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Abstract

The development of Large Language Models
(LLMs) has led to increased focus on their adap-
tation to specialized domains and languages,
particularly in settings with limited domain-
specific data. While recent studies have ques-
tioned the benefits of domain-adaptive pre-
training (DAPT) in English medical contexts,
our work demonstrates that domain adapta-
tion can be effective when strategically im-
plemented. Using French medical domain
adaptation as a case study, we systematically
evaluate different adaptation strategies: contin-
ual pre-training (CPT), supervised fine-tuning
(SFT), and combined approaches (CPT fol-
lowed by SFT). Our study highlights that adapt-
ing a general-purpose model with novel domain
data leads to significant gains (87% win rate),
whereas further adapting models already ex-
posed to similar knowledge offers limited ben-
efits. Moreover, while CPT+SFT achieves the
best overall performance, direct SFT emerges
as a strong, more computationally efficient al-
ternative.

1 Introduction

Recent advances in Large Language Models
(LLMs) have intensified the debate on their adapta-
tion to specialized domains and languages. While
various adaptation strategies have been proposed,
determining the optimal approach becomes particu-
larly challenging when targeting a specific domain
in a language with limited resources. This chal-
lenge is exemplified in healthcare and medicine,
where most adaptation efforts have focused on
English-language models (e.g., BioMistral (Labrak
et al., 2024), OpenBioLLM (Pal and Sankarasubbu,
2024).

The development of domain-specialized mod-
els in non-English languages faces several unique
challenges. First, there is often a scarcity of
domain-specific training data. Second, the com-
putational cost of different adaptation strategies
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Figure 1: Pipeline for evaluating domain adaptation
strategies, showing the three main components: model
selection, adaptation strategies (CPT, SFT, and CPT
followed by SFT), and evaluation methodology.

must be weighed against their effectiveness. Third,
the reliability of evaluation methods, particularly
when using translated benchmarks, needs to be as-
sessed, as translation may introduce cultural biases
or lose domain-specific nuances. These challenges
are particularly evident in specialized domains like
medicine, where the accuracy and reliability of the
model outputs are crucial, yet domain-specific re-
sources in non-English languages remain limited.

Recent work by Jeong et al. (2024) has funda-
mentally challenged established assumptions re-
garding domain-adaptive pre-training (DAPT) in
medical contexts. Their analysis revealed that
medical LLMs adapted through biomedical corpus
pre-training frequently fail to demonstrate consis-
tent improvements over their base generic models.
These findings raise important questions about the
optimal strategy for domain adaptation, particu-
larly when working across languages where the
base model’s domain knowledge may be less ac-
cessible.

To address these challenges, we investigate adap-
tation strategies for biomedical LLMs, focusing on
French—a language that remains underexplored
in this domain—while accounting for the limited
availability of domain-specific data. We evaluate
three distinct approaches: continual pre-training



(CPT), supervised fine-tuning (SFT), and hybrid
approaches combining CPT with SFT. We utilize
the general-domain Mistral-7B (Jiang et al., 2023)
model as our foundation, experimenting with both
the base model and its adapted variant on English
medical texts, to assess the impact of different ini-
tialization points on adaptation effectiveness.

Our evaluation framework encompasses both
translated and native French medical datasets. Stan-
dard medical benchmarks such as PubMedQA (Jin
et al., 2019) and MedMCQA (Pal et al., 2022) are
translated for evaluation, while native French med-
ical questions are used to validate the model’s ca-
pabilities directly. Through both multiple-choice
and open-ended question answering tasks, this eval-
uation approach not only allows us to assess the
model’s performance on native content but also
reveals important methodological insights.

In this paper, we investigate the effectiveness of
different strategies for adapting language models
to a specific domain in a new language with limited
resources. Our contributions can be summarized as
follows:

1. We release resources to advance biomedical
NLP research in French including medical-
adapted models and datasets, all publicly avail-
able on HuggingFace! under the Apache 2.0
license to support further research.

2. We define an evaluation framework to assess
the effectiveness of different adaptation strate-
gies, ensuring comparability across models
and approaches.

3. We analyze the impact of various adapta-
tion techniques and provide practical guide-
lines for selecting the most suitable strategy
based on the available training data—whether
raw, unannotated text or curated, labeled
datasets—and the available computational re-
sources.

2 Related Work

LLM adaptation to the medical domain has seen
significant development, driven by the potential to
enhance healthcare applications. In this domain,
two primary adaptation strategies have emerged.
Continual pre-training (CPT) extends the model’s
pre-training on domain-specific corpora, enabling
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it to learn domain knowledge while maintaining
its general language capabilities. Supervised fine-
tuning (SFT), on the other hand, adapts the model
through instruction-output pairs, focusing on spe-
cific tasks and response formats. CPT has been
widely adopted, with models like MediTron (Chen
et al., 2023b), BioMistral (Labrak et al., 2024), and
PMC-LLaMA (Wu et al., 2023) demonstrating suc-
cess through adaptation on medical corpora. How-
ever, recent work by Jeong et al. (2024) challenges
these findings through a more rigorous evaluation
methodology: using direct model-to-base compar-
isons, model-specific prompt optimization, and sta-
tistical significance testing. Their methodology
revealed that previously reported improvements
from medical adaptation were often not statistically
significant. Alternative approaches using SFT, as
demonstrated by ChatDoctor (Li et al., 2023) and
MedAlpaca (Han et al., 2023), have shown promis-
ing results in medical tasks through instruction tun-
ing, though these studies also focus on English
only.

The challenge of domain adaptation becomes
more complex when considering non-English lan-
guages, where domain-specific resources are often
limited. Recent efforts have addressed this English-
centric nature through multilingual approaches.
Medical mT5 (Garcia-Ferrero et al., 2024) intro-
duces a text-to-text multilingual model trained on
a large corpus spanning English, French, Italian,
and Spanish. BiMediX (Pieri et al., 2024) presents
a bilingual medical mixture of experts model for
English and Arabic, while Apollo (Wang et al.,
2024) develops medical LLMs across six languages
through the ApolloCorpora dataset and XMed-
Bench benchmark. MMedLLM (Qiu et al., 2024)
provides additional frameworks for multilingual
medical adaptation. However, these works primar-
ily rely on translated benchmarks for evaluation,
with limited assessment on native language medi-
cal tasks raising questions about the models’ true
capabilities in each target language.

Evaluating medical LLMs presents unique chal-
lenges, particularly in multilingual contexts. While
benchmarks like PubMedQA (Jin et al., 2019),
MedQA (Jin et al., 2019) and MedMCQA (Pal
et al., 2022) are widely used, they predominantly
serve English-language models. For other lan-
guages’ evaluation, researchers typically rely on
translated benchmarks, with few native language
resources. The prevalence of MCQ tasks in these
benchmarks also raises questions about comprehen-
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sive capability assessment.

While these works demonstrate various ap-
proaches to medical domain adaptation, there has
not been a controlled evaluation of adaptation
strategies using a common framework. Previous
studies either focus on a single adaptation method
or compare models with different architectures and
training data, making it difficult to assess the rela-
tive effectiveness of CPT versus SFT approaches.
Additionally, the trade-offs between computational
costs and performance gains remain unclear, par-
ticularly in resource-constrained settings. In this
work, we address these gaps by conducting a con-
trolled comparison of adaptation strategies using
the same base model architecture and evaluation
framework, aiming to provide clear guidance for de-
veloping medical LLMs in non-English languages.

3 Experimental Framework

We define a framework for evaluating domain adap-
tation strategies in low-resource settings, as illus-
trated in Figure 1. Starting from different base
models, we investigate various adaptation paths to
understand how the choice of starting point and
adaptation strategy affects performance and com-
putational efficiency.

Our investigation addresses two key research
questions:

RQ1: Does the choice of a base model (general-
purpose vs. already domain-adapted in En-
glish) significantly impact adaptation success?

