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Abstract

The development of Large Language Models001
(LLMs) has led to increased focus on their adap-002
tation to specialized domains and languages,003
particularly in settings with limited domain-004
specific data. While recent studies have ques-005
tioned the benefits of domain-adaptive pre-006
training (DAPT) in English medical contexts,007
our work demonstrates that domain adapta-008
tion can be effective when strategically im-009
plemented. Using French medical domain010
adaptation as a case study, we systematically011
evaluate different adaptation strategies: contin-012
ual pre-training (CPT), supervised fine-tuning013
(SFT), and combined approaches (CPT fol-014
lowed by SFT). Our study highlights that adapt-015
ing a general-purpose model with novel domain016
data leads to significant gains (87% win rate),017
whereas further adapting models already ex-018
posed to similar knowledge offers limited ben-019
efits. Moreover, while CPT+SFT achieves the020
best overall performance, direct SFT emerges021
as a strong, more computationally efficient al-022
ternative.023

1 Introduction024

Recent advances in Large Language Models025

(LLMs) have intensified the debate on their adapta-026

tion to specialized domains and languages. While027

various adaptation strategies have been proposed,028

determining the optimal approach becomes particu-029

larly challenging when targeting a specific domain030

in a language with limited resources. This chal-031

lenge is exemplified in healthcare and medicine,032

where most adaptation efforts have focused on033

English-language models (e.g., BioMistral (Labrak034

et al., 2024), OpenBioLLM (Pal and Sankarasubbu,035

2024).036

The development of domain-specialized mod-037

els in non-English languages faces several unique038

challenges. First, there is often a scarcity of039

domain-specific training data. Second, the com-040

putational cost of different adaptation strategies041
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Figure 1: Pipeline for evaluating domain adaptation
strategies, showing the three main components: model
selection, adaptation strategies (CPT, SFT, and CPT
followed by SFT), and evaluation methodology.

must be weighed against their effectiveness. Third, 042

the reliability of evaluation methods, particularly 043

when using translated benchmarks, needs to be as- 044

sessed, as translation may introduce cultural biases 045

or lose domain-specific nuances. These challenges 046

are particularly evident in specialized domains like 047

medicine, where the accuracy and reliability of the 048

model outputs are crucial, yet domain-specific re- 049

sources in non-English languages remain limited. 050

Recent work by Jeong et al. (2024) has funda- 051

mentally challenged established assumptions re- 052

garding domain-adaptive pre-training (DAPT) in 053

medical contexts. Their analysis revealed that 054

medical LLMs adapted through biomedical corpus 055

pre-training frequently fail to demonstrate consis- 056

tent improvements over their base generic models. 057

These findings raise important questions about the 058

optimal strategy for domain adaptation, particu- 059

larly when working across languages where the 060

base model’s domain knowledge may be less ac- 061

cessible. 062

To address these challenges, we investigate adap- 063

tation strategies for biomedical LLMs, focusing on 064

French—a language that remains underexplored 065

in this domain—while accounting for the limited 066

availability of domain-specific data. We evaluate 067

three distinct approaches: continual pre-training 068

1



(CPT), supervised fine-tuning (SFT), and hybrid069

approaches combining CPT with SFT. We utilize070

the general-domain Mistral-7B (Jiang et al., 2023)071

model as our foundation, experimenting with both072

the base model and its adapted variant on English073

medical texts, to assess the impact of different ini-074

tialization points on adaptation effectiveness.075

Our evaluation framework encompasses both076

translated and native French medical datasets. Stan-077

dard medical benchmarks such as PubMedQA (Jin078

et al., 2019) and MedMCQA (Pal et al., 2022) are079

translated for evaluation, while native French med-080

ical questions are used to validate the model’s ca-081

pabilities directly. Through both multiple-choice082

and open-ended question answering tasks, this eval-083

uation approach not only allows us to assess the084

model’s performance on native content but also085

reveals important methodological insights.086

In this paper, we investigate the effectiveness of087

different strategies for adapting language models088

to a specific domain in a new language with limited089

resources. Our contributions can be summarized as090

follows:091

1. We release resources to advance biomedical092

NLP research in French including medical-093

adapted models and datasets, all publicly avail-094

able on HuggingFace1 under the Apache 2.0095

license to support further research.096

2. We define an evaluation framework to assess097

the effectiveness of different adaptation strate-098

gies, ensuring comparability across models099

and approaches.100

3. We analyze the impact of various adapta-101

tion techniques and provide practical guide-102

lines for selecting the most suitable strategy103

based on the available training data—whether104

raw, unannotated text or curated, labeled105

datasets—and the available computational re-106

sources.107

2 Related Work108

LLM adaptation to the medical domain has seen109

significant development, driven by the potential to110

enhance healthcare applications. In this domain,111

two primary adaptation strategies have emerged.112

Continual pre-training (CPT) extends the model’s113

pre-training on domain-specific corpora, enabling114

1https://huggingface.co/Anony-mous123 (will be
deanonymized after review)

it to learn domain knowledge while maintaining 115

its general language capabilities. Supervised fine- 116

tuning (SFT), on the other hand, adapts the model 117

through instruction-output pairs, focusing on spe- 118

cific tasks and response formats. CPT has been 119

widely adopted, with models like MediTron (Chen 120

et al., 2023b), BioMistral (Labrak et al., 2024), and 121

PMC-LLaMA (Wu et al., 2023) demonstrating suc- 122

cess through adaptation on medical corpora. How- 123

ever, recent work by Jeong et al. (2024) challenges 124

these findings through a more rigorous evaluation 125

methodology: using direct model-to-base compar- 126

isons, model-specific prompt optimization, and sta- 127

tistical significance testing. Their methodology 128

revealed that previously reported improvements 129

from medical adaptation were often not statistically 130

significant. Alternative approaches using SFT, as 131

demonstrated by ChatDoctor (Li et al., 2023) and 132

MedAlpaca (Han et al., 2023), have shown promis- 133

ing results in medical tasks through instruction tun- 134

ing, though these studies also focus on English 135

only. 136

The challenge of domain adaptation becomes 137

more complex when considering non-English lan- 138

guages, where domain-specific resources are often 139

limited. Recent efforts have addressed this English- 140

centric nature through multilingual approaches. 141

Medical mT5 (García-Ferrero et al., 2024) intro- 142

duces a text-to-text multilingual model trained on 143

a large corpus spanning English, French, Italian, 144

and Spanish. BiMediX (Pieri et al., 2024) presents 145

a bilingual medical mixture of experts model for 146

English and Arabic, while Apollo (Wang et al., 147

2024) develops medical LLMs across six languages 148

through the ApolloCorpora dataset and XMed- 149

Bench benchmark. MMedLM (Qiu et al., 2024) 150

provides additional frameworks for multilingual 151

medical adaptation. However, these works primar- 152

ily rely on translated benchmarks for evaluation, 153

with limited assessment on native language medi- 154

cal tasks raising questions about the models’ true 155

capabilities in each target language. 156

Evaluating medical LLMs presents unique chal- 157

lenges, particularly in multilingual contexts. While 158

benchmarks like PubMedQA (Jin et al., 2019), 159

MedQA (Jin et al., 2019) and MedMCQA (Pal 160

et al., 2022) are widely used, they predominantly 161

serve English-language models. For other lan- 162

guages’ evaluation, researchers typically rely on 163

translated benchmarks, with few native language 164

resources. The prevalence of MCQ tasks in these 165

benchmarks also raises questions about comprehen- 166
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sive capability assessment.167

