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Abstract

We study online Bayesian persuasion problems in which an informed sender
repeatedly faces a receiver with the goal of influencing their behavior through the
provision of payoff-relevant information. Previous works assume that the sender
has knowledge about either the prior distribution over states of nature or receiver’s
utilities, or both. We relax such unrealistic assumptions by considering settings
in which the sender does not know anything about the prior and the receiver. We
design an algorithm that achieves sublinear—in the number of rounds—regret with
respect to an optimal signaling scheme, and we also provide a collection of lower
bounds showing that the guarantees of such an algorithm are tight. Our algorithm
works by searching a suitable space of signaling schemes in order to learn receiver’s
best responses. To do this, we leverage a non-standard representation of signaling
schemes that allows to cleverly overcome the challenge of not knowing anything
about the prior over states of nature and receiver’s utilities. Finally, our results also
allow to derive lower/upper bounds on the sample complexity of learning signaling
schemes in a related Bayesian persuasion PAC-learning problem.

1 Introduction

Bayesian persuasion has been introduced by Kamenica and Gentzkow [2011] to model how strategi-
cally disclosing information to decision makers influences their behavior. Over the last years, it has
received a terrific attention in several fields of science, since it is particularly useful for understanding
strategic interactions involving individuals with different levels of information, which are ubiquitous
in the real world. As a consequence, Bayesian persuasion has been applied in several settings,
such as online advertising [Emek et al., 2014, Badanidiyuru et al., 2018, Bacchiocchi et al., 2022,
Agrawal et al., 2023], voting [Alonso and Câmara, 2016, Castiglioni et al., 2020a, Castiglioni and
Gatti, 2021], traffic routing [Vasserman et al., 2015, Bhaskar et al., 2016, Castiglioni et al., 2021a],
recommendation systems [Cohen and Mansour, 2019, Mansour et al., 2022], security [Rabinovich
et al., 2015, Xu et al., 2016], e-commerce [Bro Miltersen and Sheffet, 2012, Castiglioni et al., 2022]
medical research [Kolotilin, 2015], and financial regulation [Goldstein and Leitner, 2018].

In its simplest form, Bayesian persuasion involves a sender observing some information about the
world, called state of nature, and a receiver who has to take an action. Agents’ utilities are misaligned,
but they both depend on the state of nature and receiver’s action. Thus, sender’s goal is to devise a
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mechanism to (partially) disclose information to the receiver, so as to induce them to take a favorable
action. This is accomplished by committing upfront to a signaling scheme, encoding a randomized
policy that defines how to send informative signals to the receiver based on the observed state.

Classical Bayesian persuasion models (see, e.g., [Dughmi and Xu, 2016, 2017, Xu, 2020]) rely on
rather stringent assumptions that considerably limit their applicability in practice. Specifically, they
assume that the sender perfectly knows the surrounding environment, including receiver’s utilities and
the probability distribution from which the state of nature is drawn, called prior. This has motivated
a recent shift of attention towards Bayesian persuasion models that incorporate concepts and ideas
from online learning, with the goal of relaxing some of such limiting assumptions. However, existing
works only partially fulfill this goal, as they still assume some knowledge of either the prior (see,
e.g., [Castiglioni et al., 2020b, 2021b, 2023, Babichenko et al., 2022, Bernasconi et al., 2023]) or
receiver’s utilities (see, e.g., [Zu et al., 2021, Bernasconi et al., 2022, Wu et al., 2022]).

1.1 Original contributions

We address—for the first time to the best of our knowledge—Bayesian persuasion settings where the
sender has no clue about the surrounding environment. In particular, we study the online learning
problem faced by a sender who repeatedly interacts with a receiver over multiple rounds, without
knowing anything about both the prior distribution over states of nature and receiver’s utilities. At
each round, the sender commits to a signaling scheme, and, then, they observe a state realization
and send a signal to the receiver based on that. After each round, the sender gets partial feedback,
namely, they only observe the best-response action played by the receiver in that round. In such a
setting, the goal of the sender is to minimize their regret, which measures how much utility they lose
with respect to committing to an optimal (i.e., utility-maximizing) signaling scheme in every round.

We provide a learning algorithm that achieves regret of the order of Õ(
√
T ), where T is the number

of rounds. We also provide lower bounds showing that the regret guarantees attained by our algorithm
are tight in T and in the parameters characterizing the Bayesian persuasion instance, i.e., the number
of states of nature d and that of receiver’s actions n. Our algorithm implements a sophisticated explore-
then-commit scheme, with exploration being performed in a suitable space of signaling schemes so
as to learn receiver’s best responses exactly. This is crucial to attain tight regret guarantees, and it is
made possible by employing a non-standard representation of signaling schemes, which allows to
cleverly overcome the challenging lack of knowledge about both the prior and receiver’s utilities.

Our results also allow us to derive lower/upper bounds on the sample complexity of learning signaling
schemes in a related Bayesian persuasion PAC-learning problem, where the goal is to find, with high
probability, an approximately-optimal signaling scheme in the minimum possible number of rounds.

1.2 Related works

Castiglioni et al. [2020b] were the first to introduce online learning problems in Bayesian persuasion
scenarios, with the goal of relaxing sender’s knowledge about receiver’s utilities (see also follow-up
works [Castiglioni et al., 2021b, 2023, Bernasconi et al., 2023]). In their setting, sender’s uncertainty
is modeled by means of an adversary selecting a receiver’s type at each round, with types encoding
information about receiver’s utilities. However, in such a setting, the sender still needs knowledge
about the finite set of possible receiver’s types and their associated utilities, as well as about the prior.

A parallel research line has focused on relaxing sender’s knowledge about the prior. Zu et al. [2021]
study online learning in a repeated version of Bayesian persuasion. Differently from this paper, they
consider the sender’s learning problem of issuing persuasive action recommendations (corresponding
to signals in their case), where persuasiveness is about correctly incentivizing the receiver to actually
follow such recommendations. They provide an algorithm that attains sublinear regret while being
persuasive at every round with high probability, despite having no knowledge of the prior. Wu et al.
[2022], Gan et al. [2023], Bacchiocchi et al. [2024c] achieve similar results for Bayesian persuasion in
episodic Markov decision processes, while Bernasconi et al. [2022] in non-Markovian environments.
All these works crucially differ from ours, since they strongly rely on the assumption that receiver’s
utilities are known to the sender, which is needed in order to meet persuasiveness requirements. As a
result, the techniques employed in such works are fundamentally different from ours as well.
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Finally, learning receiver’s best responses exactly (a fundamental component of our algorithm) is
related to learning in Stackelberg games [Letchford et al., 2009, Peng et al., 2019, Bacchiocchi et al.,
2024a]. For more details on these works and other related works, we refer the reader to Appendix A.

2 Preliminaries

In Section 2.1, we introduce all the needed ingredients of the classical Bayesian persuasion model
by Kamenica and Gentzkow [2011], while, in the following Section 2.2, we formally define the
Bayesian persuasion setting faced in the rest of the paper and its related online learning problem.

2.1 Bayesian persuasion

A Bayesian persuasion instance is characterized by a finite set Θ := {θi}di=1 of d states of nature and
a finite set A := {ai}ni=1 of n receiver’s actions. Agents’ payoffs are encoded by utility functions
u, us : Θ×A → [0, 1], with uθ(a) := u(θ, a), respectively us

θ(a) := us(θ, a), denoting the payoff of
the receiver, respectively the sender, when action a ∈ A is played in state θ ∈ Θ. The sender observes
a state of nature drawn from a commonly-known prior probability distribution µ ∈ int(∆Θ),1 with
µθ ∈ (0, 1] denoting the probability of θ ∈ Θ. To disclose information about the realized state, the
sender can publicly commit upfront to a signaling scheme φ : Θ→ ∆S , which defines a randomized
mapping from states of nature to signals being sent to the receiver, for a finite set S of signals. For
ease of notation, we let φθ := φ(θ) be the probability distribution over signals prescribed by φ when
the the sate of nature is θ ∈ Θ, with φθ(s) ∈ [0, 1] denoting the probability of sending signal s ∈ S.

The sender-receiver interaction goes as follows: (1) the sender commits to a signaling scheme φ;
(2) the sender observes a state of nature θ ∼ µ and sends a signal s ∼ φθ to the receiver; (3) the
receiver updates their belief over states of nature according to Bayes rule; and (4) the receiver plays a
best-response action a ∈ A, with sender and receiver getting payoffs uθ(a) and us

θ(a), respectively.
Specifically, an action is a best response for the receiver if it maximizes their expected utility given
the belief computed in step (3) of the interaction. Formally, given a signaling scheme φ : Θ→ ∆S
and a signal s ∈ S, we let Aφ(s) ⊆ A be the set of receivers’ best-response actions, where:

Aφ(s) :=

{
ai ∈ A |

∑
θ∈Θ

µθφθ(s)uθ(ai) ≥
∑
θ∈Θ

µθφθ(s)uθ(aj) ∀aj ∈ A

}
. (1)

As customary in the literature on Bayesian persuasion (see, e.g., [Dughmi and Xu, 2016]), we assume
that, when the receiver has multiple best responses available, they break ties in favor of the sender. In
particular, we let aφ(s) be the best response that is actually played by the receiver when observing
signal s ∈ S under signaling scheme φ, with aφ(s) ∈ arg maxa∈Aφ(s)

∑
θ∈Θ µθφθ(s)u

s
θ(a).

The goal of the sender is to commit to an optimal signaling scheme, namely, a φ : Θ → ∆S that
maximizes sender’s expected utility, defined as us(φ) :=

∑
s∈S

∑
θ∈Θ µθφθ(s)u

s
θ(a

φ(s)). In the
following, we let OPT := maxφ u

s(φ) be the optimal value of sender’s expected utility. Moreover,
given an additive error γ ∈ (0, 1), we say that a signaling scheme φ is γ-optimal if us(φ) ≥ OPT− γ.

2.2 Learning in Bayesian persuasion

We study settings in which the sender repeatedly interacts with the receiver over multiple rounds,
with each round involving a one-shot Bayesian persuasion interaction (as described in Section 2.1).
We assume that the sender has no knowledge about both the prior µ and receiver’s utility u, and that
the only feedback they get after each round is the best-response action played by the receiver.

At each round t ∈ [T ],2 the sender commits to a signaling scheme φt : Θ → ∆S and observes a
state of nature θt ∼ µ. Then, they draw a signal st ∼ φt,θt and send it to the receiver, who plays
a best-response action at := aφt(st). Finally, the sender gets payoff us

t := us
θt(a

t) and observes
a feedback consisting in the action at played by the receiver. The goal of the sender is to learn
how to maximize their expected utility while repeatedly interacting with the receiver. When the

1Given a finite set X , we denote by ∆X the set of all the probability distributions over X .
2We denote by [n] := {1, . . . , n} the set of the first n ∈ N natural numbers.
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sender commits to a sequence {φt}t∈[T ] of signaling schemes, their performance over the T rounds
is measured by means of the following notion of cumulative (Stackelberg) regret:

RT ({φt}t∈[T ]) := T · OPT− E

[
T∑
t=1

us(φt)

]
,

where the expectation is with respect to the randomness of the algorithm. In the following, for ease
of notation, we omit the dependency on {φt}t∈[T ] from the cumulative regret, by simply writing RT .
Then, our goal is to design no-regret learning algorithms for the sender, which prescribe a sequence
of signaling schemes φt that results in the regret RT growing sublinearly in T , namely RT = o(T ).

3 Warm-up: A single signal is all you need

In order to design our learning algorithm in Section 4, we exploit a non-standard representation of
signaling schemes, which we introduce in this section. Adopting such a representation is fundamental
to be able to learn receiver’s best responses without any knowledge of both the prior µ and receiver’s
utility function u. The crucial observation that motivates its adoption is that receiver’s best responses
aφ(s) only depend on the components of φ associated with s ∈ S , namely φθ(s) for θ ∈ Θ. Thus, in
order to learn them, it is sufficient to learn how aφ(s) varies as a function of such components.

The signaling scheme representation introduced in this section revolves around the concept of slice.
Definition 1 (Slice). Given a signaling scheme φ : Θ → ∆S , the slice of φ with respect to signal
s ∈ S is the d-dimensional vector x ∈ [0, 1]d with components xθ := φθ(s) for θ ∈ Θ.

In the following, we denote by X := [0, 1]d the set of all the possible slices of signaling schemes.
Moreover, we let X4 be the set of normalized slices, which is simply obtained by restricting slices to
lie in the (d− 1)-dimensional simplex. Thus, it holds that X4 :=

{
x ∈ [0, 1]d |

∑
θ∈Θ xθ = 1

}
.

X�(a1)

X�(a2)

X�(a3)

xθ1

xθ21

1
X 4

(a
1 )

X 4
(a
2 )

X 4
(a
3 )

Figure 1: Representation of sets X�(ai) and
X4(ai) for an instance with d = 2 states of
nature and n = 3 receivers’ actions.

Next, we show that receiver’s actions induce particular
coverings of the sets X and X4, which also depend
on both the prior µ and receiver’s utility u. First, we
introduceHij ⊆ Rd to denote the halfspace of slices
under which action ai ∈ A is (weakly) better than
action aj ∈ A for the receiver.

Hij :=

{
x ∈ Rd |

∑
θ∈Θ

xθµθ
(
uθ(ai)−uθ(aj)

)
≥ 0

}
.

Moreover, we denote by Hij := ∂Hij the hyperplane
constituting the boundary of the halfspaceHij , which
we call the separating hyperplane between actions ai
and aj .3 Then, for every ai ∈ A, we introduce the
polytopes X (ai) ⊆ X and X4(ai) ⊆ X4:

X (ai) := X ∩

( ⋂
aj∈A:ai 6=aj

Hij

)
and X4(ai) := X4 ∩

( ⋂
aj∈A:ai 6=aj

Hij

)
.

Clearly, the sets X (ai), respectively X4(ai), define a cover of X , respectively X4.4 Intuitively,
the set X (ai) encompasses all the slices under which action ai is a best response for the receiver.
The set X4(ai) has the same interpretation, but for normalized slices. Specifically, if x ∈ X (ai) is
a slice of φ with respect to s ∈ S, then ai ∈ Aφ(s). Notice that a slice x ∈ X may belong to more
than one polytope X (ai), when it is the case that |Aφ(s)| > 1 for signaling schemes φ having x

3We let ∂H be the boundary hyperplane of halfspaceH ⊆ Rd. Notice that Hij and Hji actually refer to the
same hyperplane. In this paper, we use both names for ease of presentation.

4In this paper, given a polytope P ⊆ RD , we let V (P) be its set of vertices, while we denote by volm(P)
its Lebesgue measure in m dimensions. For ease of notation, whenever m = D − 1, we simply write vol(P).
Moreover, we let int(P) be the interior of P relative to a subspace that fully contains P and has minimum
dimension. In the case of polytopes X4(ai), the (d− 1)-dimensional simplex is one of such subspaces.
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as slice with respect to s ∈ S.5 In order to denote the best-response action actually played by the
receiver under a slice x ∈ X , we introduce the symbol a(x), where a(x) := aφ(s) for any φ having
x as slice with respect to s ∈ S . Figure 1 depicts an example of the polytopes X (ai) and X4(ai) in
order to help the reader to grasp more intuition about them.

A crucial fact exploited by the learning algorithm developed in Section 4 is that knowing the
separating hyperplanes Hij defining the polytopes X4(ai) of normalized slices is sufficient to
determine an optimal signaling scheme. Indeed, the polytopes X (ai) of unnormalized slices can be
easily reconstructed by simply removing the normalization constraint

∑
θ∈Θ xθ = 1 from X4(ai).

Furthermore, as we show in Section 4 (see the proof of Lemma 4 in particular), there alway exits an
optimal signaling scheme using at most one slice xa ∈ X (a) for each receiver’s action a ∈ A.

We conclude the section with some remarks that help to better clarify why we need to work with
signaling scheme slices in order to design our learning algorithm in Section 4.

Why we need slices for learning The coefficients of separating hyperplanes Hij are products
between prior probabilities µθ and receiver’s utility differences uθ(ai)− uθ(aj). In order to design a
no-regret learning algorithm, it is fundamental that such coefficients are learned exactly, since even
an arbitrarily small approximation error may result in “missing” some receiver’s best responses, and
this may potentially lead to a large loss in sender’s expected utility (and, in its turn, to large regret).
As a result, any naïve approach that learns the prior and receiver’s payoffs separately is deemed to
fail, as it would inevitably result in approximate separating hyperplanes being learned. Operating in
the space of signaling scheme slices crucially allows us to learn separating hyperplanes exactly. As
we show in Section 4, it makes it possible to directly learn the coefficients of separating hyperplanes
without splitting them into products of prior probabilities and receiver’s utility differences.

Why we need normalized slices One may wonder why we cannot work with (unnormalized) slices
in X , rather than with normalized ones in X4. Indeed, as we show in Section 4, our procedure
to learn separating hyperplanes crucially relies on the fact that we can restrict the search space to a
suitable subset of the (d− 1)-dimensional simplex. This makes it possible to avoid always employing
a number of rounds exponential in d, which would lead to non-tight regret guarantees.