RQ2: Which adaptation strategy provides the best
balance between performance and computa-
tional requirements?

To address these questions, we present our
experimental methodology in the following sec-
tions: base models and adaptation strategies in
Section 3.1, training data in Section 3.2, training
procedures in Section 3.3), and evaluation protocol
in Section 3.4.

3.1 Base Models and Adaptation Approaches

We evaluate adaptation strategies for French
biomedical language models using the Mistral-7B
architecture family. Our investigation uses three
base models, each representing a different starting
point for medical domain adaptation:

* Mistral-7B-v0.1 (Jiang et al., 2023): A 7-
billion-parameter general domain LLM.

* Mistral-7B-instruct-v0.1 (Jiang et al., 2023):
The instruction-tuned variant of Mistral-7B-
v0.1.

e BioMistral-7B (Labrak et al., 2024): An
English-based medical domain-adapted vari-
ant from Mistral-7B-instruct-v0.1 further pre-
trained on PubMed Central Open Access tex-
tual data.

The selection of Mistral as our foundation
model was motivated by its reasonable French lan-
guage capabilities compared to other open-source
LLMs and its use in comparable studies for En-
glish (Labrak et al., 2024). We investigate three
distinct adaptation strategies:

* Continual Pre-training (CPT). Further train-
ing on domain-specific corpora.

* Supervised Fine-tuning (SFT). Adaptation
using instruction-response pairs.

* CPT+SFT. A sequential application of CPT
followed by SFT.

These strategies are applied across different model
paths, grouped into families based on their base
models, as illustrated in Table 2b.

3.2 Training Data

Our adaptation strategies utilize two distinct
datasets.

CPT strategy We employ the NACHOS (opeN
crAwled frenCh Healthcare cOrpuS) corpus, an
open-source French medical dataset spanning 7.4
GB with over one billion words collected from
24 high-quality French-language medical web-
sites (Labrak et al., 2023). Detailed information
about the corpus compilation and characteristics is
provided in Appendix A.

SFT strategy We constructed a dataset of 30K
medical question-answer pairs, equally distributed
across three categories: (1) 10K native French med-
ical QAs sourced from medical examinations, in-
cluding pharmacy specialization and other medical
board exams, (2) 10K translated QAs from English
medical datasets, covering multiple-choice ques-
tions from U.S. medical board exams and medical
flashcards, and (3) 10K generated QAs derived
from French medical texts, created using a lan-
guage model and filtered through a multi-step qual-
ity assessment process. The dataset includes both
multiple-choice questions (MCQs) with single and
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Figure 2: Evaluation of model adaptation strategies. (a) Win/Tie/Loss analysis across QA datasets, showing the
proportion of datasets where each adapted medical model exhibits significant improvement (Win), no significant
difference (Tie), or significant degradation (Loss) compared to its base model. Model comparisons are labeled
A-K, as shown in (b). (b) Medical models, their base models, and the adaptation strategies used. For CPT+SFT
adaptations, we present both comparisons: with the direct base model (after CPT) and with the original base model
(before CPT) to evaluate the contribution of each adaptation step.

multiple correct answers, as well as open-ended
questions (OEQs) with and without context. Fur-
ther details on data composition and sources are
provided in Appendix C.

3.3 Training Process

Our training procedures employ contrasting adap-
tation approaches to explore the trade-off between
computational efficiency and model plasticity. To
examine adaptation strategies at opposite ends of
the parameter efficiency spectrum, we apply full
fine-tuning for CPT and a parameter-efficient ap-
proach for SFT.

CPT strategy We use an improved batching
method following BioMistral (Labrak et al., 2024),
which utilizes a post-tokenization grouping strat-
egy to aggregate variable-sized sequences marked
by end-of-sequence tokens (</s>). This approach
effectively fills 2,048-token sequences without the

need for padding. The training was conducted for
2.8 epochs with the following setup: the AdamW
optimizer (Loshchilov and Hutter, 2019) was used,
with a learning rate of 2 x 10~° and a cosine sched-
uler, without warmup. The weight decay was set to
0.01, and the batch size was 16 with gradient accu-
mulation steps of 2. The trainings were performed
on 32 NVIDIA GPUs either A100 80GB or H100
80GB.

SFT strategy We implement DoRA (Weight-
Decomposed Low-Rank Adaptation) (Liu et al.,
2024), an enhancement of LoRA (Hu et al., 2021)
that decomposes pre-trained weights into magni-
tude and direction components. This approach aims
to achieve fine-tuning capacity while minimizing
trainable parameters through LoRA’s directional
updates. We selected DoRA after conducting pre-
liminary experiments comparing its performance
against LoRA and VeRA (Kopiczko et al., 2024),



where DoRA demonstrated superior adaptation effi-
ciency and task-specific performance. SFT training
was run for 10 epochs; complete hyperparameter
details are provided in Appendix B.

This design choice—full fine-tuning for CPT and
parameter-efficient fine-tuning for SFT—allows us
to evaluate adaptation strategies that lie at opposite
ends of the trade-off between computational cost
and model flexibility.

3.4 Evaluation Protocol

This section outlines our evaluation protocol. We
introduce a French medical reasoning and knowl-
edge benchmark (native and translated MCQs and
OEQs), describe our prompting strategy, and detail
the evaluation metrics and significance analysis.

Translated MCQ Datasets The translated
datasets consist of French versions of established
English medical benchmarks, translated using GPT-
3.5-turbo: MedQA (Jin et al., 2020), MedM-
CQA (Pal et al., 2022), PubMedQA (Jin et al.,
2019), and MMLU (Hendrycks et al., 2021) medi-
cal subcategories, as detailed in Table 1.

Native French MCQ Datasets For native French
evaluation, we use FrBMedQA dataset (Kaddari
and Toumi, 2022), which contains questions from
French biomedical Wikipedia articles across eight
Unified Medical Language System (UMLS) seman-
tic groups: chemicals and drugs, anatomy, physiol-
ogy, disorders, phenomena, procedures, genes and
molecular sequences, and devices. The questions
were converted from close-style to multiple-choice
format using GPT-4o0-mini (prompt details in Ap-
pendix D). We additionally scraped and processed
FrMedMCQA from S-Editions?, a platform offer-
ing medical resources and study materials for medi-
cal students in France. The data collection involved
automated extraction followed by manual cleaning
to ensure question-answer pair quality. The final
dataset covers oncology, cardiovascular medicine,
dermatology, endocrinology, gynecology, hematol-
ogy, infectious diseases, neurology, ophthalmology,
pediatrics, psychiatry, and rheumatology.

OEQ Datasets For OEQ evaluation, we trans-
lated the K-QA dataset (Manes et al., 2024) to
French using GPT-40-mini. This dataset contains
201 patient questions from K Health? platform con-
versations, answered by in-house physicians. We
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Dataset

MedQA (4 & 5 Options)
MedMCQA

PubMedQA

MMLU: Anatomy

MMLU: Clinical Knowledge
MMLU: College Biology
MMLU: College Medicine
MMLU: Professional Medicine
MMLU: Medical Genetics
FrBMedQA

FrMedMCQA

K-QA

FrClinical QA

FrMedQA

Context Test set
1,273
4,183
500
135
265
144
173
272
100
2,156
183
201
262
81

QA type

Translated MCQ

Native MCQ

Translated OEQ

| < 3| 3| 3| 3| 3| x| 3| x| x| | x| %

Native OEQ

Table 1: Table 1: Evaluation datasets categorized by
QA type, source language(translated or native French),
context availability, and test set size.

also scraped and processed two native datasets from
S-Editions: FrClinical QA with clinical case ques-
tions in cardiology, oncology, pneumology, infec-
tious diseases, endocrinology, and rheumatology;
and FrMedQA with medical questions without clin-
ical context in these domains. Each scraped dataset
underwent automated cleaning and manual verifi-
cation.