While these works demonstrate various ap-168

proaches to medical domain adaptation, there has169

not been a controlled evaluation of adaptation170

strategies using a common framework. Previous171

studies either focus on a single adaptation method172

or compare models with different architectures and173

training data, making it difficult to assess the rela-174

tive effectiveness of CPT versus SFT approaches.175

Additionally, the trade-offs between computational176

costs and performance gains remain unclear, par-177

ticularly in resource-constrained settings. In this178

work, we address these gaps by conducting a con-179

trolled comparison of adaptation strategies using180

the same base model architecture and evaluation181

framework, aiming to provide clear guidance for de-182

veloping medical LLMs in non-English languages.183

3 Experimental Framework184

We define a framework for evaluating domain adap-185

tation strategies in low-resource settings, as illus-186

trated in Figure 1. Starting from different base187

models, we investigate various adaptation paths to188

understand how the choice of starting point and189

adaptation strategy affects performance and com-190

putational efficiency.191

Our investigation addresses two key research192

questions:193

RQ1: Does the choice of a base model (general-194

purpose vs. already domain-adapted in En-195

glish) significantly impact adaptation success?196

RQ2: Which adaptation strategy provides the best197

balance between performance and computa-198

tional requirements?199

To address these questions, we present our200

experimental methodology in the following sec-201

tions: base models and adaptation strategies in202

Section 3.1, training data in Section 3.2, training203

procedures in Section 3.3), and evaluation protocol204

in Section 3.4.205

3.1 Base Models and Adaptation Approaches206

We evaluate adaptation strategies for French207

biomedical language models using the Mistral-7B208

architecture family. Our investigation uses three209

base models, each representing a different starting210

point for medical domain adaptation:211

• Mistral-7B-v0.1 (Jiang et al., 2023): A 7-212

billion-parameter general domain LLM.213

• Mistral-7B-instruct-v0.1 (Jiang et al., 2023): 214

The instruction-tuned variant of Mistral-7B- 215

v0.1. 216

• BioMistral-7B (Labrak et al., 2024): An 217

English-based medical domain-adapted vari- 218

ant from Mistral-7B-instruct-v0.1 further pre- 219

trained on PubMed Central Open Access tex- 220

tual data. 221

The selection of Mistral as our foundation 222

model was motivated by its reasonable French lan- 223

guage capabilities compared to other open-source 224

LLMs and its use in comparable studies for En- 225

glish (Labrak et al., 2024). We investigate three 226

distinct adaptation strategies: 227

• Continual Pre-training (CPT). Further train- 228

ing on domain-specific corpora. 229

• Supervised Fine-tuning (SFT). Adaptation 230

using instruction-response pairs. 231

• CPT+SFT. A sequential application of CPT 232

followed by SFT. 233

These strategies are applied across different model 234

paths, grouped into families based on their base 235

models, as illustrated in Table 2b. 236

3.2 Training Data 237

Our adaptation strategies utilize two distinct 238

datasets. 239

CPT strategy We employ the NACHOS (opeN 240

crAwled frenCh Healthcare cOrpuS) corpus, an 241

open-source French medical dataset spanning 7.4 242

GB with over one billion words collected from 243

24 high-quality French-language medical web- 244

sites (Labrak et al., 2023). Detailed information 245

about the corpus compilation and characteristics is 246

provided in Appendix A. 247

SFT strategy We constructed a dataset of 30K 248

medical question-answer pairs, equally distributed 249

across three categories: (1) 10K native French med- 250

ical QAs sourced from medical examinations, in- 251

cluding pharmacy specialization and other medical 252

board exams, (2) 10K translated QAs from English 253

medical datasets, covering multiple-choice ques- 254

tions from U.S. medical board exams and medical 255

flashcards, and (3) 10K generated QAs derived 256

from French medical texts, created using a lan- 257

guage model and filtered through a multi-step qual- 258

ity assessment process. The dataset includes both 259

multiple-choice questions (MCQs) with single and 260
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(a)

Group ID Medical Model Base Model Strategy

A Mistral-7B-Nachos Mistral-7B-v0.1 CPT
B Mistral-7B-Nachos-instruct Mistral-7B-v0.1 CPT+SFT
C Mistral-7B-Nachos-instruct Mistral-7B-Nachos CPT+SFT

Group 1
(Mistral)

D MedMistral-7B-chat Mistral-7B-v0.1 SFT
E Mistral-7B-Instruct-Nachos Mistral-7B-Instruct-v0.1 CPT
F Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-Nachos CPT+SFT

Group 2
(Mistral-Instruct) G Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-v0.1 CPT+SFT

H BioMistral-Nachos-7B BioMistral-7B CPT
I BioMistral-Nachos-7B-instruct BioMistral-7B CPT+SFT
J BioMistral-Nachos-7B-instruct BioMistral-Nachos-7B CPT+SFT

Group 3
(BioMistral)

K BioMistral-7B-chat BioMistral-7B SFT

(b)

Figure 2: Evaluation of model adaptation strategies. (a) Win/Tie/Loss analysis across QA datasets, showing the
proportion of datasets where each adapted medical model exhibits significant improvement (Win), no significant
difference (Tie), or significant degradation (Loss) compared to its base model. Model comparisons are labeled
A–K, as shown in (b). (b) Medical models, their base models, and the adaptation strategies used. For CPT+SFT
adaptations, we present both comparisons: with the direct base model (after CPT) and with the original base model
(before CPT) to evaluate the contribution of each adaptation step.

multiple correct answers, as well as open-ended261

questions (OEQs) with and without context. Fur-262

ther details on data composition and sources are263

provided in Appendix C.264

3.3 Training Process265

Our training procedures employ contrasting adap-266

tation approaches to explore the trade-off between267

computational efficiency and model plasticity. To268

examine adaptation strategies at opposite ends of269

the parameter efficiency spectrum, we apply full270

fine-tuning for CPT and a parameter-efficient ap-271

proach for SFT.272

CPT strategy We use an improved batching273

method following BioMistral (Labrak et al., 2024),274

which utilizes a post-tokenization grouping strat-275

egy to aggregate variable-sized sequences marked276

by end-of-sequence tokens (</s>). This approach277

effectively fills 2,048-token sequences without the278

need for padding. The training was conducted for 279

2.8 epochs with the following setup: the AdamW 280

optimizer (Loshchilov and Hutter, 2019) was used, 281

with a learning rate of 2×10−5 and a cosine sched- 282

uler, without warmup. The weight decay was set to 283

0.01, and the batch size was 16 with gradient accu- 284

mulation steps of 2. The trainings were performed 285

on 32 NVIDIA GPUs either A100 80GB or H100 286

80GB. 287

SFT strategy We implement DoRA (Weight- 288

Decomposed Low-Rank Adaptation) (Liu et al., 289

2024), an enhancement of LoRA (Hu et al., 2021) 290

that decomposes pre-trained weights into magni- 291

tude and direction components. This approach aims 292

to achieve fine-tuning capacity while minimizing 293

trainable parameters through LoRA’s directional 294

updates. We selected DoRA after conducting pre- 295

liminary experiments comparing its performance 296

against LoRA and VeRA (Kopiczko et al., 2024), 297
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where DoRA demonstrated superior adaptation effi-298