Why not working with posteriors In Bayesian persuasion, it is oftentimes useful to work in the
space of posterior distributions induced by sender’s signals (see, e.g., [Castiglioni et al., 2020b]).
These are the beliefs computed by the receiver according to Bayes rule at step (3) of the interaction.
Notice that posteriors do not only depend on the signaling scheme φ and the sent signal s ∈ S, but
also on the prior distribution µ. Indeed, the same signaling scheme may induce different posteriors for
different prior distributions. Thus, since in our setting the sender has no knowledge of µ, we cannot
employ posteriors. Looking at signaling scheme slices crucially allows us to overcome the lack of
knowledge of the prior. Indeed, one way of thinking of them is as “prior-free” posterior distributions.

4 Learning to persuade without a clue

In this section, we design our no-regret algorithm (Algorithm 1). We adopt a sophisticated explore-
then-commit approach that exploits the signaling scheme representation based on slices introduced in
Section 3. Specifically, our algorithm works by first exploring the space X := X4 of normalized
slices in order to learn satisfactory “approximations” of the polytopes X (ai) := X4(ai).6 Then, it
exploits them in order to compute suitable approximately-optimal signaling schemes to be employed
in the remaining rounds. Effectively implementing this approach raises considerable challenges.

The first challenge is that the algorithm cannot directly “query” a slice x ∈ X to know action a(x),
as it can only commit to fully-specified signaling schemes. Indeed, even if the algorithm commits
to a signaling scheme including the selected slice x ∈ X , the probability that the signal associated
with x is sent depends on the (unknown) prior, as it is equal to

∑
θ∈Θ µθxθ. This probability can be

5Let us remark that, in this paper, we assume that there are no two equivalent receiver’s actions ai 6= aj ∈ A
such that uθ(ai) = uθ(aj) for all θ ∈ Θ. Thus, a slice can belong to more than one polytope only if it lies on
some separating hyperplane. This assumption is w.l.o.g. since it is possible to account for equivalent actions by
introducing at most n additional separating hyperplanes to consider tie breaking in favor of the sender.

6In the rest of the paper, for ease of notation, we write X and X (ai) instead of X4 and X4(ai).
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arbitrarily small. Thus, in order to observe a(x), the algorithm may need to commit to the signaling
scheme for an unreasonably large number of rounds. To circumvent this issue, we show that it is
possible to focus on a subset Xε ⊆ X of normalized slices “inducible” with at least a suitably-defined
probability ε ∈ (0, 1). Such a set Xε is built by the algorithm in its first phase.

The second challenge that we face is learning the polytopes Xε(ai) := X (ai) ∩ Xε. This is done
by means of a technically-involved procedure that learns the separating hyperplanes Hij needed
to identify them. This procedure is an adaptation to Bayesian persuasion settings of an algorithm
recently introduced for a similar problem in Stackelberg games [Bacchiocchi et al., 2024a].

Finally, the third challenge is how to use the polytopes Xε(ai) to compute suitable approximately-
optimal signaling schemes to commit to after exploration. We show that this can be done by solving
an LP, which, provided that the set Xε is carefully constructed, gives signaling schemes with sender’s
expected utility sufficiently close to that of an optimal signaling scheme.

Algorithm 1 Learn-to-Persuade-w/o-Clue
Require: T ∈ N

1: δ ← 1/T , ζ ← 1/T

2: ε←
⌈√

Bnd4√
T

⌉
3: T1 ←

⌈
12
ε log

(
2d
δ

)⌉
4: t← 1
5: Xε ← Build-Search-Space(T1, ε)
6: Rε ← Find-Polytopes(Xε, ζ)
7: while t ≤ T do
8: φt ← Compute-Signaling(Rε,Xε, µ̂t)
9: Commit to φt, observe θt, and send st

10: Observe feedback at and receive us
t

11: Compute prior estimate µ̂t+1

12: t← t+ 1

The pseudocode of our no-regret learning algo-
rithm is provided in Algorithm 1. In the pseu-
docode, we assume that all the sub-procedures
have access to the current round counter t, all
the observed states of nature θt, and all the feed-
backs at, us

t received by the sender.7 Moreover,
in Algorithm 1 and its sub-procedures, we use
µ̂t ∈ ∆Θ to denote the prior estimate at any
round t > 1, which is a vector with compo-
nents defined as µ̂t,θ := Nt,θ/(t− 1) for θ ∈ Θ,
where Nt,θ ∈ N denotes the number of times
that state of nature θ is observed up to round
t (excluded). Algorithm 1 can be conceptually
divided into three phases. In phase 1, the algo-
rithm employs the Build-Search-Space pro-
cedure (Algorithm 2) to build a suitable subset
Xε ⊆ X of “inducible” normalized slices. Then,
in phase 2, the algorithm employs the Find-Polytopes procedure (see Algorithm 6 in Appendix E)
to find a collection of polytopesR := {Rε(a)}a∈A, where eachRε(a) is either Xε(a) or a suitable
subset of Xε(a) that is sufficient for achieving the desired goals (see Section 4.2). Finally, phase 3
uses the remaining rounds to exploit the knowledge acquired in the preceding two phases. Specifi-
cally, at each t, this phase employs the Compute-Signaling procedure (Algorithm 3) to compute an
approximately-optimal signaling scheme, by usingRε, the set Xε, and the current prior estimate µ̂t.

In the rest of this section, we describe in detail the three phases of Algorithm 1, bounding the regret
attained by each of them. This allows us to prove the following main result about Algorithm 1.8

Theorem 1. The regret attained by Algorithm 1 is RT ≤ Õ
((
d+n
d

)
n3/2d3

√
BT
)
.

We observe that the regret bound in Theorem 1 has an exponential dependence on the number of states
of nature d and the number of receiver’s actions n, due to the binomial coefficient. Indeed, when
d, respectively n, is constant, the regret bound is of the order of Õ(nd

√
T ), respectively Õ(dn

√
T ).

Such a dependence is tight, as shown by the lower bounds that we provide in Section 5.

4.1 Phase 1: Build-Search-Space

Given an ε ∈ (0, 1/6d) and a number of rounds T1, the Build-Search-Space procedure (Algo-
rithm 2) computes a subset Xε ⊆ X of normalized slices satisfying two crucial properties needed
by the learning algorithm to attain the desired guarantees. Specifically, the first property is that any
slice x ∈ Xε can be “induced” with sufficiently high probability by a signaling scheme, while the

7Notice that, in Algorithm 1, the sub-procedures Build-Search-Space and Find-Polytopes perform
some rounds of interaction, and, thus, they update the current round counter t. For ease of presentation, we
assume that, whenever t > T , their execution is immediately stopped (as well as the execution of Algorithm 1).

8Notice that the regret attained by Algorithm 6 (stated in Theorem 1) depends on B, which is the bit-
complexity of numbers µθuθ(ai), i.e., the number of bits required to represent them. We refer the reader to
Appendix E for more details about how we manage the bit-complexity of numbers in this paper.
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second one is that, if x /∈ Xε, then signaling schemes “induce” such a slice with sufficiently small
probability. Intuitively, the first property ensures that it is possible to associate any x ∈ Xε with the
action a(x) in a number of rounds of the order of 1/ε, while the second property is needed to bound
the loss in sender’s expected utility due to only considering signaling schemes with slices in Xε.

Algorithm 2 Build-Search-Space
Require: ε ∈ (0, 1/6d), number of rounds T1

1: Θ̃← ∅
2: while t ≤ T1 do
3: Commit to any φt, observe θt, and send st
4: Observe feedback at and receive us

t
5: t← t+ 1
6: Compute prior estimate µ̂t
7: µ̂← µ̂t
8: for θ ∈ Θ do
9: if µ̂θ > 2ε then Θ̃← Θ̃ ∪ {θ}

10: Xε ←
{
x ∈ X |

∑
θ∈Θ̃ µ̂θxθ ≥ 2ε

}
11: return Xε

Algorithm 2 works by simply observing realized
states of nature θt for T1 rounds, while commit-
ting to any signaling scheme meanwhile. This
allows the algorithm to build a sufficiently accu-
rate estimate µ̂ of the true prior µ. Then, the al-
gorithm uses such an estimate to build the setXε.
Specifically, it constructs Xε as the set contain-
ing all the normalized slices that are “inducible”
with probability at least 2ε under the estimated
prior µ̂, after filtering out all the states of nature
whose estimated probability is not above the 2ε
threshold (see Lines 8–10 in Algorithm 2).

The following lemma formally establishes the
two crucial properties that are guaranteed by
Algorithm 2, as informally described above.
Lemma 1. Given T1 :=

⌈
12
ε log (2d/δ)

⌉
and ε ∈ (0, 1/6d), Algorithm 2 employs T1 rounds and

terminates with a set Xε ⊆ X such that, with probability at least 1− δ: (i)
∑
θ∈Θ µθxθ ≥ ε for every

slice x ∈ Xε and (ii)
∑
θ∈Θ µθxθ ≤ 10ε for every slice x ∈ X \ Xε.

To prove Lemma 1, we employ the multiplicative version of Chernoff bound, so as to show that it
is possible to distinguish whether prior probabilities µθ are above or below suitable thresholds in a
number of rounds of the order of 1/ε. Specifically, we show that, after T1 rounds and with probability
at least 1− δ, the set Θ̃ in the definition of Xε does not contain states θ ∈ Θ with µθ ≤ ε, while it
contains all the states with a sufficiently large µθ. This immediately proves properties (i) and (ii)
in Lemma 1. Notice that using a multiplicative Chernoff bound is a necessary technicality, since
standard concentration inequalities would result in a number of needed rounds of the order of 1/ε2,
leading to a suboptimal regret bound in the number of rounds T .

For ease of presentation, we introduce the following clean event for phase 1 of Algorithm 1. This
encompasses all the situations in which Algorithm 2 outputs a set Xε with the desired properties.
Definition 2 (Phase 1 clean event). E1 is the event in which Xε meets properties (i)–(ii) in Lemma 1.

4.2 Phase 2: Find-Polytopes

Given a set Xε ⊆ X computed by the Build-Search-Space procedure and ζ ∈ (0, 1) as inputs, the
Find-Polytopes procedure (Algorithm 6 in Appendix E) computes a collectionRε := {Rε(a)}a∈A
of polytopes enjoying suitable properties sufficient to achieve the desired goals.

Ideally, we would like Rε(a) = Xε(a) for every a ∈ A. However, it is not possible to completely
identify the polytopesXε(a) with vol(Xε(a)) = 0. Indeed, if vol(Xε(ai)) = 0, thenXε(ai) ⊆ Xε(aj)
for some other polytope Xε(aj) with positive volume. Thus, due to receiver’s tie breaking, it could be
impossible to identify the whole polytope Xε(ai). As a result, the Find-Polytopes procedure can
output polytopesRε(a) = Xε(a) only if vol(Xε(a)) > 0. However, we show that, if vol(Xε(a)) = 0,
it is sufficient to guarantee that the polytopeRε(a) contains a suitable subset Vε(a) of the vertices of
Xε(a); specifically, those in which the best response actually played by the receiver is a. For every
a ∈ A, such a set is formally defined as Vε(a) := {x ∈ V (Xε(a)) | a(x) = a}. Thus, we design
Find-Polytopes so that it returns a collectionRε := {Rε(a)}a∈A of polytopes such that:

(i) if it holds vol(Xε(a)) > 0, thenRε(a) = Xε(a), while
(ii) if vol(Xε(a)) = 0, thenRε(a) is a (possible improper) face of Xε(a) with Vε(a) ⊆ Rε(a).

As a result each polytopeRε(a) can be either Xε(a) or a face of Xε(a), or it can be empty, depending
on receiver’s tie breaking. In all these cases, it is always guaranteed that Vε(a) ⊆ Rε(a).

To achieve its goal, the Find-Polytopes procedure works by searching over the space of normalized
slices Xε, so as to learn exactly all the separating hyperplanes Hij characterizing the needed vertices.
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The algorithm does so by using and extending tools that have been developed for a related learning
problem in Stackelberg games (see [Bacchiocchi et al., 2024a]). Notice that our Bayesian persuasion
setting has some distinguishing features that do not allow us to use such tools off the shelf. We refer
the reader to Appendix E for a complete description of the Find-Polytopes procedure.

A crucial component of Find-Polytopes is a tool to “query” a normalized slice x ∈ Xε in order
to obtain the action a(x). This is done by using a sub-procedure that we call Action-Oracle (see
Algorithm 5 in Appendix E), which works by committing to a signaling scheme including slice x
until the signal corresponding to such a slice is actually sent. Under the clean event E1, the set Xε is
built in such a way that Action-Oracle returns the desired action a(x) in a number of rounds of the
order of 1/ε, with high probability. This is made formal by the following lemma.
Lemma 2. Under event E1, given any ρ ∈ (0, 1) and a normalized slice x ∈ Xε, if the sender
commits to a signaling scheme φ : Θ→ S := {s1, s2} such that φθ(s1) = xθ for all θ ∈ Θ during
q :=

⌈
1
ε log(1/ρ)

⌉
rounds, then, with probability at least 1− ρ, signal s1 is sent at least once.

Notice that the signaling scheme used to “query” an x ∈ Xε only employs two signals: one is
associated with slice x, while the other crafted so as to make the signaling scheme well defined.

The following lemma provides the guarantees of Algorithm 6 in Appendix E.
Lemma 3. Given inputs Xε ⊆ X and ζ ∈ (0, 1) for Algorithm 6, let L := B +Bε +Bµ̂, where B,
Bε, and Bµ̂ denote the bit-complexity of numbers µθuθ(ai), ε, and µ̂, respectively. Then, under event
E1 and with at probability at least 1− ζ , Algorithm 6 outputs a collectionRε := {Rε(a)}a∈A, where
Rε(a) is a (possibly improper) face of Xε(a) such that Vε(a) ⊆ Xε(a), in a number of rounds T2:

T2 ≤ Õ
(
n2

ε
log2

(
1

ζ

)(
d7L+

(
d+ n

d

)))
.

For ease of presentation, we introduce the clean event for phase 2 of Algorithm 1, defined as follows:
Definition 3 (Phase 2 clean event). E2 is the event in which Vε(a) ⊆ Rε(a) for every a ∈ A.

4.3 Phase 3: Compute-Signaling

Given the collection of polytopesRε := {Rε(a)}a∈A returned by the Find-Polytopes procedure
and an estimated prior µ̂t ∈ ∆Θ, the Compute-Signaling procedure (Algorithm 3) outputs an
approximately-optimal signaling scheme by solving an LP (Program (2) in Algorithm 3).

Algorithm 3 Compute-Signaling
Require: Rε := {Rε(a)}a∈A, Xε, µ̂t ∈ ∆Θ

1: Solve Program (2) for x? := (x?,a)a∈A:

max
(xa)a∈A

∑
a∈A

∑
θ∈Θ

µ̂t,θx
a
θu

s
θ(a) s.t. (2)

xa ∈ Rε (a) ∀a ∈ A∑
a∈A

xaθ ≤ 1 ∀θ ∈ Θ

2: S ← {s?} ∪ {sa | a ∈ A}
3: for θ ∈ Θ do

4: φθ ←
{
φθ(s

a) = x?,aθ ∀a ∈ A
φθ(s

?) = 1−
∑
a∈A x

?,a
θ

5: return φ

Program (2) maximizes an approximated version
of sender’s expected utility over a suitable space
of (partially-specified) signaling schemes. These
are defined by tuples of slices (xa)a∈A contain-
ing an (unnormalized) slice xa ∈ Rε (a) for every
receiver’s action a ∈ A. The objective function
being maximized by Program (2) accounts for the
sender’s approximate utility under each of the slices
xa, where the approximation comes from the esti-
mated prior µ̂t. The intuitive idea exploited by the
LP formulation is that, under slice xa, the receiver
always plays the same action a as best response,
since a(xa) = a holds by the way in whichRε(a)
is constructed by Find-Polytopes. In particular,
each polytope Rε (a) is built so as to include all
the unnormalized slices corresponding to the nor-
malized slices in the setRε(a). Formally, for every
receiver’s action a ∈ A, it holds:

Rε (a) :=
{
x ∈ X | x = αx′ ∧ x′ ∈ Rε(a) ∧ α ∈ [0, 1]

}
∪ {0},

where 0 denotes the vector of all zeros in Rd. We observe that, since the polytopes Rε(a) are
constructed as the intersection of some halfspacesHij and Xε, it is possible to easily build polytopes
Rε (ai) by simply removing the normalization constraint

∑
θ∈Θ xθ = 1. Notice that, ifRε(a) = ∅,

thenRε (a) = {0}, which implies that action a is never induced as a best response, since xa = 0.
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After solving Program (2) for an optimal solution x? := (x?,a)a∈A, Algorithm 3 employs such a
solution to build a signaling scheme φ. This employs a signal sa for every action a ∈ A, plus an
additional signal s?, namely S := {s?} ∪ {sa | a ∈ A}. Specifically, the slice of φ with respect to
sa is set to be equal to xa, while its slice with respect to s? is set so as to render φ a valid signaling
scheme (i.e., probabilities over signal sum to one for every θ ∈ Θ). Notice that this is always possible
thanks to the additional constraints

∑
a∈A x

a
θ ≤ 1 in Program (2). Moreover, such a slice may belong

to X \ Xε . Indeed, in instances where there are some X (a) falling completely outside Xε , this is
fundamental to build a valid signaling scheme. Intuitively, one may think of s? as incorporating all
the “missing” signals in φ, namely those corresponding to actions a ∈ A with X (a) outside Xε .