An overview of dataset sources and sizes is listed
in Table 1.

Prompting Strategy We conduct zero-shot eval-
uation to simulate real-world scenarios and due to
dataset constraints, as most datasets except trans-
lated MCQs consist only of small test sets (Table 1).
To generate responses, we employ a greedy de-
coding strategy. For MCQ tasks, following Liang
et al. (2022), Beeching et al. (2023) and Chen et al.
(2023a), we filter the vocabulary to include only to-
kens (choice letters) corresponding to the expected
answer options, preventing the model from gener-
ating irrelevant tokens or hallucinations.

As a supplementary experiment, we investigate
whether English examples, matching the models’
initial training language, affect performance on
French medical questions. We implement 3-shot
in-context learning on the translated MCQ datasets,
using three sets of randomly selected examples
from each dataset’s training set. We test two con-
figurations: (1) French prompts and questions with
English in-context examples, where the model is ex-
posed to French-language tasks but provided with
English-language examples, and (2) all-French
prompts, questions, and examples, ensuring that
all input is in French. Complete prompting tem-
plates for both zero-shot and few-shot evaluations
are detailed in Appendix E.
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Evaluation Metrics For MCQ tasks, we re-
port the exact-match accuracy and for OEQ
tasks, we evaluate performance using the F1
BERTScore (Zhang et al., 2020).

Statistical Significance Assessment To deter-
mine whether the observed performance improve-
ments from adaptation are statistically significant,
we employ a percentile bootstrap method, similar
to Jeong et al. (2024). This approach involves re-
sampling (with replacement) from the test set to
create samples of the same size as the original. For
each resample, we compute the performance dif-
ference (e.g., accuracy for MCQ or F1 BERTScore
for OEQ) between paired models. This process is
repeated 10,000 times, generating a distribution of
relative performance metrics. A 95% confidence
interval is then derived from this distribution, and
a difference is considered statistically significant if
the interval does not include zero.

Unlike Jeong et al. (2024), we applied the Bon-
ferroni correction to account for the multiple com-
parisons conducted in our study. This correction
mitigates the increased likelihood of Type I errors
(false positives) that arise when testing multiple
hypotheses. The Bonferroni correction adjusts the
significance threshold to a;/m, where « is the de-
sired overall significance level (0.05 in our case)
and m is the total number of comparisons.

To evaluate the generality of the adapted models,
we analyze performance differences at the dataset
level, enabling us to compute the win rate, that
is the proportion of datasets where a given model
outperforms its base version.

4 Results and Discussion

In this section, we present our analysis of the adap-
tation strategies described in Section 3, providing
answers to our research questions RQ1 (impact of
base model selection), RQ2 (effectiveness of adap-
tation strategies), and RQ3 (reliability of evaluation
methodologies). Results from our few-shot eval-
uation experiments are presented in Appendix F,
as they provide supplementary insights but do not
affect our main findings about adaptation strategies.

4.1 Base Model Selection

We present our evaluation results across three
model groups on multiple tasks. Tables 2, 3, and 6
show performance on translated MCQs, native
MCQs, and OEQs respectively.

Model Performance Analysis

Group 1 (Mistral-based) Starting from a
general-purpose model (Mistral-7B-v0.1), Mistral-
7B-Nachos-instruct demonstrates substantial im-
provements across all metrics. On translated
MCQs, performance increases from 0.87% to
47.83%, while native MCQs show improvement
from 3.97% to 36.55%. For OEQs, F1 BERTScore
improves from 0.55 to 0.67. These gains are sta-
tistically significant with a 100% win rate over the
baseline.

Group 3 (BioMistral-based) Starting from an
English medical model shows contrasting re-
sults. On translated MCQs, we observe perfor-
mance degradation across all adaptations. Native
MCQs show improvement from 30.13% to 35.52%
(BioMistral-Nachos-7B-instruct), though not statis-
tically significant. The most notable result appears
in OEQs, where adaptation achieves a statistically
significant improvement of 0.22 in F1 BERTScore.

Group 2 (Mistral-instruct-based) The
instruction-tuned starting point yields intermediate
results. Mistral-7B-Instruct-Nachos-instruct
improves from 39.96% to 43.03% on translated
MCQs, from 27.13% to 36.46% on native MCQs,
and maintains a 0.67 F1 BERTScore on OEQs.
Despite these apparent improvements, statistical
testing reveals low significance with only a 27%
win rate.

Impact of Base Model Selection Statistical com-
parison between the best performing models from
each group (Table 5) shows Mistral-7B-Nachos-
instruct (Group 3) significantly outperforming
BioMistral-Nachos-7B-instruct (Group 1) with a
73% win rate. This suggests that starting from
a general-purpose model proves more effective
than building upon an already medical-specialized
model. The comparison with Mistral-7B-Instruct-
Nachos-instruct (Group 2) shows mixed results
(40% wins, 60% ties), indicating that while start-
ing from a general model might be advantageous
over an instruction-tuned variant, the benefits are
less pronounced. These results can be explained
by several factors. The limited gains in Group
1 (BioMistral-based) suggest that when a model
has already acquired medical knowledge during
English pre-training, further adaptation on French
medical data may be redundant or even detrimental
for factual knowledge tasks. This is evidenced by
BioMistral’s strong base performance but limited
gains from adaptation. The intermediate perfor-



MMLU

. N MedQA MedQA . Clinical Medical Pro. College  College

Model Strategy ~ Average PubMedQA 4 Options 5 Options MedMCQA Knowledge Genetics Anatomy . Biology Medici
Mistral-7B-v0.1 Base Model 0.87 4.00 0.08 0.24 0.19 1.51 0.00 0.00 0.00 2.08 0.58
Mistral-7B-Nachos CPT 36.00 41.00 28.83 23.10 33.09 44.15 43.00 37.78 27.21 46.53 35.26
Mistral-7B-Nachos-instruct CPT+SFT 47.83 64.00 42.66 3519 37.99 49.43 56.00 42.96 53.68 47.22 49.13
MedMistral-TB-chat SFT__ . 365 SA) 3967 3189 3579 4491 4300 4519 4853 4028 5260
Mistral-7B-Instruct-v0.1 Base Model ~ 39.96 54.40 29.14 24.90 31.87 46.42 44.00 3778 46.32 40.28 44.51
Mistral-7B-Instruct-Nachos CPT 43.03 34.80 37.08 32.29 38.42 50.57 59.00 42.96 40.81 49.31 45.09
Mistral- 7B-Instruct-Nachos-instruct _ CPTSFT 4320 5920 3629 3150 3639 4226 5300 4222 4007 4653 4451
BioMistral-7B Base Model ~ 41.39 54.60 3244 26.08 31.68 52.08 43.00 40.74 45.22 42.36 45.66
BioMistral-Nachos-7B CPT 35.14 14.80 28.75 27.49 30.62 44.15 42.00 39.26 43.38 41.67 39.31
BioMistral-Nachos-7B-instruct CPT+SFT 34.53 36.60 35.59 30.24 3541 32.83 37.00 34.07 29.41 38.89 35.26
BioMistral-7B-chat SFT 37.68 44.60 36.68 30.24 31.87 38.49 44.00 41.48 39.34 3542 34.68

Table 2: Zero-shot performance on translated MCQ tasks. Scores are reported using exact-match accuracy. The best-
performing model within each group is highlighted in bold, and the overall best-performing model is underlined.