ciency and task-specific performance. SFT training299

was run for 10 epochs; complete hyperparameter300

details are provided in Appendix B.301

This design choice—full fine-tuning for CPT and302

parameter-efficient fine-tuning for SFT—allows us303

to evaluate adaptation strategies that lie at opposite304

ends of the trade-off between computational cost305

and model flexibility.306

3.4 Evaluation Protocol307

This section outlines our evaluation protocol. We308

introduce a French medical reasoning and knowl-309

edge benchmark (native and translated MCQs and310

OEQs), describe our prompting strategy, and detail311

the evaluation metrics and significance analysis.312

Translated MCQ Datasets The translated313

datasets consist of French versions of established314

English medical benchmarks, translated using GPT-315

3.5-turbo: MedQA (Jin et al., 2020), MedM-316

CQA (Pal et al., 2022), PubMedQA (Jin et al.,317

2019), and MMLU (Hendrycks et al., 2021) medi-318

cal subcategories, as detailed in Table 1.319

Native French MCQ Datasets For native French320

evaluation, we use FrBMedQA dataset (Kaddari321

and Toumi, 2022), which contains questions from322

French biomedical Wikipedia articles across eight323

Unified Medical Language System (UMLS) seman-324

tic groups: chemicals and drugs, anatomy, physiol-325

ogy, disorders, phenomena, procedures, genes and326

molecular sequences, and devices. The questions327

were converted from close-style to multiple-choice328

format using GPT-4o-mini (prompt details in Ap-329

pendix D). We additionally scraped and processed330

FrMedMCQA from S-Editions2, a platform offer-331

ing medical resources and study materials for medi-332

cal students in France. The data collection involved333

automated extraction followed by manual cleaning334

to ensure question-answer pair quality. The final335

dataset covers oncology, cardiovascular medicine,336

dermatology, endocrinology, gynecology, hematol-337

ogy, infectious diseases, neurology, ophthalmology,338

pediatrics, psychiatry, and rheumatology.339

OEQ Datasets For OEQ evaluation, we trans-340

lated the K-QA dataset (Manes et al., 2024) to341

French using GPT-4o-mini. This dataset contains342

201 patient questions from K Health3 platform con-343

versations, answered by in-house physicians. We344

2https://s-editions.fr/
3https://khealth.com/

QA type Dataset Context Test set
MedQA (4 & 5 Options) ✗ 1,273
MedMCQA ✗ 4,183
PubMedQA ✓ 500
MMLU: Anatomy ✗ 135
MMLU: Clinical Knowledge ✗ 265
MMLU: College Biology ✗ 144
MMLU: College Medicine ✗ 173
MMLU: Professional Medicine ✗ 272

Translated MCQ

MMLU: Medical Genetics ✗ 100
FrBMedQA ✗ 2,156Native MCQ
FrMedMCQA ✗ 183

Translated OEQ K-QA ✗ 201
FrClinicalQA ✓ 262Native OEQ
FrMedQA ✗ 81

Table 1: Table 1: Evaluation datasets categorized by
QA type, source language(translated or native French),
context availability, and test set size.

also scraped and processed two native datasets from 345

S-Editions: FrClinicalQA with clinical case ques- 346

tions in cardiology, oncology, pneumology, infec- 347

tious diseases, endocrinology, and rheumatology; 348

and FrMedQA with medical questions without clin- 349

ical context in these domains. Each scraped dataset 350

underwent automated cleaning and manual verifi- 351

cation. 352

An overview of dataset sources and sizes is listed 353

in Table 1. 354

Prompting Strategy We conduct zero-shot eval- 355

uation to simulate real-world scenarios and due to 356

dataset constraints, as most datasets except trans- 357

lated MCQs consist only of small test sets (Table 1). 358

To generate responses, we employ a greedy de- 359

coding strategy. For MCQ tasks, following Liang 360

et al. (2022), Beeching et al. (2023) and Chen et al. 361

(2023a), we filter the vocabulary to include only to- 362

kens (choice letters) corresponding to the expected 363

answer options, preventing the model from gener- 364

ating irrelevant tokens or hallucinations. 365

As a supplementary experiment, we investigate 366

whether English examples, matching the models’ 367

initial training language, affect performance on 368

French medical questions. We implement 3-shot 369

in-context learning on the translated MCQ datasets, 370

using three sets of randomly selected examples 371

from each dataset’s training set. We test two con- 372

figurations: (1) French prompts and questions with 373

English in-context examples, where the model is ex- 374

posed to French-language tasks but provided with 375

English-language examples, and (2) all-French 376

prompts, questions, and examples, ensuring that 377

all input is in French. Complete prompting tem- 378

plates for both zero-shot and few-shot evaluations 379

are detailed in Appendix E. 380
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Evaluation Metrics For MCQ tasks, we re-381

port the exact-match accuracy and for OEQ382

tasks, we evaluate performance using the F1383

BERTScore (Zhang et al., 2020).384

Statistical Significance Assessment To deter-385

mine whether the observed performance improve-386

ments from adaptation are statistically significant,387

we employ a percentile bootstrap method, similar388

to Jeong et al. (2024). This approach involves re-389

sampling (with replacement) from the test set to390

create samples of the same size as the original. For391

each resample, we compute the performance dif-392

ference (e.g., accuracy for MCQ or F1 BERTScore393

for OEQ) between paired models. This process is394

repeated 10,000 times, generating a distribution of395

relative performance metrics. A 95% confidence396

interval is then derived from this distribution, and397

a difference is considered statistically significant if398

the interval does not include zero.399

Unlike Jeong et al. (2024), we applied the Bon-400

ferroni correction to account for the multiple com-401

parisons conducted in our study. This correction402

mitigates the increased likelihood of Type I errors403

(false positives) that arise when testing multiple404

hypotheses. The Bonferroni correction adjusts the405

significance threshold to α/m, where α is the de-406

sired overall significance level (0.05 in our case)407

and m is the total number of comparisons.408

To evaluate the generality of the adapted models,409

we analyze performance differences at the dataset410

level, enabling us to compute the win rate, that411

is the proportion of datasets where a given model412

outperforms its base version.413

4 Results and Discussion414

In this section, we present our analysis of the adap-415

tation strategies described in Section 3, providing416

answers to our research questions RQ1 (impact of417

base model selection), RQ2 (effectiveness of adap-418

tation strategies), and RQ3 (reliability of evaluation419

methodologies). Results from our few-shot eval-420

uation experiments are presented in Appendix F,421

as they provide supplementary insights but do not422

affect our main findings about adaptation strategies.423

4.1 Base Model Selection424

We present our evaluation results across three425

model groups on multiple tasks. Tables 2, 3, and 6426

show performance on translated MCQs, native427

MCQs, and OEQs respectively.428

Model Performance Analysis429

Group 1 (Mistral-based) Starting from a 430

general-purpose model (Mistral-7B-v0.1), Mistral- 431

7B-Nachos-instruct demonstrates substantial im- 432

provements across all metrics. On translated 433

MCQs, performance increases from 0.87% to 434

47.83%, while native MCQs show improvement 435

from 3.97% to 36.55%. For OEQs, F1 BERTScore 436

improves from 0.55 to 0.67. These gains are sta- 437

tistically significant with a 100% win rate over the 438

baseline. 439

Group 3 (BioMistral-based) Starting from an 440

English medical model shows contrasting re- 441

sults. On translated MCQs, we observe perfor- 442

mance degradation across all adaptations. Native 443

MCQs show improvement from 30.13% to 35.52% 444

(BioMistral-Nachos-7B-instruct), though not statis- 445

tically significant. The most notable result appears 446

in OEQs, where adaptation achieves a statistically 447

significant improvement of 0.22 in F1 BERTScore. 448

Group 2 (Mistral-instruct-based) The 449

instruction-tuned starting point yields intermediate 450

results. Mistral-7B-Instruct-Nachos-instruct 451

improves from 39.96% to 43.03% on translated 452

MCQs, from 27.13% to 36.46% on native MCQs, 453

and maintains a 0.67 F1 BERTScore on OEQs. 454

Despite these apparent improvements, statistical 455

testing reveals low significance with only a 27% 456

win rate. 457

Impact of Base Model Selection Statistical com- 458

parison between the best performing models from 459

each group (Table 5) shows Mistral-7B-Nachos- 460

instruct (Group 3) significantly outperforming 461

BioMistral-Nachos-7B-instruct (Group 1) with a 462

73% win rate. This suggests that starting from 463

a general-purpose model proves more effective 464

than building upon an already medical-specialized 465

model. The comparison with Mistral-7B-Instruct- 466

Nachos-instruct (Group 2) shows mixed results 467

(40% wins, 60% ties), indicating that while start- 468

ing from a general model might be advantageous 469

over an instruction-tuned variant, the benefits are 470

less pronounced. These results can be explained 471

by several factors. The limited gains in Group 472

1 (BioMistral-based) suggest that when a model 473

has already acquired medical knowledge during 474

English pre-training, further adaptation on French 475

medical data may be redundant or even detrimental 476

for factual knowledge tasks. This is evidenced by 477

BioMistral’s strong base performance but limited 478

gains from adaptation. The intermediate perfor- 479
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MMLU

Model Strategy Average PubMedQA
MedQA

4 Options
MedQA

5 Options MedMCQA Clinical
Knowledge

Medical
Genetics Anatomy Pro.