The following lemma formally states the theoretical guarantees provided by Algorithm 3.

Lemma 4. Given inputsRε := {Rε(a)}a∈A, Xε, and µ̂t ∈ ∆Θ for Algorithm 3, under events E1 and
E2, the signaling scheme φ output by the algorithm isO(εnd+ν)-optimal for ν ≤

∣∣∑
θ∈Θ µ̂t,θ − µθ

∣∣.
In order to provide some intuition on how Lemma 4 is proved, let us assume that each polytope
Xε(a) is either empty or has volume larger than zero, implying thatRε(a) = Xε(a). In Appendix D,
we provide the complete formal proof of Lemma 4, working even with zero-measure non-empty
polytopes. The first observation the we need is that sender’s expected utility under a signaling scheme
φ can be decomposed across its slices, with each slice x providing a utility of

∑
θ∈Θ µθxθu

s
θ(a(x)).

The second crucial observation is that there always exists an optimal signaling scheme φ? that is direct
and persuasive, which means that φ? employs only one slice xa for each action a ∈ A, with a being
a best response for the receiver under xa. It is possible to show that the slices xa that also belong to
Xε can be used to construct a feasible solution to Program 2, since xa ∈ Rε (a) by definition. Thus,
restricted to those slices, the signaling scheme φ computed by Algorithm 3 achieves an approximate
sender’s expected utility that is greater than or equal to the one achieved by φ?. Moreover, the loss
due to dropping the slices that are not in Xε can be bounded thanks to point (ii) in Lemma 1. Finally,
it remains to account for the approximation due to using µ̂t instead of the true prior in the objective of
Program 2. All the observations above allow to bound sender’s expected utility loss as in Lemma 4.

5 Lower bounds for online Bayesian persuasion

In this section, we present two lower bounds on the regret attainable in the setting faced by Algorithm 1.
The first lower bound shows that an exponential dependence in the number of states of nature d and
the number of receiver’s actions n is unavoidable. This shows that one cannot get rid of the binomial
coefficient in the regret bound of Algorithm 1 provided in Theorem 1. Formally:

Theorem 2. For any sender’s algorithm, there exists a Bayesian persuasion instance in which
n = d+ 2 and the regret RT suffered by the algorithm is at least 2Ω(d), or, equivalently, 2Ω(n).

Theorem 2 is proved by constructing a collection of Bayesian persuasion instances in which an
optimal signaling scheme has to induce the receiver to take an action that is a best response only for a
unique posterior belief (among those computable by the receiver at step (3) of the interaction). This
posterior belief belongs to a set of possible candidates having size exponential in the number of states
of nature d. As a result, in order to learn such a posterior belief, any algorithm has to commit to a
number of signaling schemes that is exponential in d (and, given how the instances are built, in n).

The second lower bound shows that the regret bound attained by Algorithm 1 is tight in T .

Theorem 3. For any sender’s algorithm, there exists a Bayesian persuasion instance in which the
regret RT suffered by the algorithm is at least Ω(

√
T ).

To prove Theorem 3, we construct two Bayesian persuasion instances with Θ = {θ1, θ2} such that,
in the first instance, µθ1 is slightly greater than µθ2 , while the opposite holds in the second instance.
Furthermore, the two instances are built so that the sender does not gain any information that helps
to distinguish between them by committing to signaling schemes. As a consequence, to make a
distinction, the sender can only leverage the information gained by observing the states of nature
realized at each round, and this clearly results in the regret being at least Ω(

√
T ).
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6 The sample complexity of Bayesian persuasion

In this section, we show how the no-regret learning algorithm developed in Section 4 can be easily
adapted to solve a related Bayesian persuasion PAC-learning problem. Specifically, given an (additive)
approximation error γ ∈ (0, 1) and a probability η ∈ (0, 1), the goal of such a problem is to learn a
γ-optimal signaling scheme with probability at least 1− η, by using the minimum possible number
of rounds. This can be also referred to as the sample complexity of learning signaling schemes.

As in the regret-minimization problem addressed in Section 4, we assume that the sender does not
know anything about both the prior distribution µ and receiver’s utility function u.

Algorithm 4 PAC-Persuasion-w/o-Clue
Require: γ ∈ (0, 1), η ∈ (0, 1)

1: δ ← η/2, ζ ← η/2, ε1 ← γ/12nd, t← 1
2: ε← Compute-Epsilon(ε1)
3: T1 ←

⌈
1

2ε2 log
(

2d
δ

)⌉
4: Xε ← Build-Search-Space(T1, ε)
5: Rε ← Find-Polytopes(Xε, ζ)
6: φ← Compute-Signaling(Rε,Xε, µ̂)
7: return φ

We tackle the Bayesian persuasion PAC-learning
problem with a suitable adaptation of Algorithm 1,
provided in Algorithm 4. The first two phases of the
algorithm follow the line of Algorithm 1, with the
Build-Search-Space and Find-Polytopes pro-
cedures being called for suitably-defined parameters
ε, δ, T1, and ζ (taking different values with respect to
their counterparts in Algorithm 1). In particular, the
value of ε depends on γ and is carefully computed
so as to control the bit-complexity of numbers used
in the Find-Polytopes procedure (see Lemma 3),
as detailed in Appendix G. Finally, in its third phase,
the algorithm calls Compute-Signaling to compute a signaling scheme φ that can be proved to
γ-optimal with probability at least 1− η.

The most relevant difference between Algorithm 4 and Algorithm 1 is the number of rounds used to
build the prior estimate defining Xε. Specifically, while the latter has to employ T1 of the order of 1/ε
and rely on a multiplicative Chernoff bound to get tight regret guarantees, the former has to use T1 of
the order of 1/ε2 and standard concentration inequalities to get an O(ε)-optimal solution. Formally:

Lemma 5. Given T1 :=
⌈

1
2ε2 log (2d/δ)

⌉
and ε ∈ (0, 1), Algorithm 2 employs T1 rounds and outputs

Xε ⊆ X such that, with probability at least 1 − δ: (i)
∑
θ∈Θ µθxθ ≥ ε for every slice x ∈ Xε, (ii)∑

θ∈Θ µθxθ ≤ 6ε for every slice x ∈ X \ Xε, and (iii) |µ̂θ − µθ| ≤ ε for every θ ∈ Θ.

By Lemma 5, it is possible to show that the event E1 holds. Hence, the probability that a signaling
scheme including a slice x ∈ Xε actually “induces” such a slice is at least ε, and, thus, the results
concerning the second phase of Algorithm 1 are valid also in this setting. Finally, whenever the events
E1 and E2 hold, we can provide an upper bound on the number of rounds required by Algorithm 4 to
compute a γ-optimal signaling scheme as desired. Formally:
Theorem 4. Given γ ∈ (0, 1) and η ∈ (0, 1), with probability at least 1− η, Algorithm 4 outputs a
γ-optimal signaling scheme in a number of rounds T such that:

T ≤ Õ
(
n3

γ2
log2

(
1

η

)(
d8B + d

(
d+ n

d

)))
.

We conclude by providing two negative results showing that the result above is tight.
Theorem 5. There exist two absolute constants κ, λ > 0 such that no algorithm is guaranteed to
return a κ-optimal signaling scheme with probability of at least 1− λ by employing less than 2Ω(n)

and 2Ω(d) rounds, even when the prior distribution µ is known to the sender.

Theorem 6. Given γ ∈ (0, 1/8) and η ∈ (0, 1), no algorithm is guaranteed to return a γ-optimal
signaling scheme with probability at least 1− η by employing less than Ω

(
1
γ2 log(1/η)

)
rounds.

In Appendix H , we also study the case in which the prior µ is known to the sender. In such a case,
we show that the sample complexity can be improved by a factor 1/γ, which is tight.
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Appendix

The appendixes are organized as follows:

• Appendix A provides a discussion of the previous works most related to ours.
• Appendix B presents additional preliminaries.
• Appendix C presents the omitted proofs from Section 4.
• Appendix D presents the proof of Lemma 4 from Section 4.3.
• Appendix E provides a description of the results and the procedures employed in phase 2.
• Appendix F presents the omitted proofs from Section 5.
• Appendix G presents the omitted proofs and some technical details from Section 6.
• Appendix H discusses the PAC-learning problem when the prior is known.

A Additional Related Works

Learning in Bayesian persuasion settings In addition to the works presented in Section 1.2,
the problem of learning optimal signaling schemes in Bayesian persuasion settings has received
growing attention over the last few years. Camara et al. [2020] study an adversarial setting where the
receiver does not know the prior, and the receiver’s behavior is aimed at minimizing internal regret.
Babichenko et al. [2022] consider an online Bayesian persuasion setting with binary actions when the
prior is known, and the receiver’s utility function has some regularities. Feng et al. [2022] study the
online Bayesian persuasion problem faced by a platform that observes some relevant information
about the state of a product and repeatedly interacts with a population of myopic receivers through a
recommendation mechanism. Agrawal et al. [2023] design a regret-minimization algorithm in an
advertising setting based on the Bayesian persuasion framework, assuming that the receiver’s utility
function satisfies some regularity conditions.

Online learning in problems with commitment From a technical point of view, our work is
related to the problem of learning optimal strategies in Stackelberg games when the leader has no
knowledge of the follower’s utility. Letchford et al. [2009] propose the first algorithm to learn optimal
strategies in Stackelberg games. Their algorithm is based on an initial random sampling that may
require an exponential number of samples, both in the number of leader’s actions m and in the
representation precision L. Peng et al. [2019] improve the algorithm of Letchford et al. [2009], while
Bacchiocchi et al. [2024a] further improve the approach by Peng et al. [2019] by relaxing some of
their assumptions.

Furthermore, our work is also related to the problem of learning optimal strategies in Stackelberg
games where the leader and the follower interaction is modelled by a Markov Decision Process.
Lauffer et al. [2024] study Stackelberg games with a state that influences the leader’s utility and
available actions. Bai et al. [2021] consider a setting where the leader commits to a pure strategy and
observes a noisy measurement of their utility.

Finally, our work is also related to online hidden-action principal-agent problems, in which a principal
commits to a contract at each round to induce an agent to take favorable actions. Ho et al. [2014]
initiated the study by proposing an algorithm that adaptively refines a discretization over the space of
contracts, framing the model as a multi-armed bandit problem where the discretization provides a
finite number of arms to play with. Cohen et al. [2022] similarly work in a discretized space but with
milder assumptions. Zhu et al. [2023] provide a more general algorithm that works in hidden-action
principal-agent problems with multiple agent types. Finally, Bacchiocchi et al. [2024b] study the
same setting and propose an algorithm with smaller regret when the number of agent actions is small.

B Additional preliminaries

B.1 Additional preliminaries on Bayesian persuasion

In step (3) of the sender-receiver interaction presented in Section 2.1, after observing s ∈ S, the
receiver performs a Bayesian update and infers a posterior belief ξs ∈ ∆Θ over the states of nature,
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according to the following equation:

ξsθ =
µθ φθ(s)∑

θ′∈Θ µθ′ φθ′(s)
∀θ ∈ Θ. (3)

Consequently, given a signaling scheme φ, we can equivalently represent it as a distribution over the
set of posteriors it induces. Formally, we say that φ induces γ : ∆Θ → [0, 1] if, for each posterior
distribution ξ ∈ ∆Θ, we have:

γ(ξ) =
∑

s∈S:ξs=ξ

∑
θ∈Θ

µθφθ(s) and
∑

ξ∈supp(γ)

γ(ξ) = 1.

Furthermore, we say that a distribution over a set of posteriors γ is consistent, i.e., there exists a valid
signaling scheme φ inducing γ if the following holds:∑

ξ∈supp(γ)

γ(ξ)ξθ = µθ ∀θ ∈ Θ.

With an abuse of notation, we will sometimes refer to a consistent distribution over a set of posteriors
γ as a signaling scheme. This is justified by the fact that there exists a signaling scheme φ inducing
such distribution, but we are interested only in the distribution over the set of posteriors that φ induces.

B.2 Additional preliminaries on the representation of numbers

In the following, we assume that all the numbers manipulated by our algorithms are rational. Further-
more, we assume that rational numbers are represented as fractions, by specifying two integers which
encode their numerator and denominator. Given a rational number q ∈ Q represented as a fraction
b/c with b, c ∈ Z, we denote the number of bits that q occupies in memory, called bit-complexity, as
Bq := Bb +Bc, where Bb (Bc) is the number of bits required to represent the numerator (denomi-
nator). For the sake of the presentation, with an abuse of terminology, given a vector in QD of D
rational numbers represented as fractions, we let its bit-complexity be the maximum bit-complexity
among its entries.

Furthermore, we assume that the bit-complexity encoding both the receiver’s utility and the prior
distribution is bounded. Formally, we denote by Bµ the bit-complexity of the prior µ, while we
assume Bu to be an upper bound to the bit-complexity of each d-dimensional vector uθ(a) with
θ ∈ Θ. Moreover, we let B := Bµ + Bu. Finally, we also denote with Bε the bit-complexity of
the parameter ε computed by our algorithms, while we denote with Bµ̂ the bit-complexity of the
estimator µ̂ computed by Algorithm 2.

C Omitted proofs from Section 4

Lemma 1. Given T1 :=
⌈

12
ε log (2d/δ)

⌉
and ε ∈ (0, 1/6d), Algorithm 2 employs T1 rounds and

terminates with a set Xε ⊆ X such that, with probability at least 1− δ: (i)
∑
θ∈Θ µθxθ ≥ ε for every

slice x ∈ Xε and (ii)
∑
θ∈Θ µθxθ ≤ 10ε for every slice x ∈ X \ Xε.

Proof. For each θ ∈ Θ we consider two possible cases.

1. If µθ > ε, then we employ the multiplicative Chernoff inequality as follows:

P
(
|µθ − µ̂θ| ≥

1

2
µθ

)
≤ 2e−

T1µθ
12 ,

where T1 ∈ N+ is the number of rounds employed to estimate µ̂θ. As a result, by setting
the number of rounds to estimate µθ equal to T1 = d12/ε log (2d/δ)e we get:

P
(
|µθ − µ̂θ| ≥

1

2
µθ

)
≤ 2

(
δ

2d

)µθ
ε

≤ δ

d
,

since µθ > ε. Then, we get:

P
(
µθ
2
≤ µ̂θ ≤

3µθ
2

)
≥ 1− δ

d
. (4)
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Consequently, with a probability of at least 1 − δ/d the estimator µ̂θ is such that µ̂θ ∈
[µθ/2, 3µθ/2]. Thus, if µθ ≥ 6ε, then µ̂θ ≥ 3ε > 2ε and θ ∈ Θ̃. We also notice that there
always exits a θ ∈ Θ such that µθ ≥ 1/d ≥ 6ε, since ε ∈ (0, 1/6d). Consequently, with a
probability of at least 1− δ/d, there always exist a θ ∈ Θ̃.

2. If µθ ≤ ε, then we employ the multiplicative Chernoff inequality as follows:

P (µ̂θ ≥ (1 + c)µθ) ≤ e−
c2T1µθ

2+c ,

with c = ε/µθ. Thus, by setting the number of rounds employed to estimate µθ equal to
T1 = d12/ε log (2d/δ)e, we get:

P (µ̂θ ≥ µθ + ε) ≤ exp

− ε2

µ2
θ

(
12
ε log

(
2d
δ

))
µθ

2 + ε
µθ


≤ exp

(
−

12ε
µθ

log
(

2d
δ

)
2 + ε

µθ

)

≤
(
δ

2d

)4

≤ δ

d
,

since x/(x+ 2) ≥ 1/3, for each x ≥ 1. As a result, we have:

P (µ̂θ ≤ µθ + ε) ≥ 1− δ

d
.

Thus, with a probability of at least 1− δ/d, if µθ ≤ ε, then µ̂θ ≤ µθ + ε, which implies that
µ̂θ ≤ 2ε. Furthermore, if µθ ≤ ε, then µ̂θ ≤ 2ε and θ 6∈ Θ̃.

Thus, by employing a union bound over the set of natures, we have that if µθ ≤ ε, then its correspond-
ing estimate µ̂θ falls within the interval [0, 2ε] and θ 6∈ Θ̃, while if µθ ≥ 6ε, then its corresponding
estimate is such that µ̂θ > 2ε and θ ∈ Θ̃, with a probability of at least 1 − δ. We also notice that,
with the same probability, the set Θ̃ is always non empty.

Consequently, for each slice x ∈ Xε with respect to a signal s, the probability of observing s can be
lower bounded as follows:

ε ≤ 1

2

∑
θ∈Θ̃

µ̂θxθ ≤
3

4

∑
θ∈Θ̃

µθxθ ≤
∑
θ∈Θ̃

µθxθ ≤
∑
θ∈Θ

µθxθ,

where the inequalities above hold because of the definition of Xε and observing that each θ ∈ Θ̃
satisfies Equation 4 with probability at least 1− δ.