Model Strategy  Average FrBMedQA FrMedMCQA
Mistral-7B-v0.1 Base Model 3.97 7.93 0.00
Mistral-7B-Nachos CPT 33.48 50.56 16.39
Mistral-7B-Nachos-instruct CPT+SFT 36.55 50.70 22.40
MedMistral-78-chat SEL 208 . 828 1147,
Mistral-7B-Instruct-v0.1 Base Model 27.13 43.88 10.38
Mistral-7B-Instruct-Nachos CPT 36.46 53.25 19.67
Mistral-7B-Instruct-Nachos-instruct  CPT+SFT 35.50 50.79 20.21
BioMistral-7B Base Model 30.13 46.06 14.20
BioMistral-Nachos-7B CPT 32.83 47.63 18.03
BioMistral-Nachos-7B-instruct CPT+SFT 35.52 47.54 23.49
BioMistral-7B-chat SFT 27.93 46.57 9.28

Table 3: Zero-shot performance on native French
MCQA tasks. Scores represent exact-match accuracy.
The best model in each group is highlighted in bold and
the best model overall is underlined.

mance of Group 2 suggests that while instruction
tuning provides some benefits, it may constrain
the model’s ability to fully adapt to new domains
compared to starting from a general model.

4.2 Adaptation Strategy Effectiveness

Having established Group 1 (Mistral-based mod-
els) as the most effective starting point, we focus
our analysis of adaptation strategies within this
group where improvements are statistically signifi-
cant and meaningful.

CPT CPT alone (Mistral-7B-Nachos) shows sig-
nificant improvements: 11.83% and 29.51% in-
creases on translated and native MCQs respectively,
while maintaining baseline performance on OEQs.

CPT+SFT The addition of SFT enhances these
gains, with Mistral-7B-Nachos-instruct achieving
47.83% on translated MCQs, 36.55% on native
MCQs, and 0.67 F1 BERTScore on OEQs.

SFT Direct SFT (MedMistral-7B-chat) demon-
strates strong results with 43.65% on translated
MCQs, 29.88% on native MCQs, though showing
slight degradation on OEQs from 0.55 to 0.52.

Strategies Win Tie Loss
CPT+SFT vs. CPT 0.67 033 O
CPT+SFT vs. SFT 0.4 0.54 0.06

Table 4: Statistical significance comparison of adap-
tation strategies. Win/Tie/Loss rates indicate the pro-
portion of datasets where CPT+SFT shows significant
improvement/no significant difference/significant degra-
dation compared to CPT-only and SFT-only adaptations
in Group 1 (Mistral-based models)

Groups Win Tie Loss
Group 1 vs. Group 3 0.73 0.27 0
Group 1 vs. Group2 04 0.6 0

Table 5: Statistical significance comparison between
groups to to determine the optimal starting point for
adaptation. Win/Tie/Loss rates compare the best per-
forming models from Group 1 against those from Group
2 and Group 3.

Strategies Comparison Statistical testing be-
tween strategies (Table 4) confirms CPT+SFT’s ad-
vantages over CPT (67% wins, 33% ties) but shows
less consistent superiority over SFT (40% wins,
54% ties, 6% losses). While CPT+SFT achieves
the best overall performance, direct SFT offers a
compelling alternative when considering compu-
tational efficiency, as we discuss in the following
section (Section 4.3).

4.3 Computational Efficiency and
Environmental Impact

Our analysis of adaptation strategies considers not
only performance but also computational costs and
environmental impact. We assess these factors us-
ing three metrics: training time, carbon emissions
(kgCO2e¢), and monetary costs.

The CPT approach, while effective, demands
substantial resources. Based on internal estima-



tions, training on 7.4GB of medical data requires
32 GPUs (NVIDIA H100 or A100), generating
approximately 9-10 kgCO2e per adaptation. In
contrast, SFT processes only 36MB of data and
runs on 1-2 GPUs, reducing emissions to 2.5-2.6
kgCO2e. The combined CPT+SFT approach accu-
mulates the costs of both stages, resulting in total
emissions of 10-12 kgCO2e.

Monetary costs follow a similar trend: CPT train-
ing ranges from 590 USD* to 1,073 USD depend-
ing on the GPU type, while direct SFT costs only
43-45 USD. These findings highlight direct SFT as
a significantly more resource-efficient adaptation
path, requiring just 25% of the computational re-
sources and carbon emissions of CPT or combined
approaches. Further details on training time, car-
bon emissions, and monetary costs are provided in
Appendix H.

Our findings present an interesting parallel to
recent work Jeong et al. (2024) questioning the ef-
fectiveness of medical domain adaptation. While
they found that general English models already pos-
sess strong medical capabilities, making additional
medical training redundant due to exposure to med-
ical data (PubMed) during pre-training, our results
with BioMistral (Group 3) show similarly limited
gains from additional medical adaptation. However,
our Group 1 results reveal that when starting from a
general model and adapting with new medical data
in the target language (here French), domain adap-
tation can provide significant benefits (87% win
rate over baseline). This suggests that the effective-
ness of domain adaptation may depend on both the
starting point and whether the base model has al-
ready been exposed to similar domain-specific data
during pre-training, directly addressing RQ1 about
the impact of base model selection on adaptation
success.

Furthermore, while CPT+SFT achieves the best
performance in this setting, our analysis shows that
direct SFT offers a compelling alternative when
computational resources are limited. With just 25%
of the computational cost and carbon emissions of
CPT or CPT+SFT, direct SFT delivers substantial
improvements at a fraction of the resource require-
ments. This highlights an important trade-off be-
tween performance gains and efficiency, suggesting
that in resource-constrained scenarios, direct SFT
can be a practical and effective adaptation strat-
egy, thereby answering RQ?2 regarding adaptation

*Estimations from our cloud provider.

strategy effectiveness.

Additionally, our evaluation methodology high-
lights important considerations about assessing
domain-adapted models. The divergent perfor-
mance patterns between multiple-choice and open-
ended tasks (in group 3) raise important questions
about evaluation methodology, suggesting that cur-
rent metrics, such as BERTScore, may not effec-
tively distinguish between improvements in factual
knowledge versus language generation capabilities.

Model Strategy  Average FrClinicalQA FrMedQA K-QA
Mistral-7B-v0.1 Base Model 0.55 0.35 0.61 0.70
Mistral-7B-Nachos CPT 0.55 0.56 059 051
Mistral-7B-Nachos-instruct CPT+SFT 0.67 0.65 0.64 072
MedMistral-TB-chat__SFT__ 02 00 062 07
Mistral-7B-Instruct-v0.1 Base Model 0.67 0.65 0.67 0.70
Mistral-7B-Instruct-Nachos CPT 0.60 051 065  0.63
Mistral-7B-Instruct-Nachos-instruct  CPT+SFT 067 065 . 0.64 071
BioMistral-7B Base Model 0.44 0.18 052 063
BioMistral-Nachos-7B CPT 047 0.45 0.60 035
BioMistral-Nachos-7B-instruct CPT+SFT 0.66 0.64 0.63 071
BioMistral-7B-chat SFT 0.57 0.39 0.63 070

Table 6: Zero-shot performance on OEQ tasks. Scores
represent f1 BERTScore. The best model in each group
is highlighted in bold and the best model overall is
underlined.

5 Conclusion

This work investigates adaptation strategies for
the development of models in the French medical
language, providing information on domain adap-
tation in low-resource settings. Our results tend
to show that the effectiveness of domain adapta-
tion depends on the base model’s prior exposure
to domain knowledge. Our analysis of different
adaptation strategies reveals that while combined
CPT+SFT achieves the best performance across all
tasks, direct SFT offers a compelling alternative,
achieving strong results with significantly lower
computational requirements. This finding has im-
portant implications for resource-efficient domain
adaptation.

These findings contribute to our understanding
of cross-lingual domain adaptation and provide
practical guidelines for developing specialized lan-
guage models in resource-constrained settings. Fu-
ture work should focus on developing more effi-
cient adaptation strategies and more reliable evalu-
ation methodologies for assessing domain-specific
capabilities.



6 Limitations

Our evaluation of adaptation strategies faces sev-
eral limitations. First, due to the scarcity of native
French medical evaluation datasets, we rely heavily
on translated benchmarks. While we include na-
tive French tests, a more comprehensive evaluation
would require larger native datasets across diverse
medical specialties.