Medicine
College
Biology

College
Medicine

Mistral-7B-v0.1 Base Model 0.87 4.00 0.08 0.24 0.19 1.51 0.00 0.00 0.00 2.08 0.58
Mistral-7B-Nachos CPT 36.00 41.00 28.83 23.10 33.09 44.15 43.00 37.78 27.21 46.53 35.26
Mistral-7B-Nachos-instruct CPT+SFT 47.83 64.00 42.66 35.19 37.99 49.43 56.00 42.96 53.68 47.22 49.13
MedMistral-7B-chat SFT 43.65 54.60 39.67 31.89 35.79 44.91 43.00 45.19 48.53 40.28 52.60

Mistral-7B-Instruct-v0.1 Base Model 39.96 54.40 29.14 24.90 31.87 46.42 44.00 37.78 46.32 40.28 44.51
Mistral-7B-Instruct-Nachos CPT 43.03 34.80 37.08 32.29 38.42 50.57 59.00 42.96 40.81 49.31 45.09
Mistral-7B-Instruct-Nachos-instruct CPT+SFT 43.20 59.20 36.29 31.50 36.39 42.26 53.00 42.22 40.07 46.53 44.51

BioMistral-7B Base Model 41.39 54.60 32.44 26.08 31.68 52.08 43.00 40.74 45.22 42.36 45.66
BioMistral-Nachos-7B CPT 35.14 14.80 28.75 27.49 30.62 44.15 42.00 39.26 43.38 41.67 39.31
BioMistral-Nachos-7B-instruct CPT+SFT 34.53 36.60 35.59 30.24 35.41 32.83 37.00 34.07 29.41 38.89 35.26
BioMistral-7B-chat SFT 37.68 44.60 36.68 30.24 31.87 38.49 44.00 41.48 39.34 35.42 34.68

Table 2: Zero-shot performance on translated MCQ tasks. Scores are reported using exact-match accuracy. The best-
performing model within each group is highlighted in bold, and the overall best-performing model is underlined.

Model Strategy Average FrBMedQA FrMedMCQA

Mistral-7B-v0.1 Base Model 3.97 7.93 0.00
Mistral-7B-Nachos CPT 33.48 50.56 16.39
Mistral-7B-Nachos-instruct CPT+SFT 36.55 50.70 22.40
MedMistral-7B-chat SFT 29.88 48.28 11.47

Mistral-7B-Instruct-v0.1 Base Model 27.13 43.88 10.38
Mistral-7B-Instruct-Nachos CPT 36.46 53.25 19.67
Mistral-7B-Instruct-Nachos-instruct CPT+SFT 35.50 50.79 20.21

BioMistral-7B Base Model 30.13 46.06 14.20
BioMistral-Nachos-7B CPT 32.83 47.63 18.03
BioMistral-Nachos-7B-instruct CPT+SFT 35.52 47.54 23.49
BioMistral-7B-chat SFT 27.93 46.57 9.28

Table 3: Zero-shot performance on native French
MCQA tasks. Scores represent exact-match accuracy.
The best model in each group is highlighted in bold and
the best model overall is underlined.

mance of Group 2 suggests that while instruction480

tuning provides some benefits, it may constrain481

the model’s ability to fully adapt to new domains482

compared to starting from a general model.483

4.2 Adaptation Strategy Effectiveness484

Having established Group 1 (Mistral-based mod-485

els) as the most effective starting point, we focus486

our analysis of adaptation strategies within this487

group where improvements are statistically signifi-488

cant and meaningful.489

CPT CPT alone (Mistral-7B-Nachos) shows sig-490

nificant improvements: 11.83% and 29.51% in-491

creases on translated and native MCQs respectively,492

while maintaining baseline performance on OEQs.493

CPT+SFT The addition of SFT enhances these494

gains, with Mistral-7B-Nachos-instruct achieving495

47.83% on translated MCQs, 36.55% on native496

MCQs, and 0.67 F1 BERTScore on OEQs.497

SFT Direct SFT (MedMistral-7B-chat) demon-498

strates strong results with 43.65% on translated499

MCQs, 29.88% on native MCQs, though showing500

slight degradation on OEQs from 0.55 to 0.52.501

Strategies Win Tie Loss
CPT+SFT vs. CPT 0.67 0.33 0
CPT+SFT vs. SFT 0.4 0.54 0.06

Table 4: Statistical significance comparison of adap-
tation strategies. Win/Tie/Loss rates indicate the pro-
portion of datasets where CPT+SFT shows significant
improvement/no significant difference/significant degra-
dation compared to CPT-only and SFT-only adaptations
in Group 1 (Mistral-based models)

Groups Win Tie Loss
Group 1 vs. Group 3 0.73 0.27 0
Group 1 vs. Group 2 0.4 0.6 0

Table 5: Statistical significance comparison between
groups to to determine the optimal starting point for
adaptation. Win/Tie/Loss rates compare the best per-
forming models from Group 1 against those from Group
2 and Group 3.

Strategies Comparison Statistical testing be- 502

tween strategies (Table 4) confirms CPT+SFT’s ad- 503

vantages over CPT (67% wins, 33% ties) but shows 504

less consistent superiority over SFT (40% wins, 505

54% ties, 6% losses). While CPT+SFT achieves 506

the best overall performance, direct SFT offers a 507

compelling alternative when considering compu- 508

tational efficiency, as we discuss in the following 509

section (Section 4.3). 510

4.3 Computational Efficiency and 511

Environmental Impact 512

Our analysis of adaptation strategies considers not 513

only performance but also computational costs and 514

environmental impact. We assess these factors us- 515

ing three metrics: training time, carbon emissions 516

(kgCO2e), and monetary costs. 517

The CPT approach, while effective, demands 518

substantial resources. Based on internal estima- 519
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tions, training on 7.4GB of medical data requires520

32 GPUs (NVIDIA H100 or A100), generating521

approximately 9–10 kgCO2e per adaptation. In522

contrast, SFT processes only 36MB of data and523

runs on 1–2 GPUs, reducing emissions to 2.5–2.6524

kgCO2e. The combined CPT+SFT approach accu-525

mulates the costs of both stages, resulting in total526

emissions of 10–12 kgCO2e.527

Monetary costs follow a similar trend: CPT train-528

ing ranges from 590 USD4 to 1,073 USD depend-529

ing on the GPU type, while direct SFT costs only530

43–45 USD. These findings highlight direct SFT as531

a significantly more resource-efficient adaptation532

path, requiring just 25% of the computational re-533

sources and carbon emissions of CPT or combined534

approaches. Further details on training time, car-535

bon emissions, and monetary costs are provided in536

Appendix H.537

Our findings present an interesting parallel to538

recent work Jeong et al. (2024) questioning the ef-539

fectiveness of medical domain adaptation. While540

they found that general English models already pos-541

sess strong medical capabilities, making additional542

medical training redundant due to exposure to med-543

ical data (PubMed) during pre-training, our results544

with BioMistral (Group 3) show similarly limited545

gains from additional medical adaptation. However,546

our Group 1 results reveal that when starting from a547

general model and adapting with new medical data548

in the target language (here French), domain adap-549

tation can provide significant benefits (87% win550

rate over baseline). This suggests that the effective-551

ness of domain adaptation may depend on both the552

starting point and whether the base model has al-553

ready been exposed to similar domain-specific data554

during pre-training, directly addressing RQ1 about555

the impact of base model selection on adaptation556

success.557

Furthermore, while CPT+SFT achieves the best558

performance in this setting, our analysis shows that559

direct SFT offers a compelling alternative when560

computational resources are limited. With just 25%561

of the computational cost and carbon emissions of562

CPT or CPT+SFT, direct SFT delivers substantial563

improvements at a fraction of the resource require-564

ments. This highlights an important trade-off be-565

tween performance gains and efficiency, suggesting566

that in resource-constrained scenarios, direct SFT567

can be a practical and effective adaptation strat-568

egy, thereby answering RQ2 regarding adaptation569

4Estimations from our cloud provider.

