in Figure 6. In this paper, we use 200919

clusters in order to generate visual speech units.920

Through analyzing the results, we verify that the921

video frames assigned the same visual speech unit922

have similar lip movement.923

B FLOPs During Inference with924

Deduplication925

Table 5 shows the FLOPs during inference time.926

Similar to during training, applying deduplica-927

tion techniques also significantly reduced inference928

FLOPs.929

C Statistical Significance Testing930

we have conducted the statistical significance test931

to provide clarity on the legitimacy of the proposed932

deduplication techniques. To validate the claimed933

enhancements, such as the marginal degradation in934

performance, we perform a z-test at a significance935

level alpha=0.05 in English to French translation936

experiments. In our experiments, the null hypoth-937

esis is that there is no degradation in performance938

with the proposed deduplication method (i.e., hav-939

ing the same performance). We obtain a z-score of940

-0.001 and a p-value of 0.9992 according to the z-941

score to p-value calculator. The two-tailed p-value942

is not less than the significance level. Therefore, we943

conclude that the proposed method can effectively 944

reduce the sequence length without degrading per- 945

formance. 946

D Exposure to Transcriptions in the 947

Pre-Training of LLM 948

There might be concerns regarding LLaMA2’s po- 949

tential exposure to the LRS3 dataset during the 950

pre-training phase. Since the details of LLaMA2’s 951

training data aren’t publicly available, we can’t 952

be absolutely sure whether LRS3 was included or 953

not. However, it’s important to emphasize that the 954

core challenge and focus of visual speech recog- 955

nition (VSR) and translation (VST) lie in the abil- 956

ity to accurately match mouth shapes to unseen 957

speakers, rather than merely replicating text from 958

specific sentences. In particular, the mouth shape 959

of the same sentence can vary significantly when 960

expressed by different speakers, emphasizing the 961

visual rather than textual nature of the work. Our 962

analysis of the LRS3 dataset (Table 6) highlights 963

this point, showing cases where sentences in the 964

test set also appear in the training set, but are spo- 965

ken by distinct individuals. This case serves to 966

highlight the importance of the model’s ability to 967

recognize speaker-specific mouth shapes over mem- 968

orizing textual content. Given this context, we 969

believe that the potential exposure of LLaMA2 970

to certain sentences from the LRS3 dataset dur- 971

ing training is unlikely to significantly impact the 972

model’s performance in our study. 973

E Additional Examples of Homophene 974

case 975

In Section 4.3.2, we discussed the VSP-LLM 976

model’s exceptional ability to correctly distinguish 977

homophenes by leveraging its advanced context 978

modeling capabilities. This section further extends 979

our analysis by comparing the performance of the 980

VSP-LLM with other baseline models in handling 981

homophenes. The results of these comparisons are 982

presented in Table 7. In one notable example, Ma 983

et al. incorrectly transcribed "junk" as "chunk." In 984

contrast, the VSP-LLM accurately recognized the 985

phrase "junk mail," a commonly used and contextu- 986

ally appropriate phrase in English. This illustrates 987

the VSP-LLM’s superior performance, particularly 988

its proficiency in integrating contextual understand- 989

ing with linguistic patterns to enhance transcription 990

accuracy in cases involving homophenes. 991
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Sample ID Label

test/VIgzTLDyObo/00004 and then what happens

trainval/jpeSLKnS4gM/50020 and then what happens

test/vXPJVwwEmiM/00004 you probably won’t

pretrain/omGbKQIzoWY/00009_00 you probably won’t do well on that problem on the other hand relaxed daydreaming is a way to

Table 6: Examples of cases where sentences in the test set also appear in the training set, but are spoken by distinct
individuals.

Homophene Cases

Ground Truth it’s not like teaching them how to ride a bike

Prajwal et al. (2022) it’s all i teach them how to write a bike

VSP-LLM it’s not like teaching them how to ride a bike

Ground Truth is it about earning as much as you possibly can

Prajwal et al. (2022) it’s about learning as much as possibly can

VSP-LLM it’s about earning as much as you possibly can

Ground Truth it’s like a piece of junk mail to be thrown away

Ma et al. (2021b) it’s like a piece of chunk made to be thrown away

VSP-LLM it’s like a piece of junk mail being thrown away

Ground Truth and imagine what might happen because every region has something to offer

Ma et al. (2021b) and imagine what might happen because every reason has something to offer

VSP-LLM and imagine what might happen because every region has something to offer

Table 7: Additional baseline examples for the homophene case. The Red words indicate homophene words.

F Examples of Predicted Sentences992

The examples of recognized and translated tran-993

scription by the proposed unified model are shown994

in Figure 7. For generating transcription, we use a995

single-trained model that performs both VSR and996

VST tasks.997

14



VSR

English
(En)

Ground Truth: it was faulty and most of the time I had to restart it over and over before it worked

Prediction: it was failing most of the time I had to restart it over and over before it worked

Ground Truth: like we evolved on this planet in the context of all the other animals with which we share

Prediction: can we evolve on this planet in the context of all the other animals with which we share

VST

Spanish
(En-Es)

Ground Truth: tenemos las herramientas pero perdemos la voluntad y el momento colectivo

Prediction: tenemos las herramientas pero falta la voluntad colectiva y el momento

Ground Truth: hay amor y hay amistad y hay protección

Prediction: hay amor y amistad y protección

Italian
(En-It)

Ground Truth: utilizza esperienza basata su situazioni simili per imparare a gestire

Prediction: utilizza l'esperienza passata basata su situazioni simili per imparare a fare

Ground Truth: il testo si è sviluppato da questo slash

Prediction: testando si è sviluppato uno da questo slush

French
(En-Fr)

Ground Truth: comment estce que tu es juste maintenant

Prediction: comment tu es juste maintenant

Ground Truth: ce changement devient plus rapide

Prediction: ce changement se fait plus rapidement

Portuguese
(En-Pt)

Ground Truth: e eu quero fazer o ponto que como membros da sociedade que precisamos

Prediction: e eu quero fazer o ponto de que como membros da sociedade podemos fazer

Ground Truth: mas a magnitude do problema é quando precisamos aceitar

Prediction: mas a magnitude do problema é uma vez que precisamos aceitar

Figure 7: Examples of VSR and VST predictions produced by our proposed model on LRS3 and En-to-X test set.
Deletions from the ground-truth text are highlighted in Red, while substitutions or addition are shown in Blue.
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