Second, our assessment of model performance
on OEQs uses BERTScore, which may not fully
capture the medical accuracy of generated re-
sponses. The development of specialized metrics
for evaluating medical language generation, par-
ticularly for non-English languages, remains an
important challenge.

Third, while we demonstrate the efficiency
of SFT compared to CPT in terms of computa-
tional resources, our analysis does not account for
the human effort required to create high-quality
instruction-tuning datasets. This consideration
is particularly relevant for low-resource settings
where creating domain-specific instruction data
may be costly.

Fourth, our experiments are conducted on the
Mistral-7B family of models and may lead to dif-
ferent conclusions if run on different-sized models,
or models trained on a substantially different data
mixture. Also, datasets we base our conclusions
on are mostly question-answering oriented, and not
representative of the variety of uses of LLMs possi-
ble in the medical domain. Our conclusions might
be affected by more diverse evaluation tasks.

Finally, our findings about the effectiveness of
adaptation strategies are specific to the medical do-
main and French language. The generalizability of
these results to other domains or languages, partic-
ularly those with different resource constraints or
linguistic characteristics, requires further investiga-
tion.
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A  NACHOS Corpus Description

The NACHOS corpus is a French medical open-
source dataset compiled through extensive web
crawling and text collection. The corpus spans
7.4 GB of data and contains over one billion
words (1,088,867,950 words) sourced from 24
French-speaking high-quality websites (Labrak
et al., 2023).

Note: Full details of the corpus compilation
and processing are available in the original pa-
per (Labrak et al., 2023).
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A.1 Corpus Composition

The NACHOS corpus encompasses a diverse range
of medical textual sources, including:

* Descriptions of diseases and conditions
* Treatment and medication information
* General health-related advice

* Official scientific meeting reports

* Anonymized clinical cases

* Scientific literature

* Theses

* French translation pairs

* University health courses

A.2 Data Sources

The corpus integrates data from multiple sources,
with the most significant contributions coming
from:

HAL (638,508,261 words)

¢ Haute Autorité de Santé (HAS) (113,394,539
words)

* Drug leaflets (74,770,229 words)

* Medical Websites Scraping (60,561,495
words)

* ANSES SAISINE (51,372,932 words)

* Public Drug Database (BDPM) (48,302,695
words)
A.3 Corpus Preparation
The researchers employed several preprocessing

steps:

1. Text collection through web scraping, raw tex-
tual sources, and optical character recognition
(OCR)

Sentence splitting using heuristic methods

. Aggressive filtering to remove short or low-
quality sentences

Language classification using a custom classi-
fier trained on multilingual corpora
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B SFT hyperparameters
Parameter Value
Rank 16
LoRA Aplha 16
LoRA Dropout 0.05
Learning rate 2e-05
Train batch size 4
Evaluation batch size 8
Seed 42
1 NVIDIA H100 80GB
Number of GPU Or
2 NVIDIA L40 48GB
Gradient accumulation steps 2
Optimizer AdamW
Scheduler Cosine
Number of epochs 10
Target Modules QKVOGUD

Table 7: Hyperparameters for the Supervised FineTun-
ing (SFT) training

C SFT Training dataset

The Supervised Fine-tuning dataset comprises
30,000 question-answer pairs sourced from three
distinct categories: native French medical content,
translated English medical content, and generated
questions from French medical texts.

C.1 Native French Content

We randomly sampled 10,000 question-answer
pairs from two primary sources. The first source
is FrenchMedMCQA (Labrak et al., 2022),
a dataset containing 3,105 questions derived
from French pharmacy specialization diploma
examinations. These questions encompass both
single and multiple-answer formats, reflecting real
examination conditions and standards.

The second source consists of two com-
plementary datasets hosted on Hugging
Face’ mlabonne/medical-mqca-fr®  and
mlabonne/medical-cases-fr’. These datasets
consist of multiple-choice questions and clinical
case studies sourced from French medical exam-
ination databases, encompassing a wide range
of medical specialties, including addictology,
gerontology, neurology, and psychiatry, among
others.

Shttps://huggingface.co/

6https://huggingface.co/datasets/mlabonne/
medical-mgca-fr

7https://huggingface.co/datasets/mlabonne/
medical-cases-fr
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C.2 Translated Content

Another 10,000 question-answer pairs were sam-
pled from English medical resources and trans-
lated to French using jsontt®, an open-source
command-line interface tool that leverages mul-
tiple translation services. The source material
included the training set of MedQA (Jin et al.,
2020), which comprises multiple-choice questions
from U.S. medical board examinations, and the
Medical Meadow Medical Flashcards compiled by
MedAplaca (Han et al., 2023), which cover funda-
mental medical subjects including anatomy, physi-
ology, pathology, and pharmacology.

C.3 Generated Content

The final 10,000 pairs were generated using a two-
phase process.

Initially, we used Mistral-7b-instruct-v0.2 (Jiang
et al., 2023) to generate question-answer pairs
from contexts extracted from the French subset
of Antidote corpus (Garcia-Ferrero et al., 2024).
We instructed the model to create question-answer
pairs based on provided medical contexts using this
prompt Figure 3. To ensure the output was in JSON
format, we used Outlines’, a Python library that
guides the generation process so that the output
adheres to a specified JSON schema.

Generation Prompt

Vous étes médecin et votre tdche consiste
a fournir une paire de question-réponse en
frangais a partir du contexte suivant :
Contexte : {{context}}

N’oubliez pas de répondre en frangais!

Figure 3: Instruction template used for generating
question-answer pairs in French, based on the given
context.

The quality of generated pairs underwent an
evaluation using three large language models:
Prometheus-7B-v2.0 (Kim et al., 2024), Meta-
Llama-3-70B-Instruct (Dubey et al., 2024), and
GPT-40 (Hurst et al., 2024). Each model indepen-
dently scored the pairs on a five-point scale based
on relevance, accuracy, and comprehensiveness fol-
lowing the prompt Figure 4. Only pairs receiving
scores of 4 or 5 from all three evaluating models

8https ://github.com/mololab/json-translator
*https://github.com/dottxt-ai/outlines
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were retained for the training corpus, ensuring high-
quality training data.

Evaluation Prompt

You are a medical evaluator tasked with
assessing question-answer pairs within a
given context. Provide a score from I to 5
based on the provided score criteria.
[SCORE]: (score from I to 5)

Do not include any other opening, closing,
or explanations.

Score criteria:

* Score 1: The question-answer pair
is completely irrelevant or incorrect
given the context. The answer has ma-
Jjor factual errors.

Score 2: The question is somewhat
relevant but the answer has significant
inaccuracies or lacks important details
from the context.

Score 3: The question is relevant and
the answer is mostly accurate but con-
tains some minor factual errors or
omissions.

Score 4: The question is clear and rele-
vant, and the answer is accurate based
on the context with only very minor
omissions.

Score 5: The question is clear, rele-
vant, and the answer is completely ac-
curate and comprehensive based on
the given context.

Remember, your score should consider both
the relevance of the context to the medical
domain and the accuracy of the question-
answer pair. Here’s your question-answer
pair given the context:

Context : {{context}}

Question : {{question}}

Answer : {{answer}}

[SCORE]:

Figure 4: Instruction template used for evaluating
question-answer pairs based on medical relevance and
accuracy.
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D System prompt for reformulating
FrBMedQA dataset

which uniquely features questions with multiple
correct answers and required a specialized prompt
(Figure 7).

System Prompt Instruction Template

You are a medical question generation as-
sistant. Given the following passage and
a question based on it, transform the ques-
tion into a valid multiple-choice question

(MCQ). The MCQ should:

* Focus on the placeholder by asking
specifically about the information that
corresponds to it.

The question should not contain
@placeholder

The choices in the MCQ should be
taken directly from the ‘entities_list’
and be formatted as options A, B, C,
etc.