strategy effectiveness. 570

Additionally, our evaluation methodology high- 571

lights important considerations about assessing 572

domain-adapted models. The divergent perfor- 573

mance patterns between multiple-choice and open- 574

ended tasks (in group 3) raise important questions 575

about evaluation methodology, suggesting that cur- 576

rent metrics, such as BERTScore, may not effec- 577

tively distinguish between improvements in factual 578

knowledge versus language generation capabilities. 579

Model Strategy Average FrClinicalQA FrMedQA K-QA

Mistral-7B-v0.1 Base Model 0.55 0.35 0.61 0.70
Mistral-7B-Nachos CPT 0.55 0.56 0.59 0.51
Mistral-7B-Nachos-instruct CPT+SFT 0.67 0.65 0.64 0.72
MedMistral-7B-chat SFT 0.52 0.20 0.62 0.73

Mistral-7B-Instruct-v0.1 Base Model 0.67 0.65 0.67 0.70
Mistral-7B-Instruct-Nachos CPT 0.60 0.51 0.65 0.63
Mistral-7B-Instruct-Nachos-instruct CPT+SFT 0.67 0.65 0.64 0.71

BioMistral-7B Base Model 0.44 0.18 0.52 0.63
BioMistral-Nachos-7B CPT 0.47 0.45 0.60 0.35
BioMistral-Nachos-7B-instruct CPT+SFT 0.66 0.64 0.63 0.71
BioMistral-7B-chat SFT 0.57 0.39 0.63 0.70

Table 6: Zero-shot performance on OEQ tasks. Scores
represent f1 BERTScore. The best model in each group
is highlighted in bold and the best model overall is
underlined.

5 Conclusion 580

This work investigates adaptation strategies for 581

the development of models in the French medical 582

language, providing information on domain adap- 583

tation in low-resource settings. Our results tend 584

to show that the effectiveness of domain adapta- 585

tion depends on the base model’s prior exposure 586

to domain knowledge. Our analysis of different 587

adaptation strategies reveals that while combined 588

CPT+SFT achieves the best performance across all 589

tasks, direct SFT offers a compelling alternative, 590

achieving strong results with significantly lower 591

computational requirements. This finding has im- 592

portant implications for resource-efficient domain 593

adaptation. 594

These findings contribute to our understanding 595

of cross-lingual domain adaptation and provide 596

practical guidelines for developing specialized lan- 597

guage models in resource-constrained settings. Fu- 598

ture work should focus on developing more effi- 599

cient adaptation strategies and more reliable evalu- 600

ation methodologies for assessing domain-specific 601

capabilities. 602
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6 Limitations603

Our evaluation of adaptation strategies faces sev-604

eral limitations. First, due to the scarcity of native605

French medical evaluation datasets, we rely heavily606

on translated benchmarks. While we include na-607

tive French tests, a more comprehensive evaluation608

would require larger native datasets across diverse609

medical specialties.610

Second, our assessment of model performance611

on OEQs uses BERTScore, which may not fully612

capture the medical accuracy of generated re-613

sponses. The development of specialized metrics614

for evaluating medical language generation, par-615

ticularly for non-English languages, remains an616

important challenge.617

Third, while we demonstrate the efficiency618

of SFT compared to CPT in terms of computa-619

tional resources, our analysis does not account for620

the human effort required to create high-quality621

instruction-tuning datasets. This consideration622

is particularly relevant for low-resource settings623

where creating domain-specific instruction data624

may be costly.625

Fourth, our experiments are conducted on the626

Mistral-7B family of models and may lead to dif-627

ferent conclusions if run on different-sized models,628

or models trained on a substantially different data629

mixture. Also, datasets we base our conclusions630

on are mostly question-answering oriented, and not631

representative of the variety of uses of LLMs possi-632

ble in the medical domain. Our conclusions might633

be affected by more diverse evaluation tasks.634

Finally, our findings about the effectiveness of635

adaptation strategies are specific to the medical do-636

main and French language. The generalizability of637

these results to other domains or languages, partic-638

ularly those with different resource constraints or639

linguistic characteristics, requires further investiga-640

tion.641
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A.1 Corpus Composition820

The NACHOS corpus encompasses a diverse range821

of medical textual sources, including:822

• Descriptions of diseases and conditions823

• Treatment and medication information824

• General health-related advice825

• Official scientific meeting reports826

• Anonymized clinical cases827

• Scientific literature828

• Theses829

• French translation pairs830

• University health courses831

A.2 Data Sources832

The corpus integrates data from multiple sources,833

with the most significant contributions coming834

from:835

• HAL (638,508,261 words)836

• Haute Autorité de Santé (HAS) (113,394,539837

words)838

• Drug leaflets (74,770,229 words)839

• Medical Websites Scraping (60,561,495840

words)841

• ANSES SAISINE (51,372,932 words)842

• Public Drug Database (BDPM) (48,302,695843

words)844

A.3 Corpus Preparation845

The researchers employed several preprocessing846

steps:847

1. Text collection through web scraping, raw tex-848

tual sources, and optical character recognition849

(OCR)850

2. Sentence splitting using heuristic methods851

3. Aggressive filtering to remove short or low-852

quality sentences853

4. Language classification using a custom classi-854

fier trained on multilingual corpora855

B SFT hyperparameters 856

Parameter Value
Rank 16

LoRA Aplha 16
LoRA Dropout 0.05
Learning rate 2e-05

Train batch size 4
Evaluation batch size 8

Seed 42

Number of GPU
1 NVIDIA H100 80GB

Or
2 NVIDIA L40 48GB

Gradient accumulation steps 2
Optimizer AdamW
Scheduler Cosine

Number of epochs 10
Target Modules QKVOGUD

Table 7: Hyperparameters for the Supervised FineTun-
ing (SFT) training

C SFT Training dataset 857

The Supervised Fine-tuning dataset comprises 858

30,000 question-answer pairs sourced from three 859

distinct categories: native French medical content, 860

translated English medical content, and generated 861

questions from French medical texts. 862

C.1 Native French Content 863

We randomly sampled 10,000 question-answer 864

pairs from two primary sources. The first source 865

is FrenchMedMCQA (Labrak et al., 2022), 866

a dataset containing 3,105 questions derived 867

from French pharmacy specialization diploma 868

examinations. These questions encompass both 869

single and multiple-answer formats, reflecting real 870

examination conditions and standards. 871

872

The second source consists of two com- 873

plementary datasets hosted on Hugging 874

Face5 : mlabonne/medical-mqca-fr6 and 875

mlabonne/medical-cases-fr7. These datasets 876

consist of multiple-choice questions and clinical 877

case studies sourced from French medical exam- 878

ination databases, encompassing a wide range 879

of medical specialties, including addictology, 880

gerontology, neurology, and psychiatry, among 881

others. 882

5https://huggingface.co/
6https://huggingface.co/datasets/mlabonne/

medical-mqca-fr
7https://huggingface.co/datasets/mlabonne/

medical-cases-fr
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C.2 Translated Content883