Furthermore, for each x 6∈ Xε, the two following conditions hold:

1

2

∑
θ∈Θ̃

µθxθ ≤
∑
θ∈Θ̃

µ̂θxθ ≤ 2ε and
∑
θ 6∈Θ̃

µθxθ ≤ 6ε
∑
θ 6∈Θ̃

xθ ≤ 6ε,

with probability at least 1− δ. Thus, by putting the two inequalities above together, for each x 6∈ Xε,
we have: ∑

θ∈Θ

µθxθ ≤ 10ε,

with probability at least 1− δ, concluding the proof.

Lemma 2. Under event E1, given any ρ ∈ (0, 1) and a normalized slice x ∈ Xε, if the sender
commits to a signaling scheme φ : Θ→ S := {s1, s2} such that φθ(s1) = xθ for all θ ∈ Θ during
q :=

⌈
1
ε log(1/ρ)

⌉
rounds, then, with probability at least 1− ρ, signal s1 is sent at least once.
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Proof. In the following, we let τ be the first round in which the sender commits to φ. The probability
of observing the signal s1 at a given round t ≥ τ is can be lower bounded as follows:

P
(
st = s1

)
=
∑
θ∈Θ

µθxθ ≥ ε,

where the inequality holds under the event E1. Thus, at each round, the probability of sampling the
signal s1 ∈ S is greater or equal to ε > 0. Consequently, the probability of never observing the signal
s1 ∈ S in q rounds is given by:

P

(
τ+q−1⋂
t=τ

{st 6= s1}

)
≤ (1− ε)q ≤ ρ,

where the last inequality holds by taking q =
⌈

log(ρ)
log(1−ε)

⌉
≤
⌈

log(1/ρ)
ε

⌉
, for each ε ∈ (0, 1).

As a result, the probability of observing the signal s1 at least once in q rounds is greater or equal to:

P

(
τ+q−1⋃
t=τ

{st 6= s1}

)
= 1− P

(
τ+q−1⋂
t=τ

{st 6= s1}

)
≥ 1− ρ,

concluding the proof.

Theorem 1. The regret attained by Algorithm 1 is RT ≤ Õ
((
d+n
d

)
n3/2d3

√
BT
)
.

Proof. In the following, we let δ = ζ = 1
T and ε = d

√
Bnd4e
d
√
Te , as defined in Algorithm 1. To prove

the theorem, we decompose the regret suffered in the three phases of Algorithm 1:

1. Phase 1. We observe that the number of rounds to execute the Build-Search-Space
procedure (Algorithm 2) is equal to T1 = O (1/ε log (1/δ) log(d)) . Thus, the cumulative
regret of Phase 1 can be upper bounded as follows:

R1
T ≤ Õ

(
1

ε
log(T ) log(d)

)
≤ Õ

( √
T

d4
√
nB

log(d)

)
≤ Õ

(√
T
)
.

This is because, at each round, the regret suffered during the execution of Algorithm 2 is at
most one.

2. Phase 2. Under the event E1, which holds with probability 1 − δ, Algorithm 6 correctly
terminates with probability 1− ζ. Thus, with probability at least 1− δ − ζ, the number of
rounds employed by such algorithm is of the order:

T2 ≤ Õ
(
n2

ε
log2

(
1

ζ

)(
d7(B +Bε +Bµ̂) +

(
d+ n

d

)))
= Õ

(
n2

ε
log2(T )

(
d7(B +Bε) +

(
d+ n

d

)))
,

where the last equality holds because Bµ̂ = O(log(1/ε) + log(d) + log(T )). As a result, by
taking the expectation, the regret suffered in Phase 2 by Algorithm 1 can be upper bounded
as follows:

R2
T ≤ Õ

(
n

3/2d3

(
d+ n

d

)√
BT

)
,

since, at each round, the regret suffered during the execution of Algorithm 6 is at most one.

3. Phase 3. Let τ be the number of rounds required by Phase 1 and Phase 2 to terminate. Under
the events E1 and E2, which hold with probability at least 1− δ− ζ , thanks to Lemma 4, the
solution returned by Algorithm 3 at each round t > τ is O(dnε+ νt)-optimal, where we
define νt =

∣∣∑
θ∈Θ µθ − µ̂t,θ

∣∣. We introduce the following event:

Et = {|µθ − µ̂t,θ| ≤ εt ∀θ ∈ Θ} ,
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where we let εt > 0 be defined as follows:

εt =

√
log (2dT/ι)

2(t− τ)
, t > τ.

Then, by Hoeffding’s inequality and a union bound we have:

P
( ⋂
t>τ

Et

)
≥ 1− ι.

Thus, by setting ι = 1/T , the regret suffered in Phase 3 by Algorithm 1 can be upper
bounded as follows:

R3
T ≤

T∑
t=τ+1

∣∣∣∣∣∑
θ∈Θ

µθ − µ̂t,θ

∣∣∣∣∣+O (dεT )

≤ d
T∑

t=τ+1

εt +O (dnεT )

≤ Õ
(
d
√
T + dnεT

)
= Õ

(
d
√
T + n

3/2d5
√
BT
)
.

As a result, the regret of Algorithm 1 is in the order of:

RT ≤ Õ
(
n

3/2d3

(
d+ n

d

)√
BT + n

3/2d5
√
BT

)
= Õ

(
n

3/2d3

(
d+ n

d

)√
BT

)
,

concluding the proof.

D Proof of Lemma 4 from Section 4.3

In order to prove Lemma 4, we first consider an auxiliary LP (Program 5a) that works on the vertices
of the regions Xε(a). This is useful to take into account the polytopes Xε(a) with null volume. Indeed,
for every action a ∈ A such that vol(Xε(a)) = 0, Algorithm 3 takes in input only a face Rε(a) of
Xε(a) such that Vε(a) ⊆ V (Rε(a)). By working on the vertices of the regions Xε(a), we can show
that the vertices in Vε(a) are sufficient to compute an approximately optimal signaling scheme.

The auxiliary LP that works on the vertices is the following:

max
α≥0

∑
x∈Vε

αx
∑
θ∈Θ

µθxθu
s
θ(a(x)) (5a)

s.t.
∑
x∈Vε

αxxθ ≤ 1 ∀θ ∈ Θ. (5b)

Program 5a takes in input the set of vertices Vε :=
⋃
a∈A V (Xε(a)), along with the corresponding

best-responses (a(x))x∈Vε and the exact prior µ. It then optimizes over the non-negative variables
αx ≥ 0, one for vertex x ∈ Vε. These variables αx act as weights for the corresponding slices x ∈ Vε,
identifying a non-normalized slice αxx ∈ X .

In the following, we show that the value of an optimal solution v? to Program 5a is at least v? ≥
OPT − O(εnd). Then, we prove that the signaling scheme φ computed by Algorithm 3 achieves
a principal’s expected utility of at least v? minus a quantity related to the difference between the
estimated prior µ̂t and with the actual prior µ. Thus, by considering that v? ≥ OPT−O(εnd), we
will be able to prove Lemma 4.

As a first step, we show that it is possible to decompose each slice x ∈ Xε into a weighted sum of the
vertices x′ ∈ Vε without incurring a loss in the sender’s utility. Thus, a generic slice x of an optimal
signaling scheme can be written as a convex combination of slices x′ with x′ ∈ Vε. This property is
formalized in the following lemma.
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Lemma 6. For every x ∈ Xε, there exists a distribution α ∈ ∆Vε such that:

xθ =
∑
x′∈Vε

αx′x
′
θ ∀θ ∈ Θ.

Furthermore, the following holds:∑
θ∈Θ

µθxθu
s
θ(a(x))≤

∑
x′∈Vε

αx′
∑
θ∈Θ

µθx
′
θu

s
θ(a(x′)).

Proof. Let a := a(x). Since x ∈ Xε(a), by the Carathéodory theorem, there exists an α ∈ ∆V (Xε(a))

such that: ∑
x′∈V (Xε(a))

αx′x
′
θ = xθ ∀θ ∈ Θ.

Furthermore:

∑
θ∈Θ

µθxθu
s
θ(a) =

∑
θ∈Θ

µθ

 ∑
x′∈V (Xε(a))

αx′x
′
θ

us
θ(a).

=
∑

x′∈V (Xε(a))

αx′
∑
θ∈Θ

µθx
′
θu

s
θ(a)

≤
∑

x′∈V (Xε(a))

αx′
∑
θ∈Θ

µθx
′
θu

s
θ(a(x′))

where the inequality holds because the receiver breaks ties in favor of the sender. Finally, we observe
that for each distribution over the set V (Xε(a)) for a given Xε(a), we can always recover a probability
distribution supported in Vε, since V (Xε(a)) ⊆ Vε by construction.

Thanks to the the result above, in the next lemma (Lemma 7) we prove that an optimal solution
of Program 5a has value at least v? ≥ OPT − 10εnd. To show this, we begin by observing that
there exists a set J of slices of the optimal signaling scheme that belong to the search space Xε. By
applying Lemma 6 to each of these slices, we obtain a feasible solution for Program 5a. The value of
this solution is at least the sender’s expected utility given by the slices in J . Finally, thanks to the
properties of the search space Xε, we can bound the expected sender’s utility provided by the slices
that lie outside the search space.

Lemma 7. Under the event E1, the optimal solution of Program 5a has value at least v? ≥ OPT−
10εnd.

Proof. In the following we let φθ ∈ ∆A for each θ ∈ Θ be an optimal signaling scheme, where we
assume, without loss of generality, such a signaling scheme to be direct, meaning that S = A and
a ∈ Aφ(a) for every action a ∈ A. Furthermore, for each action a ∈ supp(φ), we define:

xaθ =
φθ(a)∑
θ∈Θ φθ(a)

∀θ ∈ Θ and αxa =
∑
θ∈Θ

φθ(a).

We observe that each xa ∈ X (a), indeed we have:∑
θ∈Θ

µθxθuθ(a) =
1

αxa

∑
θ∈Θ

µθφθ(a)uθ(a) ≥ 1

αxa

∑
θ∈Θ

µθφθ(a)uθ(a
′) =

∑
θ∈Θ

µθxθuθ(a
′).

for every action a′ ∈ A. We define the subset of actions A′ ⊆ A in a way that if a ∈ A′, then
xa ∈ Xε, i.e., A′ := {a ∈ A | xa ∈ Xε}. Then, we let A′′ := supp(φ) \ A′. Furthermore, for each
a ∈ A′, thanks to Lemma 6, there exists a distribution αa ∈ ∆Vε such that:

xaθ =
∑
x′∈Vε

αax′x
′
θ,
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and the following holds: ∑
θ∈Θ

µθx
a
θuθ(a) =

∑
θ∈Θ

µθ

( ∑
x′∈Vε

αax′x
′
θ

)
us
θ(a).

=
∑
θ∈Θ

∑
x′∈Vε

µθα
a
x′x
′
θu

s
θ(a)

≤
∑
θ∈Θ

∑
x′∈Vε

µθα
a
x′x
′
θu

s
θ(a(x′)). (6)

We also define α? : Vε → R+ as follows:

α?x′ =
∑
a∈A′

αax′αxa ,

for each x′ ∈ Vε. First, we show that α? : Vε → R+ is a feasible solution to LP 5a. Indeed, for each
θ ∈ Θ, it holds: ∑

x′∈Vε

α?x′x
′
θ =

∑
x′∈Vε

∑
a∈A′

αax′αxax
′
θ

=
∑
a∈A′

αxa
∑
x′∈Vε

αax′x
′
θ

=
∑
a∈A′

αxax
a
θ

=
∑
a∈A′

φθ(a) ≤ 1

Where the equalities above holds thanks to Equation 6 and the definition of α?. Then, we show that
the utility achieved by α? : Vε → Rm+ is greater or equal to OPT− 10εd. Formally, we have:∑

x′∈Vε

α?x′
∑
θ∈Θ

µθx
′
θu

s
θ(a(x′)) =

∑
x′∈Vε

∑
a∈A′

αxaα
a
x′

∑
θ∈Θ

µθx
′
θu

s
θ(a(x′))

=
∑
a∈A′

αxa
∑
x′∈Vε

∑
θ∈Θ

µθα
a
x′x
′
θu

s
θ(a(x′))

≥
∑
a∈A′

αxa
∑
θ∈Θ

xaθµθu
s
θ(a)

=
∑
a∈A′

∑
θ∈Θ

µθφθ(a)us
θ(a)

= OPT−
∑
a∈A′′

∑
θ∈Θ

µθφθ(a)us
θ(a)

= OPT−
∑
a∈A′′

∑
θ∈Θ

µθαxax
a
θu

s
θ(a)

≥ OPT− d
∑
a∈A′′

∑
θ∈Θ

µθx
a
θu

s
θ(a)

≥ OPT− 10εnd.

Where the first inequality holds thanks to Inequality (6), the second inequality holds since αxa ≤ d
and the last inequality holds since, for each x 6∈ Xε, it holds

∑
θ∈Θ µθx

a
θ(a) ≤ 10ε, under the event

E1 and xa /∈ Xε for every a ∈ A′′. Consequently, α? is a feasible solution to LP 5a and provides,
under the event E1, a value of at least OPT − 10εnd. As a result, under the event E1 the optimal
solution of LP 5a has value v? ≥ OPT− 10εnd, concluding the proof.

Lemma 4. Given inputsRε := {Rε(a)}a∈A, Xε, and µ̂t ∈ ∆Θ for Algorithm 3, under events E1 and
E2, the signaling scheme φ output by the algorithm isO(εnd+ν)-optimal for ν ≤

∣∣∑
θ∈Θ µ̂t,θ − µθ

∣∣.
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Proof. We observe that under the events E1 and E2, the collectionRε = {Rε(a)}a∈A is composed of
facesRε(a) of Xε(a) (possibly the improper face X ε(a) itself) such that every vertex x ∈ V (Xε(a))
that satisfies a(x) = a belongs toRε(a). The following statements hold under these two events.

As a first step, we prove that given a feasible solution α = (αx)x∈Vε to Program 5a, one can
construct a feasible solution ϕ to Program 2 with the same value. In particular, we consider a solution
ϕ = (x̃a)a∈A defined as:

x̃aθ :=
∑

x∈Vε(a)

αxxθ ∀a ∈ A, θ ∈ Θ.

We observe that for every a ∈ A and θ ∈ Θ we can bound x̃aθ as follows:

0 ≤ x̃aθ =
∑

x∈Vε(a)

αxxθ ≤
∑
x∈Vε

αxxθ ≤ 1,

where the last inequality holds due to the constraints of Program 5a. Consequently, the vectors x̃a
belong to X .

Now we show that x̃a belongs toRε (a) for every a ∈ A. This holds trivially for every action a ∈ A
such that

∑
x′∈Vε(a) αx′ = 0, as x̃a = 0 ∈ Rε (a). Consider instead an action a ∈ A such that∑

x′∈Vε(a) αx′ > 0, and let us define the coefficient:

βax :=
αx∑

x′∈Vε(a) αx′
,

for every vertex x ∈ Vε(a). One can easily verify that βa ∈ ∆Vε(a). Now consider the normalized
slice:

x̃N,a :=
∑

x∈Vε(a)

βaxx.

This slice belongs toR4ε (a) := Rε(a), as it is the weighted sum of the vertices Vε(a) ⊆ V (R4ε (a))
with weights βa ∈ ∆Vε(a). Furthermore, we can rewrite the component x̃a of the solution φ as:

x̃a = x̃N,a
∑

x∈Vε(a)

αx.

Thus, by considering that x̃N,a ∈ R4ε (a) and x̃a ∈ X , we have that x̃a ∈ Rε (a).

Finally, since α is a feasible solution for Program 5a, we can observe that:∑
a∈A

x̃aθ =
∑
a∈A

∑
x∈Vε(a)

αxx =
∑
x∈Vε

αxx ≤ 1.

As a result, ϕ = (x̃a)a∈A is a feasible solution to Program 2.

If the estimator µ̂t coincides with the exact prior µ, then direct calculations show that the solution ϕ
to Program 2 achieves the same value of the solution α to Program 5a.

It follows that, when µ̂t = µ, the optimal solution of Program 2 has at least the same value of the
optimal solution of Program 5a.

In order to conclude the proof, we provide a lower bound on the utility of the signaling scheme
computed by Algorithm 3. Let φLP be the signaling scheme computed by Algorithm 3, while let
Ψ = (xLP,a)a∈A be the optimal solution to Program 2. Furthermore, we let ψ = (xE,a)a∈A be the
optimal solution of Program 2 and φE the signaling scheme computed by Algorithm 3 when the prior
estimator coincides exactly with the prior itself, i.e., µ̂ := µ̂t = µ.

Since xLP,a ∈ Rε (a) for every a ∈ A, we have that a ∈ AφLP
(a).9 Breaking ties in favor of the

sender, the action aφ
LP

(sa) is such that:∑
θ∈Θ

µθx
LP,a
θ us

θ(a
φLP

(sa)) ≥
∑
θ∈Θ

µθx
LP,a
θ us

θ(a).