The question should be phrased in a
formal, clear, and precise manner, as
a medical expert would phrase it.

The MCQ should not contain any refer-
ence to the passage, such as "accord-
ing to the passage" or "as stated in the
passage". The question should be able
to stand alone and should not explic-
itly refer to the passage.

Provide one correct answer, which
should correspond to the letter in the
MCQ options.

e The MCQ should be written in French.

* Return the MCQ in json format

Figure 5: System prompt given to GPT-40-mini for
generating multiple-choice questions in French from
given passages and questions.

E Prompt templates used in evaluation in
zero-shot and few-shot settings for
MCQ and OEQ tasks

We employed a standardized prompt template (Fig-
ure 6) across all multiple-choice question (MCQ)
evaluations, with the exception of FrMedMCQA,
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Nous vous présentons une question scien-
tifique, (un contexte) et (quatre/cing) choix
de réponse. Votre tdche est de trouver
la réponse correcte en vous basant sur
des faits scientifiques, vos connaissances
et votre raisonnement (le contexte fourni).
Générez uniquement l’une des lettres suiv-
antes : A, B, C, D, (E). Chaque questionn’a
qu’une seule réponse. Les justifications ne
sont pas permises.

Voici quelques exemples pour vous aider a
mieux comprendre la tdche :

{% for 1, shot in fewshots.items() % }
Exemple {{i}}:

Context: {{context}}

Question: {{question}}

Choix:

{% for letter, option in options.items() % }
{{letter}}: {{option}}

{% endfor %}

Réponse: {{correct_letter}}

{% endfor %}

Maintenant, répondez a cette question (en
vous basant sur le contexte):

Contexte: {{context}}

Question: {{question}}

Choix:

{% for letter, option in options.items() %}
{{letter}}: {{option}}

{% endfor %}

Réponse :

Figure 6: Instruction template for zero-shot and few-
shot evaluations. For zero-shot evaluations, the few-shot
examples are omitted.

The base template was dynamically modified
according to specific corpus characteristics:

* If the corpus included a context, the place-
holder (un contexte) was replaced with the
actual context text. For corpora without con-
text, this part was omitted.

* The number of answer choices varied depend-
ing on the corpus, with (quatre/cinq) replaced



by "quatre" (four) or "cinq" (five) as appropri-
ate.

* The letter (E) was included for corpora with
five options and omitted otherwise.

* (en vous basant sur le contexte): This place-
holder was included for corpora that provided
context and omitted otherwise.

Instruction Template

Nous vous présentons une question scien-
tifique suivie de plusieurs choix de réponse.
Votre tdache est de sélectionner la ou les let-
tres correspondant aux réponses correctes,
en vous basant sur des faits scientifiques,
vos connaissances et votre raisonnement.
Générez uniquement les lettres correspon-
dant aux réponses correctes (par exemple :
A C D). Chaque question peut avoir une ou
plusieurs réponses correctes. Les justifica-
tions ne sont pas permises.

Question: {{question}}

Choix:

{% for letter, option in options.items() % }
{{letter}}: {{option}}

{% endfor %}

Réponse :

Figure 7: Instruction template for zero-shot evaluation
used for FrMedMCQA evaluation.

For Open-Ended Question (OEQ) evaluations,
we used a standard prompt (Figure 8) for all OEQ
datasets except FrClinicalQA. This dataset consists
of interconnected questions about clinical cases,
where the prompt (Figure 9) included the clinical
case, any previous questions and the current ques-
tion to be answered. This structure maintained the
contextual relationship between questions within
each clinical case.
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Instruction Template

Veuillez lire [Dinstruction médicale ci-
dessous et fournir une réponse adaptée
a la situation décrite.  Votre tdche est
de répondre correctement en vous basant
sur des faits scientifiques et vos connais-
sances. Répondez uniquement a la question
posée de maniére breve et concise. Faites
des phrases courtes contenant la réponse,
évitez les informations non essentielles et
concentrez-vous sur les éléments cruciaux
pour une réponse efficace et pertinente.
Instruction: {{question}}

Réponse :

Figure 8: Instruction template for zero-shot evaluation
used for OEQ evaluation.

Instruction Template

Vous allez lire un cas clinique suivi de
plusieurs questions liées. Votre tdche est
de répondre correctement a la derniere
question en utilisant uniquement le con-
texte clinique fourni et les questions précé-
dentes. N’incluez pas d’informations non
pertinentes ou de réponses aux questions
précédentes. Répondez de maniére breéve et
concise a la question posée, en vous basant
sur le cas clinique et les questions précé-
dentes comme contexte.

Cas Clinique: {{clinical_case}}
{{previous_questions}}

Répondez uniquement a la question suiv-
ante, en utilisant le cas clinique et les ques-
tions précédentes comme contexte, sans in-
clure de réponses précédentes.

Question: {{question}}

Réponse:

Figure 9: Instruction template for zero-shot evaluation
used for FrClinical QA dataset.

F Few-shot Evaluation Analysis

To investigate whether the language of in-context
examples affects model performance, we con-
ducted 3-shot evaluations on translated MCQ tasks
using two configurations: French prompts with En-



MMLU

. N MedQA MedQA . Clinical Medical Pro. College  College
Model Strategy ~ Average PubMedQA 4 Options 5 Options MedMCQA Knowledge Genetics Anatomy . Biology Medici
French 3-shot
Mistral-7B-v0.1 Base Model ~ 30.19 62.80 38.47 29.82 11.27 25.41 34.00 21.23 34.31 2222 22.35
Mistral-7B-Nachos CPT 35.63 65.87 38.39 2891 26.31 27.30 41.67 29.88 3235 36.57 29.09
Mistral-7B-Nachos-instruct CPT+SFT 44.75 61.93 39.46 3242 37.30 40.88 58.67 39.51 55.51 40.74 41.04
MedMistral7B-chat ST 4635 6167 M3 N6 I 4730 400 4568 4914 4560 4971
Mistral-7B-Instruct-v0.1 Base Model ~ 43.40 68.07 31.29 27.00 34.35 49.94 50.00 4222 45.96 39.35 45.86
Mistral-7B-Instruct-Nachos CPT 45.28 43.73 38.15 32.18 37.64 53.21 63.00 42.96 44.12 51.39 46.44
Mistral-7B-Instruct-Nachos-instruct  CPT<SFT 4224 6013 3957 3270 3540 4050 5367 3075 4056 4028 3988
BioMistral-7B Base Model ~ 46.02 70.87 34.85 29.77 36.62 53.33 54.33 42.96 44.12 42.82 50.48
BioMistral-Nachos-7B CPT 40.37 29.73 36.79 31.61 35.80 48.81 5333 34.32 44.85 43.75 44.70
BioMistral-Nachos-7B-instruct CPT+SFT 38.82 38.80 35.59 31.32 35.96 36.98 47.67 37.53 42.28 40.28 41.81
BioMistral-7B-chat SFT 38.67 49.47 3530 28.70 33.44 46.04 4233 42.72 38.85 32.64 37.19
English 3-shot