Another 10,000 question-answer pairs were sam-884

pled from English medical resources and trans-885

lated to French using jsontt8, an open-source886

command-line interface tool that leverages mul-887

tiple translation services. The source material888

included the training set of MedQA (Jin et al.,889

2020), which comprises multiple-choice questions890

from U.S. medical board examinations, and the891

Medical Meadow Medical Flashcards compiled by892

MedAplaca (Han et al., 2023), which cover funda-893

mental medical subjects including anatomy, physi-894

ology, pathology, and pharmacology.895

C.3 Generated Content896

The final 10,000 pairs were generated using a two-897

phase process.898

Initially, we used Mistral-7b-instruct-v0.2 (Jiang899

et al., 2023) to generate question-answer pairs900

from contexts extracted from the French subset901

of Antidote corpus (García-Ferrero et al., 2024).902

We instructed the model to create question-answer903

pairs based on provided medical contexts using this904

prompt Figure 3. To ensure the output was in JSON905

format, we used Outlines9, a Python library that906

guides the generation process so that the output907

adheres to a specified JSON schema.908

Generation Prompt

Vous êtes médecin et votre tâche consiste
à fournir une paire de question-réponse en
français à partir du contexte suivant :
Contexte : {{context}}
N’oubliez pas de répondre en français!

Figure 3: Instruction template used for generating
question-answer pairs in French, based on the given
context.

The quality of generated pairs underwent an909

evaluation using three large language models:910

Prometheus-7B-v2.0 (Kim et al., 2024), Meta-911

Llama-3-70B-Instruct (Dubey et al., 2024), and912

GPT-4o (Hurst et al., 2024). Each model indepen-913

dently scored the pairs on a five-point scale based914

on relevance, accuracy, and comprehensiveness fol-915

lowing the prompt Figure 4. Only pairs receiving916

scores of 4 or 5 from all three evaluating models917

8https://github.com/mololab/json-translator
9https://github.com/dottxt-ai/outlines

were retained for the training corpus, ensuring high- 918

quality training data. 919

Evaluation Prompt

You are a medical evaluator tasked with
assessing question-answer pairs within a
given context. Provide a score from 1 to 5
based on the provided score criteria.
[SCORE]: (score from 1 to 5)
Do not include any other opening, closing,
or explanations.
Score criteria:

• Score 1: The question-answer pair
is completely irrelevant or incorrect
given the context. The answer has ma-
jor factual errors.

• Score 2: The question is somewhat
relevant but the answer has significant
inaccuracies or lacks important details
from the context.

• Score 3: The question is relevant and
the answer is mostly accurate but con-
tains some minor factual errors or
omissions.

• Score 4: The question is clear and rele-
vant, and the answer is accurate based
on the context with only very minor
omissions.

• Score 5: The question is clear, rele-
vant, and the answer is completely ac-
curate and comprehensive based on
the given context.

Remember, your score should consider both
the relevance of the context to the medical
domain and the accuracy of the question-
answer pair. Here’s your question-answer
pair given the context:
Context : {{context}}
Question : {{question}}
Answer : {{answer}}
[SCORE]:

Figure 4: Instruction template used for evaluating
question-answer pairs based on medical relevance and
accuracy.
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D System prompt for reformulating920

FrBMedQA dataset921

System Prompt

You are a medical question generation as-
sistant. Given the following passage and
a question based on it, transform the ques-
tion into a valid multiple-choice question
(MCQ). The MCQ should:

• Focus on the placeholder by asking
specifically about the information that
corresponds to it.

• The question should not contain
@placeholder

• The choices in the MCQ should be
taken directly from the ‘entities_list’
and be formatted as options A, B, C,
etc.

• The question should be phrased in a
formal, clear, and precise manner, as
a medical expert would phrase it.

• The MCQ should not contain any refer-
ence to the passage, such as "accord-
ing to the passage" or "as stated in the
passage". The question should be able
to stand alone and should not explic-
itly refer to the passage.

• Provide one correct answer, which
should correspond to the letter in the
MCQ options.

• The MCQ should be written in French.

• Return the MCQ in json format

Figure 5: System prompt given to GPT-4o-mini for
generating multiple-choice questions in French from
given passages and questions.

E Prompt templates used in evaluation in922

zero-shot and few-shot settings for923

MCQ and OEQ tasks924

We employed a standardized prompt template (Fig-925

ure 6) across all multiple-choice question (MCQ)926

evaluations, with the exception of FrMedMCQA,927

which uniquely features questions with multiple 928

correct answers and required a specialized prompt 929

(Figure 7). 930

Instruction Template

Nous vous présentons une question scien-
tifique, (un contexte) et (quatre/cinq) choix
de réponse. Votre tâche est de trouver
la réponse correcte en vous basant sur
des faits scientifiques, vos connaissances
et votre raisonnement (le contexte fourni).
Générez uniquement l’une des lettres suiv-
antes : A, B, C, D, (E). Chaque question n’a
qu’une seule réponse. Les justifications ne
sont pas permises.
Voici quelques exemples pour vous aider à
mieux comprendre la tâche :
{% for i, shot in fewshots.items() %}
Exemple {{i}}:
Context: {{context}}
Question: {{question}}
Choix:
{% for letter, option in options.items() %}
{{letter}}: {{option}}
{% endfor %}
Réponse: {{correct_letter}}
{% endfor %}
Maintenant, répondez à cette question (en
vous basant sur le contexte):
Contexte: {{context}}
Question: {{question}}
Choix:
{% for letter, option in options.items() %}
{{letter}}: {{option}}
{% endfor %}
Réponse :

Figure 6: Instruction template for zero-shot and few-
shot evaluations. For zero-shot evaluations, the few-shot
examples are omitted.

The base template was dynamically modified 931

according to specific corpus characteristics: 932

• If the corpus included a context, the place- 933

holder (un contexte) was replaced with the 934

actual context text. For corpora without con- 935

text, this part was omitted. 936

• The number of answer choices varied depend- 937

ing on the corpus, with (quatre/cinq) replaced 938
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by "quatre" (four) or "cinq" (five) as appropri-939

ate.940

• The letter (E) was included for corpora with941

five options and omitted otherwise.942

• (en vous basant sur le contexte): This place-943

holder was included for corpora that provided944

context and omitted otherwise.945

Instruction Template

Nous vous présentons une question scien-
tifique suivie de plusieurs choix de réponse.
Votre tâche est de sélectionner la ou les let-
tres correspondant aux réponses correctes,
en vous basant sur des faits scientifiques,
vos connaissances et votre raisonnement.
Générez uniquement les lettres correspon-
dant aux réponses correctes (par exemple :
A C D). Chaque question peut avoir une ou
plusieurs réponses correctes. Les justifica-
tions ne sont pas permises.
Question: {{question}}
Choix:
{% for letter, option in options.items() %}
{{letter}}: {{option}}
{% endfor %}
Réponse :

Figure 7: Instruction template for zero-shot evaluation
used for FrMedMCQA evaluation.

For Open-Ended Question (OEQ) evaluations,946

we used a standard prompt (Figure 8) for all OEQ947

datasets except FrClinicalQA. This dataset consists948

of interconnected questions about clinical cases,949

where the prompt (Figure 9) included the clinical950

case, any previous questions and the current ques-951

tion to be answered. This structure maintained the952

contextual relationship between questions within953

each clinical case.954

Instruction Template

Veuillez lire l’instruction médicale ci-
dessous et fournir une réponse adaptée
à la situation décrite. Votre tâche est
de répondre correctement en vous basant
sur des faits scientifiques et vos connais-
sances. Répondez uniquement à la question
posée de manière brève et concise. Faites
des phrases courtes contenant la réponse,
évitez les informations non essentielles et
concentrez-vous sur les éléments cruciaux
pour une réponse efficace et pertinente.
Instruction: {{question}}
Réponse :

Figure 8: Instruction template for zero-shot evaluation
used for OEQ evaluation.