9Observe that whenR4
ε (a) = ∅ andRε(a) = {0}, we have xLP,a = 0. Thus, xLP,a does not contribute to

the sender’s utility, sa /∈ supp(φLP) and Aφ
LP

(sa) = A by definition.
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Then:

u(φLP) =
∑
s∈S

∑
θ∈Θ

µθφ
LP
θ (s)us

θ(a
φLP

(s))

≥
∑

s∈S\{s?}

∑
θ∈Θ

µθφ
LP
θ (s)us

θ(a
φLP

(s))

=
∑
a∈A

∑
θ∈Θ

µθx
LP,a
θ us

θ(a
φLP

(sa))

≥
∑
a∈A

∑
θ∈Θ

µθx
LP,a
θ us

θ(a)

≥
∑
a∈A

∑
θ∈Θ

µ̂θx
LP,a
θ us

θ(a)−

∣∣∣∣∣∑
θ∈Θ

µ̂θ − µθ

∣∣∣∣∣
≥
∑
a∈A

∑
θ∈Θ

µ̂θx
E,a
θ us

θ(a)−

∣∣∣∣∣∑
θ∈Θ

µ̂θ − µθ

∣∣∣∣∣
≥
∑
a∈A

∑
θ∈Θ

µθx
E,a
θ us

θ(a)− 2

∣∣∣∣∣∑
θ∈Θ

µ̂θ − µθ

∣∣∣∣∣ .
We recall that the value of ψ = (xE,a)a∈A is at least the optimal value of Program 5a when µ̂ = µ,
and such a value is at least v? ≥ OPT− 10εnd according to Lemma 7, Thus, we have that:

u(φLP) ≥
∑
a∈A

∑
θ∈Θ

µθx
E,a
θ us

θ(a)− 2

∣∣∣∣∣∑
θ∈Θ

µ̂θ − µθ

∣∣∣∣∣ ≥ OPT− 10εnd− 2

∣∣∣∣∣∑
θ∈Θ

µ̂θ − µθ

∣∣∣∣∣ ,
concluding the proof.

E Omitted proofs and sub-procedures of Phase 2

E.1 Action-Oracle

The goal of the Action-Oracle procedure (Algorithm 5) is to assign the corresponding best-response
to a slice x ∈ Xε received as input. In order to do so, it repeatedly commits to a signaling scheme φ
such that x is the slice of φ with respect to the signal s1. When the signal s1 is sampled, the procedure
returns the best-response a(x).

Algorithm 5 Action-Oracle
Require: x ∈ Xε

1: φθ(s1)← xθ and φθ(s2)← 1− xθ ∀θ ∈ Θ
2: do
3: Commit to φt = φ, observe θt, and send st
4: Observe feedback at
5: a← at

6: while st 6= s1

7: return a

In the following, for the sake of analysis, we introduce the definition of a clean event under which the
Action-Oracle procedure always returns the action a(x) ∈ A, as formally stated below.

Definition 4 (Clean event of Action-Oracle). We denote Ea as the event in which Algorithm 5
correctly returns the follower’s best response a(x) whenever executed.

In the proof of Lemma 3 we show that, thanks to Lemma 2 and the definition of Xε, it is possible to
bound the number of rounds required to Algorithm 5 to ensure that it always returns the best response
a(x) ∈ A with high probability.
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E.2 Find-Polytopes

Algorithm 6 Find-Polytopes
Require: Search space Xε ⊆ X , parameter ζ ∈ (0, 1)

1: (C, {Xε(a)}a∈C)← Find-Fully-Dimensional-Regions(Xε, ζ)
2: for all aj ∈ A \ C do
3: Rε(aj)← Find-Face(C, {Xε(a)}a∈C , aj)
4: Rε(ak)← Xε(ak) ∀ak ∈ C
5: return {Rε(a)}a∈A.

Algorithm 6 can be divided in two parts. First, by means of Algorithm 7, it computes the polytopes
Rε(a) = Xε(a) with volume strictly larger than zero. This procedure is based on the algorithm
developed by Bacchiocchi et al. [2024a] for Stackelberg games. The main differences are the usage
of Action-Oracle to query a generic normalized slice, and some technical details to account for the
shape of the search space Xε.
In the second part (loop at Line 2 Algorithm 6), it finds, for every polytope Xε(a) with null volume, a
face Rε(a) such that Vε(a) ⊆ Rε(a). Let us remark that Rε(a) could be the improper face Xε(a)
itself, and it is empty if Vε(a) = ∅.
Lemma 3. Given inputs Xε ⊆ X and ζ ∈ (0, 1) for Algorithm 6, let L := B +Bε +Bµ̂, where B,
Bε, and Bµ̂ denote the bit-complexity of numbers µθuθ(ai), ε, and µ̂, respectively. Then, under event
E1 and with at probability at least 1− ζ , Algorithm 6 outputs a collectionRε := {Rε(a)}a∈A, where
Rε(a) is a (possibly improper) face of Xε(a) such that Vε(a) ⊆ Xε(a), in a number of rounds T2:

T2 ≤ Õ
(
n2

ε
log2

(
1

ζ

)(
d7L+

(
d+ n

d

)))
.

Proof. In the following we let L = B +Bε +Bµ̂.

As a first step, Algorithm 6 invokes the procedure Find-Fully-Dimensional-Regions. Thus,
according to Lemma 8, under the event Ea, with probability at least 1− ζ/2, Algorithm 6 computes
every polytope Xε(a) with volume larger than zero by performing at most:

C1 = Õ
(
n2

(
d7L log(1/ζ) +

(
d+ n

d

)))
.

calls to the Action-Oracle procedure. Together with these polytopes, it computes the set C ⊆ A
containing the actions a such that vol(Xε(a)) > 0.

Subsequently, Algorithm 6 employs the procedure Find-Face at most n times and, according to
Lemma 12, it computes the polytopesRε(aj) for every aj /∈ C. Overall, this computation requires:

C2 = n2

(
d+ n

d

)
calls to the Action-Oracle procedure. Thus, under the event Ea and with probability at least 1− ζ/2,
Algorithm 6 correctly computes the polytopes Rε(aj) for every action aj ∈ A. Furthermore, the
number of calls C ≥ 0 to the Action-Oracle procedure can be upper bounded as:

C := C1 + C2 ≤ Õ
(
n2

(
d7L log(1/ζ) +

(
d+ n

d

)))
.

Moreover, by setting ρ = ζ/2C, and thanks to Lemma 2, with a probability of at least 1− ρ, every
execution of Action-Oracle requires at most N ≥ 0 rounds, where N can be bounded as follows:

N ≤ O
(

log(1/ρ)

ε

)
= O

(
1

ε
log

(
2C

ζ

))
.

Consequently, since the number of calls to the Action-Oracle procedure is equal toC, by employing
a union bound, the probability that each one of these calls requires N rounds to terminate is greater
than or equal to:

1− Cρ = 1− ζ

2C
C = 1− ζ

2
.

23



To conclude the proof, we employ an union bound over the probability that every execution of
Action-Oracle terminates in at most N rounds, and the probability that Algorithm 6 performs C
calls to the Action-Oracle procedure. Since the probability that each one of these two events hold
is at least 1− ζ/2, with probability at least 1− ζ , Algorithm 6 correctly terminates by using a number
of samples of the order:

Õ
(
C

ε
log

(
2C

ζ

))
≤ Õ

(
n2

ε
log2

(
1

ζ

)(
d7L+

(
d+ n

d

)))
,

concluding the proof.

E.3 Find-Fully-Dimensional-Regions

Algorithm 7 Find-Fully-Dimensional-Regions
Require: Search space Xε ⊆ X , parameter δ ∈ (0, 1)

1: δ ← ζ/2n2(2(d+n)+n)

2: C ← ∅
3: while

⋃
aj∈C U(aj) 6= Xε do

4: xint ← Sample a point from int
(
Xε \

⋃
ak∈C U(ak)

)
5: aj ← Action-Oracle(xint)
6: U(aj)← Xε
7: Bx ← Bit-complexity of xint

8: λ← d2−d(Bx+4(B+Bε+Bµ̂))−1

9: for all v ∈ V (U(aj)) do
10: x← λxint + (1− λ)v
11: a← Action-Oracle(x)
12: if a 6= aj then
13: Hjk ← Find-Hyperplane(aj ,U(aj), x

int, v, δ)
14: U(aj)← U(aj) ∩Hjk
15: else
16: restart the for-loop at Line 9
17: C ← C ∪ {aj}
18: Xε(aj)← U(aj)

19: return C, {Xε(aj)}aj∈C

At a high level, Algorithm 7 works by keeping track of a set C ⊆ A of closed actions, meaning
that the corresponding polytope Xε(a) has been completely identified. First, at Line 4, Algorithm 7
samples at random a normalized slice xint from the interior of one of the polytopes Xε(aj) that have
not yet been closed and queries it, observing the best-response aj ∈ A. Then, it initializes the
entire Xε as the upper bound U(aj) of the region Xε(aj). As a further step, to verify whether the
upper bound U(aj) coincides with Xε(aj), Algorithm 7 queries at Line 11 one of the vertices of the
upper bound U(aj). Since the same vertex may belong to the intersection of multiple regions, the
Action-Oracle procedure is called upon an opportune convex combination of xint and the vertex v
itself (Line 10). If the vertex does not belong to Xε(aj), then a new separating hyperplane can be
computed (Line 13) and the upper bound U(aj) is updated accordingly. In this way, the upper bound
U(aj) is refined by finding new separating hyperplanes until it coincides with the polytope Xε(aj).
Finally, such a procedure is iterated for all the receiver’s actions aj ∈ A such that vol(Xε(aj)) > 0,
ensuring that all actions corresponding to polytopes with volume larger than zero are closed.

We observe that the estimator µ̂t is updated during the execution of Algorithm 7 according to the
observed states. However, let us remark that the search space Xε =

{
x ∈ X |

∑
θ∈Θ̃ µ̂θxθ ≥ 2ε

}
does not change during the execution of this procedure.
Lemma 8. Given in input Xε ⊆ X and ζ ∈ (0, 1), then under the event Ea with probability at least
1− ζ/2 Algorithm 7 computes the collection of polytopes {Xε(aj)}aj∈C with volume larger than zero,
and the corresponding set of actions C. Furthermore, it employs at most:

Õ
(
n2

(
d7L log(1/ζ) +

(
d+ n

d

)))
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calls to the Action-Oracle procedure.

Proof. Thanks to Lemma 9 and Lemma 10, with an approach similar to the one proposed in Theo-
rem 4.3 by Bacchiocchi et al. [2024a], we can prove that, under the event Ea, with probability at least
1− δn2(2(d+ n)2 + n), Algorithm 7 computes every polytope Xε(a) with volume larger than zero
by performing at most:

O
(
n2

(
d7L log(1/δ) +

(
d+ n

d

)))
calls to the Action-Oracle procedure. Together with these polytopes, it computes the set C ⊆ A
containing the actions a such that vol(Xε(a)) > 0.

Furthermore, we observe that ζ = 2δn2(2(d+ n) + n), as defined at Line 1 in Algorithm 7. As a
result, under the event Ea, with probability at least 1− ζ/2, the number of calls C1 ≥ 0 performed by
Algorithm 7 to the Action-Oracle procedure can be bounded as follows:

C1 ≤ Õ
(
n2

(
d7L log(1/ζ) +

(
d+ n

d

)))
,

concluding the proof.

E.4 Find-Hyperplane

Algorithm 8 Find-Hyperplane

Require: aj ,U(aj), x
int, v, δ

1: x← Sample-Int(U(aj), δ)
2: x1 ← x
3: if Action-Oracle(x) = aj then
4: x2 ← v
5: else
6: x2 ← xint

7: x◦ ← Binary-Search(aj , x
1, x2)

8: α← 2−4d(Bx+B+Bµ̂+Bε)/d
9: Sj ← ∅; Sk ← ∅

10: for i = 1 . . . d do
11: x← Sample-Int(Hi ∩ X , δ)
12: x+i ← x◦ + α(x− x◦)
13: x−i ← x◦ − α(x− x◦)
14: if Action-Oracle(x+i) = aj then
15: Sj ← Sj ∪ {x+i} ∧ Sk ← Sk ∪ {x−i}
16: else
17: Sk ← Sk ∪ {x+i} ∧ Sj ← Sj ∪ {x−i}
18: Build Hjk by Binary-Search(aj , x

1, x2) for d− 1 pairs of linearly-independent points x1 ∈
Sj , x2 ∈ Sk

The goal of the Find-Hyperplane procedure is to compute a new separating hyperplane Hjk

between a given region Xε(aj) and some other polytope Xε(ak), with aj , ak ∈ A. To do so, it
receives as input an upper bound U(aj) of some polytope Xε(aj), an interior point xint ∈ int(U(aj)),
a vertex v ∈ V(U(aj)) that does not belong to Xε(aj), and a parameter δ > 0 as required by the
Sample-Int procedure. As a first step, Algorithm 8 samples at random a slice x from the interior of
the upper bound U(aj). Subsequently, it performs a binary search on the segment between x and
either v or xint, depending on the best response a(x) in x. This binary search returns a point x◦ on
some new separating hyperplane Hjk (Line 7). As a further step, the algorithm computes two sets
of normalized slices, Sj ⊆ Xε(aj) and Sk ⊆ Xε(ak). Finally, it performs d − 1 binary searches
between different couples of points, one in Sj and the other in Sk, in order to completely identify the
separating hyperplane.
Lemma 9. With probability at least 1−(d+n)2δ, under the event Ea Algorithm 8 returns a separating
hyperplane Hjk by using O(d7(B +Bε +Bµ̂) + d4 log(1/δ)) calls to Algorithm 5.
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Proof. We observe that, with the same analysis provided in Lemma 4.7 by Bacchiocchi et al. [2024a],
we can prove that, under the event Ea, the binary-search procedure described in Algorithm 9 correctly
computes a point on a separating hyperplane by calling the Action-Oracle procedure at most
O(d(Bx +B)) times.

With the same reasoning applied in Lemma 4.4 and 4.5 by Bacchiocchi et al. [2024a], we can prove
that with probability at least 1−(d+n)2δ, under the event Ea, the points x+i are linearly independent
and do not belong to Hjk. To conclude the proof, we have to show that every x+i belongs to either
Xε(aj) or Xε(ak). This is because, if the previous condition holds, under the event Ea, Algorithm 8
correctly computes a new separating hyperplane with probability at least 1− (d+ n)2δ.

To do that, we show that the constant α defined at Line 8 in Algorithm 8 is such that all the points
x+i and x−i either belong to Xε(aj) or Xε(ak), given that x◦ belongs to the hyperplane between
these polytopes. With an argument similar to the one proposed in Bacchiocchi et al. [2024a], the
distance between xi and any separating hyperplane can be lower bounded by 2−d(Bx+4B), where Bx
is the bit-complexity of x◦.

Similarly, the distance between x◦ and the hyperplane Ĥ = {x ∈ Rd |
∑
θ∈Θ̃ µ̂θxθ ≥ 2ε} can be

lower bounded as follows:

d(x◦, Ĥ) =

∣∣∑
θ∈Θ̃ xθµ̂θ + 2ε

∣∣√∑
θ∈Θ̃ µ̂

2
θ

≥ 1

d23d(Bx+Bµ̂+Bε)
, (7)

where Bµ̂ is the bit-complexity of µ̂. The inequality follows by observing that the denominator of the
fraction above is at most d, while to lower bound the numerator we define the following quantities:∑

θ∈Θ̃

xθµ̂θ =
α

β
and ε =

γ

ν
,

where α and β are integers numbers, while γ and ν are natural numbers. Thus, the numerator∣∣∑
θ∈Θ̃ xθµ̂θ + 2ε

∣∣ of the fraction defined in Equation 7 can be lower bounded as follows:∣∣∣∣∣∣
∑
θ∈Θ̃

xθµ̂θ + 2ε

∣∣∣∣∣∣ =

∣∣∣∣αν + 2βγ

βν

∣∣∣∣ ≥ ∣∣∣∣ 1

βν

∣∣∣∣ ≥ 2−3d(Bx+Bµ̂+Bε),

where the last inequality follows from the fact that the bit-complexity of ν is at most Bε, while
the bit-complexity of β cannot exceed 3d(Bx +Bµ̂) as stated by Lemma D.1 of Bacchiocchi et al.
[2024a].

Overall, the distance between x◦ and the boundary of the polytope Xε(aj) ∩ Xε(ak) is strictly larger
than α := 2−4d(Bx+B+Bµ̂+Bε)−log2(d). Thus, every signaling scheme x+i and x−i belongs to Xε
and either X (aj) or X (ak).

Finally, we observe that the bit-complexity of x is bounded byBx = O(d3(B+Bε+Bµ̂)+log(1/δ)),
as stated by Lemma 10. Thus, the first binary-search requiresO(d(Bx +B)) = O(d4L+ d log(1/δ))
calls to Action-Oracle, where L = B +Bε +Bµ̂.

Furthermore, the bit-complexity of x◦ is bounded by O(d4L + d log(1/δ)). As a result, the bit-
complexity of the slices x+i and x−i is bounded byO(d5L+d log(1/δ)), given that the bit-complexity
of α is O(dL). It follows that each binary search between two points in Sj and Sk requires
O(d6L+ d2 log(1/δ)) calls to Action-Oracle.