Mistral-7B-v0.1 Base Model ~ 32.36 68.60 38.49 31.03 11.40 28.30 34.67 21.48 39.58 26.16 23.89
Mistral-7B-Nachos CPT 44.09 67.07 40.30 33.07 34.33 40.38 57.67 39.01 47.18 42.82 39.11
Mistral-7B-Nachos-instruct CPT+SFT 47.40 66.13 41.16 3441 37.84 42.64 58.33 42.96 56.13 46.06 48.36
MedMistral7B-chat ST 4647 6207 3985 3247 3161 4881 SA00 4864 4890 4398 4836
Mistral-7B-Instruct-v0.1 Base Model ~ 43.93 68.87 33.41 28.80 36.19 49.56 46.67 41.98 45.59 40.97 47.21
Mistral-7B-Instruct-Nachos CPT 48.29 63.27 41.21 3422 39.39 52.20 63.33 41.73 47.30 51.85 48.36
Mistral7B-Instruct-Nachos-instroet _ CPTYSFT 498 6007 4106 3493 3729 4692 5500 4222 4583 429 4316
BioMistral-7B Base Model ~ 46.76 69.93 37.89 31.42 38.79 53.33 50.67 4222 44.98 46.30 52.02
BioMistral-Nachos-7B CPT 42.53 38.53 37.60 3391 37.75 50.44 50.33 35.56 47.92 48.15 45.09
BioMistral-Nachos-7B-instruct CPT+SFT 37.87 3247 37.29 31.40 37.00 37.61 45.33 35.31 41.05 42.13 39.11
BioMistral-7B-chat SFT 39.14 48.13 36.50 30.16 33.41 45.41 42.67 45.19 40.07 30.32 39.50

Table 8: Performance comparison of 3-shot in-context learning evaluations. The prompt is consistently in French,
while the example shots are presented either in French or English. Scores are reported using exact-match accuracy.
The best-performing model within each group is highlighted in bold, and the overall best-performing model is

underlined.

glish examples (English 3-shot) and fully French
prompts and examples (French 3-shot). Table 8
shows the results of these experiments, accompa-
nied by statistical significance analysis (Table 9).

The results reveal several interesting patterns in
language configuration impact. Models adapted
through CPT, particularly Mistral-7B-Instruct-
Nachos and Mistral-7B-Nachos, show slightly bet-
ter performance when provided with English ex-
amples compared to French ones. For instance,
Mistral-7B-Nachos achieves 44.09% accuracy with
English examples versus 35.63% with French ex-
amples (Table 8). This pattern is particularly inter-
esting given that these models were trained only on
French medical data (NACHOS), suggesting that
the base model’s general English capabilities might
contribute to better utilization of English examples
even in medical contexts.

Group-specific performance patterns remain
consistent with our main findings. Group 1
(Mistral-based) maintains its superior performance
in few-shot settings, while models from Group 3
(BioMistral-based) continue to show limited im-
provements over their base model. The relative
ranking of adaptation strategies remains stable
across both few-shot configurations and aligns with
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zero-shot results.

These findings provide additional context to our
main conclusions about adaptation strategies while
revealing an advantage of English examples in few-
shot scenarios, despite the models’ French medical
training.

G Statistical Significance Assessment
Results

The statistical significance analysis results are
shown across different evaluation settings: Tables
11, 12 and 13 present the win/tie/loss rates for
translated MCQs, native MCQs, and OEQs, respec-
tively. Each rate indicates the proportion of datasets
where a model shows statistically significant im-
provement (win), no significant difference (tie), or
significant degradation (loss) compared to its base
model.

H Computational Resources and
Environmental Impact

Table 10 details the computational resources re-
quired for each adaptation strategy and their envi-
ronmental impact. We report training time, GPU
requirements, carbon emissions (kgCO2e), and as-
sociated costs in USD. Carbon emissions were cal-
culated based on the energy consumption of differ-



MMLU

MedQA MedQA Clinical “Medical Tollege Tollege
Average PubMedQA 4 Options 5 Options MedMCQA Knowledge Geneties Anatomy Biology Medicine
Model Base Model Stratey Win Tie Loss Win Tie Loss Win Tie Loss Wi Tie Lo Wi Tie Low Win Tic Low Win Tie Low Win Tie Low Win Tie Low Win T Low Win Te Low
French 3-shot

Mistral-7B-Nachos Mistral-7B-v0.1 CPT 03 07 0 o 1 0 [ 1 0 0 1 0 1 0 o 0 1 o 0 1 o 1 o 0 [ 1 0 1 0 0 0 1 o

i Nachos-ii i 1-7B-v0.1 CPT+SFT 0.7 03 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

CPT+SFT 05 05 0 o 1 0 ] 1 0 0 1 0 1 0 0 1 0 o 1 o 0 0 1 0 1 0 0 0 1 0 1 0 0

Med-Mi l-7B-ch Mi 1-7B-v0.1 SFT 0.7 03 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 o

Mistral-7B-Instruct-Nach Mistral-7B-1 01 cp1 04 05 01 0 o0 1 1 0 0 1 0 0o 1 0 0 0 1 0 0 1 0o 0 1 0o 0 1 0o 1 0 0 0 1 o0

Mistral-7B-Instruct-Nachos-instruct ~ Mistral-7B-Instruct-Nachos CPT+SFT 0.1 06 0.3 1 0 0 0 1 0 1 0 0 0 1 0 o 1 o 1 0 o 1 0 [ 1 0 0 0 1 0 1 o

i -Nachos-i; i 1-7B-I CPT+SFT 02 06 02 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 09 01 o 0 1 [ 1 0 0 1 0 0 1 0 0 1 o o 1 o 0 1 0 [ 1 0 0 1 0 0 1 0

BioMi l-Nache 'B-is BioMi 1-7B 0 08 02 0 0 1 0 1 0 0 1 0 0 1 o 0 0 1 o 1 0 0 1 0 0 1 0 0 1 0 0 1 o

BioMistral-Nachos-7B-i BioMistral-Nachos-7B CPI4SFT 01 08 01 1 0 0 o 1 0 o0 1 0 0 1 0o 0 0 1 0 1 0o 0 1 0o 0 1 0o 0 1 0 0 1 o0

BioMistral-7B-chat BioMistral-7B SFT o 07 03 o 0 1 [ 1 0 0 1 0 0 0 1 0 1 o o 1 0 0 1 0 o 1 0 0 1 0 0 0 1

English 3-shot

Mistral-7B-Nachos Mistral-7B-v0.1 cp1 0705 0o o 1 o o0 1 o0 o0 1 o 1 0 o 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Mi il it 1-7B-v0.1 CPT+SFT 0.7 03 0 0 1 0 0 1 0 0 1 o 1 0 0 1 0 0 1 0 0 1 0 0 1 o 0 1 0 0 1 [ 0
Mistral-7B-Nach Mistral-7B-Nach CPISSFT 01 09 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0o I 0 0 1 0 0 1 0 0 1 0 0 1 0
Med-Mistral-7B-chat Mistral-7B-v0.1 SFT 0.6 03 0.1 o 0 1 0 1 o0 0 1 0 1 ] o 1 0 0 1 0 0 1 0 0 0 1 o 1 o o 1 o 0
Mi 1-7B-Ix -Nachc Mi 1-7B-Ir 0.1 04 05 0.1 0 0 1 1 0 0 1 0 o 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0
it 0 09 0.1 [ 1 0 0 1 0 0 1 o 0 [ 1 o 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Mis 1-7B- I -Nache Mi 1-7B-I 0.1 02 07 0.1 0 0 1 1 o 0 1 0 0 0 1 0 o 1 0 0 1 0 0 1 0 0 1 o 0 1 o o 1 0
BioMistral-Nachos-7B BioMistral-7B CcPT 009 o1 0 0 1 0 1 0 o0 1 o0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
ioMi: i ioMis CPT+SFT 0 07 03 0 0 1 0 1 o 0 1 o o 1 o o 0 1 0 1 0 0 1 0 0 1 0 0 1 o o o0 1
BioMi I-Nachos-7B-it BioMi I-Nachos-7B CPT+SFT 0 09 0.1 0 1 0 0 1 0 0 1 0 0 1 0 o0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-TB-chat BioMistral-T8 SFT 006 04 0 0 1 0 1 o o0 1 o 0 0 1 0 1 0 0o 1 0 0o 1 0 0o 1 0 0o 0 1 0o 0o 1

Table 9: The 3-shot win/tie/loss rates for all medical comparisons on translated MCQ benchmarks. For each medical

model, we boldface the win rate if it wins more than it loses to its base model, and vice versa.