Instruction Template

Vous allez lire un cas clinique suivi de
plusieurs questions liées. Votre tâche est
de répondre correctement à la dernière
question en utilisant uniquement le con-
texte clinique fourni et les questions précé-
dentes. N’incluez pas d’informations non
pertinentes ou de réponses aux questions
précédentes. Répondez de manière brève et
concise à la question posée, en vous basant
sur le cas clinique et les questions précé-
dentes comme contexte.
Cas Clinique: {{clinical_case}}
{{previous_questions}}
Répondez uniquement à la question suiv-
ante, en utilisant le cas clinique et les ques-
tions précédentes comme contexte, sans in-
clure de réponses précédentes.
Question: {{question}}
Réponse:

Figure 9: Instruction template for zero-shot evaluation
used for FrClinicalQA dataset.

F Few-shot Evaluation Analysis 955

To investigate whether the language of in-context 956

examples affects model performance, we con- 957

ducted 3-shot evaluations on translated MCQ tasks 958

using two configurations: French prompts with En- 959
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MMLU

Model Strategy Average PubMedQA
MedQA

4 Options
MedQA

5 Options MedMCQA Clinical
Knowledge

Medical
Genetics Anatomy Pro.

Medicine
College
Biology

College
Medicine

French 3-shot

Mistral-7B-v0.1 Base Model 30.19 62.80 38.47 29.82 11.27 25.41 34.00 21.23 34.31 22.22 22.35
Mistral-7B-Nachos CPT 35.63 65.87 38.39 28.91 26.31 27.30 41.67 29.88 32.35 36.57 29.09
Mistral-7B-Nachos-instruct CPT+SFT 44.75 61.93 39.46 32.42 37.30 40.88 58.67 39.51 55.51 40.74 41.04
MedMistral-7B-chat SFT 46.35 61.67 40.32 32.68 37.37 47.30 54.00 45.68 49.14 45.60 49.71

Mistral-7B-Instruct-v0.1 Base Model 43.40 68.07 31.29 27.00 34.35 49.94 50.00 42.22 45.96 39.35 45.86
Mistral-7B-Instruct-Nachos CPT 45.28 43.73 38.15 32.18 37.64 53.21 63.00 42.96 44.12 51.39 46.44
Mistral-7B-Instruct-Nachos-instruct CPT+SFT 42.24 60.13 39.57 32.70 35.40 40.50 53.67 39.75 40.56 40.28 39.88

BioMistral-7B Base Model 46.02 70.87 34.85 29.77 36.62 53.33 54.33 42.96 44.12 42.82 50.48
BioMistral-Nachos-7B CPT 40.37 29.73 36.79 31.61 35.80 48.81 53.33 34.32 44.85 43.75 44.70
BioMistral-Nachos-7B-instruct CPT+SFT 38.82 38.80 35.59 31.32 35.96 36.98 47.67 37.53 42.28 40.28 41.81
BioMistral-7B-chat SFT 38.67 49.47 35.30 28.70 33.44 46.04 42.33 42.72 38.85 32.64 37.19

English 3-shot

Mistral-7B-v0.1 Base Model 32.36 68.60 38.49 31.03 11.40 28.30 34.67 21.48 39.58 26.16 23.89
Mistral-7B-Nachos CPT 44.09 67.07 40.30 33.07 34.33 40.38 57.67 39.01 47.18 42.82 39.11
Mistral-7B-Nachos-instruct CPT+SFT 47.40 66.13 41.16 34.41 37.84 42.64 58.33 42.96 56.13 46.06 48.36
MedMistral-7B-chat SFT 46.47 62.07 39.85 32.47 37.61 48.81 54.00 48.64 48.90 43.98 48.36

Mistral-7B-Instruct-v0.1 Base Model 43.93 68.87 33.41 28.80 36.19 49.56 46.67 41.98 45.59 40.97 47.21
Mistral-7B-Instruct-Nachos CPT 48.29 63.27 41.21 34.22 39.39 52.20 63.33 41.73 47.30 51.85 48.36
Mistral-7B-Instruct-Nachos-instruct CPT+SFT 44.98 60.07 41.06 34.93 37.29 46.92 55.00 42.22 45.83 43.29 43.16

BioMistral-7B Base Model 46.76 69.93 37.89 31.42 38.79 53.33 50.67 42.22 44.98 46.30 52.02
BioMistral-Nachos-7B CPT 42.53 38.53 37.60 33.91 37.75 50.44 50.33 35.56 47.92 48.15 45.09
BioMistral-Nachos-7B-instruct CPT+SFT 37.87 32.47 37.29 31.40 37.00 37.61 45.33 35.31 41.05 42.13 39.11
BioMistral-7B-chat SFT 39.14 48.13 36.50 30.16 33.41 45.41 42.67 45.19 40.07 30.32 39.50

Table 8: Performance comparison of 3-shot in-context learning evaluations. The prompt is consistently in French,
while the example shots are presented either in French or English. Scores are reported using exact-match accuracy.
The best-performing model within each group is highlighted in bold, and the overall best-performing model is
underlined.

glish examples (English 3-shot) and fully French960

prompts and examples (French 3-shot). Table 8961

shows the results of these experiments, accompa-962

nied by statistical significance analysis (Table 9).963

964

The results reveal several interesting patterns in965

language configuration impact. Models adapted966

through CPT, particularly Mistral-7B-Instruct-967

Nachos and Mistral-7B-Nachos, show slightly bet-968

ter performance when provided with English ex-969

amples compared to French ones. For instance,970

Mistral-7B-Nachos achieves 44.09% accuracy with971

English examples versus 35.63% with French ex-972

amples (Table 8). This pattern is particularly inter-973

esting given that these models were trained only on974

French medical data (NACHOS), suggesting that975

the base model’s general English capabilities might976

contribute to better utilization of English examples977

even in medical contexts.978

Group-specific performance patterns remain979

consistent with our main findings. Group 1980

(Mistral-based) maintains its superior performance981

in few-shot settings, while models from Group 3982

(BioMistral-based) continue to show limited im-983

provements over their base model. The relative984

ranking of adaptation strategies remains stable985

across both few-shot configurations and aligns with986

zero-shot results. 987

These findings provide additional context to our 988

main conclusions about adaptation strategies while 989

revealing an advantage of English examples in few- 990

shot scenarios, despite the models’ French medical 991

training. 992

G Statistical Significance Assessment 993

Results 994

The statistical significance analysis results are 995

shown across different evaluation settings: Tables 996

11, 12 and 13 present the win/tie/loss rates for 997

translated MCQs, native MCQs, and OEQs, respec- 998

tively. Each rate indicates the proportion of datasets 999

where a model shows statistically significant im- 1000

provement (win), no significant difference (tie), or 1001

significant degradation (loss) compared to its base 1002

model. 1003

H Computational Resources and 1004

Environmental Impact 1005

Table 10 details the computational resources re- 1006

quired for each adaptation strategy and their envi- 1007

ronmental impact. We report training time, GPU 1008

requirements, carbon emissions (kgCO2e), and as- 1009

sociated costs in USD. Carbon emissions were cal- 1010

culated based on the energy consumption of differ- 1011
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MMLU

Average PubMedQA MedQA
4 Options

MedQA
5 Options MedMCQA Clinical

Knowledge
Medical
Genetics Anatomy Pro.