Overall, Algorithm 8 invokes the Action-Oracle procedure at most O(d7L+ d4 log(1/δ)) times,
accounting for the d− 1 binary searches, concluding the proof.

E.5 Binary-Search

The Binary-Search procedure performs a binary search on the segment connecting two points,
x1, x2 ∈ Xε such that x1 ∈ Xε(aj) and x2 /∈ Xε(aj) for some aj ∈ A, in order to find a point x◦
on some separating hyperplane Hjk. At each iteration, the binary search queries the middle point
of the segment. Depending on the receiver’s best-response in such a point, it keeps one of the two
halves of the segment for the subsequent iteration. The binary search ends when the segment is
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sufficiently small, so that it contains a single point with a bit-complexity appropriate for a point
that lies on both the hyperplane Hjk and the segment connecting x1 and x2. Such a point can
be found traversing the Stern-Brocot-Tree. For an efficient implementation, see Forišek [2007].
Overall, Algorithm 9 performs O(d(Bx +B)) calls to the Action-Oracle procedure, and returns a
normalized slice x◦ with bit-complexity bounded by O(d(Bx +B)), where Bx is the bit-complexity
of the points x1 and x2.

Algorithm 9 Binary-Search
Require: aj , x1, x2 of bit-complexity bounded by some Bx > 0

1: λ1 ← 0; λ2 ← 1
2: while |λ2 − λ1| ≥ 2−6d(5Bx+8B) do
3: λ← (λ1 + λ2)/2; x◦ ← x1 + λ(x2 − x1)
4: if Action-Oracle(x◦) = aj then
5: λ1 ← λ
6: else
7: λ2 ← λ
8: λ← Stern-Brocot-Tree(λ1, λ2, 3d(5Bx + 8B))
9: x◦ ← λx1 + (1− λ)x2

E.6 Sample-Int

Algorithm 10 Sample-Int
Require: P ⊆ Xε : vold−1(P) > 0, and δ

1: V ← d linearly-independent vertexes of P
2: x� ← 1

d

∑
v∈V v

3: ρ←
(
d329d3L+4dL

)−1

; M ←
⌈√

d/δ
⌉

4: y ∼ Uniform({−1,−M−1
M , . . . , 0, . . . , M−1

M , 1}d−1)
5: for all i ∈ 1, . . . , d− 1 do
6: xi ← x�i + ρyi
7: xd ← 1−

∑d−1
i=1 xi

The Sample-Int procedure (Algorithm 10) samples at random a normalized slice from the interior of
a given polytope P . We observe that each polytope Algorithm 7 is required to sample from is defined
as the intersection of Xε with some separating half-spaces as the ones defined in Section 3. This
procedure provides theoretical guarantees both on the bit-complexity of the point x being sampled
and on the probability that such a point belongs to a given hyperplane. Furthermore, it can be easily
modified to sample a point from a facet of the simplex X = ∆d (intuitively, this is equivalent to
sample a point from ∆d−1). As a first step, Algorithm 10 computes a normalized slice x� in the
interior of P (Line 2). Subsequently, it samples randomly a vector y from a suitable grid belonging to
the (d− 1)-dimensional hypercube with edges of length 2. As a further step, it sums each component
x�i of the normalized slice x� with the corresponding component yi of y, scaled by an opportune
factor ρ, where the constant ρ is defined to ensure that x belongs to the interior of P .

The theoretical guarantees provided by Algorithm 10 are formalized in the following lemma:
Lemma 10. Given a polytope P ⊆ Xε : vold−1(P) > 0 defined by separating or boundary
hyperplanes, Algorithm 10 computes x ∈ int(P) such that, for every linear space H ⊂ Rd : P 6⊆ H
of dimension at most d− 1, the probability that x ∈ H is at most δ. Furthermore, the bit-complexity
of x is O(d3(B +Bε +Bµ̂) + log(1/δ)).

Proof. In the following, we prove that x belongs to the interior of the polytope P . To do that, we
observe that the point x� belongs to the interior of P , while, with the same analysis proposed in
Lemma 4.8 by Bacchiocchi et al. [2024a], the distance between x� and x can be upper bounded by
ρn. To ensure that x belongs to int(P), we have to show that d(x�, x) is smaller than the distance
between x� and any hyperplane defining the boundary of P .
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Let us denote with vh the h-vertex of the set V , so that V = {v1, v2, . . . , vd}. Furthermore, we
define:

vhθ :=
γhθ
νh

for each h ∈ [d] and θ ∈ Θ. Since x� belongs to int(P), then the distance between x� and any
separating hyperplane Hjk can be lower bounded as follows:

d(x�, Hjk) =

∣∣∣∣∣∣
∑
θ∈Θ x

�
θµθ(uθ(aj)− uθ(ak))√∑

θ∈Θ µ
2
θ(uθ(aj)− uθ(ak))2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
θ∈Θ

∑d
h=1 v

h
θµθ(uθ(aj)− uθ(ak))

d
√∑

θ∈Θ µ
2
θ(uθ(aj)− uθ(ak))2

∣∣∣∣∣∣
≥ 1

d2
2−4dB−9d3(B+Bε+Bµ̂).

To prove the last inequality, we observe that the denominator of the fraction above can be upper
bounded by d2. To lower bound the nominator, we define:

µθ(uθ(aj)− uθ(ak)) :=
αθ
βθ

for each θ ∈ Θ. As a result, we have:∣∣∣∣∣∑
θ∈Θ

d∑
h=1

vhθµθ(uθ(aj)− uθ(ak))

∣∣∣∣∣ =

∣∣∣∣∣∑
θ∈Θ

d∑
h=1

αθγ
h
θ

βθνh

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
θ∈Θ

∑d
h=1 αθγ

h
θ

(∏
θ′ 6=θ βθ′

∏
h′ 6=h νh′

)
∏
θ∈Θ βθ

∏d
h=1 νh

∣∣∣∣∣∣
≥

(∏
θ∈Θ

βθ

d∏
h=1

νh

)−1

≥ 2−4dB−9d3(B+Bε+Bµ̂).

The first inequality holds because the numerator of the fraction above can be lower bounded by one.
The denominator can be instead upper bounded observing that the bit-complexity of each βθ is at
most 4B while the bit-complexity of each νh is at most 9d2(B +Bε +Bµ̂), as stated by Lemma 11.

In a similar way, we can lower bound the distance between x� and Ĥ :={x ∈ Rd |
∑
θ∈Θ̃ µ̂θxθ≥2ε}.

d(x�, Ĥ) =

∣∣∣∣∣∣
∑
θ∈Θ̃ µ̂θx

�
θ + 2ε√∑

θ∈Θ̃ µ̂
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
θ∈Θ̃

∑d
h=1 µ̂θv

h
θ + 2ε

d
√∑

θ∈Θ̃ µ̂
2

∣∣∣∣∣∣
≥ 1

d2
2−Bµ̂−Bε−9d3(B+Bε+Bµ̂).

To prove the last inequality, we observe that the denominator of the fraction above can be upper
bounded by d2, while to lower bound the numerator, we define:

µ̂θ :=
Nθ
p

and ε =
α

β

for each θ ∈ Θ̃. As a result, we have:∣∣∣∣∣∣
∑
θ∈Θ̃

d∑
h=1

µ̂θv
h
θ + 2ε

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
θ∈Θ̃

d∑
h=1

Nθγ
h
θ

pνh
+ 2ε

∣∣∣∣∣∣
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=

∣∣∣∣∣
∑
θ∈Θ̃

∑d
h=1 βNθγ

h
θ

∏
h′ 6=h νh′ + 2αp

∏d
h=1 νh

p
∏d
h=1 νhβ

∣∣∣∣∣
≥ 2−Bµ̂−Bε−9d3(B+Bε+Bµ̂)

Thus, the distance between x� and any hyperplane H defining the boundary of P can be lower
bounded as follows:

d(x�, H) ≥ 1

d2
2−9d3(B+Bε+Bµ̂)−4dB−Bµ̂−Bε ≥ 1

d2
2−10d3(B+Bε+Bµ̂).

We observe that, given the definition of ρ at Line 3, the distance d(x�, x) is strictly smaller than
d(x�, H), showing that x ∈ int(P).

Furthermore, we can prove that the bit-complexity of x is bounded byO(d3(B+Bε+Bµ̂)+log(1/δ)).
To do so, we observe that the denominator of x� is equal to d

∏d
h=1 νh, while the denominator of yi

is equal to M = d
√
d/δe. As a result, the denominator of every xi = x◦i + ρyi, with i ∈ [d− 1], can

be written as follows:

D = d

d∏
h=1

νhDρM,

where Dρ is the denominator of the rational number ρ. Similarly, the last component xd can be
written with the same denominator. As a result, the bit complexity of x ∈ [0, 1]d can be upper
bounded as follows:

Bx ≤ 2 dlog(D)e

= O(log(d

d∏
h=1

νhDρM))

= O

(
log

(
d∏

h=1

29d2(B+Bε+Bµ̂)

)
+ log(d210d3(B+Bε+Bµ̂)) + log(

√
d/δ)

)

= O
(
d3(B +Bε +Bµ̂) + log

(
1

δ

))
.

Finally, with the same analysis performed in Lemma 4.8 by Bacchiocchi et al. [2024a], we can show
that the probability that x belongs to a given hyperplane H is at most δ.

Lemma 11. Each vertex v of a polytope P ⊆ Xε : vold−1(P) > 0, defined by separating or
boundary hyperplanes, has bit-complexity at most 9d2(B + Bε + Bµ̂). Furthermore, with a bit-
complexity of 9d2(B + Bε + Bµ̂), all the components of the vector v identifying a vertex can be
written as fractions with the same denominator.

Proof. We follow a line of reasoning similar to the proof of Lemma D.2 in Bacchiocchi et al. [2024a].
Let v be a vertex of the polytope P . Then such a vertex lies on the hyperplane H ′ ensuring that the
sum of its components is equal to one. Furthermore, it also belongs to a subset of d − 1 linearly
independent hyperplanes. These can be separating hyperplanes:

Hij =

{
x ∈ Rd |

∑
θ∈Θ

µθxθ(uθ(ai)− uθ(aj)) = 0

}

with ai, aj ∈ A, boundary hyperplanes of the form Hi = {x ∈ Rd | xi > 0}, or the hyperplane
Ĥ :=

{
x ∈ Rd |

∑
θ∈Θ̃ µ̂θxθ ≥ 2ε

}
. Consequently, there exists a matrix A ∈ Qd×d and a vector

b ∈ Qd such that Av = b.

Suppose that v is not defined by the hyperplane Ĥ :=
{
x ∈ Rd |

∑
θ∈Θ µ̂θxθ ≥ 2ε

}
. Then, each

entry of the matrix A is either equal to one or the quantity µθ(uθ(a)− uθ(a′) for some θ ∈ Θ and
a, a′ ∈ A. Thus, its bit-complexity is bounded by B. Similarly, each entry of the vector b is either
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equal to one or zero. With a reasoning similar to the one applied in Bacchiocchi et al. [2024a], the
bit-complexity of v is at most 9d2(Bµ +Bu).

Suppose instead that v is defined also by the hyperplane Ĥ , corresponding to the last row of the
matrix A and the last component of the vector b. This hyperplane can be rewritten as:

Ĥ =

x ∈ Rd |
∑
θ∈Θ̃

µ̂θ
2ε
xθ ≥ 1

 .

Thus, each element of the last row of A is either zero or the quantity µ̂θ/2ε for some θ ∈ Θ̃. We
observe that µ̂θ/2ε is a rational number with numerator bounded by 2Bµ̂+Bε and denominator bounded
by 2Bµ̂+Bε+1. Thus, we multiply the last row of A and the last component of b by a constant bounded
by 2d(Bµ̂+Bε+1). The other rows of A and the corresponding components of b are multiplied instead
by some constants bounded by 24dB . This way, we obtain an equivalent system A′v = b′ with integer
coefficients.

We define A′(j) as the matrix obtained by substituting the j-th column of A′ with b′. Then, by
Cramer’s rule, the value of the j-th component of vj can be computed as follows:

vj =
det(A′(j))

det(A′)
∀j ∈ [d].

We observe that both determinants are integer numbers as the entries of both A′ and b′ are all integers,
thus by Hadamard’s inequality we have:

|det(A′)| ≤
∏
i∈[d]

√∑
j∈[d]

a′ji
2

≤

 ∏
i∈[d−1]

√∑
j∈[d]

(24dB)2

√∑
j∈[d]

(2d(Bµ̂+Bε+1))2

=

 ∏
i∈[d−1]

√
d(24dB)2

√d22d(Bµ̂+Bε+1)

=

 ∏
i∈[d−1]

d
1
2 (24dB)

 d
1
2 2d(Bµ̂+Bε+1)

= d
d
2 (24d(d−1)B)2d(Bµ̂+Bε+1)

≤ d d2 (24d2B)2d(Bµ̂+Bε+1)

With a reasoning similar to Bacchiocchi et al. [2024a], we can show that that the bit-complexity Dv

of the vertex v is bounded by:

Dv ≤ 9Bd2 + 2(d(Bµ̂ +Bε + 1)) ≤ 9d2(B +Bε +Bµ̂)

Furthermore, this result holds when the denominator of every component vj of the vertex v is written
with the same denominator det(A′), concluding the proof.
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E.7 Find-Face

Algorithm 11 Find-Face
Require: The set of polytopes {Xε(ai)}ai∈C , with volume larger than zero, and action aj /∈ C

1: Compute the minimal H-representationM(Xε(ai)) for every polytope Xε(ai), ai ∈ C
2: H(ai)← ∅ ∀ai ∈ C
3: First← True
4: for all x ∈

⋃
ai∈C V (Xε(ai)) do

5: a← Action-Oracle(x)
6: if a = aj then
7: if First = False then
8: H(ai)← {H ∈M(Xε(ai)) | x ∈ H,H ∈ H(ai)} ∀ai ∈ C
9: else

10: H(ai)← {H ∈M(Xε(ai)) | x ∈ H} ∀ai ∈ C
11: First← False
12: if First = True then
13: Fε(aj)← ∅
14: Fε(aj)← Xε(ai) ∩

⋂
H∈H(ai)

H for any ai such that Xε(ai) ∩
⋂
H∈H(ai)

H 6= ∅
15: Return Fε(aj)

Algorithm 11 takes in input the collection of polytopes {Xε(ai)}ai∈C and another action aj /∈ C
such that vol(Xε(aj)) = 0, and outputs the H-representation of a (possibly improper) face of Xε(aj)
that contains all those vertices x ∈ V (Xε(aj)) where a(x) = aj . As we will show by means of a
pair of technical lemmas, the polytope Xε(aj) is a face of some other polytope Xε(ak), with ak ∈ C.
Consequently, Algorithm 11 looks for a face of some polytope Xε(ak) containing the set of vertices
Vε(aj).

As a first step, Algorithm 11 computes, for every action ai ∈ C, the set of hyperplanesM(Xε(ai))
corresponding to the minimal H-representation of Xε(ai). This set includes every separating hyper-
plane Hik found by Algorithm 7, together with the non-redundant boundary hyperplanes that delimit
Xε. Subsequently, Algorithm 11 iterates over the vertices of the regions with volume larger than zero,
which we prove to include all the vertices of the region Xε(aj). While doing so, it builds a set of
hyperplanesH(ai) ⊆M(Xε(ai)) for every action ai ∈ C. Such a (possibly empty) set includes all
and only the hyperplanes inM(Xε(ai)) that contain all the vertices where the action aj has been
observed, i.e, a(x) = aj .

Finally, at Line 14 Algorithm 11 intersects every region Xε(ai) with the corresponding hyperplanes
inH(ai), obtaining a (possibly empty) face for every polytope Xε(ai), ai ∈ C. At least one of these
faces is the face the algorithm is looking for, and corresponds to the output of Algorithm 11.

The main result concerning Algorithm 11 is the following:
Lemma 12. Given the collection of polytopes {Xε(ai)}ai∈C with volume larger than zero and an
another action aj , then, under the event Ea, Algorithm 11 returns a (possibly improper) face Fε(aj)
of Xε(aj) such that Vε(aj) ⊆ Fε(aj). Furthermore, the Algorithm requires O(n

(
d+n
d

)
) calls to

Algorithm 5.

In order to prove it, we first need to introduce two technical lemmas to characterize the relationship
between regions with null volume and those with volume larger than zero.
Lemma 13. Let ai, aj ∈ A such that vol(Xε(ai)) > 0 and vol(Xε(aj)) = 0. Then Xε(ai) ∩ Xε(aj)
is a (possibly improper) face of Xε(ai) and Xε(aj).

Proof. In the following we assume that Xε(ai)∩Xε(aj) is non-empty, as the empty set is an improper
face of every polytope.