ent GPU types and training durations.
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Dataset size Memory per | Number of | Trainin; Emissions
Model Strategy (GB) Type of GPU GPU ( GyBI; GPUs time (hogurs) (KgCO2e) Cost (USD)
Mistral-7B-Nachos CPT 74 NVIDIA H100 80 32 12 9.86 643.64
Mistral-7B-Nachos-instruct CPT+SFT | 7.4+ 0.036 NVIDIA H100/A100 | 80 32+1 12+75 9.86+1.92 | 643.64 +63.22
MedMistral-7B-chat SFT 0.036 NVIDIA A40 48 2 53 2.62 44.57
Mistral-7B-Instruct-Nachos CPT 7.4 NVIDIA A100 80 32 40 32.89 1072.74
Mistral-7B-Instruct-Nachos-instruct | CPT+SFT | 7.4+ 0.036 NVIDIA A100/H100 | 80 32+1 40+ 42 32.89 + 1.07 | 1072.74 + 70.48
BioMistral-Nachos-7B CPT 74 NVIDIA H100 80 32 11 9.04 589.75
BioMistral-Nachos-7B-instruct CPT+SFT | 7.4+ 0.036 NVIDIA H100 80 32+1 11+42 9.04+1.07 | 589.75+70.48
BioMistral-7B-chat SFT 0.036 NVIDIA L40 48 2 52 2.57 43.53

Table 10: Resource requirements and environmental impact for different adaptation strategies. Training times and
costs are reported per adaptation strategy and base model. Carbon emissions are calculated based on GPU energy
consumption during training.

MMLU

MedQA MedQA y Clinical ‘Medical Ny Pro. College College
Average PubMedQA 4 Options 5 Options MedMCQA Knowledge Genetics Anatomy Medicine Biology Medicine
Model Base Model Sirategy Wi Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss
Mistral-7B-Nachos Mistral-7B-v0.1 P 10 0 1 0 0 1 0 0 1 0 0 1 0 o0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-i Mistral-7B-v0.1 CPL4SFT 1 0 0 1 0 o 1 0 0 1 0 0 1 0 o0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-i Mistral-7B-Nach CPT:SFT 05 05 0 1 0 o0 1 0 0 1 0 o0 1 0 0 0 1 0 0 I 0 0 1 0 1 0 0 0 1 0 0 1 0
i i .1 SFT 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 _0 0
Mistral-7B-1 Nach Mistral-7B-I 01 CpT 0306 00 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 i i CPI+SFT 01 09 0 1 0 0 0 1 0 ©0 1 0 0 1 0o 0 1 0 o 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Mistral-7B-1 Nachos-i Mistral-7B-1 00  CPTsSFT_03 07 0 0 10 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1_0
BioMistral-Nachos-7B BioMistral-7B cpT 009 01 0 0 1 0 1 0 0 1 o0 0 1 o0 0 I 0 0 I 0 0 I 0 0 1 0 0 1 0 0 1 0
CPT4SFT 0 08 02 0 0 1 0 1 0 ©0 1 0 0 1 0o 0 0 1 ©o 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-i BioMistral-Nachos-7B CPI4SFT 02 08 0 1 0 0 0 1 0 o 1 0 1 0 0 0 1 0 o0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
BioMistral-7B-chat BioMistral-7B SFT O 1 0o 0o 1 0 0o 1 0 0 1 0 0 1 0 o0 1 0 0 1 ©o 0 1 0 0 1 0 0 1 0 0 1 0

Table 11: The 0-shot win/tie/loss rates for all medical comparisons on translated MCQ benchmarks. For each
medical model, we boldface the win rate if it wins more than it loses to its base model, and vice versa.

Average FrBMedQA FrMedMCQA

Model Base Model Strategy Win Tie Loss Win Tie Loss Win Tie Loss
Mistral-7B-Nachos Mistral-7B-v0.1 CPT 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-v0.1 CPT+SFT 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-Nachos CPT+SFT 0 1 0 0 1 0 0 1 0
Med-Mistral-7B-chat  Mistral7B~0.0 ST 1 0. 0 1 0 0 1 0 o0
Mistral-7B-Instruct-Nachos Mistral-7B-Instruct-v0.1 CPT 05 05 0 1 0 0 0 1 0
Mistral-7B-Instruct-Nachos-instruct Mistral-7B-Instruct-Nachos CPT+SFT 0 1 0 0 1 0 0 1 0
Mistral-7B-Instruct-Nachos-instruct _ Mistral-7B-Instructv0.L_ CPT+SFT_ 05 05 0 10 0 0 1 0
BioMistral-Nachos-7B BioMistral-7B CPT 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-instruct BioMistral-7B CPT+SFT 0 1 0 0 1 0 0 1 0
BioMistral-Nachos-7B-instruct BioMistral-Nachos-7B CPT+SFT 0 1 0 0 1 0 0 1 0
BioMistral-7B-chat BioMistral-7B SFT 0 1 0 0 1 0 0 1 0

Table 12: The 0-shot win/tie/loss rates for all medical comparisons on 2 native french MCQ datasets. For each
medical model, we boldface the win rate if it wins more than it loses to its base model, and vice versa.

Average FrClinicalQA FrMedQA K-QA

Model Base Model Strategy Win Tie Loss Win Tie Loss Win Tie Loss Win Tie Loss
Mistral-7B-Nachos Mistral-7B-v0.1 CPT 0.33 033 033 1 0 0 0 1 0 0 0 1
Mistral-7B-Nachos-instruct Mistral-7B-v0.1 CPT+SFT 1 0 0 1 0 0 1 0 0 1 0 0
Mistral-7B-Nachos-instruct Mistral-7B-Nachos CPT+SFT 1 0 0 1 0 0 1 0 0 1 0 0
Med-Mistral-TB-chat __ Mistral7B-v0.1 SFT_ 033 033 033 0 0 1 0 1 0 1 0 0
Mistral-7B-Instruct-Nachos Mistral-7B-Instruct-v0.1 CPT 0 033 0.67 0 0 1 0 1 0 0 0 1
Mistral-7B-Instruct-Nachos-instruct ~ Mistral-7B-Instruct-Nachos CPT+SFT  0.67 0.33 0 1 0 0 0 1 0 1 0
‘Mistral.7B-Instruct-Nachos-instruct Mistral-7B-Instruct-v0.1  CPT+SFT_ 0 067 033 0 1 0 0 0 10 1 0
BioMistral-Nachos-7B BioMistral-7B CPT 0.33 033 033 1 0 0 0 1 0 0 0 1
BioMistral-Nachos-7B-instruct BioMistral-7B CPT+SFT 1 0 0 1 0 0 1 0 0 1 0 0
BioMistral-Nachos-7B-instruct BioMistral-Nachos-7B CPT+SFT 0.67 0.33 0 1 0 0 0 1 0 1 0 0
BioMistral-7B-chat BioMistral-7B SFT 0.67 0.33 0 1 0 0 0 1 0 1 0 0

Table 13: The 0-shot win/tie/loss rates for all medical comparisons on 3 OEQ datasets. For each medical model, we
boldface the win rate if it wins more than it loses to its base model, and vice versa.

17



	Introduction
	Related Work
	Experimental Framework
	Base Models and Adaptation Approaches
	Training Data
	Training Process
	Evaluation Protocol

	Results and Discussion
	Base Model Selection
	Adaptation Strategy Effectiveness
	Computational Efficiency and Environmental Impact

	Conclusion
	Limitations
	NACHOS Corpus Description
	Corpus Composition
	Data Sources
	Corpus Preparation

	SFT hyperparameters
	SFT Training dataset
	Native French Content
	Translated Content
	Generated Content

	System prompt for reformulating FrBMedQA dataset
	Prompt templates used in evaluation in zero-shot and few-shot settings for MCQ and OEQ tasks
	Few-shot Evaluation Analysis
	Statistical Significance Assessment Results
	Computational Resources and Environmental Impact