Medicine
College
Biology

College
Medicine

Model Base Model Strategy Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss
French 3-shot

Mistral-7B-Nachos Mistral-7B-v0.1 CPT 0.3 0.7 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0
Mistral-7B-Nachos-instruct Mistral-7B-v0.1 CPT+SFT 0.7 0.3 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-Nachos CPT+SFT 0.5 0.5 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0
Med-Mistral-7B-chat Mistral-7B-v0.1 SFT 0.7 0.3 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

Mistral-7B-Instruct-Nachos Mistral-7B-Instruct-v0.1 CPT 0.4 0.5 0.1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-Nachos CPT+SFT 0.1 0.6 0.3 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-v0.1 CPT+SFT 0.2 0.6 0.2 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

BioMistral-Nachos-7B BioMistral-7B CPT 0 0.9 0.1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-instruct BioMistral-7B CPT+SFT 0 0.8 0.2 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-instruct BioMistral-Nachos-7B CPT+SFT 0.1 0.8 0.1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-7B-chat BioMistral-7B SFT 0 0.7 0.3 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1

English 3-shot

Mistral-7B-Nachos Mistral-7B-v0.1 CPT 0.7 0.3 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-v0.1 CPT+SFT 0.7 0.3 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-Nachos CPT+SFT 0.1 0.9 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Med-Mistral-7B-chat Mistral-7B-v0.1 SFT 0.6 0.3 0.1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0

Mistral-7B-Instruct-Nachos Mistral-7B-Instruct-v0.1 CPT 0.4 0.5 0.1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-Nachos CPT+SFT 0 0.9 0.1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-v0.1 CPT+SFT 0.2 0.7 0.1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

BioMistral-Nachos-7B BioMistral-7B CPT 0 0.9 0.1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-instruct BioMistral-7B CPT+SFT 0 0.7 0.3 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1
BioMistral-Nachos-7B-instruct BioMistral-Nachos-7B CPT+SFT 0 0.9 0.1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-7B-chat BioMistral-7B SFT 0 0.6 0.4 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1

Table 9: The 3-shot win/tie/loss rates for all medical comparisons on translated MCQ benchmarks. For each medical
model, we boldface the win rate if it wins more than it loses to its base model, and vice versa.

ent GPU types and training durations.1012
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Model Strategy Dataset size
(GB) Type of GPU Memory per

GPU (GB)
Number of
GPUs

Training
time (hours)

Emissions
(KgCO2e) Cost (USD)

Mistral-7B-Nachos CPT 7.4 NVIDIA H100 80 32 12 9.86 643.64
Mistral-7B-Nachos-instruct CPT+SFT 7.4+ 0.036 NVIDIA H100/A100 80 32 + 1 12 + 75 9.86 + 1.92 643.64 + 63.22
MedMistral-7B-chat SFT 0.036 NVIDIA A40 48 2 53 2.62 44.57
Mistral-7B-Instruct-Nachos CPT 7.4 NVIDIA A100 80 32 40 32.89 1072.74
Mistral-7B-Instruct-Nachos-instruct CPT+SFT 7.4+ 0.036 NVIDIA A100/H100 80 32 + 1 40 + 42 32.89 + 1.07 1072.74 + 70.48
BioMistral-Nachos-7B CPT 7.4 NVIDIA H100 80 32 11 9.04 589.75
BioMistral-Nachos-7B-instruct CPT+SFT 7.4+ 0.036 NVIDIA H100 80 32 + 1 11 + 42 9.04 + 1.07 589.75 + 70.48
BioMistral-7B-chat SFT 0.036 NVIDIA L40 48 2 52 2.57 43.53

Table 10: Resource requirements and environmental impact for different adaptation strategies. Training times and
costs are reported per adaptation strategy and base model. Carbon emissions are calculated based on GPU energy
consumption during training.

MMLU

Average PubMedQA MedQA
4 Options

MedQA
5 Options MedMCQA Clinical

Knowledge
Medical
Genetics Anatomy Pro.

Medicine
College
Biology

College
Medicine

Model Base Model Strategy Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss

Mistral-7B-Nachos Mistral-7B-v0.1 CPT 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-v0.1 CPT+SFT 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-Nachos CPT+SFT 0.5 0.5 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0
Med-Mistral-7B-chat Mistral-7B-v0.1 SFT 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

Mistral-7B-Instruct-Nachos Mistral-7B-Instruct-v0.1 CPT 0.3 0.6 0.1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-Nachos CPT+SFT 0.1 0.9 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-v0.1 CPT+SFT 0.3 0.7 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

BioMistral-Nachos-7B BioMistral-7B CPT 0 0.9 0.1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-instruct BioMistral-7B CPT+SFT 0 0.8 0.2 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-instruct BioMistral-Nachos-7B CPT+SFT 0.2 0.8 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-7B-chat BioMistral-7B SFT 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

Table 11: The 0-shot win/tie/loss rates for all medical comparisons on translated MCQ benchmarks. For each
medical model, we boldface the win rate if it wins more than it loses to its base model, and vice versa.

Average FrBMedQA FrMedMCQA
Model Base Model Strategy Win Tie Loss Win Tie Loss Win Tie Loss

Mistral-7B-Nachos Mistral-7B-v0.1 CPT 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-v0.1 CPT+SFT 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-Nachos CPT+SFT 0 1 0 0 1 0 0 1 0
Med-Mistral-7B-chat Mistral-7B-v0.1 SFT 1 0 0 1 0 0 1 0 0

Mistral-7B-Instruct-Nachos Mistral-7B-Instruct-v0.1 CPT 0.5 0.5 0 1 0 0 0 1 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-Nachos CPT+SFT 0 1 0 0 1 0 0 1 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-v0.1 CPT+SFT 0.5 0.5 0 1 0 0 0 1 0

BioMistral-Nachos-7B BioMistral-7B CPT 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-instruct BioMistral-7B CPT+SFT 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-instruct BioMistral-Nachos-7B CPT+SFT 0 1 0 0 1 0 0 1 0
BioMistral-7B-chat BioMistral-7B SFT 0 1 0 0 1 0 0 1 0

Table 12: The 0-shot win/tie/loss rates for all medical comparisons on 2 native french MCQ datasets. For each
medical model, we boldface the win rate if it wins more than it loses to its base model, and vice versa.

Average FrClinicalQA FrMedQA K-QA
Model Base Model Strategy Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss

Mistral-7B-Nachos Mistral-7B-v0.1 CPT 0.33 0.33 0.33 1 0 0 0 1 0 0 0 1
Mistral-7B-Nachos-instruct Mistral-7B-v0.1 CPT+SFT 1 0 0 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-Nachos CPT+SFT 1 0 0 1 0 0 1 0 0 1 0 0
Med-Mistral-7B-chat Mistral-7B-v0.1 SFT 0.33 0.33 0.33 0 0 1 0 1 0 1 0 0

Mistral-7B-Instruct-Nachos Mistral-7B-Instruct-v0.1 CPT 0 0.33 0.67 0 0 1 0 1 0 0 0 1
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-Nachos CPT+SFT 0.67 0.33 0 1 0 0 0 1 0 1 0 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-v0.1 CPT+SFT 0 0.67 0.33 0 1 0 0 0 1 0 1 0

BioMistral-Nachos-7B BioMistral-7B CPT 0.33 0.33 0.33 1 0 0 0 1 0 0 0 1
BioMistral-Nachos-7B-instruct BioMistral-7B CPT+SFT 1 0 0 1 0 0 1 0 0 1 0 0
BioMistral-Nachos-7B-instruct BioMistral-Nachos-7B CPT+SFT 0.67 0.33 0 1 0 0 0 1 0 1 0 0
BioMistral-7B-chat BioMistral-7B SFT 0.67 0.33 0 1 0 0 0 1 0 1 0 0

Table 13: The 0-shot win/tie/loss rates for all medical comparisons on 3 OEQ datasets. For each medical model, we
boldface the win rate if it wins more than it loses to its base model, and vice versa.
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