We prove that Xε(ai) ∩ Xε(aj) = Xε(ai) ∩Hij = Xε(aj) ∩Hij . In order to do that, we first show
that Xε(ai) ∩ Hij ⊆ Xε(ai) ∩ Xε(aj). Consider a normalized slice x ∈ Xε(ai) ∩ Hij . Then we
have thatx ∈ Xε(aj). As this holds for every x ∈ Xε(ai) ∩ Hij , it follows that Xε(ai) ∩ Hij ⊆
Xε(ai) ∩ Xε(aj).
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Similarly, we show that Xε(ai) ∩ Xε(aj) ⊆ Xε(ai) ∩Hij . Take any normalized slice x ∈ Xε(ai) ∩
Xε(aj). Then x ∈ Hij as it belongs to both Xε(ai) and Xε(aj), thus x ∈ Xε(ai) ∩Hij . This implies
that Xε(ai) ∩ Xε(aj) ⊆ Xε(ai) ∩Hij .

Consequently, we have that Xε(ai)∩Xε(aj) = Xε(ai)∩Hij . With a similar argument, we can prove
that Xε(ai)∩Xε(aj) = Xε(aj)∩Hij . As a result, we have that Xε(ai)∩Xε(aj) = Xε(ai)∩Hij =
Xε(aj) ∩Hij .

In order to conclude the proof, we show that Xε(ai) ∩ Xε(aj) = Xε(ai) ∩ Hij = Xε(aj) ∩ Hij

is a face of both Xε(ai) and Xε(aj). We observe that Xε(ai) ⊆ Hij , thus the non-empty region
Xε(ai) ∩Hij is by definition a face of Xε(ai). Similarly, Xε(aj) ⊆ Hji, thus the non-empty region
Xε(aj) ∩Hij is a face of Xε(aj) (possibly the improper face Xε(aj) itself).

Lemma 14. Let Xε(aj) be a polytope such that vol(Xε(aj)) = 0. Then Xε(aj) is a face of some
polytope Xε(ai) with vol(Xε(ai)) > 0.

Proof. First, we observe that if Xε(aj) is empty, then it is the improper face of any region Xε(ai)
with vol(Xε(ai)) > 0. Thus, in the following, we consider Xε(aj) to be non-empty.

As a first step, we observe that any normalized slice x ∈ Xε(aj) belongs also to some region
Xε(ak), where ak ∈ A depends on x, such that vol(Xε(ak)) > 0. Suppose, by contradiction, that
x ∈ int(Xε(ai)). Then ai is a best-response in Xε(aj) ∩ Hij , i.e., Xε(aj) ∩ Hij ⊆ Xε(ai). One
can easily observe that such a region has positive volume, thus contradicting the hypothesis that
vol(Xε(aj)) = 0.

Now we prove that there exists some Xε(ai) with vol(Xε(ai)) > 0 such that Xε(aj) ⊆ Xε(ai). If
Xε(aj) is a single normalized slice x, then this trivially holds.

Suppose instead that Xε(aj) has dimension at least one. Consider a fixed normalized slice x̄ ∈
int(Xε(aj)), where the interior is taken relative to the subspace that containsXε(aj) and has minimum
dimension. There exists a region Xε(ai) with vol(Xε(ai)) > 0 such that x̄ ∈ Xε(ai).

We prove that Xε(aj) ⊆ X (ai). Suppose, by contradiction, that there exists a normalized slice
x ∈ Xε(aj) such that x /∈ Xε(ai). It follows that the line segment co(x̄, x) intersect the separating
hyperplane Hij in some normalized slice x̃ ∈ co(x̄, x) ∩ Hij . Furthermore, since x̃ 6= x and
x̄ ∈ int(Xε(aj)), then x̃ ∈ int(Xε(aj)). However, if the internal point x̃ belongs to the hyperplaneHij

and Xε(aj) ⊆ Hji, then it must be the case that Xε(aj) ⊆ Hij . This implies that Xε(aj) ⊆ Xε(ai)
and thus x ∈ Xε(ai), which contradicts the hypothesis..

Given that there exists some Xε(ai) with vol(Xε(ai)) > 0 such that Xε(aj) ⊆ Xε(ai), then Xε(aj) =
Xε(ai) ∩ Xε(aj) is a face of Xε(ai) by Lemma 13.

Lemma 12. Given the collection of polytopes {Xε(ai)}ai∈C with volume larger than zero and an
another action aj , then, under the event Ea, Algorithm 11 returns a (possibly improper) face Fε(aj)
of Xε(aj) such that Vε(aj) ⊆ Fε(aj). Furthermore, the Algorithm requires O(n

(
d+n
d

)
) calls to

Algorithm 5.

Proof. In the following, for the sake of notation, given a polytope Xε(a) and the a set of hyperplanes
H(a), with an abuse of notation we denote with Xε(a) ∩H(a) the intersection of Xε(a) with every
hyperplane inH(a). Formally:

Xε(a) ∩ H(a) := Xε(a) ∩
⋂

H∈H(a)

H. (8)

Suppose that Xε(aj) = ∅. Then, one can easily verify that Algorithm 11 returns ∅. Thus, in the
following we assume Xε(aj) 6= ∅.
Let ai be action selected at Line 14 Algorithm 11. We denote with Fε(ai) the face returned by
Algorithm 11:

Fε(ai) := Xε(ai) ∩H(ai).

We observe that by Lemma 14, there exists an action ak ∈ C such that Xε(aj) is a face of Xε(ak).
Consequently, Algorithm 11 queries every vertex x ∈ Vε(aj).
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As a first step we show that Fε(ai) actually is a face of Xε(ai) and contains every vertex of Vε(aj).
Being the non-empty intersection of Xε(ai) with some hyperplanes inM(Xε(ai)), Fε(ai) is a face
of Xε(ai). One can easily prove by induction thatH(ai) includes all and only the hyperplanes within
M(Xε(ai)) containing every vertex in Vε(aj). Thus, Vε(aj) ⊆ Fε(ai).

Now we show that Fε(ai) is not only a (proper) face of Xε(ai) containing the set Vε(aj), but also a
face of Xε(aj) (possibly the improper face Xε(aj) itself). We consider the set Xε(ai)∩Xε(aj), which
is a face of both Xε(ai) and Xε(aj) thanks to Lemma 13. Thus, there exists some set of hyperplanes
H′(ai) ⊂M(Xε(ai)) such that:

Xε(ai) ∩H′(ai) = Xε(ai) ∩ Xε(aj). (9)

Furthermore, we observe that Vε(aj) ⊆ Xε(ai) ∩ Xε(aj). Indeed, we have that Vε(aj) ⊆ Xε(ai)
since Vε(aj) ⊆ Fε(ai) and Fε(ai) is a face of Xε(ai), and Vε(aj) ⊆ Xε(aj) by definition.

We want to prove thatH′(ai) ⊆ H(ai), where the setH(ai) contains all and only the hyperplanes
withinM(Xε(ai)) that include the whole set Vε(aj). In order to do that, suppose, by contradiction,
that there exists a vertex x ∈ Vε(aj) such that x /∈ H for some H ∈ H′(ai). Then, x /∈ Xε(ai) ∩
H′(ai) ⊆ H . However, we proved that Vε(aj) ⊆ Xε(ai) ∩Xε(aj) and Xε(ai) ∩Xε(aj) = Xε(ai) ∩
H′(ai) by definition ofH′(ai), reaching a contradiction.

Consequently:

Fε(ai) := Xε(ai) ∩H(ai) = Xε(ai) ∩
⋂

H∈H(ai)

H

⊆ Xε(ai) ∩
⋂

H∈H′(ai)

H

= Xε(ai) ∩H′(ai)
= Xε(ai) ∩ Xε(aj),

where we applied Equation 8, the fact thatH′(ai) ⊆ H(ai), and Equation 9.

Finally, we can show that Fε(ai) is a face of Xε(aj). We have that Fε(ai) is a face of Xε(ai) and
Fε(ai) ⊆ Xε(ai) ∩ Xε(aj), which is itself a face of Xε(ai) by Lemma 13. Thus, Fε(ai) is a face of
Xε(ai) ∩ Xε(aj). Furthermore, Lemma 13 states that Xε(ai) ∩ Xε(aj) is also a face of Xε(aj). This
implies that Fε(ai) is a face of a face of Xε(aj), and thus a face of Xε(aj) itself.

In order to conclude the proof, we have to prove that at Line 14 Algorithm 11 can actually find an
action ai such that Fε(ai) = Xε(ai) ∩H(ai) is non-empty. Let ak ∈ C be such that Xε(aj) is a face
of Xε(ak), which exists thanks to Lemma 14. Let x be any vertex in the set Vε(aj) and defineH′′(aj)
as:

H′′(ak) := {H ∈ RH(Xε(ak)) | x ∈ H}.
Then Xε(ak) ∩H′′(ak) = {x}. Consequently,H(ak) ⊆ H′′(ak), and thus:

Xε(ak) ∩H(ak) = Xε(ak) ∩
⋂

H∈H(ak)

H

⊆ Xε(ak) ∩
⋂

H∈H′′(ak)

H

= Xε(ak) ∩H′′(ak)

= {x} 6= ∅.

As a result, there is always an action ak ∈ C such that Xε(ak) ∩H(ak) 6= ∅.
Finally, we observe that Algorithm 11 executes Algorithm 5 once for every vertex in the set⋃
ai∈C V (Xε(ai)), which has size O(n

(
d+n
d

)
).

F Omitted proofs from Section 5

Theorem 2. For any sender’s algorithm, there exists a Bayesian persuasion instance in which
n = d+ 2 and the regret RT suffered by the algorithm is at least 2Ω(d), or, equivalently, 2Ω(n).
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Proof. In the following, for the sake of the presentation, we consider a set of instances characterized
by an even number d ∈ N+ of states of nature and n = d+ 2 receiver’s actions. All the instances
share the same uniform prior distribution and the same sender’s utility, given by us

θ(ad+1) = 1 for
all θ ∈ Θ, and us

θ(a) = 0 for all θ ∈ Θ and ∀a ∈ A \ {ad+1}. Each instance is parametrized by a
vector p belonging to a set P defined as follows:

P :=

{
p ∈ {0, 1}d |

d∑
i=1

pi =
d

2

}
.

Furthermore, we assume that the receiver’s utility in each instance Ip is given by:

Ip


uθi(aj) = δij ∀i, j ∈ [d],

uθi(ad+1) = 2
dpi ∀i ∈ [d],

uθi(ad+2) = 2
d ∀i ∈ [d].

We show that ξ′θi := 2
dpi for each i ∈ [d] is the only posterior inducing the receiver’s action ad+1 ∈ A

in the instance Ip, since the receiver breaks ties in favor of the sender. To prove that, we observe
that the action ad+1 is preferred to the action ad+2 only in those posteriors that satisfy the condition
ξθi = 0 for each i ∈ [d] with pi = 0. Furthermore, to incentivize the action ad+1 over the set of
actions ai with i ∈ [d], the following condition must hold:∑

i∈[d]:pi>0

ξθiuθi(an+1) =
2

d

∑
i∈[d]:pi>0

ξθi =
2

d
≥ max
i∈[d]:pi>0

ξθi .

We notice that the last step holds only if ξθi ≤ 2/d for each i ∈ [d] such that pi > 0. Consequently,
since the number of ξθi > 0 is equal to d/2, it holds ξθi = 2/d for each i ∈ [d] such that pi > 0.
Thus, the only posterior inducing action ad+1 is equal to ξ′θi := 2

dpi.

We also notice that, given p ∈ P , the optimal signaling scheme γ is defined as γ(ξ′) = 1/2 and
γ(ξ′′) = 1/2, with ξ′′θ = µθ − 1

2ξ
′
θ for each θ ∈ Θ. With a simple calculation, we can show that the

expected sender’s utility in γ is equal to 1/2.

We set the time horizon T = b|P|/4c to show that any algorithm suffers regret of at least 2Ω(d).
This is sufficient to prove the statement. We start by making the following simplifications about the
behavior of the algorithm. First, we observe that if the algorithm can choose any posterior (instead of
a signaling scheme), then this will only increase the performance of the algorithm. Consequently, we
assume that the algorithm chooses a posterior ξt at each round t ∈ [T ].

Thus, we can apply Yao’s minimax principle to show that any deterministic algorithm fails against a
distribution over instances. In the following, we consider a uniform distribution over instances Ip
with p ∈ P . Furthermore, we observe that the feedback of any algorithm is actually binary. Thus,
it is easy to see that an optimal algorithm works as follows: (i) it ignores the feedback whenever
the action is not ad+1, and (ii) it starts to play the optimal posterior when the action is ad+1 since it
found an optimal posterior.

This observation is useful for showing that any deterministic algorithm does not find a posterior that
induces action ad+1 with a probability of at least 1− |P|/(4|P|) = 3/4 (since it can choose only b|P|/4c
posteriors among the |P| possible optimal posteriors). Hence, by Yao’s minimax principle, for any
(randomized) algorithm there exists an instance such that the regret suffered in the T rounds is at
least:

RT ≥
3

4

T

2
≥ 1

4

⌊
|P|
4

⌋
≥ |P|

32
,

since bxc ≥ x − 1 ≥ x/2, for each x ≥ 2. Finally, we notice that |P| =
(
d
d/2

)
= 2Ω(d), which

concludes the proof.

Theorem 3. For any sender’s algorithm, there exists a Bayesian persuasion instance in which the
regret RT suffered by the algorithm is at least Ω(

√
T ).

Proof. To prove the theorem, we introduce two instances characterized by two states of nature and
four receiver’s actions. In both the instances the sender’s utility is given by us

θ(a1) = us
θ(a2) = 0 for
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all θ ∈ Θ, while us
θ1

(a3) = 1, us
θ2

(a3) = 0 and us
θ2

(a4) = 0 us
θ2

(a4) = 1. The receiver’s utilities
and the prior distributions in the two instances are:

1



µ1
θ1

= 1
2 + ε, µ1

θ2
= 1

2 − ε
u1
θ1

(a1) = 1
(2+4ε) , u

1
θ2

(a1) = 1
(10−20ε)

u1
θ1

(a2) = 1
(10+20ε) , u

1
θ2

(a2) = 1
(2−4ε)

u1
θ1

(a3) = 3
10 , u

1
θ2

(a3) = 3
10

u1
θ1

(a4) = 0, u1
θ2

(a4) = 1
(2−4ε)

2



µ2
θ1

= 1
2 − ε, µ

2
θ2

= 1
2 + ε

u2
θ1

(a1) = 1
(2−4ε) , u

2
θ2

(a1) = 1
(10+20ε)

u2
θ1

(a2) = 1
(10−20ε) , u

2
θ2

(a2) = 1
(2+4ε)

u2
θ1

(a3) = 3
10 , u

2
θ2

(a3) = 3
10

u2
θ1

(a4) = 0, u2
θ2

(a4) = 1
(2+4ε)

with ε ∈ (0, 1/4). With a simple calculation, we can show that, in both the two instances, for any
signaling scheme φ employing a generic set of signals S , the sender receives the following feedback:

1. ∀s ∈ S such that φθ1(s) > φθ2(s), then aφ(s) = a1.

2. ∀s ∈ S such that 0 < φθ1(s) < φθ2(s), then aφ(s) = a2.

3. ∀s ∈ S such that φθ1(s) = φθ2(s), then aφ(s) = a3.

4. ∀s ∈ S such that 0 = φθ1(s), then aφ(s) = a4.

As a result, for any signaling scheme the sender may commit to, the resulting feedback in each signal
of the signaling scheme is the same. Thus, we assume without loss of generality, that the sender
only commits to signaling schemes that maximizes the probability of inducing actions a3 or a4. This
is because, the sender does not gain any information by committing to one signaling scheme over
another, while the signaling schemes that induce these two actions are the only ones that provide the
sender with strictly positive expected utility.

Furthermore, thanks to what we have observed before, we can restrict our attention to direct signaling
schemes, i.e., those in which the set of signals coincides with the set of actions. Thus, at each round,
we assume that the sender commits to a signaling scheme φt of the form:

φt :=


φtθ1(a3) = φtθ2(a3) := φt1,

φtθ1(a4) = 0, φtθ2(a4) = 1− φt1,
φtθ1(a1) = 1− φt1, φtθ2(a1) = 0,

(10)

with φt1 ∈ [0, 1]. We also notice that, in each round, the optimal signaling scheme in the first instance
is the one that induces action a3, meaning φt1 = 1 for each t ∈ [T ]. While the optimal signaling
scheme in the second instance at each round is the one that reveals the state of nature to the receiver,
meaning φt1 = 0 for each t ∈ [T ]. In such a way, the learning task undertaken by the sender reduces
to select a value of φt1 ∈ [0, 1] for each t ∈ [T ] controlling the probability of inducing action a3 over
action a4.

In the following, we define P1 (P2) as the probability distribution generated by the execution of a
given algorithm in the first (second) instance and we let E1 (E2) be the expectation induced by such
a distribution.

The cumulative regret in the first instance can be written as follows:

R1
T = E1

[
T∑
t=1

(
1

2
+ ε− φt1

(
1

2
+ ε

)
−
(
1− φt1

)(1

2
− ε
))]

= 2εE

[
T∑
t=1

(
1− φt1

)]
.

Similarly, in the second instance, the cumulative regret is given by:

R2
T = 2εE

[
T∑
t=1

φt1

]
.

Furthermore, it is easy to check that:

R1
T ≥ P1

(
T∑
t=1

φ1
t ≤ T/2

)
εT and R2

T ≥ P2

(
T∑
t=1

φ1
t ≥ T/2

)
εT.
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By employing the relative entropy identities divergence decomposition we also have that:

KL
(
P1,P2

)
= T · KL

(
µ1, µ2

)
≤ 64

3
Tε2 ≤ 22Tε2,

where we employed the fact that for two Bernoulli distribution it holds

KL(Be(p),Be(q)) ≤ (p− q)2

q(1− q)
.

Then, by employing the Bretagnolle–Huber inequality we have that,

R1
T +R2

T ≥ εT

(
P1

(
T∑
t=1

φ1
t ≤ T/2

)
+ P2

(
T∑
t=1

φ1
t ≥ T/2

))

≥ 1

2
εT exp

(
−KL

(
P1,P2

))
≥ 1

2
εT exp

(
−22Tε2

)
.

By taking ε =
√

1
22T we get:

R1
T +R2

T ≥ C1

√
T .

with C1 = e−1
/(2
√

22) Thus, we have:

R1
T ≥

C1

2

√
T ∨ R2

T ≥
C1

2

√
T ,

concluding the proof.

G Details and omitted proofs from Section 6

G.1 Compute-Threshold procedure

The Compute-Threshold procedure takes as input a real parameter ε1 > 0. Then, it iteratively
halves the value of a different parameter ε, initially set to one, until it is smaller than or equal to
ε1. In this way, Algorithm 12 computes a parameter ε ∈ [ε1/2, ε1] in O(log(1/ε1)) rounds with
bit complexity Bε = O(log(1/ε1)). This technical component is necessary to ensure that the bit-
complexity of the parameter ε is not too large while guaranteeing that the solution returned by
Algorithm 4 is still γ-optimal with probability at least 1− η.

Algorithm 12 Compute-Threshold
Require: ε1 ∈ (0, 1)

1: ε← 1
2: while ε ≥ ε1 do
3: ε← ε/2

4: Return ε

G.2 Omitted proofs from Section 6

Lemma 5. Given T1 :=
⌈

1
2ε2 log (2d/δ)

⌉
and ε ∈ (0, 1), Algorithm 2 employs T1 rounds and outputs

Xε ⊆ X such that, with probability at least 1 − δ: (i)
∑
θ∈Θ µθxθ ≥ ε for every slice x ∈ Xε, (ii)∑

θ∈Θ µθxθ ≤ 6ε for every slice x ∈ X \ Xε, and (iii) |µ̂θ − µθ| ≤ ε for every θ ∈ Θ.

Proof. Thanks to the definition of T1 := d1/2ε2 log (2d/δ)e in Algorithm 4 and employing both a
union bound and the Hoeffding bound we have:

P (|µ̂θ − µθ| ≤ ε) ≥ 1− δ, ∀θ ∈ Θ.
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Consequently, if |µ̂θ − µθ| ≤ ε for each θ ∈ Θ, then for each x ∈ Xε, the probability of inducing the
slice x can be lower bounded as follows:

ε ≤
∑
θ∈Θ′

µ̂θxθ − ε ≤
∑
θ∈Θ′

(µ̂θ − ε)xθ ≤
∑
θ∈Θ′

µθxθ ≤
∑
θ∈Θ

µθxθ

where the above inequalities hold because each x ∈ Xε satisfies the constraint
∑
θ∈Θ′ µ̂θxθ ≥ 2ε.

Furthermore, if |µ̂θ − µθ| ≤ ε for each θ ∈ Θ, then for each x 6∈ Xε the following holds:∑
θ∈Θ′

µθxθ ≤ ε+
∑
θ∈Θ′

(µθ − ε)xθ ≤ ε+
∑
θ∈Θ′

µ̂θxθ ≤ 3ε, (11)

since, if x 6∈ Xε, it holds
∑
θ∈Θ′ µ̂θxθ ≤ 2ε, and,∑

θ 6∈Θ′

µθxθ ≤
∑
θ 6∈Θ′

(µθ − ε)xθ + ε ≤
∑
θ 6∈Θ′

µ̂θxθ + ε ≤ 3ε. (12)

Thus, by combining Inequality (11) and Inequality (12), we have:∑
θ∈Θ

µθxθ ≤ 6ε,

when x 6∈ Xε, concluding the proof.

Theorem 4. Given γ ∈ (0, 1) and η ∈ (0, 1), with probability at least 1− η, Algorithm 4 outputs a
γ-optimal signaling scheme in a number of rounds T such that:

T ≤ Õ
(
n3

γ2
log2

(
1

η

)(
d8B + d

(
d+ n

d

)))
.

Proof. Thanks to Lemma 5, with probability at least 1− δ = 1− η/2 Algorithm 4 correctly completes
Phase 1 in T1 = O(1/ε2 log(1/η) log(d)) rounds. Thus, with probability at least 1 − η/2, both the
event E1 and the inequalities |µ̂θ − µθ| ≤ ε for each θ ∈ Θ hold.

Consequently, under the event E1, with probability at least 1− ζ = 1− η/2, Algorithm 4 correctly
partitions the search space Xε in at most:

Õ
(
n2

ε
log2

(
1

η

)(
d7L+

(
d+ n

d

)))
rounds, as stated by Lemma 3. Furthermore, we notice that L = B +Bε +Bµ̂, with:

Bµ̂ = O(log(T1)) = O (log(1/ε) + log(1/η) + log(d)) .

As a result, with probability at least 1− η, Algorithm 4 correctly terminates in a number of rounds N
which can be upper bounded as follows:

N ≤ Õ
(

1

ε2
log

(
1

η

)
log(d) +

n2

ε
log2

(
1

η

)(
d7(B +Bε) +

(
d+ n

d

)))
.

Furthermore, we observe that if |µ̂θ − µθ| ≤ ε for each θ ∈ Θ, then the following holds:∣∣∣∣∣∑
θ∈Θ

µ̂θ − µθ

∣∣∣∣∣ ≤∑
θ∈Θ

|µ̂θ − µθ| ≤
∑
θ∈Θ

ε = εd.

Consequently, thanks to the result provided by Lemma 4, with probability at least 1− η, Algorithm 4
computes a 12nεd-optimal solution. Thus, by setting ε1 := γ/12nd and ε ≤ ε1, with probability at
least 1− η Algorithm 4 computes a γ-optimal solution in a number of rounds N bounded by:

N ≤ Õ
(
n2d2

γ2
log

(
1

η

)
+
n3

γ
log2

(
1

η

)(
d8(B +Bε) + d

(
d+ n

d

)))
= Õ

(
n3

γ2
log2

(
1

η

)(
d8(B +Bε) + d

(
d+ n

d

)))
= Õ

(
n3

γ2
log2

(
1

η

)(
d8B + d

(
d+ n

d

)))
,

where the last equality holds because the bit-complexity of ε is Bε = O(log(nd/γ)), concluding the
proof.
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Theorem 5. There exist two absolute constants κ, λ > 0 such that no algorithm is guaranteed to
return a κ-optimal signaling scheme with probability of at least 1− λ by employing less than 2Ω(n)

and 2Ω(d) rounds, even when the prior distribution µ is known to the sender.

Proof. In the proof of Theorem 2 we showed that, with probability 3/4, in N = b|P|/4c rounds
any algorithm does not correctly identify the posterior inducing action ad+1. This is because, any
deterministic algorithm can identify the optimal posterior only in b|P|/4c instances, as observed in the
proof of Theorem 2.

As a result, in the remaining |P| −N instances, any deterministic algorithm will receive the same
feedback and thus will always output the same posterior after N rounds, which will result in the
optimal one in only a single instance.

Thus, thanks to the Yao’s minimax principle, there is no algorithm that is guaranteed to return an
optimal solution with probability at least:

3

4

(
|P| −N − 1

|P| −N

)
≥ 3

8

(
|P| −N
|P| −N

)
=

3

8
.

Finally, we observe that OPT = 1/2, while any algorithm that does not induce the posterior ξ′ provides
an expected utility equal to zero. As a result, for each κ < 1/2 there is no algorithm that is guaranteed
to return a solution which is κ-optimal in b|P|/4c = 2Ω(d) rounds with probability at least 3/8.

Theorem 6. Given γ ∈ (0, 1/8) and η ∈ (0, 1), no algorithm is guaranteed to return a γ-optimal
signaling scheme with probability at least 1− η by employing less than Ω

(
1
γ2 log(1/η)

)
rounds.

Proof. To prove the theorem, we consider the same instance and the same definitions introduced
in the proof of Theorem 3. In this case, we let P1 (P2) be the probability distribution generated by
the execution of a given algorithm in the first (second) instance for N = dlog(1/4η)/22ε2e rounds.
Furthermore, we introduce the event E , under which the signaling scheme returned at the round
N , according to the definition presented in Equation 10, is such that φN ≤ 1/2. We notice that, if
such signaling scheme is such that φN < 1/2, then the sender’s expected utility in the first instance
is smaller or equal to 1/2, thus being ε/2-optimal. At the same time, if φN ≥ 1/2 in the second
instance, then the solution returned by the algorithm is not ε/2-optimal.

Thus, by employing the Bretagnolle–Huber inequality we have:

P1 (E) + P2
(
EC
)
≥ 1

2
exp

(
−KL

(
P1,P2

))
≥ 1

2
exp

(
−22Nε2

)
,

since KL
(
P1,P2

)
≤ 22Nε2, as observed in the proof of Theorem 6. Finally, by employing the

definition of N , we have:

P1 (E) ≥ η ∨ P2
(
EC
)
≥ η.

As a result, by setting 2γ = ε, the statement of the lemma holds.

H Sample complexity with known prior

In this section, we discuss the Bayesian persuasion PAC-learning problem when the prior distribution
µ is known to the sender. To tackle the problem, we propose Algorithm 13. The main difference with
respect to Algorithm 4 is that, in this case, we do not need to employ the Build-Search-Space
procedure, as the prior is already known to the sender. This allows us to compute a γ-optimal
signaling scheme in only O(1/γ) rounds, instead of O(1/γ2) rounds as in the case with an unknown
prior.
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Algorithm 13 PAC-Persuasion-w/o-Clue-Known
Require: η ∈ (0, 1), γ ∈ (0, 1), µ ∈ ∆Θ

1: ε1 ← γ/10nd

2: ε← Compute-Epsilon(ε1), µ̂← µ

3: Θ̃← {θ ∈ Θ | µ̂θ > 2ε}
4: Xε ←

{
x ∈ X |

∑
θ∈Θ̃ µ̂θxθ ≥ 2ε

}
5: Rε ← Find-Polytopes(Xε, η)
6: φ← Compute-Signaling(Rε,Xε, µ)
7: return φ

In this case, the following theorem holds.
Theorem 7. With probability at least 1 − η and in Algorithm 2 computes a γ-optimal signaling
scheme in Õ

(
n3
/γ log2 (1/η)

(
d8B + d

(
d+n
d

)))
rounds.

Proof. Since µ̂ = µ, the clean event E1 holds with probability one. Consequently, thanks to Lemma 3,
with probability at least 1− η, Algorithm 13 correctly partitions the search space Xε in at most:

Õ
(
n2

ε
log2 (1/η)

(
d7L+

(
d+ n

d

)))
rounds, with L := B+Bε+Bµ̂. According to Algorithm 13, we have ε ≤ ε1 := γ/(10nd). As a result,
L = O (B + log(nd) + log(1/γ)), since Bµ̂ ≤ B and Bε = O(log(1/ε1)) = O(log(nd) + log(1/γ)).

Furthermore, under the event E2, Algorithm 13 computes a 10εnd-optimal solution, as guaranteed by
Lemma 4, with µ̂ = µ.

Thus, with probability at least 1− η, Algorithm 13 computes a γ-optimal solution in:

Õ
(
n3

γ
log2 (1/η)

(
d8B + d

(
d+ n

d

)))
rounds, concluding the proof.

We notice that, differently from the case with an unknown prior, it is possible to achieve a
O (log(1/η)/γ) upper bound with respect to the input parameters γ, η > 0. Finally, we show that such
a dependence is tight, as shown in the following theorem.
Theorem 8. Given γ, η > 0 no algorithm is guaranteed to return an γ-optimal signaling scheme
with probability of at least 1− η employing Ω (log(1/η)/γ) rounds, even when the prior distribution is
known to the sender.

Proof. We consider two instances characterized by two states of nature and three receiver’s actions.
The two instances share the same prior distribution, defined as µθ1 = 4γ and µθ2 = 1− 4γ. In both
the instances the sender’s utility is given by us

θ(a1) = 0, us
θ(a2) = 1/2 and us

θ(a3) = 1 for all θ ∈ Θ.
Furthermore, we assume that the receiver’s utility in the two instances are given by:

1


uθ1(a1) = 1, uθ2(a1) = 1/2

uθ1(a2) = 1/2, uθ2(a2) = 1

uθ1(a3) = 1, uθ2(a3) = 0

2


uθ1(a1) = 1, uθ2(a1) = 1/2

uθ1(a2) = 1/2, uθ2(a2) = 1

uθ1(a3) = 1/2, uθ2(a3) = 0

We observe that the only case in which the sender receives different feedback in the two instances is
when they induce the posterior distribution ξ1 := (1, 0). This is because, when the sender induces ξ1
in the first instance, the receiver plays the action a3 ∈ A, breaking ties in favor of the sender, while
in the second instance, the receiver plays the action a1 ∈ A. Such a posterior can be induced, in both
the two instances, with a probability of at most γ to be consistent with the prior.

We also observe that in the first instance the optimal sender’s signaling scheme γ is such that
γ(ξ1) = 4γ and γ(ξ2) = 1 − 4γ, where we let ξ2 := (0, 1). Furthermore, the sender’s expected
utility in γ is equal to (1 + 4γ)/2. In the second instance, the optimal sender’s signaling scheme γ
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is such that γ(ξ2) = 1− 8γ and γ(ξ3) = 8γ, with ξ3 := (1/2, 1/2). It is easy to verify that such a
signaling scheme achieves an expected utility of 1/2.

In the following, we let P1 and P2 be the probability measures induced by the interconnection of
a given algorithm executed in the first and in the second instances, respectively. Furthermore, we
introduce the event EN , under which, during the first N rounds, the sender never observes the action
a3 ∈ A. It is easy to verify that such an event holds with a probability of at least P1(EN ) ≥ (1−4γ)N

in the first instance. This is because, at each round, the action a3 can be observed with a probability
of at most 4γ. In contrast, since in the second instance the receiver never plays the action a3, it holds
P2(EN ) = 1 ≥ (1− 4γ)N .

Then, by letting γN1 (γN2 ) be the signaling scheme returned after N rounds in the first (second)
instance, we have:

P1
(
γN1 (ξ1) ≥ 2γ

)
+ P2

(
γN2 (ξ1) ≤ 2γ

)
≥ P1

(
γN1 (ξ1) ≥ 2γ,EN

)
+ P2

(
γN2 (ξ1) ≤ 2γ,EN

)
≥ P1

(
γN1 (ξ1) ≥ 2γ |EN

)
P1 (EN ) + P2

(
γN2 (ξ1) ≤ 2γ |EN

)
P2 (EN )

≥
(
P1
(
γN1 (ξ1) ≥ 2γ |EN

)
+ P2

(
γN2 (ξ1) ≤ 2γ |EN

))
P1 (EN )

= P1 (EN )

≥ (1− 4γ)N ≥ 2η. (13)

The above result holds observing that, under the event EN , the behaviour of any algorithm working
in the first instance coincides with the behaviour of the same algorithm working in the second one, as
they receive the same feedback. Furthermore, Inequality 13 holds when N is such that:

N ≤ log(1/2η)

10γ
≤ log(2η)

log(1− 4γ)
,

if γ ≤ 1/5.

Finally, we observe that if γN1 (ξ1) ≤ 2γ, then the sender’s expected utility in the first instance is of
most 1/2 + γ. This is because, for any signaling scheme γN1 , we have:

us(γN1 ) ≤ γN1 (ξ1)us(ξ1) +
1

2

(
1− γN1 (ξ1)

)
=

1

2
+ γ.

Thus, if γN1 (ξ1) ≤ 2γ the the signaling scheme γN1 is at most γ-optimal.

Equivalently, if the sender’s final signaling scheme γN2 in the second instance is such that γN2 (ξ1) ≥
2γ, then the sender’s utility in the second instance is of at most 1/2− γ. Thus, if γN2 (ξ1) ≥ 2γ the
the signaling scheme γN2 is at most γ-optimal. Then, we either have:

P1
(
γN1 (ξ1) ≤ 2γ

)
≥ η or P2

(
γN2 (ξ1) ≥ 2γ

)
≥ η,

showing that if the number of rounds N ≤ log(1/2η)/(10γ), there exists an instance such that no
algorithm is guaranteed to return a γ-optimal signaling scheme with probability greater than or equal
to 1− η.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction state all the main contributions of this work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: All the assumptions are stated in the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions needed are reported in the statements of the theorems and
lemmas, while all the proofs are reported in the appendices.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

4.1 If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

4.2 If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

4.3 If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

4.4 We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The paper does not include experiments.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed, since the work is mainly
theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

44

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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